Engineering Charts for Predicting Breakdown Pressure for Finite-Length Wellbore Intervals

Document Type

Conference Proceeding

Publication Date

1-1-2021

Abstract

In wellbore drilling, the drilling mud density needs to be carefully selected such that the mud pressure inside the wellbore will not exceed formation breakdown pressure to avoid wellbore fracturing and extensive mud losses. However, in the hydraulic fracturing treatment, the lesser the value of the formation breakdown pressure the more optimal is the operation. We found out in this study that the pumping schedule (e.g., pumping duration and pumping rate) are factors in optimizing the breakdown pressure. In addition, this work investigates the effects of the finite length between packers on the magnitude of the breakdown pressure in various geological formations. The time-dependent evolving stresses around the wellbore are solved in the framework of time-dependent poroelasticity theory. The breakdown pressure is predicted from the evolution of the circumferential effective stresses. The effects of injection rate, formation properties, borehole diameter and length, and pumping duration on the breakdown pressure are presented in the form of engineering charts, for representative in-situ stress.

Publication Source (Journal or Book title)

SPE Middle East Oil and Gas Show and Conference, MEOS, Proceedings

This document is currently not available here.

Share

COinS