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ABSTRACT

A number of pap oars have been written concerning 
the characterisation of seta homeomorphlo with a subset 
(proper or improper) of the plane or sphere* Among 
these are R# !»• Moore, who gives several characteriza
tions of the plane, I#eo Zippin, R# A* Wilder, D# w» Hall, 
O. S. Young and R# H# Bing*

The main result of this paper is the following 
theorem: 4  naowary £Qd that a
ifiaas. s be. h?a*9«.<?X£hAs, silk & aiaga&» oompaot. a.gMttfi.t-aa, 

2 1 12s. PJLfBft bounded &  finite number, n, of 
noninterseotlng gMfllftft, tiSES. L i i «  IS S M i  §. *2. & 
nondegenerato, oompaat. goatlnupufl .q.uyve containing a 
oolleotlon a M  £ noninteraeotlng maple eloeed curves.
•  QQb bbat s i£  JtE W , P,gl£ StH J22lS$& 2S. J5Z

SSZ element £f 2a! 1 la eeoaxated Jot &gx. simple oloaad 
ourve ^leb is. no! SS element sLtCL- Th** neoessity of 
this condition being obvious, it Is only necessary to 
prove the sufficiency of the condition#
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The proof of tin sufficiency Is divided Into 
four parts* Xa tbs first part Is proved tbs theorem

Let W be a locally oompaot, connected, me trio 
spate wteiob eaa be severed by a finite amber of 
eoaaeeted open sets of diameter less tbaa e when e 
is positive* Sappose further that If eaaaot be 
separated by the amission of say pair of points*

Let 0 bo a oompaot subset of u and let a and 
y be eemmoa limit points of tee components DA and 
Dg of M-C aneb that:

(1) 0 is locally eoaaeeted at x and at yj 
(8) There is a positive Sx sueh that C-( 03tf (f 

+Cy,<r) bee a finite number of components 
when <fg<Tx iO x  £ is the component of 
C*TJ{ x, <J j vhiob contains x).

Then «1van a positive number op, there are:
(1) a d© less than or equal to rfjj
( 8) connected open supersets tu (C*. x )O ’ ©

804 ot °*»«o *nd w i l i o l ? '

do not intersect C£ ehere ^
+cy.rfo)* 884 

(5) a simple closed curve 3 in Da‘*‘%+'^0x# -̂0
♦*.o0* ' o  8UOb that J i^«r»eota GXtf0»

▼



°ytfa* dA A®4 3 A m i  not separate
any point of M~J from C£«

Urn proof of tbit theorem follows closely Binges proof 
of the K U m  sphere characterisation problem.

In the second oootlon It Is shown that If 0* * 0B ,
A***» Qg axe the elements of '77% then S*»Z*0j, is homao*

■ w y k U  to a subset of the plane* This is aooompllshednty shoeing that S-27CU la a Beane spaoe whish eontalns1at least one simple olosed curve and that every simple
aolosed serve* but as are separates S-^Gj •

In the third section it la sheen that 8 does not 
contain any primitive shoe serve of the first or second 
typos and hones, by a theorem of Olaytor* 8 Is homeo- 
morphie to a subset of the plane* In the last section 
It Is shown that 3 Is hemeomerphle to a region of the 
plans bounded by a nonlntersoetlng circles.

vl
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IHTKODUCTIOH

A anal>er of papers have boon written sonearn
ing too ebaraeterlaatlon of sots homeoffiorpbic sith a 
subset < proper or improper) of the piano or sphere*

In [ll3 S» l, Itoore slna tiurw systems of 
axioms for piano topology and In QlbJ bo proves tbat 
tbo apaooa determined by bio systems are really homeo- 
morpblo wltb tbs plans. la fs] mao Oasehn proves tbat 
oortaln conditions sill define a s-dimenaional manifold 
vltbout boundary among arbitrary Hsusdofff apaooa* In 
jlftj Loo Zlppln aboss tbat in loeally oompaot,, looally 
eoaaeeted* oonnoatod spaces satisfying tbo Janlszswalcl 
tteon, the nondegensrato oyolio elements are homeo- 
aorpbie sitb a 8-sphere (or a region of a 3-sphere).
In [10] , K* a. van Kaapon aboss tbat a P-spaee which 
oostaiaa at lsast one simple olosed curve and shleh is 
separated by every simple closed curve but by no closed

See appendix for footnotes*
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are la homeomorphlo with a region on a nphmrm* In 
S* Claytor shows that a necessary and sufficient con
dition that a P-oontinuuxa 1C be homeomorphlo with a sub
set or a spherloal surface Is thatt

< 1) K does not contain any primitive skew serve or 
type one or type two*

(8) each out point F or £ is a boundary point or 
the closure or every component or K-P*

In connection with this theorem* Hall In ftJ shows that 
If is is a locally eoaaeeted eontinuum which Is separa
ted by no pair or its points and oontalns no primitive 
skew eurve or type one* then u eontalns no primitive 
skew eurve or type two* Further characterizations or 
the sphere and regions or the sphere are given by wilder 
\lS, 1«3 anft Zlppln [17, 18J .

In £8, Ball givas a partial solution to tba 
problem or J*B* Kleins Is a aoadegenerate* looally eon- 
nested* compact eontinuum which is separated by each or 
Its simple closed curves but by no pair of its points 
hoaeomorphi0 with the curtate or a sphere? In £dj Bing 
gives a complete solution to this problem* In £l&J 
Young gives a simple characterization or 2-manifolds* 
with or without boundaries* using Bing*a solution of the

viii



hllne problem as a tool* For further blbliographleal 
refrences to otter work of this nature m e  jj4, 10j*

The purpose of this paper Is to prove tte fol«* 
loving theorems A necessary and sufficient condition 
ttet a space 3 be homeomerphie with tte closed, eon** 
nested* oompaot subset of the plane bounded by a finite 
amber* a* of aoalnter sect lag circles, when n £ 1, Is 
tbat 3 be a nondegeneraie* compact, continuous eurve 
containing a collection 'VTof n nonlntersecting simple 
closed curves, such that 3 is not separated by any pair 
of points or by aay element of 7T» but 3 is separated by 
say simple curve which is not an element of *Tf#

It is easily seem that this condition is issues** 
sary* The problem has been handled nicely by Bing in 
fdj when 1T is ea&ty* Zn the case that 'fT'ia not empty, 
it is easily seen that 3 cannot be homeomorphic to the 
entire 2-sphere* and hence if it is homeomorphic to a 
subset of the sphere* it is homeomorphic to a bounded 
subset of the plane*

The proof of the sufficiency of this condition 
is given in four sections* In the first section is given 
a generalisation of an argument used by Bing /dj® This 
generalisation provides a valuable tool for dealing with 
oertaln sets which are separated by all but a finite num-
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ber of simple olosed curves,■ but which are not separated
by any pair of points* In the second section it is shown

ntbat if C^»C2,,.*,C^ are the elements of Tf9 then S*» J2
1is homeomorphle to a subset of the plane* In the third 

section, it is shown that S is homeomorphie to a subset 
of the plane and in the fourth section, it is shown that 
S is homeomorphio to a region, 1* e« a closed, connected* 
compact subset, of the plane bounded by n nonlntersecting 
circles.

