Mapping freshwater marsh species distributions using WorldView-2 high-resolution multispectral satellite imagery

Document Type

Article

Publication Date

1-1-2014

Abstract

Freshwater wetlands are highly diverse, spatially heterogeneous, and seasonally dynamic systems that present unique challenges to remote sensing. Maximum likelihood and support vector machine-supervised classification were compared to map wetland plant species distributions in a deltaic environment using high-resolution WorldView-2 satellite imagery. The benefits of the sensor's new coastal blue, yellow, and red-edge bands were tested for mapping coastal vegetation and the eight-band results were compared to classifications performed using band combinations and spatial resolutions characteristic of other available high-resolution satellite sensors. Unlike previous studies, this study found that support vector machine classification did not provide significantly different results from maximum likelihood classification. The maximum likelihood classifier provided the highest overall classification accuracy, at 75%, with user's and producer's accuracies for individual species ranging from 0% to 100%. Overall, maximum likelihood classification of WorldView-2 imagery provided satisfactory results for species distribution mapping within this freshwater delta system and compared favourably to results of previous studies using hyperspectral imagery, but at much lower acquisition cost and greater ease of processing. The red-edge and coastal blue bands appear to contribute the most to improved vegetation mapping capability over high-resolution satellite sensors that employ only four spectral bands. © 2014 © 2014 Taylor & Francis.

Publication Source (Journal or Book title)

International Journal of Remote Sensing

Number

756

First Page

4698

Last Page

4716

This document is currently not available here.

Share

COinS