Doctor of Philosophy (PhD)


Electrical and Computer Engineering

Document Type



Spectrum sensing is a key function of cognitive radios and is used to determine whether a primary user is present in the channel or not. In this dissertation, we formulate and solve the generalized likelihood ratio test (GLRT) for spectrum sensing when both primary user transmitter and the secondary user receiver are equipped with multiple antennas. We do not assume any prior information about the channel statistics or the primary user’s signal structure. Two cases are considered when the secondary user is aware of the energy of the noise and when it is not. The final test statistics derived from GLRT are based on the eigenvalues of the sample covariance matrix. In-band spectrum sensing in overlay cognitive radio networks requires that the secondary users (SU) periodically suspend their communication in order to determine whether the primary user (PU) has started to utilize the channel. In contrast, in spectrum monitoring the SU can detect the emergence of the PU from its own receiver statistics such as receiver error count (REC). We investigate the problem of spectrum monitoring in the presence of fading where the SU employs diversity combining to mitigate the channel fading effects. We show that a decision statistic based on the REC alone does not provide a good performance. Next we introduce new decision statistics based on the REC and the combiner coefficients. It is shown that the new decision statistic achieves significant improvement in the case of maximal ratio combining (MRC). Next we consider the problem of cooperative spectrum sensing in cognitive radio networks (CRN) in the presence of misbehaving radios. We propose a novel approach based on the iterative expectation maximization (EM) algorithm to detect the presence of the primary users, to classify the cognitive radios, and to compute their detection and false alarm probabilities. We also consider the problem of centralized binary hypothesis testing in a cognitive radio network (CRN) consisting of multiple classes of cognitive radios, where the cognitive radios are classified according to the probability density function (PDF) of their received data (at the FC) under each hypotheses.



Document Availability at the Time of Submission

Release the entire work immediately for access worldwide.

Committee Chair

Naraghi-Pour, Morteza