In the arguments of the first section* the word 
disrupt is used several times. It shall he said that the 
point set H disrupts x from y in D if there is an arc 
from x to y in D but each such arc contains a point of M, 
Also* extensive reference la made to Bing’s lemma which is 
given below,

Bing’s lemma; Suppose that space Is locally oon* 
nected and cannot be separated by the omission of 
any pair of its points, that the boundary of the con* 
neoted domain S is equal to the aim of the mutually 
exclusive seta is* N and H* each of which la access!- 
ble form D* and that is a connected subdomain of 
D such that no point or D either disrupts D* from 
E+M in or disrupt * Df from 12+JSf in Then
there is an open arc from M to H in b that does not

x



disrupt D* from B in
Aft following notations ay© used throughout tfcs

papert
S is a set satisfying the hypothesis of the problems
77“ is a collection of a nonintor©eoting simple olosed

©ureas smelt tbat iso el ©meat of -fp separatee 3$
<*£ (1 = i ^ n) Is an element of 7T*
x* y and © are always point® of 0}
GCat) Is any open subset of S which contain® xj 
E(xt<f) is tbs set of all points of a whose distance 

from x is less than «f j 
^xitT ** eOD3̂ aen1i °* whla!t contain* xj

(wtere 0 is a subset of 8) Is the component 
of Ĝ TftXfdT) which ©osteins x;

0£ is the set G-< Cj^+Cy^) shore x end y are too points 
Of C )

TJ^C^^Is an open set containing which is of
disaster less than s but which does not in
tersect C£ j

xy is an are from x to y including the endpoints x 
and yi

<xy) is the open are xy*( x+y) •
▲11 other notations and theorems used are convent

ional* xi



OH&PTSK X

$1# Lemmas Let M be a locally connected me trio 
space* and let L be a olosed subset of E# Let D be a 
connected open subset of M containing a single component 
L^ ot L 9 such that I> is oompaot® It is a component 
ot M-L then bas a finite number of components®

Proofs If = D then the conclusion Is obvious# 
Suppose then* that Is not a subset of 2)«

The proof will consist of four steps#
(1) To show that every component of

Is open#
(2) To show that every component of M±*h has a 

limit point on L^«
(3) To show that every component of M^*D has a 

limit point on M^-lu
(4) To show that* in the light of ( B) ana (3)* 

the assumption that M^#B has an infinite number of com~ 
ponents oontrldiets (1)#

1
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(1) Lat x bo any point of & oompoxiant IV ofJb
£*«*!*• How B*-l» la an open subset of a locally sonnettad 
metrio spaee and thus it is locally oonnaotsd* There* 
fore there is a neighborhood 11 of ac wMeli i® a subset of 
Djilt and D*^ is open*

( Z) Suppose *L^ « (£ • SetX k , 1
+( D,t-X>b,-I,1)+L1']. Consider [( D - D * W  n^-D^-Li) +LjL
♦ Dj^t D-D*) H  *)-CjJ « How %  •Li-*-3)bl»Li ** .
Also, Dfe § «1 , 0-D* § **-% , D-7>* § D-D^+I^+IS.M-D.
Therefore, Kj,. smd Dfê  jb~D*? +1^-[d-d* J- $.
How Dv is a component of D*»Lj and itoncs !!^jD*wL^**t>b^J * •
Also, from part 1» no point of in a limit point of
M~D^. Therefore» (f) , Thus 1C* <£> and B
has a partition. This is a contradiction.

(3) Suppose * <f> • Then
♦( Consider K-D^* J( Mj-D*)«-(
♦D^ • [< Mj’Cd*) ♦< DM.-Dfc. ) ]  . As above “5b •<D4'«1-Bb }
♦Djj •( B*-D|^-L) * <J> • By supposition D^^*( *(

•D»%)*&bx«(llI~B)~ (j> * How Ubx <£ B*# and house, M^-I)*
£r M~D^. But no point of to a limit point of M~B^«
Therefore ^.(1^-0*) $  Db *<! M ^ )  " $ •  Therefore,



3

K* $ and 15̂  baa a partition* But la a component*
This la a contradiction*,

Now X»£ and are closed disjoint seta and
hence, f  { M|~D) *» h > 0* Since each oomponent of 

has a limit point on and a limit point on 
then each component has a diameter greater than or equal 
to 3c* Then each component has a point at a distance k/2 
from 1*1* Now suppose has an Infinite number of
components, fben these ie en infinite set of points [ x j  
such that, (1) each xn belongs to a different component 
of D*-L^ and (2) PO*i$ 3%)**/®* Now each 6 D and
hence there exists an x such that x is a limit point of fx^J » 
Now each x^ belongs to so that x belongs to % •  AlSO, 
P(X»£t x^J-k/® for every x^ and hence x does not belong 
to l*i and x does not belong to Therefore, x belongs
to D$ and hence to some component of D** But by {1) 
there is a neighborhood V of x which is a subset of D^*
But D contains an infinite number of points of end
hence contains points of an infinite number of com** 
ponents* Therefore, D-L^) has only a finite num
ber of components*

$2* LemmaI Let M be a locally connected, locally 
compact metric space whloh can be covered by a finite
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number of connected domains all of diameter lead than © 
for every e > 0# If a is a point of M and la connect
ed* then M*s e&n be covered by a finite number of ©on*- 
nested domains of iiamstor leas than s, none of which 
oontain z«

Proof* By theorem 3*9, page 100 of Wilder IjsJ ,
M la locally connected* Since M is locally compact* for 
each x belonging to M, there is a positive <fx such that* 
for S leas than *M is compact#

Let % be any point of M for which JBKe is connect* 
ed, and let e be any positive ntmber# Let m% be a positive 
number less than mini e/S, • Then M can be covered
by a finite number of connected domains of diameter less 
than e2« Let X^9Dgt»»##Bj be those which do not contain 
z and let &j+i* be those which do# Set
D “ ^j+1 Then D is a connected open set
containing z such that (l) the diameter of D is less 
than e and (8) D is compact# Then by § 1, D»< M*s) has a 
finite number of components# These with «»• ,Bj
give the required covering.

