Receptor-interacting protein 2 controls pulmonary host defense to Escherichia coli infection via the regulation of interleukin-17A

Document Type


Publication Date



Recognition of microbial patterns by host receptors is the first step in a multistep sequence leading to neutrophil-dependent host resistance. Although the role of membrane-bound sensors in bacterial recognition has been examined in detail, the importance of cytosolic sensors in the lungs is largely unexplored. In this context, there is a major lack of understanding related to the downstream signaling mediators, such as cells and/or molecules, during acute extracellular Gram-negative bacterial pneumonia. In order to determine the role of NOD-like receptors (NLRs), we used an experimental Escherichia coli infection model using mice deficient in the gene coding for the NLR adaptor, receptor-interacting protein 2 (RIP2). RIP2(-/-) mice with E. coli infection displayed higher bacterial burden and reduced neutrophil recruitment and tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), macrophage inflammatory protein 2 (MIP-2), and CXCL5/LIX expression, along with attenuated histopathological changes in the lungs. Decreased IL-17A levels were observed, along with lower numbers of IL-17A-producing T cells, in RIP2(-/-) mice after infection. RIP2(-/-) mice also show reduced IL-6 and IL-23 levels in the lungs, along with decreased activation of STAT3 after infection. Furthermore, activation of NF-κB and mitogen-activated protein kinases (MAPKs) and expression of intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) in the lungs of infected RIP2(-/-) mice were attenuated following infection. Although neutrophil mobilization to the blood was impaired in RIP2(-/-) mice following infection, the expression of CD62P, CD11a/18, CD11b, and CXCR2 on blood and lung neutrophils was not altered between infected wild-type (WT) and RIP2(-/-) mice. Thus, RIP2 contributes to neutrophil-dependent host defense against an extracellular Gram-negative pathogen via (i) IL-17A regulation and (ii) neutrophil mobilization to the blood.

Publication Source (Journal or Book title)

Infection and immunity

First Page


Last Page


This document is currently not available here.