Document Type


Publication Date



The McMurdo Dry Valleys is the largest of the ice-free areas in Antarctica. Precipitation events in excess of 1 cm of snow accumulation are rare. During the winter, snow is transported by strong katabatic winds blowing from the polar plateau, and deposited into the lee of topographic features (e.g., stream channels and other topographic depressions). At the start of the austral summer (early October), as much as 10% of the valley soils may be covered by distributed snow patches. Because liquid water is the primary driver of biological, physical, and chemical processes in this polar desert, quantifying fluxes of water from snow patches is important to understanding the influence of hydrology on soil biology and nutrient cycling. During the austral summer of 1999-2000, four snow patches that had developed during the previous winter in Taylor Valley were studied. We measured snow-patch area, depth, and snow water equivalent, as well as subnivian (under snow) and nearby exposed (control) soil temperature, light intensity, soil moisture, invertebrate abundance, soil organic matter content, and 95-d labile pools of C and N. Subnivian soils differed from exposed soils being as much as 26.8°C colder than exposed soils; average soil moisture ranging from 6.9 to 13.6% compared to 0.4% in exposed soils; soil invertebrate populations exceeding 7900 individuals kg-1 dry soil versus less than 1200 individuals kg-1 dry soil in exposed soils; and soil invertebrate species richness values greater than 2 taxa, compared to 1.3 taxa in exposed soils. The results of this study show that these seasonal, sparse snow patches may be an important source of moisture and control habitat of soil ecosystems in this extreme environment.

Publication Source (Journal or Book title)

Arctic, Antarctic, and Alpine Research

First Page


Last Page