Radicals and molecular products from the gas-phase pyrolysis of lignin model compounds. Cinnamyl alcohol

Document Type


Publication Date



The experimental results on detection and identification of intermediate radicals and molecular products from gas-phase pyrolysis of cinnamyl alcohol (CnA), the simplest non-phenolic lignin model compound, over the temperature range of 400-800 °C are reported. The low temperature matrix isolation - electron paramagnetic resonance (LTMI-EPR) experiments along with the theoretical calculations, provided evidences on the generation of the intermediate carbon and oxygen centered as well as oxygen-linked, conjugated radicals. A mechanistic analysis is performed based on density functional theory to explain formation of the major products from CnA pyrolysis; cinnamaldehyde, indene, styrene, benzaldehyde, 1-propynyl benzene, and 2-propenyl benzene. The evaluated bond dissociation patterns and unimolecular decomposition pathways involve dehydrogenation, dehydration, 1,3-sigmatropic H-migration, 1,2-hydrogen shift, C-O and C-C bond cleavage processes.

Publication Source (Journal or Book title)

Journal of analytical and applied pyrolysis

First Page


Last Page


This document is currently not available here.