Surface association and uptake of poly(lactic-co-glycolic) acid nanoparticles by Aspergillus flavus

Document Type


Publication Date



AIM: To study the interaction of fluorescently tagged nanoparticles with Aspergillus flavus. MATERIALS & METHODS: Covalently tagged poly(lactic-co-glycolic) acid (PLGA) nanoparticles (PLGA-tetramethylrhodamine [PLGA-TRITC]), and PLGA-TRITC with entrapped coumarin-6 (double-tagged) nanoparticles, were synthesized using an oil-in-water emulsion evaporation method. Nanoparticle interaction with A. flavus was assessed using fluorescent microscopy. RESULTS: PLGA-TRITC nanoparticles associated with the surface of fungal spores and hyphae, with limited fluorescence observed within the interior. With double-tagged nanoparticles, comparatively more red fluorescence (TRITC) was measured on the fungal surface and more green (coumarin-6) on the interior, resulting from uptake of released coumarin-6. CONCLUSION: The majority of nanoparticles associated with the fungal surface, while smaller nanoparticles were internalized. Surface association between polymeric nanoparticles and A. flavus may facilitate content uptake.

Publication Source (Journal or Book title)

Therapeutic delivery

First Page


Last Page