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ABSTRACT

°o
Dr. H. L. Smith in a paper which has not been 

published as yet 3hows that by starting with a general 
function satisfying Caratheoacry's first two postulates 
on an outer measure function, it is possible to construct 
a function which satisfies all four postulates. In this 
dissertation we have stuuied some of the characteristics

oof this.function, principally those which are of use in 
deriving our‘theorems on density.

We have set up three general density functions, 
and nave succeeded in showing- tnat for the most general 

of these, it is true thac the Smith measure of the set 
at which the upper density is less tnan 1, and the one 
at which the lower density is greater than 1, is zero.
We have also established tnat under certain circumstances 
there is a definite relation between this function and the 

density function defined by Besicovitch.
Considerable attention nas been devotee to certain 

fundamental geometric theorems, which have led us to a 

generalized form of tne Vitali tneorem. We have also 

uerived a set of sufficient conditions for the validity 

of this theorem, including the one for the Smith function.
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DENSITY PROPERTIES OF BETS

INTRODUCTION

The past seventy five years have seen a great deal 
of research into the fundamental concepts of mathematics. 
In the course of these investigations the theory back of 
our concept of measure has come in for careful scrutiny. 

Various theories have been proposed during this time, 
culminating with Caratheodory1s general theory, based on 
the four postulates incluued in tne body of this tnesis.

Dr. H. L. Smith in a paper which is as yet unpu­
blished generalizes this concept further, by showing how 
it is possible to start with a function satisfying only 
the first two postulates ana then builaing up one which 
satisfies all four. In this paper we aerive some of 
the essential characteristics of this function.

A. S. Besicovitcn using Cartheodory1s measure has 
shown that tne geometric nature of a measurable plane 

set depends on the value of his density function. We 
have constructed three new density functions using the 

Smith measure function in place of Caratheoaory1s, and 

have derived some of their essential relations.
1



In addition to this we have incluued in this dis­
sertation a section on elementary covering theorems in­

cluding a generalized form of the Vital! theorem and 

certain sufficient conditions for its validity.

©
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COVERING THEOREMS

1. PRELIMINARY THEOREMS ON THE SUBSETS OF 
AN ARBITRARY CLASS.

There are a number of theorems closely related to the 
covering theorems for which no special hypotheses are 
required on the space, that is they are true for a perfectly 
general class 0* of elements^ . This section shall? be 

devoted to these theorems. In the interest of simplicity 
we lay down the following definition:

A family ^  of sets S is said to be separable if 
i  r> (the set of all points or elements that belong to the 
various classes that make up 5^ ), contains a countable 
subset P such that every set S  of 7  contains at least 
one point of P . In this definition and throughout this 
paper we use the word countable to mean either finite or 
countably infinite.

We now state:

Theorem 1. If F  is a separable family of sets 5 ,
then contains a countable subset 5, , S*,.... such that

(l.l) S ^ - S „ . =  0 (m .< *.)
(1.3) S  (s,+Si+— -)^o for every S of .

e 3



4
Proof: The proof will be divided into two cases.
Case I. There exists a finite set s , « n  sets 

of such that
a) S>*v Sx =■ 0 (m. <  n.)
b) S (s, +■ 6tv) > 0  for every 5  of ^  •

The theorem is clearly true in this case.
Case II. There is no finite set Si,... S*. satisfy­

ing the conditions of Case I.
Let sf>t , ^ 2,____  be a denumeration of the points

of P , wnere P is the countable subset of the definition 
given above. Let >*/ be the smallest value of »* euch 

that belongs to some set say S, of . Let ̂ b e  the
smallest value of >*• sucn that belongs to some set say

S x of and such that S, *SX»0 • By induction we secure 

sequences {**). M  such that
(1.3) n,< < u3 < .....
(1.4) Sfc * 9"
(1.5) S*, ‘ = 0  ( * > j )
(1.6) (S, +•....tH-i) S-0,

Now let 5  be any set of ^  and teXefat S , Let &0 
be the smallest value of £ such that
Then ( S 5 > 0  for otherwise we would have ^ >l 
which is contrary to fact. H e n c e S Z 5 n > 0 for every *5 

in ^  .



There is now a question of notation which we wish to 
make clear. If *F is any family of sets S  and f (s) is a 
function of the sets S we represent by B f(7) the least 
upper bound of all f (s) such that S  6 7*. general we
will use and JB to indicate the least upper bound and 
greatest lower bound, respectively.

Using this notation we are now able to prove 
Theorem 3. If is a separable family of sets 3 

and f(s) is a function on S  9uch that
(3.1) f (b) > 0 (seTl
(2.3) TSf(s)<+0©
and 6 is any positive number, then there wxlsts in a
countable subset &iy5Zy____ whioh satisfies the following

conditions:
A| \ S m • S n  =  0 ( m < w)

A x  (e, T): StT•)• f(s) S (\+e) f (s.)
/\» (e,T): Ser, 0 •> (yj

Proof: bet jjt/i 5 * S e ffe) * d e  B f (?£[
This bracket notation will be used at all tim.e3 to indicate 
the set or class of all points or elements whose description 
is contained within the bracket#c.3thus 71 is the class of 

all 3ets S  such t h a t S s T  and /(s)£-rfc Bf(T)
Now by theorem 1, contains a countable subset

S|> Sj.,...auch that A  is true and

5



(3.3) Sf T. •)• S 21 S*. > 0 6

In order to prove AiCe.T") , we take 
then f(s)4 B  f (T) 
and since Sw. t 7j» we have

Bf(F)
from which it follows that

f(s)4d + e)f (S*) W
Ae follows from the fact that if

then S  does not belong to 9* and therefore

Theorem 3. Under the same hypotheses as in theorem z 
there exists a countable subset £|,s*,.... of y  such that

