The role of biologically-enhanced pore water transport in early diagenesis: An example from carbonate sediments in the vicinity of North Key Harbor, Dry Tortugas National Park, Florida

Document Type


Publication Date



Biologically enhanced pore water irrigation affects the course of early diagenesis in shallow marine sediments, as illustrated here for the carbonate sediments from North Key Harbor, Dry Tortugas National Park, Florida. Whereas macrofaunal activity at the study site extends approximately 15 cm below the water-sediment interface, measured O2 microprofiles only show O2 penetration to depths of a few mm. This apparent discrepancy can be explained by considering the 3-D O2 distribution in the burrowed sediments. Calculations based on an idealized tube model for burrow irrigation show that measureable O2 concentrations are limited to the immediate vicinity of burrows. Given the observed burrow density (705 ± 15 m-2), a randomly positioned O2 microprofile has a high probability (>90%) to fall outside the reach of radial O2 diffusion from burrows. Hence, the shallow penetration depths recorded at the site do not exclude a much deeper supply of O2 in the sediment via the burrows. Other characteristic features observed in the upper 15-20 cm of the sediments, in particular, the absence of SO42- depletion and the presence of subsurface maxima in the profiles of NH4+ and TCO2, are also the result of pore water irrigation. These features are reproduced by the multicomponent reactive transport model STEADYSED1. Results of the model simulations indicate that bacterial SO42- reduction is the dominant pathway of organic carbon degradation, but that consumption of SO42- in the sediments is compensated by its enhanced transport by irrigation. Thus, depth profiles of SO42- may be poor indicators of the importance of SO42- reduction in irrigated sediments.

Publication Source (Journal or Book title)

Journal of Marine Research

First Page


Last Page


This document is currently not available here.