Document Type

Article

Publication Date

12-17-2012

Abstract

Laser-dressed absorption in atomic helium is studied, both theoretically and experimentally, by transient absorption spectroscopy using isolated 400-as pulses centered at 22 eV and 12-fs near-infrared (NIR) pulses with 780-nm central wavelength. Multiple features in the helium singly excited bound-state spectrum are observed only when the NIR and attosecond pulses are overlapped in time. Theoretical analysis indicates that these light-induced structures (LISs) are the intermediate states in resonant, second-order processes that transfer population to multiple dipole forbidden states. The use of broadband, coherent extreme ultraviolet (XUV) radiation allows observation of these LISs without specifically tuning to a two-photon resonance, as would be required with narrowband XUV light. The strength and position of the LISs depend strongly on the NIR intensity and the pump-probe delay. © 2012 American Physical Society.

Publication Source (Journal or Book title)

Physical Review A - Atomic, Molecular, and Optical Physics

Share

COinS