(3.1) Snv * S-h.— 0  (Vh  ̂  >*»)
(3.3) If S  is any set of 7  there exists an **. such 

that S* Stv > 0 and f ft) * 0 4 e ) f  (i~)
Proof : Set 5 ^ s  , then by theorem 3, there is a

sequence of sets [Son } satisfying A,, Ax A» (e, T)
Now set

7 7 S  frit Si hi To, S I  Sen- =0]
On applying theorem 2 to ^  we obtain a sequenoe {Si*} 

which satisfies A* , A x  (e&), a ,
On continuing this process we obtain a sequence of 

sets ^S>n.n.|7v̂  (»c * Ot ); 2.— .) satisfying A|, 
where (?*.** 0,1, Z,....) are subsets of such that

(3.3) %  > T, * ......
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Now since /\3 (e,9>*.) holds we see that

B f (fm.)- r+a Bf (T̂ .,)
and therefore

Bf & *.) =(77ir Bf(^)
so that

(3.4) = 0
Now

(3*5) ^Tn/nJ # 53 0 (m/* n/) 6rt", *t")
For if t/l'-th? this is clearly true since 
satisfies Aj . If 7tC t m!’ we may suppose m'< fn." .
Then 3 ^ ^  6 and hence S 6 :+/ since
m"£7n' +1 . But every 3 in ?£,».»./ has no point in

common with any S w  *. by the definition of 5**.' 4-/ and 80
(3.5) is proven.

Now suppose 3eT (-%) and let m. be the smallest 
integer such that Se¥ - 9^ . It is evident that such

an integer exists by (3.4). Then 3  does not belong to 

ana hence ; further, since S  belongs to
but not to 5 21 >  0 . It is also true

that ^S-nt-nn.} satisfies and therefore

'f (s)£ (l+c)f (SyK.,tnSj • Hence the double sequence ^ ?t|
satisfies conditions (3.1) and (3.2) which completes the 

proof of the theorem.



3. COVERING THEOREMS FOR A METRIC SPACE

Up to the present the only thing we have used is that 
our space was a completely arbitrary class (P but now we 
are forced to have some additional postulates on it. We 
shall assume that we have a metric space 51 =■ {(P9 A) that is 
a class (p of elements ^  and a real-valued function A  on 

(P9 IP such that

II A  —  A

III A ( ^ z) + M ^ ) g A ( ^ , / , )
If S is a subset of (P and ]o is any element of (P we

define

4 ( ^ S ) 2 g  \_*tLA ( fl'P'))
Tne e  -neighborhood of a subset 5  of (P is defined 

by the equation

N  (fe,e) =  [o/£ f^,S)6 e]
and the diameter of a set S  by

d = B A  ̂*pi y p̂x € s]
We have the obvious inclusion N (6, c)£  S .
Theorem 4, If S| • S* > 0 then

s ,i n (sx,a(i,))
Proof : Let $S|, £ Sj • Si then

A  ^ A  (fa, f)tt) ̂  d (5/)
and so *pf £ N d ($•)) which proves the theorem,

o O.
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9
Theorem 5. If ?  la a separable family of sets S , 

such that Bd(r)< + and e is a positive number, then
there exists a countable subset S f,52---of such that
(5.1) S„.* S* = 0 (>H<7l)
(5.3) £ N (S*, (i+e) d (SO) i X 7

Proof : Let the sets S, fS2 *__  be determined by
theorem 3, with f (S)» <4 (S) , then if S€ f  , there is an 5* 
ouch that
(5.3) 5'5h>0 and d (S) ̂  (l + e) d (̂ >0
But by theorem 4 we have

S S N (&*,<* (5)) S. N (S*,(l+e) d <*„)) SIN (SK,(i+«) d (5n))
which proves the theorem.

The closed sphere with center at cl , and radius /V 
is defined as follows:

5 (a , a)* . \_ tJ lp 3  A ( » , p ) £ A j
As an immediate consequence o f  this definition we have

Theorem 6. For every sphere S  , it is true
t hat

d (S (a., a )) &  z  n
We may further state

Theorem 7. For every a € (P and /i>Q} e >0 it is 
true that

N (5(a,a),e) £ 5 (a,, A+e)
Proof! Suppose f (N (S(a, a), e) . Then A  (/b,S («,*))£ e



Hence there is a sequence ^ J  such that

(7.1) (>t) and A (?,/>*.)&e  (>0
Then

(?.3) A (/>,*) 4 A ( jb , f*)+A (±«+«+* (*•)
so that

(7.3) A (]b,a.) * e+*■ or ^ f 5 fa,
which completes the proof.

Theorem 8. If 7  is a separable family of spheres 
such that B/t [T)< +■ oo and 6 is a positive number then 

there is a countable subset 5 j,6 2----- of ^  such that
(6.1) 5^* 6 K = 0 (»*. < k)
(8.2) If S£ is the sphere concentric with 6 k  and with 
radius (3+*€) times as great then

I Sk 2 Z ?TV

Proof : Let S,, 5 tT____be the set of spheres obtained
by applying theorem 5 with e replaced by \  . Tnen

X7S I N (SH, (l+t) <1 M  SIN ($*., (2+*)* (SJ)
m Z S 71 (5*,) +■ (Z+fi) K ~  r  5*.

where Z  (S*.) is the center of S*. ,

3. COVERING THEOREMS FOR A METRIC SEPARABLE SPACE

If we strengthen the hypotheses on our space and 

assume it to be a metric separable space, that is, one 

which contains a countable subset whose closure is Che space



itself, we may weaken the hypotheses in our theorems.
Thus we may state:

Theorem 8. If 7* is a family of spheres, then there 
is a countable subset of 7  such that
(9.1) 5*.*5h. =  0 (>*<■*.)
(9.3) S(s,+ s x 4-... ) > 0  for every S  of 7
This theorem is an immediate consequence of theorem 1.

