Interfacial states and far-from-equilibrium transitions in the epitaxial growth and erosion on (110) crystal surfaces

Document Type

Article

Publication Date

12-11-2006

Abstract

We discuss the far-from-equilibrium interfacial phenomena occurring in the multilayer homoepitaxial growth and erosion on (110) crystal surfaces. Experimentally, these rectangular symmetry surfaces exhibit a multitude of interesting nonequilibrium interfacial structures, such as the rippled one-dimensional periodic states that are not present in the homoepitaxial growth and erosion on the high symmetry (100) and (111) crystal surfaces. Within a unified phenomenological model, we reveal and elucidate this multitude of states on (110) surfaces as well as the transitions between them. By analytic arguments and numerical simulations, we address experimentally observed transitions between two types of rippled states on (110) surfaces. We discuss several intermediary interface states intervening, via consecutive transitions, between the two rippled states. One of them is the rhomboidal pyramid state, theoretically predicted by Golubovic [Phys. Rev. Lett. 89, 266104 (2002)] and subsequently seen, by de Mongeot and co-workers, in the epitaxial erosion of Cu(110) and Rh(110) surfaces. In addition, we find a number of interesting intermediary states having structural properties somewhere between those of rippled and pyramidal states. Prominent among them are the rectangular rippled states of long rooflike objects (huts) recently seen on Ag(110) surface. We also predict the existence of a striking interfacial structure that carries nonzero, persistent surface currents. Periodic surface currents vortex lattice formed in this so-called buckled rippled interface state is a far-from-equilibrium relative of the self-organized convective flow patterns in hydrodynamic systems. We discuss the coarsening growth of the multitude of the interfacial states on (110) crystal surfaces. © 2006 The American Physical Society.

Publication Source (Journal or Book title)

Physical Review E - Statistical, Nonlinear, and Soft Matter Physics

This document is currently not available here.

Share

COinS