Document Type

Article

Publication Date

1-1-2025

Abstract

Due to an abundance of shale gas, manufacturers are interested in meeting increased demands for alkenes, especially n-alkenes, by the dehydrogenation of light alkanes. While the catalysts for these reactions have been studied for many years, alkene selectivity and deactivation remain challenging problems. This work addresses these problems by the substitution of a localized indirect heating method (radio-frequency induction heating, RF-IH) for more traditional process heating employing steam or burners (e.g., natural gas combustion). RF-IH has been applied to the dehydrogenation of n-butane to C4 alkenes by utilizing magnetically susceptible catalysts based on Fe/Fe3O4 susceptors. Magnetic core-shell catalysts with either Pt or V as active metals were synthesized to mimic typical n-butane dehydrogenation catalysts. For these catalysts, RF-IH operation resulted in significantly improved selectivity to alkenes and less deactivation when compared to conventional thermal heating, although the initial activities were not always as high as their thermally operated counterparts. These results provide motivation to continue investigating the effects of RF-IH and its benefits to certain heterogeneous catalytic processes.

Publication Source (Journal or Book title)

ACS Sustainable Chemistry and Engineering

Share

COinS