Theorem 10. If T  is a family of spheres with 
B  i (?) < +• oo ana e is a positive number, then there is a

countable subset S ftSx_____ of 7  which • satisfies the
following three conditions

A  I ' S>*.* S tl — 0 (*H. <  >l)
Kx[e.tT)\ S  -)• A (i-re) (s*.) (w.)
Aj (e,T): SeP, S£&».= 0 •)• <((s)< tU B d(T)
This is nothing but a restatement of theorem 2. 
Theorem 11. If is a family of spheres with 

B A (7) < + oo and C is a positive number, then there is a 
countable subset 5,, 5 ^ ---  of 7  such that

(11.1) 5 m, • s*.= 0 (tw.<>0

(11.3) ZS*£ ZT
where Si Is the sphere concentric with S-*. and radius 

(3 + c) times as great.
This theorem is merely a corollary of theorem 6.

11



4. THE VITALI THEOREM
©13

We shall now devote our attention to the most useful 
of all covering theorems, the vitali theorem. We shall 
assume our space to be the general metric space of section 
3. We now make the following definition:

A set A is said to have the vitali property w*,v, 
that is, relative to an outer measure function/^* and a 
family 7* of cloBed sets F if there exists a between 
0 and 1 such that to every open set Gr there corresponds
a finite subset of Ff-------- such tnat

I Fi * Fj. = 0 = t)
II Fa =. G fi s /, i,... w)

III M* (AG ~£m/ Fi) 4  &M* (AG)
It would be well to note at this point that if a set 

A has the Vitali property (M*,*?) then A
has the vit'uli proper ty (A4*, %)

In proving the Vitali 'theorem we will need the

following :
Lemma: If a set A has the vitali property (M\r)

and also ('V'* 9") then there exists a number t9~ between 0 
and 1 such that to every open set G  there corresponds a

subset F, ------fv of T  such that

(1) F*'Fj=0
(3) Fa. k GU  = 1,2,...... x)



(3)
(4)

13
/Of*(AG~li f t)* -&/U*(M)
V* (A<k-̂ fRi)= -&y*  (AG.)
Proof: Let i?'" be the numbers between 0 and 1

which are given by the hypothesis. Take to be the 
larger of the two. Then to any G there corresponds a 
sequence F,, — ... F*. in T  such that

(5) F,'?r 0
(6) Fi % G ( i ~  I,... >*0
(?) ytf*(AG-g, Fi)£ i5 ^ * ( A G ) * t M / V A G )

Now take
(8) G . - G - ^ F ;

Then to G\ there corresponds a sequence F»n-i *---- ^

in , such that
(9) Fc’ F^-0 (m+l i A<j. k >t)
(10) Fi a GI (i = >1.4-1,... vu)

(11) ^ x ^ V # (AG,)* t^ V ' ( A G )
It now follows from (6) and (Id) that

(12) Fi • Fj - 0 (i <m., ^
which with the help of (5) and (9) proves (1).

We also have from (6) and (10) that
(lb) Fi k G| S G (+- >n + ),... n.)

which in connection with (6) gives us (2).

In addition to this it follows that
M* (AG - £( Fi) £ M * (AG-|( Fi) £ (AG)



and
t/* ( A G 'I ,  Fi') 4 -Z^ (AG, * Z?S+(AGI)±JV*(AC')

which completes the proof of the lemma.

IM orem. 1.3, (vital!) if A haa the Vital! property 
anct also fy'>•F) then tnere is in 9~ a countable 

3et ( F*. I"-} of sets such that
(13.1) F*.- FK= O (> * .< * )

(13.2) M*(A “ E fv) = 0

(13.3) (A  F*) = 0

Proof : Let Gp be the entire space. Then by the
lemma tnere corresponds to G0 a sequence F,------
from *F such that
(12.4) F*‘ Fj~0 ( \ £ j i , < j ± r L 0)

(13.5) M ’ U - l ,  ri ) = /a '< A & . - f „ K }  i  l W ( A )

(13.6) j/’in- t  Fl)» V  CAS.- £  h ) 4 «> V < A )
^ow take

(13.7) G , *  6 .  -  £.* Fi
Then to G| there c o r r e s p o n d s  a sequence > - Fi,

from 9~ such that

(12.6) Ft" F|» 0 (u. + t

(12.9) Ft § Gi (* = n0 + i,... ”•<)
(12.10) ytf* (AG, ^G,)

(13.11) ( A G . - j j ^  Fi) 4
From (12.4), (13.8), (13.9) we have

14



(12.13) Fi.% Fj. “0
It is further clear that

(13.13) /«'(A-|,Fi )S/<f*rAGl- ^ +(R i)4 t^ '(A G ()4 ^ 1/̂ *

and. similarly
(13.14) V * ( K - J ,F i ) a  t * V * ( A )

On continuing this process we secure sequences 

{w->t} such that
/4* (A-lFjWCA-fcr.i)&

V(a-JF O * -* *  t/*(a)

from which the theorem follows.

5. SUFFICIENT CONDITIONS THAT A SET
HAVE THE VITALI PROPERTY ( M*> T  ).

The question now naturally arises as to when a set A 9 
has the vitali property. We shall answer tnis by the 
theorems in this section. Our space will be taken to be the 

3ame metric space that we had. in the development of the 
vitali theorem, itself. We start with

Theorem 13. If A has the Vitali property (//*, 7) and 
if % is a family of closed sets and a positive number 
such that to each F in there corresponds an F, in 7[ 
such that * F and M*  (A F,) \ /h 4A* ("A F) , then A 

has the Vitali property C4A\%) .

Proof : Let Ci be any open set. Then there are



16sets FI,---F*. of 7  suchc'ihat
(13.1) F i ’F ^ - O  ( a,
(13.3) F* = I,....>t)
(13.3) M*  (Att-J, F;)£ W ( A t )

Now take FJ|,...FH/ in , SO that
(13*4-) Fii a Fv£ m ... h )
(13.5) ^*(AF * , )  > 4A4* (AFi) U - L )
V̂e notice that necessarily 0 < £ <  | .

