Document Type
Article
Publication Date
6-7-2023
Abstract
We demonstrate that for polyethylene depolymerization with induction heating (IH), using a bifunctional (Pt- or Pt− Sn-containing zeolite) hydrocracking catalyst, we can obtain high hydrocarbon product yields (up to 95 wt % in 2 h) at a relatively low surface temperature (375 °C) and with a tunable product distribution ranging from light gas products to gasoline- to diesel-range hydrocarbons. Four zeolite types [MFI, LTL, CHA(SSZ-13), and TON] were chosen as the supports due to their varying pore sizes and structures. These depolymerization results are obtained at atmospheric pressure and without the use of H2 and result in an alkane/alkene mixture with virtually no methane, aromatics, or coke formation. We also demonstrate how IH helps overcome diffusional resistances associated with conventional thermal heating and thereby shortens reaction times.(Figure Presented).
Publication Source (Journal or Book title)
Industrial and Engineering Chemistry Research
First Page
8635
Last Page
8643
Recommended Citation
Whajah, B., Heil, J., Roman, C., Dorman, J., & Dooley, K. (2023). Zeolite Supported Pt for Depolymerization of Polyethylene by Induction Heating. Industrial and Engineering Chemistry Research, 62 (22), 8635-8643. https://doi.org/10.1021/acs.iecr.2c04568