In situ polymerization of PEGDA foam for bone defects

Document Type

Conference Proceeding

Publication Date



© Copyright 2015 by ASME. The purpose of this study is to develop a novel bone replacement using in situ polymerization of thiol-acrylate with adipose tissue derived adult stem cells (ASCs). Specifically, Poly(ethylene glycol) diacrylate-co-trimethylolpropane tris (3-mercaptopropionate) (PEGDA-co-TMPTMP) was synthesized with 10%Hydroxyapatite (HA) foam by an amine-catalyzed Michael addition reaction. Initial characterization studies were performed to determine the temperature profile during the exothermic reaction showing a peak temperature of 50°C. To prevent hyperthermic cell damage and death during the exothermic polymerization procedure, the hASCs were encapsulated in alginate. Characterization of the 3-D structure and interconnectivity of pores in the polymeric foam scaffolds were performed using FIB-SEM and Micro-CT showing uniform distribution of HA. Cell viability experiments within the polymeric scaffold were performed using Vybrant® MTT cell profileration method, as well as fluorescent dyes: Calcein-AM (live) and Ethidium homodimer-1 (dead) showing viability of cells inside the samples.

Publication Source (Journal or Book title)

ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)

This document is currently not available here.