Now
(1 3 .6 )  / V *  {A<k)=M*(AG - | ,  ( f ( AF*, )
sc that by (13.5) and (13.6) we have

(13.7) /A *  (A (> -% J  ) ~ M * ( A k ) ’ M *  (|,An,)
(A6, (J, AFi) 

Similarly by (13.2), (13.3) we have 

(13.6) C£(AF.<) = M'(AG) -AA*(A6-|<(Fi)
£ (l-t?-)/C/# (AG) 

t'o that we have from (13.7) ana (13.6)
(Afi-J, Fi,) * {1-4 (AG)

which completes the proof of the theorem.
Theorem 14. Let A and M  be such that

(14.1) for every G  it is true that the set 7** of all F 
of y  such that F » G  , covers A J
(14.3) there exists a positive number sihu to each F 
of 7 there corresponds an F* not necessarily in 7
such that
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a) FS F*

t>) M* (KF) Z/k/Of* (AF*)
c) any subset of 9" contains a countable

sequence F,, F5>..... - such that
1*) Fi- F ^-0 (i*p
2’)  ̂ F/ ^

Then A has the Vitali property (slA*, )m 
Proof ♦ We observ# that as given in (b) is 

necessarily less than or equal to 1 . Now let Gr be
any open set and consider 7“̂  \ by (14,1) we have
(14.3) Z ^ i A G

and by (c) there is a countable subset of 4¥Q\ FJ,F2,....
such that
(14.4) F+'Fj-O (,c<^)

(14.5) X.ft* 2 z  r s
from which it follows that

(14.6) ^ F*I A G  
so that

(14.7) £/6T('Afv.*)>/tf*('A6)
which in connection with (b) gives

(14.8) \ M * ( A F i )  z A M * ( A G )
Therefore there is an n. such that

(14.S) (Aft) > iAM*(AG)
But

(14.10) f/4* (A ft)



18o
so that

(14.11) M *  (AG-£(F;)-^(AG)-£/tf*(AF,r)£ (I-t *.)^*(AG)
which is the theorem.

Before continuing we make the following definitions:

A family of spheres 7  is said to cover a set A in 
the strict Vltali sense if at every point a € A there is a 

sequence of spheres {S {a, A*. («))} such that Ai** A*, (a)-0 .
A family 7  of spheres is said to cover a se t A in 

the strict vltali sense relative to AA* if there is a 
positive number ^  such that to every open set Gr and 
positive number e there is a Ue such that 

X A G ^U e (e)

II AA*(U*)i J/*(AG) + e (e)
III the class of all 5  of 7 such that AA* (Uc5) « AtAA* (UeS*) 
covers AG in the strict Vital! sense. (Here S* as usual 
denotes the sphere concentric with 5 and having radius 4 
times as great*)

A family 7  of spheres is said to cover a set A in 
the strict vital! sense strongly relative to AA* if there 
is a positive number it such that the set of all spheres 5 
of 7  such that AA* (AS) * AA* (AS*) covers A in
the strict vitali sense.

Theorem; 15, If a family 7  of spheres covers a set A 
in the vitali sense strongly relative to AA* then it covers 
A  in the strict vitali sense relative to AA* *



Proof ; Tlflt *>- ^
- * ^  denote tne class of all 5 of

bucti that 44* (AS) a ̂  (A S *) < Then covere A

in the strict Vitali eenee.
Now0eet

(15.1) £ S > 5€9T , S'” S 60
Inen , covers A Q  in tlle 8tri0-j vitali sense. But if
5

(15.3) M *  (As)i*^# (AS») 
since Se^f an<i aiao

l/W* (AS*)= (AGS*)
9inc9 5 I S * c (i) 80 chat

(15.4) /**(A<iS)*^'(AGS')
Hence if we set Ue * A G  conditions I, II, III above 
are satisiied and the theorem is proved.

Theorem 15. if A4* (A) and a family *F

of spheres covers A  in tne strict Vitali sense relative to 
AA then A has tne Vitali property 5*~),

Proof : Let Q  be any open sec such that/#* (AG) > 0.
Take Ue so that
(16.1) A G  § Ue, M * (Ue) £ XA*(AG)+e
Bet

(16.3) % s  6 « S a S 4 ^ ^ * ( 0 e S ) 2 ^ ^ * ( U « S * 3
Then 9^ covers A G  in the strict vitali sense; in 
particular



(16.3) I  % 1 AG .
Now by theorem 11 we may take in 80
(16.4) 5«m.' ” O (>n. < ̂  ̂   ̂ ^ Sen* = ^
then

- ^ AA* (%. Ue s««.)£ AG Sk)«
Hence

^  (AG-Z5«n) 5 (AG-Z U« SeJ  £ ^  (Ue-1  Ue S*0 

“ AA*(Ue)-AA* (I Ue S.O
(16.6) (AG^e-^^TAG)

® (l-^.)^*(AG)+e

± (\-kAt,)AA* (AG)

if we talce © « *■ AtAA (a G) , 3ux since
(16.7) (A G - I  S . O « % * ^ # ( A G - f  5e~)
it follows from (16.6) anu. (16.7) that there exists an yi( 

such that
AA* (AG-j^S**.) £ (\~k^)4A* (AG)

which proves the theorem, since if We 8et we
have t  ̂  m3~<- I .
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THE SMITH MEASURE FUNCTION <pr >~

Caratheodory defines an outer measure function 
as any set function satisfying the following four postuiate3

I 0 4 £ + <*>, M *  (0 )= 0
II B S A  •>
III IM'(Ai)ŜrfJAx)
IV A  (A, B)> 0 -Y M U  k + &)-M*(A

Dr. Smith in his general theory starts off with a 
function (p satisfying Caratheodory1s first two postulates 
and then lays down the following definitions:

(pr  (A) s B. [eJt Z (p(A J  ) A S I  A^]

<p*(A) a |  [MT(̂A -A r)] 
where 0~ is any partition cf the space into a countable 
number of cells measurable Caratheodory and A  are the 
cells of the partition. He then shows that by performing 
the <T and A  operations successively we obtain a function 
(pr>< (A) which satisfies Caratheodory's four postulates.