Definition* If x 6 C then shall be the
component of U{ x,/j *0 whl ih contains x*
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/3# Theorems Let !3 be i locally compact* 
connected metrio space whloh ©an be covered by a finite 
number of connected domain© of diameter less than © when 
a > 0* Suppose further tbat M aaaaot be separated by the 
©mission of any pair ©f points#

Let 0 be a compact subset of M and let x and y 
be common limit points of tee component© X>A and %  of 
M*0 such th&ts

(1) 0 is locally connected at x and at y;
(2) There Is a positive suob tbat C-{ <3x9tf,4‘(V*<f ̂ 

has a finite number of ©omponents when / * /
Then given a positive number eQ9 there ares

(1) a <f0 less than or equal to <T̂ |
(2) oonnsetsd open supersets V ° W  “ * U*o( cy»/o* 

of 0Xj ̂  and 0ys<fo * M o &  do not interooot C£ 
whera 0l-0-«0*#d-o*0y,do)* aad

(5) a simple oloaod « u m  J In DA’- % ^ % 0 X,,0* < W ,y0
suah that (a) interseets 0x ^ ot Gy&fc$ %  and 
DgS and (b) J does not separate any point of 
M~J from G£#

Proof|
Before giving the details, a brief outline of the



e

pro©f oil! be given*
A finite collection of connected domains trill 

bo obtained such that their sum* Hj* dees not separate airy 
point of *®&B| from 0£ in M~B*9 and such that tbo M  of 
any pair of noninteraeoting elements separates B|* 
Collections Bgf % , m .  will bo defined whioh satisfy cor- 
responding conditions end whioh are such that the closure 
of an element of Is a subset of The collections

will be described In snob a way that the common 
part of their sums is a simple closed curve J which is a 
subset of X)A^I>B^U6tfCaCî X I 0oCy# ̂  that does not separate 
any point of M~J from in H«

Non consider the details of the proof t
&£ % •  e^ £ e0 be a

positive number less than one one-hundredth of the dis
tance from x to i# A collection of connected domains 
.will be described* The sum of the elements of B^ will 
be denoted by b£. The collection of connected domains 
h\9%* (t > 100) will satisfy th© fol
io ving conditions:

(X) intersect® h^^j (If U  t* l f j # t )
if and only if i* J-l or 1* J or i*J+l (&Xat*£
■ hi,i» hi,i-i * hi,t)*
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«... do., not ..p„.t. . fro.
in

(3) some point of is accessible from ^lti *
U )  the diameter of h ^  ̂  is less than e^ |
{5) no connected subset of « “ * iater»eota ^  . 

end (I £ i ~ t) is of diameter less
than e^/4#

Denote by D19Dg#«#,9Da the elements of a finite 
collection of connected domains cohering M-{ x+y) such 
that the diameter of each is less than e^/SOO*^ Suppose 
that each of the domains D ^ D g* ««*9D| intersects the 
complement of each of the domains ***»
Djj. is a subset of and each of the domains Dĵ +x® ®k+B»
*•»» DB is a subset of Dg*

Let «<£*•*»* be a collection of arcs in 
the coa^lement of D^+Dg+x+y such that 4^ ( i***!* *» »9 j)
intersects and <M x*y) Also there are collections 
of ares < i»i+l9 •»• 9n ; **X9293) such that 3

(1) 8. intersects %  end 0$» ij/*|
(2) (31(1 f DA«(x+y)U-jn k);

fi.l = % “( *+y) <l*k+l»*..#ra) j
(3) ^1,2 =®A“X J

1^1,2 = % * x ( i*k+l(...,n) t

(2) If s £ H-H?Jm



P% 3 =°8“y < l-le+l.... a) {
<5) *i.i’ *i.a " ?i.i’ Pi.s * ̂ i.a* <*1.3 " xi+yi4

( and y^ ar© endpoint® of
3 n n n

since zr<4 » i » I ? f 4 o » and ^ are all1 * J«-!T1»X J + V 1*8 j+1
closed oompaot eat® there are three positive numbers
<fg» g and such that 8

m  (** ,< rs) ^ t ty .  *«>)•( ^ < i
(2j o(x,f3). rr^i.g -j+i •
(3) t«y,<f4)- £ 7 ^  g - £ .

*
Now suppose 0<«fo < <T%* ef$* S4» e^/dOO}* Then

(1) ia*,*. + ’ *  »

U >  °*.«fo* ^ f 1*8 " ♦  1

(3) Gy»<To* j^ ^ i.3 *  $ *
{4) diameter of C and of C r is less than

*»o q y»*o
e^/SOO;

(5) C£ * C^ GXfeP0 *®y9<f  ̂ ilas a number of
components»

It will be noted that sinoe 0 la looally connect* 
ed at x and at y» there is a neighborhood u(x9X} of x and
a neighborhood U(y#A) of y such that U{xBX)*C is a subset



°r Gx <r » an<i is a subset of 0y#fo* But since*o
by theorem 2 page 89 in Moore D*2» the accessible limit
points of and Ds are dense in G * %  and 0*1% respec
tively* then Utx,/J*C and Uf y,/)*G both contain accessible 
limit points of and of % *  Hence* ^xt^0 contains 
accessible limit points of Da and of DQ and Gw - oon-
tains accessible limit points of and of Dg«

Owing to the existence of the arcs (5^^ g
and no point of disrupts either from

or from °yf/0*Gi)# Considering D^f
9a #Gx */0* ^A*By* ̂  and ^a *^1 ns D* Df* M* K* and E of 
Bing*s lemma* it is seen that there is an arc £rom
CĴ  to in B^*C£ that does not disrupt ^ from cy#^0
in DA+CXf<r<3>*cy#db# 6 a °°mP°nent
that contains an open arc from 0X  ̂̂  to 0yt</o#
la not a subset of D** let be an aro in D.-D’+G*J+« A 1
from a point of Bj+2 to a point of I* Bj+g la a
subset of Df* Bing’s lemma can be applied to get an arc
0<j+2 to c£ ln ®uoB that does
not disrupt G * ^  from Cy#<ro in *o+Cyf^  The pro
cedure is described in the following paragraph.

