Doctor of Philosophy (PhD)


Engineering Science (Interdepartmental Program)

Document Type



Coreference resolution is the task of resolving all expressions in a text that refer to the same entity. Such expressions are often used in writing and speech as shortcuts to avoid repetition. The most frequent form of coreference is the anaphor. To resolve anaphora not only grammatical and syntactical strategies are required, but also semantic approaches should be taken into consideration. This dissertation presents a framework for automatically resolving pronominal anaphora by integrating recent findings from the field of linguistics with new semantic features. Commonsense knowledge is the routine knowledge people have of the everyday world. Because such knowledge is widely used it is frequently omitted from social communications such as texts. It is understandable that without this knowledge computers will have difficulty making sense of textual information. In this dissertation a new set of computational and linguistic features are used in a supervised learning approach to resolve the pronominal anaphora in document. Commonsense knowledge sources such as ConceptNet and WordNet are used and similarity measures are extracted to uncover the elaborative information embedded in the words that can help in the process of anaphora resolution. The anaphoric system is tested on 350 Wall Street Journal articles from the BBN corpus. When compared with other systems available such as BART (Versley et al. 2008) and Charniak and Elsner 2009, our system performed better and also resolved a much wider range of anaphora. We were able to achieve a 92% F-measure on the BBN corpus and an average of 85% F-measure when tested on other genres of documents such as children stories and short stories selected from the web.



Document Availability at the Time of Submission

Student has submitted appropriate documentation to restrict access to LSU for 365 days after which the document will be released for worldwide access.

Committee Chair

Knapp, Gerald