Document Type


Publication Date



In this paper, we prove a quantum union bound that is relevant when performing a sequence of binary-outcome quantum measurements on a quantum state. The quantum union bound proved here involves a tunable parameter that can be optimized, and this tunable parameter plays a similar role to a parameter involved in the Hayashi–Nagaoka inequality (Hayashi & Nagaoka 2003 IEEE Trans. Inf. Theory 49, 1753–1768. (doi:10.1109/TIT.2003.813556)), used often in quantum information theory when analysing the error probability of a square-root measurement. An advantage of the proof delivered here is that it is elementary, relying only on basic properties of projectors, Pythagoras’ theorem, and the Cauchy–Schwarz inequality. As a non-trivial application of our quantum union bound, we prove that a sequential decoding strategy for classical communication over a quantum channel achieves a lower bound on the channel’s second-order coding rate. This demonstrates the advantage of our quantum union bound in the non-asymptotic regime, in which a communication channel is called a finite number of times. We expect that the bound will find a range of applications in quantum communication theory, quantum algorithms and quantum complexity theory.

Publication Source (Journal or Book title)

Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences