Doctor of Philosophy (PhD)


Electrical and Computer Engineering

Document Type



Linear identification technique is to linearly embed a piece of unique information into digital media data for the purpose of satisfying specific demands such as identification, annotation, and copyright, etc. We need to consider the quantity and the quality of identification data to be embedded as well as the corresponding interference to the original subject signal. However, there exist no generalized computationally-efficient optimization techniques for linear identification up to now. Therefore, in this dissertation work, we try to theoretically investigate the advanced linear identification techniques and combat the tradeoff problems between the quality of the embedded identification data and the quality of the subject signal. Two particular signal processing and telecommunication applications, namely transmitter identification and digital watermarking, will be exploited in this work. We propose a novel optimization paradigm for both digital terrestrial television (DTV) systems and multiple digital watermarking systems to maximize the overall signal-to-interference-plus-noise ratio (SINR) over both identification and subject signals. The new theories and practice related to pseudo random sequences, extended arithmetic-geometric mean inequality, and constrained overall system performance are also presented in this dissertation.



Document Availability at the Time of Submission

Secure the entire work for patent and/or proprietary purposes for a period of one year. Student has submitted appropriate documentation which states: During this period the copyright owner also agrees not to exercise her/his ownership rights, including public use in works, without prior authorization from LSU. At the end of the one year period, either we or LSU may request an automatic extension for one additional year. At the end of the one year secure period (or its extension, if such is requested), the work will be released for access worldwide.

Committee Chair

Wu, Hsiao-Chun