Let B be a point of Df• Since no point of D.A
disrupts from 0i‘#,CXf^  in BA*C£+CXf/0 there is an
aro ^ from Bj^g to ^  ^A+Gl+Gx £ ^ subarc of
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? 1 “ D,+Ci+<V l +Cx,i0*a *«•»•»»*• »J+g and O i ^ ,^ r f , +1. 
hence, K does not disrupt from *n
+ Lf( f ) • Similarly, R does not disrupt ^j+g
from o£+ *<j+i+cx#^o in D*+Df( ci+<j+i+Gy ^ )9 Applying the
lemma, it is found that there is an aro from CL, ^ to
Uyt^0 in Df+DMCx,^0+Gy,^0  ̂ does not disrupt Oj*g
from ^i+<̂ j+i i11 ci+®̂ ĵ iJ ^  follows that there is
an aro o(j+g from £j+g to in Df+Df(C|+fl(j+1) whioh
does not disrupt C_ * from 0__ *, in Df (C ~ +0̂ . ~ ) •*»cT0 yio0 *fOo y>^o
If «{j+g intersects C^f set ofj+g'^j+g* l3p ®*;j+8#Gl“ ^ * let
«(j+g be the arc in from Df to C£. in either oaso
<3+1 + <3+& dO0fi not dI«upt from C y ^ l a  % +Ox><ro
+ C« r  • y»^o

Likewise there is an aro «(j+3 from £j+$ t© G£ in
such that <j+x*<3+2+<3+% does no  ̂disrupt G ^ ^ f r o m

Qy $f0 in £A+Gx0rfo+Cy, # ^ continuation of this process
provides arcs «fj+i# °^+g» • • • »<n in da+db+01 w^ose sum
does not disrupt from Cy^^in 0A^x,«fo+°y.<fo and
does not disrupt C from C - in LR+C_. ~ +CL. „ , and*■>00 y t®o a *i® o y»®o
ouch that ( i ♦ j+1,•«*,n) intersects and C£.

Let G* be the collection of all domains g such 
that g is a component of the common part of some domain 
of 2^, Dg,#*#, l>n and the complement of G+^i+<̂ g+# # *+<n«
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If P is a point of D^f there Is an ©ro In from P to 
Hence, if g is an element of G # , some point of 

is accessible from g*

Let gj and g9 be connected domains which cover 
0Xf^o and cy t^0» respectively, ©nob that xi e^/SOO
andfty, cy,^ ) < ©j/SOO for a w r y  x'e K*. ©»d for every

0 7y1 C fiy* fcut which contain no points of +
Now let gg be the union of &*. and all members of $* which 
intersect end «Mo h  do not have accessible limit points 
on let gy b© the union of g9, and mem*
hers of G f whioh intersect g*. and which do not have acces
sible limit points of Since every g9 has
an accessible limit point on 0+^+«<g+« every g9
added to g£ and every g9 added to g£ must have accessible 
limit points on Gx9fQ an^ on yy, respectively* Since 
every element of G9 la ef diameter less than e^/SGG and 
since CXf^ and cy#^o ©3?© diameter less than e^/300 
end since f(x9 andp(y» Cy#^ ) a®w less than e^/300
for every x# e gj and for ©very y' € g*,, then the diameters 
of gx and gy are both less than e^/lOQ* Let G be the 
collection of all elements of G9 whioh have accessible 
limit points on If g is an element of G
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then some point of is accessible from g and1 1 a
either g § D^f g | Dg or g J M-( D^+D^J *® There exists a 
finite collection G of domain® of Q snob that this col**A
lection hut no collection of fewer element® of & satis-
flee the condition that the aurn of the element® of la

ea connected subset of D^ and intersects both gx and gy* 
Denote the elements of <3̂  by where in
tersects gg; g^ ( 1 * 2 , intersects g^+x and Bq^x 
Intersects gy but g^ does not intersect gj for 3 g 1+2*^ 
Similarly, there is a collection of elements of 0- such 
that this collection, but no collect ion of fewer elements 
of G# satisfies the condition that the sum of the elements 
of Gg is a connected subset of Dg and intersects both b x 
and gy# Denote the ©lsments of Gg by Bq+x* £q+S** ®r 
where gy intersects gq+ii &j, ( l“*q+l» • * * ,r«l) intersects 
6i+l, and gr intersects &x bufc g^ docs not intersect gj 
for J ~ i+2. Denote g^ by g^ and gy by Sq*

Let £ denote the set •m*&T Plus all points
of M-( •••♦«*) that it separates from 0* in M-( 6X>^
* *5^7^} • Each component of the common part of K and an 
element of G intersects an element of g^tg2, * ,gr* ^  
However, It is to be noted that no such components inter
sects two gj/s that do not belong to a consecutive set of
three domains of g^t ggf • •, Denote by gS the sum of
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and all such, components that intersect g^* It will be 
noted that is of diameter less than e^/33*

If three is a factor of rf denote the sum of the

the next three elements by hg9 **• , and the sum of the last 
three elements by hs* If three Is a factor of r~l* then 
h^|hg9 ••• »h8 are defined as before except that ha is the 
s\m of the last four elements of g£9g|9 •«»»&£ Instead of 
the last three* If three is a factor of r-Sf each of hs^j

Since each element of h^ contains an el ament g of Qf
then a point of C,f+«*.| is accessible from h< *1 ■* *• n 1
Now h^ is of diameter less than ©j/B sad the collection 
V * 8  *s conditions analogue to conditions

connected subset of h^+hg+ * # •**'h0 of diameter less than 
e^/4 intersects h^ and h^ but no such subset intersects 
both h^ and hj^fr let hj^g be the sum of hn+^f 
ha where some connected subset of diameter less than ©j/4 
intersects h ^ ^  and hm9 but no such subset Intersects 
both h ^ i  and hm+^l »«• 9 and let h ^ ^  be the sum of hp+x» 
hp+g>*.**ha where some connected subset of diameter less

first three elements of g£*g^,•**,&£ by h^, the sum of

( 1)# (2) and (3) to be satisfied by h

Let h^t̂  be the sum of h^#h where some
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then e^/4 intersects hp+i#bp+gi#* •§&& • Then the collection 
hltl# *lf S»«**»hx9t satisfies conditions (1}# (&)* (3)*
( 4) and ( 5).

j^eriBtlon of collection gg* Choose a positive 
number eg less than one one-hundredth of the diameter of 
any connected set in H* that intersects h^  ̂ and hj i+2x ® ^
(l-l,...,t; h1>t+l“hl,l* A collection Hs
of oonnected domains hg^x* ^2$2* ^2#s be
obtained such that:

(1) lig ^ intersects hs>j ift and only if* i«*J~l or 
1-3 or 1-3+1 ^a,i-i“h«,s ; bgfB+1-hs>1)|

(2) if a 6 M-H* then h | does not separate z from 
C* in M|JL

(3) some point of M-H* is accessible from hg#x J
(4) the diameter of bgf£ is less than eg;
(5) no connected subset of K* that intersects h g ^  

and hg^+g is of diameter lass than eg/4|
(6) if Hi n;l» j) denotes hBf i-ioo*» - * • •

+hn, J*•••* *n# 3+100 wll*r® < hn,t+ f  *%, t) aaa 
if h-, m intersects h«> ** and if h, 4i»i0 *#*̂ 0 X» JQ
intersects kg#ao then either Hi 1
#M( lsl0,3o) end Ht £jn0,tn0) «=h(1}3 ,i ) orO O
alee Hr^iS^n™) * M(1}30,10) and Hf«}H0>m‘e)
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« s u i 0, y .