He further defines a function,
(piA,/r)= B \SJUL\(P(A O ,  A S I A * ,  d(AjS/r

and shows that
-£ ~  <p(A,A) = pr*(*).

Above we mentioned a set being Caratheodory mea|iyy%kle>
31
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it would be well to say what is meant by the expression.
A  0We say a set A  is measurable Caratheoaory if it is

measurable for every measure function./^* which satisfies
©

Caratheodory1s four postulates.
We are now in a position to continue witn our work.

V,e first lay down the following definition

fi  [*&(̂ B ) ,  B 2 A ,  Be
where fi is some class of sets.

Theorem 17, If 0 is an additive class that includes 

every closed set, then to every A » there corresponds a 
such that

AS Ba, Ba t f3, d(B a) - d(A), (A)* (Ba).
Proof« Take B-*. so that 

ASB„,
Then take

Ba ® ATT Bk
where A is the closure of A . Then

A  i Ba , <P9(h)̂  ^(BA) = < P ( M  = ^ ' ( A ) + ^
/. P*(A)~ (p(Ba ).

AlSO
d (A)S d (Ba) S d (A) * d (A) 

d(A)= d (Ba)
Theorem 16. If @ is an additive class that includes 

every closed set, then

'0.
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(18.1) (p*r  (A) * B \tJH£ <p(&■*.)| A i Z 6^ U)]
(18.3) ^ ' , ('A,a )= B  [«0 I0 > (B * .h A iIB ,., Bk J(3 W ,d (B O <A  ( * 0

Proof : Vve prove (18 .2 ); the proof of (18.1) is

(18.5) A©*. = A • Ben
Then

(18.6) A A e>t , d (A «*,) = d (Ben) =« /l 
Hence

(18.7) P'(A..)4 0'(B.*)« (P(Bex)
Y.e have by (18.4) and (18.6)

(18.6) <p4 (A, a ) i

and (18.3) fo llows frori: th is .

We now prove 

(18.9) 0 ? '(A ,/ t)2  -A

In order to do th is take  ̂A e *  I’ *'} so that

sim ilar. Let k, denote the right member of (18 .3 ). V.'e 

show f i r s t  that,

(18.3) <P*(A,/») 6

To th is end take { Be-w-l'"-}  so that

(A S I. B«k , d(Bex)4>t (*•)

18,4) (p(bt~)±*+*
Set

(18 d
W'CA,*) 4 2 ^  (A*k) » 0 ( A , a ) + *.

Take so that



»

(18*11) A ik = Be* , d (Be*) = d ( A en), Be* 6 @» (p* (hen.)** (Be*)

Then

(16*13) Be*., d (Be*.) = A , Be*. * P , ( n ) , Ben* Be*=0 n)
so that

(18.13) £ * I ^ ( & eK) = £ ^ ( A .H)<0>'fA,/>>e (e)
which proves (18.8), The theorem follows immediately from
(16.3) and (18.8).

Theorem 19: if fi is an additive class that includes
every closea set, then

(19.1) ^ ( A ) - £ [ ^ x 0 ? ( B * U A S l B , c ,  E w & ^ O  (>*.**.},
(19.2) <P̂ (̂ ,̂ =&.l*UZ(p(dn.)i (*K}] 

Proof : Vie prove (19.3) ; the proof of (1S.1) is

similar. Let denote the right member of (18.3), and 

the right member of (18.3) theorem 18; then clearly
(19.3) *./£■£».

In oraer to show

(19.4) 4 -Ai
take { b '.m.I’*-} so that

, fA%£ B',*., d (B'en) =A, 60

set
(18.6) Be, - Be,9 Bex *  Be, ,-- - Bex* £>ex~ (Be,+
Then

(A =1 Be*. * XI Be*. > d (Be*) = d (Be*) i  A

' **" Be*-/)

(19.7)
Be» t 0, (*.), B«>^=0 (W*.)



We now have from (19.7)

(19.8) 4,, ±'L<P(btJi*'LfnB ' . ^ S ^ + e .
from which (19.4) follows, and (l9.4)..,afcd (19.3) give the
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theorem.
Theorem 30. If z^^is an additive class of sets 

which contains every closed set, then
(30.1) B A i Z B * ,  B x < ^  M
( 3 0 . 3 ,)® * ^  (A,A)-f t  & « £ ^' fA * B * )>  A S I  d ( B x ) * *  fro]
•°% Proof : Let the right member of (30*3) be denoted by

4bt and the right member of (16.3), theorem 16 by •
Clearly
(30.3) <p0(A,a ) 4 4,,
But since <pfi(A- B*) = (p (Bn.)we have that
( 3 0 . 4 )  % p ' ( A  • &*) £  Z. 0? ( K )
It follows from -chis that
(30.5) ^ 7  ̂

But ^ 2 " by theorem 17. Hence (30.3) is

proved.
Vv'e now lay down the following definition

P «p,A, e )s  i a  <A> ~ 0 fA,A) >ej
In view of the definition we have the following obvious 

relationships.
I p (.(p,A,e)>0

II * 4 p(p,A,e) •)• <p(k,*)i <pr* (A)-e
A - l A x ,  a ( A x ) i p W A , e )  •)• I ^ ( A O ^ r ^(A)-e.Ill



