Photoinduced cytotoxicity and biodistribution of prostate cancer cell-targeted porphyrins

Document Type


Publication Date



A series of five porphyrin-peptide conjugates bearing one or two sequences containing a cell penetrating peptide (CPP), a nuclear localization signal (NLS), or a bifunctional CPP-NLS or NLS-CPP sequences were synthesized and investigated in vitro using PC-3M human prostate cancer cells, in comparison with FDA-approved purified hematoporphyrin derivative (Porfimer Sodium) and mTHPC. The most promising porphyrin-HIV-1 Tat (48-60) conjugate 2 [lowest dark cytotoxicity (IC50 = 38.0 μM), highest phototoxicity (IC 50 = 0.40 μM at 1 J/cm2)] was further evaluated in an in vivo biodistribution study using SCID mice bearing PC-3M tumors, in comparison with purified hematoporphyrin derivative. Porphyrin conjugate 2 was more tumor selective than the hematoporphyrin derivative and accumulated to a significantly greater extent in tumors. Our results show that effective photodynamic cytotoxicity can be induced in human prostate cancer cells with minimal dark toxicity and that selective accumulation in prostate tumors can be achieved in vivo with porphyrin-targeted photosensitizers. © 2008 American Chemical Society.

Publication Source (Journal or Book title)

Journal of Medicinal Chemistry

First Page


Last Page


This document is currently not available here.