Document Type


Publication Date



© 2018 Author(s). Ultrasound irradiation is a commonly used technique for nondestructive diagnostics or targeted destruction. We report on a new versatile sonication device that fits in a variety of standard sample environments for neutron and X-ray scattering instruments. A piezoelectric transducer permits measuring of the time-dependent response of the sample in situ during or after sonication. We use small-angle neutron scattering (SANS) to demonstrate the effect of a time-dependent perturbation on the structure factor of micelles formed from sodium dodecyl sulfate surfactant molecules. We observe a substantial change in the micellar structure during and after exposure to ultrasonic irradiation. We also observe a time-dependent relaxation to the equilibrium values of the unperturbed system. The strength of the perturbation of the structure factor depends systematically on the duration of sonication. The relaxation behavior can be well reproduced after multiple times of sonication. Accumulation of the recorded intensities of the different sonication cycles improves the signal-to-noise ratio and permits reaching very short relaxation times. In addition, we present SANS data for the micellar form factor on alkyl-poly (ethylene oxide) surfactant molecules irradiated by ultrasound. Due to the flexibility of our new in situ sonication device, different experiments can be performed, e.g., to explore molecular potentials in more detail by introducing a systematic time-dependent perturbation.

Publication Source (Journal or Book title)

Review of Scientific Instruments