Denote by L the component of the common part of
and tiia complement of the closure of

wili©h contains It will b© shown
that if P is a point of h^g+h-^g and if H is a point

in M-K**L*
If 8 is not © point of h^#g*h^ ^ the result is evident*
Let PQ he an arc in M-R from P to a point Q, of 
Let Q* he the first point of PQ in order from P to q on 
M-L* if PQf intersects h^^g then there I® an are from 
PQf-Q* to M-Kj in M-Bj*+h-^g because a point of M-Bf is 
accessible from hlfg* Also, if PQ1 intersects h^ H 
does not disrupt P from M-H* in 8KEj*+L* If PQ* inter
sects neither h ^ g  nor then Q* is a point of M-e£*
This demonstrates that R does not disrupt P from MHH* in

Let ©^ be a finite collection of connected do
mains of diameter less then ©g/l200 which ©over M« Let 
G he the collection of all elements of ©^ which intersects 
*1.5+*l,6- No point of L disrupts an element of G from 
M-B* In M- Hj+L* Repeated appleoationa of Ring * a lemma 
give that there is a collection, of area K in M-K^+h such 
that for each element g €© there is an element such

of L-P then R does not disrupt P from M-Hj



that intersects g and M-If* but such thatX eC © n X
does not disrupt h^ ^ from Ei^iO in 1 0 * ^
Let Gf be the set of all domains gt such that g ? 1© a 
component of (1) the common part of &ifg*** ^ e  
complement of K*f and an element of G, or ( 2) the common 
part of the complement of K*+C and  ̂i*fc»3»4t7 $&$9) •

There exists a finite collection G" of elements 
of G1 such t)|at the sum of the elements of Gn is a con-* 
nested domain intersecting h^ ^ and h^^Q tout the sum of 
no sutooollection of 0* having fewer elements than G*1 is 
a connected domain intersecting h^  ̂ (1*1,*«•*10)
Assume that g-̂  of Gw intersects hi g^ («*!* • • • *r~l) 
intersects gi+1 and ^  intersect* blfl0.16

There exists a collection **♦»&£ of con
nected domains such that intersect© &xfx» inter
sects ♦ * •*r~l) * intersects &xfiQ* &n<i
closure of g* is a sutoset of

Let £ denote 1 Pius
all points of H* which it separates from in M« iSach
component of the common part of £ and an element of G* 
intersects on© of the domains i*&I*•••*^r»ixi$io» ^ut 
no such component intersects two of these domains that
do not belong to a consecutive set of three of these
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iadomains* Add such component© to the ones of

*if hl,10 *bat Intersect to form the sets &x*®x*b^O«
It Is noted that the diameters of ©aoh g" not Intersect-
ing ^i,S**li,s+^i,4+lxl,7+hl,8+lll,9 is lese than ea/400.

ConseeutlTe elements of gj*gg* • *g£ may b© com
bined by threes and fours in a manner previously describ
ed so as to get a collection Sxtl f®l g*****®l,u suc!l
the collection bxf®l,lf®lfg*•**»Sx#uf ̂ i o^^x ĥ **##
satisfies conditions analogue to conditions (1), (2) and

19(3) to be satisfied by hg#x * ^ , Z* #* *»l3L2>&* ^  ds
noted that the closure of each is a subset of h^
• when iG < l C t x (where gx,l ®1©*"
ment of g^ x>#**tSl>u which intersects b ^ g  and &x,l*i is 
the first element of g^ i»#**»®l#u wb*0*1 follows 3 
and Intersects h^

In a manner similar to that in which h-^^t • * #+ilx 10 
was replaced by bx*gl, 1+* * **gl u^^lO* replace hl,ll+**#
+hlf20 Illl+*llfl,f ♦•*+ell,v*h20* •• ** and ^1, t-m+ * * *
+3llft ( 9 £ ®  = 1B) by 1+ • • #

Let gxy0 be the fourth element of g ^  ̂ g* • •*
^i n wllloh follows all of those elements that intersect 
hj^A+3* Note that g^o* ^bre© domains immediately
preceding 8xfo* tbe three domains immediately fol
lowing g< are each a subset of h_ . , of diameter less *>u 1,1+4
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than ©g/100*
In th© manner described above, replace »«

+gi,u +hio+hn +fix i . i+***+ei i ,o  by ei.o +h2,a+* - +k2, r +gii,o»
replace siito+***+s^l,0 by hS,r+l+** * * *  *
and replace e U , fo+***+8i,0 by h 8,n+~ * +b2,u+h2,l*S1 
closure of h£^j +» • * ^ is a subset or h^ g^t
• , and the closure of ^ is a subset of
^ltt-a^ • • io# Consecutive elements of kg#x ?£» * • »* 
^2#u may aoaâ ^ned *n a manner previously described so 
as to form a collection Hg of connected domains &£#x*
• ••9hg s satisfying conditions (1)9 (£)# (3), (4), (5) and 
(6).22

Sceorlotloa of simple oloaed curve £. For each
positive integer i greater than one, a collaction of
connected domains ili>g»**#» ^i,n^ oan described
satisfying conditions analogue to those satisfied by
where is a positive number less than one one«*hundr©dth
of the diameter of any connected set in intersecting
h4 -i 4 and h* , It will be shown that the common
part J of H*, is a simple closed curve in
♦ tf- C— r +Ua Cv . that does not separate any point of ®o Xt®o eo y**o
M~J from C£*

As the closure of I£j\is a connected subset of
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Hf {condition 6) and as eoah h* . contains an element of i *• J
H i 1* then J is a nondegenerat© continuum# This con** 
tiauum does not separate any point of M~J from beo&us® 
no separates any point of from 0^* Also# since
J M H*t and since H* g ^ A ^ B ^ x ^ y  * where &x and are 
open sets of diameter less than e^/33, containing cx#^0 
and respectively# but not intersecting then
J = DA+DB+^e0Cx#J'0+^e0Cyi «T0# **et ^ all<i ^ any pair of 
points of J# Suppose that Bj^p^ and ^ are elements
of that contain P and q# respectively.
For convenience in notation# it will be assumed that it
is that ©overs the closure of H(i+ls
and that it is H(i; that covers the closure of
H(i+1; ^Q- ifi tile oomiao131 P®** of
H(8j P2q2>»*** and is the common part of H(lj ^1*^1^*
H{ 21 ^gjPg) %• •} it la found that where

24and Jq£> have only the points P and Q, in common.
Hence, J is a simple closed curve in £a*^B+^©0gx# <TQ

♦UL 0„ * which does not separate any point of from
C£. Also# since «T oontains points of and points of
Dr it must intersect 0„ x and Cv r • u «*o y* <*q



CHAPTER II

/4# Lemma: Let e( be an are in 3 which separates
the points A and B• Let xy be a minimal subaro of^, its
endpoints being x and y, which separates a and B« Then
there is a member 0± of iT cueh that xy«G4 » x+y**o

Proof; S-xy has two components 3^ and 3^ which 
contain A and B, respectively# Now there exists a 4o
suoh that TJ(xf£) intersects at most one element of 47-and 
rrtz,<f0 )»V(y,S0 )~ 4> .

