Document Type


Publication Date



Adipocytes are highly specialized cells that play a major role in energy homeostasis in vertebrate organisms. Excess adipocyte size or number is a hallmark of obesity, which is currently a global epidemic. Obesity is a major risk factor for the development of type II diabetes (T2DM), cardiovascular disease, and hypertension. Obesity and its related disorders result in dysregulation of the mechanisms that control the expression of metabolic and endocrine related genes in adipocytes. Therefore, understanding adipocyte differentiation is relevant not only for gaining insight into the pathogenesis of metabolic diseases, but also for identifying proteins or pathways which might be appropriate targets for pharmacological interventions. Significant advances towards an understanding of the regulatory processes involved in adipocyte differentiation have largely been made by the identification of transcription factors that contribute to the adipogenic process. It is important to note that the developmental origin of white and brown fat is distinct and different precursor cells are involved in the generation of these different types of adipose tissue (reviewed in Lefterova and Lazar, 2009; Seale et al., 2009). Several transcription factors, notably PPARγ, several members of the C/EBP and KLF families, STAT5, and SREBP-1c, have been shown to have significant roles in promoting adipogenesis. More comprehensive reviews on negative and positive regulators of adipogenesis have been published in the past year (reviewed in Christodoulides et al., 2009; Lefterova and Lazar, 2009). Though many proteins are known to negatively regulate adipogenesis, including Wnts, KLFs, the E2F family of transcription factors, CHOP, Delta-interacting protein A, ETO/MTG8, and members of the GATA and forkhead transcription factor families, this review will focus on transcription factors that positively impact the development of white adipose tissue. © 2009 Elsevier Ireland Ltd. All rights reserved.

Publication Source (Journal or Book title)

Molecular and Cellular Endocrinology

First Page


Last Page