Document Type


Publication Date



Actin-related protein 5 (ARP5) is a conserved subunit of the INO80 chromatin-remodeling complex in yeast and mammals. We have characterized the expression and subcellular distribution of Arabidopsis thaliana ARP5 and explored its role in the epigenetic control of multicellular development and DNA repair. ARP5-specific monoclonal antibodies localized ARP5 protein to the nucleoplasm of interphase cells in Arabidopsis and Nicotiana tabacum. ARP5 promoter-reporter fusions and the ARP5 protein are ubiquitously expressed. A null mutant and a severe knockdown allele produced moderately dwarfed plants with all organs smaller than the wild type. The small and slightly deformed organs such as leaves and hypocotyls were composed of small-sized cells. The ratio of leaf stomata to epidermal cells was high in the mutant, which also exhibited a delayed stomatal development compared with the wild type. Mutant plants were hypersensitive to DNA-damaging reagents including hydroxyurea, methylmethane sulfonate, and bleocin, demonstrating a role for ARP5 in DNA repair. Interestingly, the hypersensitivity phenotype of ARP5 null allele arp5-1 is stronger than the severe knockdown allele arp5-2. Moreover, a wild-type transgene fully complemented all developmental and DNA repair mutant phenotypes. Despite the common participation of both ARP4 and ARP5 in the INO80 complex, ARP4- and ARP5-deficient plants displayed only a small subset of common phenotypes and each displayed novel phenotypes, suggesting that in Arabidopsis they have both shared and unique functions. © 2009 Elsevier Inc. All rights reserved.

Publication Source (Journal or Book title)

Developmental Biology

First Page


Last Page