Surface phases of Cu2O(111) under CO2 electrochemical reduction conditions
Document Type
Article
Publication Date
7-5-2014
Abstract
Density functional theory (DFT) calculations were performed to examine the relative stability of Cu- and O-terminated Cu2O(111) surfaces as well as possible surface phases of Cu2O(111) under applied potentials relevant for carbon dioxide (CO2) electrochemical reduction. The Cu-terminated surface is found to be more favored than the O-terminated surface at potentials less than - 0.52 V-SHE at a pH = 7. Adsorption stabilities of H*, OH*, O*, and H2O* were examined by calculating the formation free energy of the adsorbate as a function of electrode potential. A H* covered surface is the most favored surface under reduction conditions. At pH values of 7 and 13, formation of an O-vacancy requires potentials of 0.61 and 0.25 V-SHE, respectively. At more negative potentials relevant to reduction of CO2, formation of an O-vacancy is thermodynamically favored, indicating a facile reduction of the Cu2O surface as observed experimentally. © 2014 Elsevier B.V.
Publication Source (Journal or Book title)
Catalysis Communications
First Page
88
Last Page
91
Recommended Citation
Nie, X., Griffin, G., Janik, M., & Asthagiri, A. (2014). Surface phases of Cu2O(111) under CO2 electrochemical reduction conditions. Catalysis Communications, 52, 88-91. https://doi.org/10.1016/j.catcom.2014.02.022