Doctor of Philosophy (PhD)


Computer Science

Document Type



Many applications require comparative analysis of multiple datasets representing different samples, conditions, time instants, or views in order to develop a better understanding of the scientific problem/system under consideration. One effective approach for such analysis is visualization of the data. In this PhD thesis, we propose an innovative multiple dataset visualization (MDV) approach in which two or more datasets of a given type are rendered concurrently in the same visualization. MDV is an important concept for the cases where it is not possible to make an inference based on one dataset, and comparisons between many datasets are required to reveal cross-correlations among them. The proposed MDV framework, which deals with some fundamental issues that arise when several datasets are visualized together, follows a multithreaded architecture consisting of three core components, data preparation/loading, visualization and rendering. The visualization module - the major focus of this study, currently deals with isosurface extraction and texture-based rendering techniques. For isosurface extraction, our all-in-memory approach keeps datasets under consideration and the corresponding geometric data in the memory. Alternatively, the only-polygons- or points-in-memory only keeps the geometric data in memory. To address the issues related to storage and computation, we develop adaptive data coherency and multiresolution schemes. The inter-dataset coherency scheme exploits the similarities among datasets to approximate the portions of isosurfaces of datasets using the isosurface of one or more reference datasets whereas the intra/inter-dataset multiresolution scheme processes the selected portions of each data volume at varying levels of resolution. The graphics hardware-accelerated approaches adopted for MDV include volume clipping, isosurface extraction and volume rendering, which use 3D textures and advanced per fragment operations. With appropriate user-defined threshold criteria, we find that various MDV techniques maintain a linear time-N relationship, improve the geometry generation and rendering time, and increase the maximum N that can be handled (N: number of datasets). Finally, we justify the effectiveness and usefulness of the proposed MDV by visualizing 3D scalar data (representing electron density distributions in magnesium oxide and magnesium silicate) from parallel quantum mechanical simulations



Document Availability at the Time of Submission

Release the entire work immediately for access worldwide.

Committee Chair

Bijaya B. Karki