Influence of induced plant defenses in cotton and tomato on the efficacy of baculoviruses on noctuid larvae

Document Type


Publication Date



Constitutive phenolase activity of plants has a profound ability to modulate disease in insects caused by baculoviruses. We investigated the influence of damage-induced plant phenolic oxidases in cotton and tomato on mortality caused by two different baculoviruses in their respective hosts, Heliothis virescens (L.) and Helicoverpa zea (Boddie). For both plant species, peroxidase (POD) and phenolic levels were predictive of larval mortality caused by baculoviruses. The higher the POD activity, the lower the mortality in both hosts. Different classes of phenolics (e.g., monohydroxyphenolics vs. catecholic phenolics) in combination with POD activity had different effects on the severity of vital disease depending upon mixture, which implies that vial efficacy is predictable only if total chemical content of the plants is specified. Inhibition of baculoviral disease by plant phenolase activity has potential implications for the compatibility of baculoviruses with induced resistance in IPM programs.

Publication Source (Journal or Book title)

Journal of Chemical Ecology

First Page


Last Page


This document is currently not available here.