Defining insulin resistance from hyperinsulinemic-euglycemic clamps

Document Type


Publication Date



OBJECTIVE: This study was designed to determine a cutoff point for identifying insulin resistance from hyperinsulinemic-euglycemic clamp studies performed at 120 mU/m(2)·min in a white population and to generate equations from routinely measured clinic and blood variables for predicting clamp-derived glucose disposal rate (GDR), i.e., insulin sensitivity. RESEARCH DESIGN AND METHODS: We assembled data from hyperinsulinemic-euglycemic clamps (120 mU/m(2)·min insulin dose) performed at the Pennington Biomedical Research Center between 2001 and 2011. Subjects were divided into subjects with diabetes (n = 51) and subjects without diabetes (n = 116) by self-report and/or fasting glucose ≥126 mg/dL. RESULTS: We found that 75% of individuals with a GDR <5.6 mg/kg fat-free mass (FFM) + 17.7·min were truly insulin resistant. Cutoff values for GDRs normalized for body weight, body surface area, or FFM were 4.9 mg/kg·min, 212.2 mg/m(2)·min, and 7.3 mg/kgFFM·min, respectively. Next, we used classification tree models to predict GDR from routinely measured clinical and biochemical variables. We found that individual insulin resistance could be estimated with good sensitivity (89%) and specificity (67%) from the homeostasis model assessment of insulin resistance (HOMA-IR) >5.9 or 2.8< HOMA-IR <5.9 with HDL <51 mg/dL. CONCLUSIONS: We developed a cutoff for defining insulin resistance from hyperinsulinemic-euglycemic clamps. Moreover, we now provide classification trees for predicting insulin resistance from routinely measured clinical and biochemical markers. These findings extend the clamp from a research tool to providing a clinically meaningful message for participants in research studies, potentially providing greater opportunity for earlier recognition of insulin resistance.

Publication Source (Journal or Book title)

Diabetes care

First Page


Last Page


This document is currently not available here.