Adsorption and transport of gas-phase naphthalene on micron-size fog droplets in air

Document Type


Publication Date



Aromatic hydrocarbon vapors adsorb to the air/water interface and are transported by wet deposition processes via fog, mist, and rain. A falling droplet apparatus was used to study the adsorption and uptake of naphthalene vapor on water droplets with diameters ranging from 14 to 200 microm. Uptake of naphthalene vapor greater than that predicted by bulk (air-water) phase equilibrium was noted for diameters less than 50 microm and was attributed to surface adsorption. The experimental values of the droplet-vapor partition constants were used to obtain the mass accommodation coefficient for naphthalene at the interface. The effect of temperature on the mass accommodation coefficientwas measured. The effects of a synthetic surfactant and a natural organic carbon surrogate (Suwanee Fulvic acid) on the uptake of naphthalene vapors on water droplets were also examined. Small droplet diameter, decreased temperature, and the presence of dissolved surface-active material in water enhanced the uptake of naphthalene into fog droplets.

Publication Source (Journal or Book title)

Environmental science & technology

First Page


Last Page


This document is currently not available here.