Globally coherent water cycle response to temperature change during the past two millennia

Authors

Bronwen L. Konecky, Washington University in St. Louis
Nicholas P. McKay, Northern Arizona University
Georgina M. Falster, Washington University in St. Louis
Samantha L. Stevenson, University of California, Santa Barbara
Matt J. Fischer, Australian Nuclear Science and Technology Organisation
Alyssa R. Atwood, Florida State University
Diane M. Thompson, College of Science
Matthew D. Jones, University of Nottingham
Jonathan J. Tyler, School of Physics, Chemistry and Earth Sciences
Kristine L. DeLong, Louisiana State University
Belen Martrat, CSIC - Instituto de Diagnostico Ambiental y Estudios del Agua (IDAEA)
Elizabeth K. Thomas, University at Buffalo, The State University of New York
Jessica L. Conroy, University of Illinois Urbana-Champaign
Sylvia G. Dee, Rice University
Lukas Jonkers, MARUM – Zen­trum für Ma­ri­ne Um­welt­wis­sen­schaf­ten
Olga V. Churakova (Sidorova), Siberian Federal University, Institute of Ecology and Geography (IEiG)
Zoltán Kern, Institute for Geological and Geochemical Research
Thomas Opel, Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung
Trevor J. Porter, University of Toronto
Hussein R. Sayani, Georgia Institute of Technology
Grzegorz Skrzypek, The University of Western Australia
Nerilie J. Abram, The Australian National University
Kerstin Braun, Arizona State University
Matthieu Carré, Sorbonne Université
Olivier Cartapanis, Aix Marseille Université
Laia Comas-Bru, University of Reading
Mark A. Curran, Australian Antarctic Division
Emilie P. Dassié, Université de Bordeaux
Michael Deininger, Johannes Gutenberg-Universität Mainz
Dmitry V. Divine, Norsk Polarinstitutt
Alessandro Incarbona, Università degli Studi di Palermo
Darrell S. Kaufman, Northern Arizona University

Document Type

Article

Publication Date

11-1-2023

Abstract

The response of the global water cycle to changes in global surface temperature remains an outstanding question in future climate projections and in past climate reconstructions. The stable hydrogen and oxygen isotope compositions of precipitation (δprecip), meteoric water (δMW) and seawater (δSW) integrate processes from microphysical to global scales and thus are uniquely positioned to track global hydroclimate variations. Here we evaluate global hydroclimate during the past 2,000 years using a globally distributed compilation of proxies for δprecip, δMW and δSW. We show that global mean surface temperature exerted a coherent influence on global δprecip and δMW throughout the past two millennia, driven by global ocean evaporation and condensation processes, with lower values during the Little Ice Age (1450–1850) and higher values after the onset of anthropogenic warming (~1850). The Pacific Walker Circulation is a predominant source of regional variability, particularly since 1850. Our results demonstrate rapid adjustments in global precipitation and atmospheric circulation patterns—within decades—as the planet warms and cools.

Publication Source (Journal or Book title)

Nature Geoscience

Number

492

First Page

997

Last Page

1004

This document is currently not available here.

Share

COinS