Since no subarc of xy separates A and B* then x 
and y are common limit points of and Sg# Then by j 3 s 
there is a simple closed curve «T in 3 which intersects 
Cx^  and 0^ j an<i cy,<f are o^P^nents of u( xf£) *xy
and U(ytd)fxy, and which contain x and y# respectively) 
when /*<fQ which does not separate any point of S-J from 
xy-{ • But the latter la a connected net , and
thus 3-J is connected# Therefore, J must be an element
of 'If ̂ Lot it b© ciQ# Since U(x,<fo) intersects only on© 
element of /7T • then there is no other element of v  which
intersects 0-#- x end Cv tf* But since CU intersects GJ*Q o x 9o

SO



and for every f<fQ* then 0^  must contain x and y*
How let z he any point of xy~( x+y) • Then there

is a las© than such that % 6 °x,<f̂  *$yf *
But by $ 3, C* does not intersect xy-( Gx r , Hence,

O  # 1  1
z d Of * Therefor©, x and y are the only points of xyi Q
which belong to 0  ̂ and xy has endpoints only on C* •

O  0

j 5* Lemmai Let ab be any arc In S with endpoints 
only on an element of ft such that no proper subaro of
ab has endpoints only on any element of • Then ©b4.0

separates S*

Proof! Suppose ab does not separate Q* Let ao^b 
and aCgb be the two different aros of 0^ with ends a and b* 
Now consider 3-( ab+ac^b), a set which has a partition*
Let x b© any point of ab+ac^b and suppose that x is not a 
limit point of some component of S~( ab+ac^b) • Then 
there is a neighborhood 0 of x which contains no point of 
Sx » But then a minimal subaro of ( ab+ao^b) separates 3* 
This subarc must have endpoints only on some element of Tf 
(^4)# But ab is the only such subaro* This is a contra
diction* Therefore every point of ab+ao^b 1© a limit point 
of every component of S~{ ab+ao^b)#



Lemma 6*1 j Let be the component of S»*( ab 
'►ao^b) which contains ^aegb> * Then one component 
of S^aogh has limit points on <a©xb> and on <ab>*

Proof of lemma 5*1 ft Let 2 be a point of 
Now there exists a such that U{ Z9S^) ♦( a©£b+ab)« $ * 
In UtZ9cf̂ ) there is a point which is an accessible 
limit point of S1# Let such a point be 2£ * Let 2g 
be a point of S^* Then there is in Sx+&£ an arc 
2*2g from Zj[ to 2S* Since Z£ does not belong to 
ab+aCgb, there is a sub&re of 2»2g which does not
intersect ab+aCgb. But then §■ 3^-< a©gb)
which has Zl aa a limit point. But Z^zj^Zj^ Is ©on~ 
neeted and belongs to some component of <aosb> . 
Therefore, some component of 3̂ ** <a©gb) has a limit 
point on ^ac-^b^ « Call this component s*» Suppose 
3* has no limit points on ^ ab) • Let S~{ ab+aCjb) 
eSl+sa* ( Sx#3a» (f>) • Consider S~Cj»S*+[sx-( S*+C^f]
+ Sa+ <ab> . Let K-S*. /jsx-( 3*-*-C1 j] +3a+ <ab>j
+3**{[31‘( 3*+0l,h 3e+ <*b> I* sin0® 3* has no
points on "Cab^ then 8^ ^ S^+O^. But then
-(Ŝ +Cĵ F] -*-Sa+<ab>} - <p . Now s*+c'{J <ab> j-
= 3*. jTsi«01)-S^]+31.(3e ) +31.(ab). Now is

locally connected and thus [( Sy-CiY-S*] - cjp .



Also, S~{ ab+ae^b) 1® loo ally connected and thus 
sl* £> f and sinoe Sj £  S-(ab)» then Sj/ab » p  . 
Therefore* K* (j> «

But then &~G^ has a partition. This is a con
tradiction and thus 3* has limit points on <ab> • 
This ends the proof of lemma b#l#

How let 3g he a second component of 3-( ab+ab^c) • 
Since 3g* <^acgb^ * (p # then Sg is also a component of 
3-( C^+ab) • Therefore S*(Cj+ab) has as two components 
3* and Sg# How let x £ ab—{a+b) and let y £ ae^b~( a*b) 
be such that x and y are limit points of 3*. Since every 
point of ab+ac^b is a limit point of 3g* x and y are 
common limit points of 3* and 3g# How let <f0 be such that 
jjCJl x* f0 )̂ U( y*/0i} *(a+b) ** <£ * If C^S^+ab* then it is 
easily seen that c- ^ x #/0+^y*/a  ̂ a connected set# How 
by j 3, there is a simple closed curve J in 3 which inter* 
sects Gx9fc an<1 0y*<fo su°k that <J does not separate any 
point of S*J from C-( Cx*^ . ̂ y , • Thus 8-J is connected#
But J intersects Cx >- and henoe cannot bo Gi $ and J in*9 » Q
tersects Cy#^  und henoe cannot be any element of HT 
different from C-̂ # This is a contradiction# Therefor© 
ab separates 3#

§ 0# Lemmas If ab is an arc in 3, then ab separates
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S if and only if there is a subar© of ab with endpoints 
only on some element of ffm

Proof* Suppose ab separates s* Let x and y be
two points of S~ab which belong to different components
of S~ab* Let a*b* be & minimal subarc of ab which a©p~
aretes x and y* Then b y/ 4 t the arc a*bf has endpoints
only on some element 0^Q of +

Suppose ab has a subarc a*bf with endpoints only
on an el went Q± of * It can be assumed that afb*o
does not contain a proper subarc with endpoints only on 
sane other el went of How efb f separates 3 by
j 5, ( !• e* S-a,b,*S^|8g) • How S^-(ab) cannot b© empty,
else it would be possible to show that a pair of points 
would separate S* Also, Sg~(ab) cannot be empty* Then 
(S^-abJ^f S2-ab) is a partition of S-ab*

/ 7* Lemmas Suppose S* Is a domain of S not 
separated by any pair of points and such that 3-S* ha© a 
finite number of components*

Suppose is a member of 'fir' which Is a subset of 
3*# Suppose every component of S * ~ h a t s  limit point© on 
©very component of 5-S*.