Theorem 31. If B is Oaratheodory measurable then 

p(jP,AB,e) 2 p «p,A,e)
Proof : Vfe have

(31.1) <pr> (A)~(pr*(Ab)+<pr> (fi-B)
(31.3) <piA,A)$ <p(AB,A)Kp(A-B>,»)
The second of these equations follows from a theorem in 

Dr. ymith^ paper in which he shows that A*.,a )

From (21.1) and (31.3) we have
(31.3) (P^> (A)-^(A,A)5{0)'r*(AB)-^(AB.4)}+{^','('A-B)-^(A-B,/()}

2 p ™  (A B)-  (AB, /i)

It follows from (31.3) that
(31.4) [«U Aitp'*(A)-p(A,A)>4 i 
and from (21.4) we have

p CP,A,e)t  pip,AB, e)

Theorem 33. If {&»•} is such that

(23.1) A ’ I B k 55 AB where B is Caratheodory measurable,

(22.3) d (Bk ) ± p «P;k,e) (*•)
Then

Z t p i A b j z  P*"%(LABh)-«
Proof: By (33.1) we have A " B * ^ A B K . This in

connection with (33.3) and theorem 31 gives
d (A B*.) » d (Bh.) 4 P (<p,A,e)Sk P ((M 'B .e )

Hence by III in the definition we obtain
7. (piA Bn) 5 (A-B)- e = <PA Bn) -  e

36
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Theorem 3 3 . To every A , / t , e  there0eorresponds a 

sequence such that

(33 • 1) A = , d ( B^evt) — A y 6 ft 0*-)y ** 0 (y*rt **)
where ft is the class of all Caratheodory measurable sets.
(23.3) If is any subsequence of {BAexJ^}

© ©
then

? P ( B ( A - £ B ' ^ )  + e

Proof: Take A{ to be the smaller of At
Then take { I***} so that

(23.3) A * £ til (b/teyt.) - A/ ,  ̂ft , $Aem' = 0 (*•.«***)
(33.4) + ̂
This is possible by theorem 19. From (33.4) we have

(33.5)
Now let { be any subsequence from {

and let be the complementary subsequence.

Now

(33.6) h  <pi&*.0 =1 + \  <p  (*“«<*)
fA. 2 B*,H) = <P'"'(AZ B';,0

since £ B'.,*. • I -0,1 { ft, I ft . Now by (33.6)
(33.7) T<P(&\.J-<P''r*

(AZ B,.0} + « P " ^  (A.|

so that the theorem follows from (23.7), (33.5), and

theorem 23.



38
Theorem: 34. If {Bx.} is such that

(34.1) B H € (3/ M , B>n.‘ B ^ = 0  (>«.*«.)
(34.3) ^ ft(A-B„)< ( l - ^ ) ^ ' ^ ( A B O  (*v)
(34.3) d (BO & (° (^', A, *)
then

(£ A B j  £ d
Proof: We have by (34.2) ana (24.1) that

L<p* (A BO-(■ -*) ^
Hence by theorem 33 we obtain

0?''"* ( L A B O ^ *  ( £ A B O - I < p ' ' ( A B O }  ^ d

Theorem 35. To every A ,A,d,4> there corresponds 
a sequence { I’*" ) such that
(35.1) A S X  Pi 1 d (BAd Ax) » A f 0 (>tt*
(35.3) If { I*"- } ie the subsequence of
{ Ayr. } maae up of its elements which satisfy the
inequality <*>
(3o.o) < ' ( A * B t , * J >  (l+i )<p'"*(A'Btd*.)
then

P*”  ( I A - B h i J  = d
Proof t By tneorem 3b we can choose { B„d4~|'"'} 

ao as to satisfy (35.1) and the condition
(35.4) \(p*(A - B h ^ ) i  P ' " * ( E A *  B ^ O + I  
Eut by (35.3) and (35.4) we have

O©



Before going' any further we need xhe following definitions. 

If f (A) is.a function of a set A > we define

39

( A ) s ^ B  [«af(A),  A ,d  (A)4aJ 

f  ( A , « ) s 2 ^ f  (A-B)

With similar definitions for the lower limits.
Theorem 36. If are such that there exist

sequences {e^}, { B/rd *,>*)'"'} such that
(36*1) /igv =0

(26.3) ?>Adtt» tPi9d(b4ttn.)*Af
(36.3) 0?*' r * fAE* &***>,)« d where {B*«h u )’*'}
is the subsequence of { I***} made up of the
elements which satisfy the inequality f (A* B/td**.) < ~ 
then

(P*,r * (Lott a.* a 6 A , f  (A ,a,)<0])~0
Proof : If in the sequer*ce { I'"'} of the

hypothesis we replace by and d by we secure
sequences which we represent by { |>^} and which

are such that
( 26.4) A 6 A  > Ba *>«V * s  ^ ( n, ^ )
(36.5) d

(36.6) ( A l C . ) i f -  ( a , * , » * n )
where { j7**} Is the subsequence of {
made up of those elements of it which satisfy the inequality

(36.7) f (A* Ba*.~0 <• ~ e£
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Set

(36.6) Ah = I ^ A B * ^ h 
Then by (36.6) we get

(36.9) <p*'r*(
Now suppose A - A j ^  . Then A ani
and for some value o f a 6 A • us ^snote

the corresponding B j* ,^  by the symbol so that
d f B , , * ^  but B<U*v- is  not in the sequence 

• 0n aooount o f the la tter  we have

(36.10) f (A* B«|A
By (36.5) ana (36.10) we see that
(36.11) f  S " e A (d,6,a.(A- A j * )

Nov/ set
/AiS |>if «-» A, f(A,A)<--eA.]

