Monitoring the Seed-Mediated Growth of Gold Nanoparticles Using in Situ Second Harmonic Generation and Extinction Spectroscopy

Document Type


Publication Date



© 2018 American Chemical Society. In situ second harmonic generation (SHG) coupled with extinction spectroscopy is used for real-time monitoring of seed-mediated growth dynamics of colloidal citrate-stabilized gold nanoparticles in water. The time-dependent in situ SHG results capture an early stage of the growth process where a large enhancement in the SHG signal is observed, which is attributed to the formation of plasmonic hot spots from a rough and uneven nanoparticle surface. The temporal peak in the SHG signal is followed by a decay that is fit to an exponential function to characterize the size-dependent nanoparticle growth lifetime, which varies from 0.45 to 1.7 min for final nanoparticle sizes of 66 and 94 nm, respectively. This early growth stage also corresponds to a broadening of the plasmon spectra, as monitored using time-dependent in situ extinction spectroscopy. Over the course of the seed-mediated growth reaction, the nanoparticle becomes more thermodynamically stable through surface reconstruction resulting in a smoother, more uniform surface, corresponding to lower, stable SHG signals and narrower plasmon spectra. With real-time monitoring of nanoparticle formation, in situ SHG spectroscopy combined with in situ extinction spectroscopy provides an important insight for controlling nanoparticle synthesis and surface morphology for potential nanoscale engineering of different colloidal nanomaterials.

Publication Source (Journal or Book title)

Journal of Physical Chemistry C

First Page


Last Page


This document is currently not available here.