Document Type

Conference Proceeding

Publication Date

6-30-2017

Abstract

Maximizing parallelism level in applications can be achieved by minimizing overheads due to load imbalances and waiting time due to memory latencies. Compiler optimization is one of the most effective solutions to tackle this problem. The compiler is able to detect the data dependencies in an application and is able to analyze the specific sections of code for parallelization potential. However, all of these techniques provided with a compiler are usually applied at compile time, so they rely on static analysis, which is insufficient for achieving maximum parallelism and producing desired application scalability. One solution to address this challenge is the use of runtime methods. This strategy can be implemented by delaying certain amount of code analysis to be done at runtime. In this research, we improve the parallel application performance generated by the OP2 compiler by leveraging HPX, a C++ runtime system, to provide runtime optimizations. These optimizations include asynchronous tasking, loop interleaving, dynamic chunk sizing, and data prefetching. The results of the research were evaluated using an Airfoil application which showed a 40-50% improvement in parallel performance.

Publication Source (Journal or Book title)

Proceedings - 2017 IEEE 31st International Parallel and Distributed Processing Symposium Workshops, IPDPSW 2017

First Page

1198

Last Page

1207

Share

COinS