Then S*-C^ is connected*
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Proof* Let 3^ be a component of and sup-
pose that 3*-C^ has another component 3g* There are two 
possibilities* In ease I will be considered the possi
bility that ©very point of Qi is a common limit point of 

and 3g« la ease XI will be considered the possibility 
that some point of is not a common limit point of 3^ 
and 3g*

Case I* Let x^ and xa be two points of G^* Let 
a and b be two points of 0^ which are separated (on Q^) 
by x^+Xg* Let </« l/2p( x^+Xg* a+b)# If GKJ^+S-a*, then 
Gx^,<f Gxg*<f 81370 "both subsets of 0^ and <M caCii<f *Gx2* <f J 
- (s-S^Cj^Cj^y*©,^!. Sinoe Oi-Co^^+O^^) ooa- 
sists of two arcs, and since S-S* has a finite number 
of components* then byf3* there is a simple closed curve 
J in sl*s3S^eGX£f/*^eGXgt<f that no point of S-«T is
separated from G~( Gx^*/*GXgf/^ ^ow *n ^2*°! there
is a subarc of «T which has endpoints only on C^» Since 

contains limit points of &~J* then no point of
is separated from C—( by Jl* But 3l*Jl“ ^  *1 33 **’
and 3^ contains limit points on every component of G-( 0^  ^ 
♦Gx * Therefore connected. But ^  is an arc

w  ®
with endpoints only on an element of TT" * Hence, by id*
3-J^ has a partition* This is a contradiction* and hence 
some point of is not a common limit point of 3^ and sg*
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Case XI# Some point of G-» la not a common limit 
point of Sx and 8g*

In this oasa soma subarc of separates 8** let
A be a point of and let B be a point of Sg# Let 
be a minimal subarc of G^ which separates a and B in 3** 
Let S* and ^  be toe components of 3 * - * ^  which contain 
a and 3t respectivesly* Nov 3* and 8£ must Have x^ and xg 
as common limit points* Also* 3* and s* have additional1 A
limit points on Xjaxg for otherwise 3* could be separated 
by the omission of a pair of points* Let Xg be such a 
limit point of s£ and be such a limit point of 3|*

Let 6 * !/£♦(>(Xx*xg# *0**4)• C»Xjaxg*S~S* 
then = i i « 2, and <3, la a
single are which contains a limit point of 3£ and a limit 
point of S^* Therefore C - ( +Gx *<f) has a finite num~JL m
ber of components, each of whicjb contains a limit point 
of S* and each of which contains a limit point of 8** By1 A
$3- there is a simple closed curve S in 3*+S*+TJ 0 .♦J. 25 0  o

TTG_ r such that no point of S-J is s@pare.ted from e xg, 6
G-< Cx ^ C j  ^)# Now some point of J does not belong to JL" ss™
G^* Suppose that such a point lies in the complement of
S«# Then as in case X there is a subarc of «T in the 1 i
complement of 3£ such that* (1) hae endpoints only
on 0, { and ( S) no point of 8-nT %b separated from CHb r 1 i

mailto:s@pare.ted
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(Note that may not have endpoint© on
Gx ^ or on 0^ g) # Bat 0-*( 0X & connected1* 1 » 
set in 3*J^# Therefore, S-J^ is connected# But by /©,
S-J^ has a partition* This Is a contradiction and henoe
3*-C^ is cannooted#

Lemmas If S cannot be separated by any col** 
lection consisting of k elements of IT and any finite num
ber of points, then S cannot be separated by any collection 
consisting of k+1 elements of 'If#

Proofs Consider a collection of k*l elements of
7f • i,et these elements be C^f C ^ ow suppose 13**3- S  ci* Then by the hypotheses 3* is a connected open E
subset of 3 which cannot be separated by the omission ofk+1
any pair of points# Also, 3* <27 CL *0* is connected for1 A xo
l < i i w .

Now if M is any connected open subset of 3 and
K is any closed subset of M f then every component of M-K

k+1
will have limit points on K# Therefore, since S-.2rc.*C*1 o
is connected for l < i 0 £k+l, then every component of 

k+13*-C^=3- Z7 0^ has limit points on { i < iQ « k+1) «
(This property will be used several times in subsequent

k*ltheorems#) Since 3-S*« Z7 G., then 3-3* has a finite
8

number of components, and every component of 3*-C^ has
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limit points on every component of also, is a
subset of 3** therefore, by £?, S***G^ 1® connected, and 
thus no collection of k+1 elements of ff separatee 3*

^9* lemma; If s cannot be separated by any col-* 
lection consisting of k elements of /7f and any finite 
number of points, then S cannot be separated by any col
lection consisting of k+1 members of *rf and any finite 
number of points#

Proof; By induction*
Let C1# Cg, C3, ••*, 0^2. ***- elements of T7"k^l

and let be any point* Suppose S*“3-( Q^+x^) * Then 3*3
is a connected, open subset of S which cannot be separatedk+1
by any pair of points* Also, S-S* * 57 * and has

Z
k+la finite maaber of components* Since SM 27 C^x^+X}!®

fc+1
connected if 8 ) and since S-C 2 7  connected1 ® k*l
(1 < iQ = k+1), then every component of S*-G^»S-( 2 7  ci‘*'a£:i)1
has x^ as a limit point and has a limit point on Oj.
(1 < iQ £ k+l)* Also, it can be assumed that is a sub
set of 3*# But then by /7, S*~C^ is oonneoted* Therefor©
3 is not separated by any collection consisting of k*l 
elements of 'Tf and a single point*
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Now suppose that 8 cannot be separated by any
collect Ion consisting of lc+1 elements of and by any g
points* Let CIP 02,***, Qk+X * *%* *£*••** \ *  xg+l 1)0
any collection consisting of k+1 elements ot'Jf' and any

r le+1 g+i \ 
g+1 points* Suppose 3**3- / ̂ 2 0^* 2? )* Then 3* is
a connected, open subset of S which cannot be separated by
any pair of points* Also, 3-3* has a finite number of
components*

/k+1 g*l \
1 < iocfc*! and S-l ci+5p xij *xiQ ©onnected when 
1 ^ iQ f g+1* Therefore, every component of S*-^ has 

as a limit point when 1 t i0 i g+1* and baa a limit 
point on GXq when 1 < iQ =“lr*l« Also, it can be assumed 
that 0^ is a subset of 3*. Then by #7, S*-C^ is connected, 
and thus 3 cannot be separated by any collection consist
ing of fc+1 elements of 7f and any g+1 points*

any collection consisting of fc+1 elements of /|T and any 
finite number of points*

jio* Lemmat 3 cannot be separated by the omission 
of any finite number of points*