( 3 6 . 1 3 )  | ^ _  a>i<i f A , f ( A ,«.)-t 03

so that
(36.13) A 0 = |  a A 
i-rom (36.11) and (36.13) we have

(36.14) A-AeU »  A-A*.

which gives
(26.15) A* % A** (dŷ )
Now by (26.15) and (26.9) we obtain

(36.16) = d ( ^ ’ d ) 

and so we have



(36.17) (A*) = 0
The theorem therefore follows from (36.13) and (26.17).
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DENSITY FUNCTIONS

I f  M  an d  l /  a r e  s e t  f u n c t i o n s  
1f o l l o w i n g  d e n s i t y  f u n c t i o n s

& - j / (/?  B )
I I  A~L <***))

C .f S 7 - * o  * , * > )

we d e f i n e  th e

w i t h  c o r r e s p o n d in g  d e f i n i t i o n s  f o r  t h e  lo w e r  d e n s i t i e s
“P * o  t/ j /9, a )  )  J>*60 (/6C , i / ,  / l ,  a - ) j  2)#- (sU ) 'if, a * )  

We h a v e  th e  f o l l o w i n g  o b v io u s  i n e q u a l i t i e s
(1) Vg(yU, PCU^< ■«*.*■)* »*(*•

and
(2 ) J>*o ( ' & , ’* ', * , * - ) £  V io o  ( s U j ' * ' , * , * ) ;  7 > # . ( * ' i t A t + ) £ V + 0 a ( p U , '9 '4 t a . )

T heorem  2 7*
( 2 7 .1 )  « , * * * ,  M l* * ™  <?*,A , * ' ) < 0 ) = O
( 2 7 .2 )  t f ^ d a U *.*«.£*, * ) > [ ] )  =  0

P r o o f  o f  ( 2 7 . 1 ) S S e t

<27-3 > w  g ~ f

so  t h a t
( 2 7 .4 )  l * l / * . f * * A >  T ( * * ) < c] * k * * »  « * * > * •
I f  we f u r t h e r  s e t
( 2 7 .5 )  < 2 4 = ^ 7 7
^ I  an d  I I  a r e  e n t i r e l y  new , I I I  r e d u a e s  to  t h a t  o f  B e s i c o v i t c h  
w i t h  r e p l a c e d  by th e  l i n e a r  m e a su re  f u n c t i o n  o f  C a r a th e o d  o ry  
an d  r e p l a c e d  by th e  d ia m e te r *
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vv v 33then f (A*B)^-e£ is equivalent to
(37.6) (p*(A*B)> (l+i) 0?'"'\(A-B)
Therefore (37.1) follows from (37.4), (37.5), and (37.6) 
and theorems 35 and 36.

Proof of (37.3) : bet
(3 7 . 7 ) f  p r j f ip 1 I

then f (A ,a) »l- D*0 ((p*'*"*, A , a) , so that
(37.8) la/La) a6 A , f (A,«) * 0j = |V« a ,« g A,D*0 ^A,*)*[) 
Also if we set
(37.9) e* = *Tj 
we have
(37.10) f (A* B)*-- (p01 (AB) < 0 “i) CAB).
and hence (27.3) follows from (37.8), (37.9), (37.10) and 
theorems 34 and 36.

Theorem 38. If (pr* (A) < + co and (p-(p*' then
(38.1) <pr* (loJU.«, «€A, D»0 (p'"\ 0.A,a)>l]) =0
(38.3) p'* (l*Uaia6A,t>U<p'\(p,A,*)<-\])=0
(38.3) Cp'* (LcJl a,« t A, D»0 «P'\ A,a)* 16 DS(?r\ =* (pr* (A)

Proof: It is clear that (38.1) and (38.3) are
immediate consequences of theorem 37. To prove (38.3), 
let A q j Â o j Ao denote the classes oocuring in (38.1),
(38.2) , and (38.3) respectively. ©.'
Then A » A'0 + Ao + Ao and h$£ce we have
(38.4) <pr*(A)* <pr>‘ (A,0) + <pt‘*(Ao)+<P'’* (.ho) ■ <pr* (hi)



34
but A 0 » A so that
(38.5) (pr * (/\)Z<pr *(A0)

and (38.3) follows from (36.4) and (38.5).
Corollary ; If pr% (A)« +«», - tnen

v *  V*o(<Pr\A ,« ) -D ?  (^ rA, A A , « ) ] )  

= pr* (Z*U a,Do ( p '\  P, A ,« )  -D ,o  (0 '*, P,
We will now consider a particular case of the above, 

and derive a relationship between \  $  A , <* ) and
D*0 « r \ p  * A, fl) , in order to do this we will

, . f/r ( « ,A ) s B  [>*(36.6 <
tS M

first set
f/r («,A) s B [Vi*- A j <x; € Aj

,/i ('a, A))
Theoreir. 39. If <P is such that there exists 4>0  

such that
(39.1) (p (C Co.,A)) it ^(p(A) (A , a € A)

then
D * < 0 '\ 0 ,A ,« )  Z iV o ( (p r \< p ,k ,a )  A)

Proof: Take { 8-k } such that a € B* (*.), d (B*.) = T*.

and '&■»«' (A Bx) p*
~  (p (A lZ )  D o (^

(2?"* (A'C(a.ABJ). ̂  
tf?(C(«,AB*)) ®

<PrX (ABO
p (C (* f*B*)) “  (p(ABx)

CABQ
P /ABx)

JP(A-Bx)
^(C(a,ABx))

Then



Hence
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D * {O'* 0 b cl)>* > *'•"»*'* » (C (a, A BO)

Theorem 30. If
(30*1) 2T is a metric separable space

(30.3) is suoh that there exists a so that'
<P (5*) * *. 0(5) for every sphere S  , where S* 

is the sphere concentric with S and with radius 4 times 

as great
(30.3) A 1 B ; (30.4) <p'*(A)< + Oo i (30.5) (B) > 0

(30.6) d* (<pr',<P,A,a)>d * € B
Then

a £ io
Proof : Let %  be the family of all spheres S(a,A)

such tnat
(30.7) at B ; (30.8) 2 A. £ * /° (<P, A ,e)
(30.8) <prA (b-C(a,n))̂ d<p(C (a,A))
Then
(30.10) b

