Document Type

Article

Publication Date

4-8-2022

Abstract

Conventional hydrogen separations from reformed hydrocarbons often deploy a water gas shift (WGS) reactor to convert CO to CO2, followed by adsorption processes to achieve pure hydrogen. The purified hydrogen is then fed to a compressor to deliver hydrogen at high pressures. Electrochemical hydrogen pumps (EHPs) featuring proton-selective polymer electrolyte membranes (PEMs) represent an alternative separation platform with fewer unit operations because they can simultaneously separate and compress hydrogen continuously. In this work, a high-temperature PEM (HT-PEM) EHP purified hydrogen to 99.3%, with greater than 85% hydrogen recovery for feed mixtures containing 25-40% CO. The ion-pair HT-PEM and phosphonic acid ionomer binder enabled the EHP to be operated in the temperature range from 160 to 220 °C. The ability to operate the EHP at an elevated temperature allowed the EHP to purify hydrogen from gas feeds with large CO contents at 1 A cm-2. Finally, the EHP with the said materials displayed a small performance loss of 12 μV h-1for purifying hydrogen from syngas for 100 h at 200 °C.

Publication Source (Journal or Book title)

ACS Energy Letters

First Page

1322

Last Page

1329

Share

COinS