Wow by theorem 11 there is a set S«i>Sdx,----- of spheres

from Te such that
(30.11) S«>*/ S6yx. = 0  (>n. < >t) > (30.13) II Ben. £. E
We have by (30.10), (30.11), and (30.13) that

(30.13) B = BISS i A£9i
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Hence by theorem 33 and (30.3) we get

(30.14) <p'* (B)4 <pr' ( A X S e O  *\<P (A*S*eO+e
t I^?(SU) + e § *S.x)+e 

Also by theorem 33 and (30.9) we have
(30.15) E^(5,K) + e i  0 r >(AlS«H)-I0r , (ASeH)2d 2 (0(se>l) 
or
(30.16) (d-l) 1 ^ ( 5  dk) = e- 

and from (30.14) we obtain 
(30.1?) l<pMzi{p''(B)-e) 
so that from (30.16) and (30.1?) it follows that

(30.18) (d-l) { <pr*(B) -e} £ ite ( e < r * ( B ) )
It is to be noted that (30.18) is obviously true if d 4 I 
since then the left member is negative or zero, while the 
right member is positive. If d > I then (30.18) follows 
from (30.17) and (30.16).
We have from (30.1S)

(30.19) (d-l) <pr'{B ) i O
which together with (30.14) gives d-l 4 0 as was to be 
proved.

Theorem 31. Under the same hypotheses as theorem 30, 
it is true that (pr* a 3 a 6 A, D* ((p , (fi, A, a.) > lj) = 0

Proof : set En.® A, (pyk}a) > 1 + rJ
Then

E , £ E x £ E 3£ .....



But by the preceeding theorem we have

<T*(Ex) = 0 M
and hence

O  4 (pr* (A0) 4 Z(pr*(E».) = 0
which completes the proof of the theorem

and

A o — {oM a. * a. 6 A , D* ((pr*y A, a) > 0 ” ^ *•
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FURTHER SUFFICIEHT CONDITIONS THAT A SET
HAVE THE VITALI PROPERTY

In a previous chapter we have discussed the sufficient 
conditions for a set to have the Vitali property (M*, 7).
Now that we have completed our discussion on density 
functions we are able to determine some further conditions, 
in particular the sufficient conditions for a set to have 
the Vitali property ((p ¥).

Theorem 33. If (p is such that there exists a 
positive ^  such that

< p ( S ( a , A ) ) * ^  < p ( $ ( a , 4 / l ) )  ( a ,  A)
if A is any set with (Pr*(A ) 4- + °° and there exist

positive numbers M ,  M  such that

ana if is any family of spheres which covers A in the 
strict Vitali 3ense, then A  has the vitali property ((pr7iy 7), 

Proof: It is sufficient, in view of theorems 15, 16,
to show that T  covers A in the strict vitali sense 
strongly relative to (pr* . We have the identity
(33.1) (p'*(A-S («,/»>)- Rfa,/.) 0T*(A-SO,4A)) 
where

(33.3) R («,/i) = (P'UA'Sta.A))
(f> (S (*,A))

(p($(a,4A)) , (PCS (a, A))
fT*(A-SC«,4/r)) (PCS fa,4/1)!)
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But

(33.3) R  (a,*)* C M )  (l k)'*"

Hence there exists an (/fe |e) such that At £  e ana 
R ( ft t At) = "i (^ /m)

ana henoe the set of all S of ¥  such that
(33.4) <P" (KS>)±k("/?0'k(p''(\$+)
covers A in the strict Vitali sense, which proves the 
theorem.

Theorem 33, Let AA* be such that sM*($) +* 0°
for every sphere and there exists a positive number 'fe 
such that for every sphere 
(33.1) AA*(S)£ -it/U* (V)

ana further let M* be such that for every set A

(33.3) AA* (IK) = B Qttf AA*(G) * G 2 A,G**~.]
Then if A is such that AA* (A) oo and A is covered in 
the strict Vitali sense by a family T of spheres, it is 
true that A has the Vitali property (A4*} 7).

Proof: It is sufficient to show thbt *F covers A

in the strict Vitali sense relative toAA* , Let G  be 

our open set. Then by (33,3) there exists for every e 
an open set U e  such that
(33.3) AGSUe, ^*(Ue)£/^#(AGHe (e)
bet o

• ©
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Then covers AG in the strict Vitali sense. Also if
5 « 9

(3 3 . 4 )  Ue S  535  , UeS*=S*
so that by ( 3 3 . 1 ) ,
( 3 3 .5 )  /Of* ([Je S*).
Hence the class of all S  0f ^  that satisfy (33.5) includes 

and thus covers A G  in the strict sense of vitali, 
which completes the proof of the theorem.

Corollary? If a set A of the -dimensional 
Euclidean space is covered by a family /7r of >t -dimensional 
Euclidean spheres in the strict vitali sense, then A has 
the Vitali property relative to the x  -dimensional Lebesque 
outer measure function and the family T' .
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Comment on paper by Harry T. Fleddermann»s Density Pro­
perties of Sets.

The paper of Fledderman is an interesting and 

very illuminating discussion of the components of the 

Vitalifs theorem in the theory of measure. The enunciations 

are made to fit very general assumptions on the underlying 

space and Vitali!s own assumption that the space is finite 

dimensional is reduced to certain inequalities whose formula­

tion does not depend on this assumption explicitly. The 

results of the paper were not intended to be novel in its 

implications. Nevertheless the present study is a valuable 

contribution to the present knowledge and future study in 

the field.

Princeton, N.J. 
May 10, 1940.

S. Bochner.
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