Now S- C  ci*27 xij *^i0 *s oonnected when

Therefore, by induction, 3 cannot besepar&ted by

Proof: Suppose that 3 cannot be separated by the
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(mission of any set of k points when k 8. Let .a^, 
•**z}£+;}> be any set of k+1 distinct points* Suppose that
*1*  .... .. all belong to the same element 0 ^  of <Tf
for some 10 , when 1 ^ 10 ̂  n» then s,v*ciQ 5 s~( x^+xg*« * *
+ xk+l) * S*»Ci0# Since connected ( definition of
0iQ) then so is s«( ) *

Suppose that two points* say x^and xg# do not
belong to the same element 0- of sff •* Then any simple***0
closed curve containing x-. and xa is not a member of 7T.

k*l
Suppose S- X? acf has a partition* Let 3^ and

Sg be two components# Since no set of k points separates
S then and Xg are common limit points of 3^ and 3g*

Now consider S~( **xk+i5 (hot© that
X£+x5+*••+xic+^ may be empty}* By a repeated application
of / 8 to S* it can be shown that S~( x^+xg** *#^k+lJ
a locally compact* connected metric space which can be
covered by a finite number of connected domains of
diameter less that e for every positive @« Also* 3*»<
+x5'*'***+^ c+x^ cannot be separated by the omission of any
pair of points# fhoreforc S-( x^+xg*• • ) satisfies
the conditions of M in Ji 3# Also* x^Xg+Xg satisfies the
conditions for C in / 5# Now - and O' x are just the
points x^ and xg for and & # Also, G~(0 ^ is
the point xs# Now by thore is in sx+s%*^eCx / fT7e°x S1* S®
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a simple closed curve J which intersects and xg but 
which does not separate any point of 3-f x^+Xg*# * •*:xk*l^ 
from x^# Henoe, S-fx^+Xg*# is connected. But
S-«7 3  S—t aĉ + * * •♦x^^T-?# Therefore, S~J is connected# 
This is a eontradlotioa# Therefore no set of k+1 points 
separates S# Since by hypothesis, the lemma la true for 
k when k»2, it is true for any finite number of points*

i 11# Theorems S cannot be separated by any 
collection consisting of k elements of 17 and a finite 
number of points#

Proof: S cannot bo separated by any element of
'7f by hypothesis# B y / 10, 8 cannot be separated by any 
finite collection of points# Then b y / 9, 8 cannot be 
separated by any element of IT and a finite collection of 
points# B y / 8, S cannot be separated by any two element© 
of 7T •

Therefore by mathematical induction using § 8 
and $9, 8 oannot b© separated by any collect ion consist
ing of k elements of 7f (k #  n) and a finite number of 
points#

/12# Lemma: Let *(,» be an arc in 3 with endpoints
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a£ and b£# If S* Is a component of $ than S* cannot 
be separated by the omission of any finite amber of 
points*

Proof: Let 3* be a component of 0-a*b£# Let 3t
be a point of 3* and suppose that 3*~x has a partition# 
Then there are points A and B of S*~x subh that A and B 
are in separate components of S*»( a*h*+x) * Suppose that 
A belongs to (1 £ iQ $ n) • There is an e such that

a£b£*x)“ cj> # But then ^ is a subset of the com-
pontnt S-̂  of s~{ which contains A# However, U ^ e
contains points ofsjT? 04 » Hence, an A 1 can be picked in

, 1  1such that A* £  Ci (i»ls*»*,n). Therefore, it can be
nassumed that A+B £ S- 2? 0 •
1 1Since S-x Is connected, then ©♦b* separates A and1 1

B in S-x* Let «/ a Hil&Ifftnl subarc of a£b£ which
separates A and B in S-x« Let and 30 be the component®
of S—(a^b^+x) which contain A and B, respectively# It 
will be noticed! that, since no pair of points separates 
3, /is not © degenerate arc# Since e( is a minimal arc 
separating A and B then and are both common limit
points of and S^*

Now S~x satisfies the conditions of #3, and there 
i s a <fQ such that when »i A , then <<* 3L1®X 9 1 * **



oonneoted when S<S^% Therefore by 43, there is a simpleo /
closed curve J in that doe® not1 1
separate any point of S-x-J" from ^ Since is con
nected then S-x-J i® oonneoted and 3~J is oonneoted 
{ S~ J = 3 ~ x ^ ) * Therefore, J must be one of the simple 
closed curves that does not separate 3* Since there is 
such a J intersecting *6^,/ an<3- ^or /less
than cf*» and since there is a <T. such that wl ^ inter- O' x 1*
sect® at most one element of tfT when<f<<f^t then one element 

of 7f must contain and b^*
Let z be any point of ax ^ x ^ ai+^i^* there

is a <T« such that z doe® not belong to V r r *8 “1*^8 H ’**
But 0. belong® to s.+sB+UftoC , t V h  . x » and hence z ■*■ 1 2  1 2
does not belong to C^* Therefor© ax^l ^as ari&paint3
only on C^*

Also, e and $ can be made sufficiently small so 
that does not contain x* Hence 0^ j§ 3~x
end x does not belong to G

How and x ar© both common limit points of 3^
and and the exponent of XJ{ x,e) «(*<+x) which contains 
x is just x itself* Also when *a\»f^3 an ar0« 
Then by #3, for any e there is in SA+33+U@<̂ a^ ̂ +U( x, e}
a simple closed curve J which does not separate any
point of S-J from *<*-<, r • But ^ -<*' r is connected1** al*



and henoe 3-w Is oonneoted* How V e n d  e oan be chosen
sufficiently small that i (1) ^•0 *̂= <f> { 1*8* ***»n) j1 ̂
and (z) U( xf e 5 <j> * Hence 3 is not an clement of 7T •
This is a contradict ion * Henoe, no point of 3* separates 
3**

Sow suppose that the lemma 1© true for any set of
k points* lei Xi»Xg* • * * »*&+! k® points of 3 * such 

k+1that has a partition* Then there are points A1 *k+land B in S*- J> * x* such that A and B are in separate1 1 k*l
components of S«(a’b * + ^ x 4). As before* it can be1 1 1 1
assumed that A and B do not belong to any element of 7f.

k+1Since 3~J"?x4 is connected, by /lQ, a*b* separates 1 1 1
k+1

A and B in 3-T7 x, • let «a, b-, b© a minimal subarc of“X  1 A x k+1
alb* which separates A and B in S-5"?x. • let B and S^1 1  k+i Y  1 A B
be the components of S-»( a^b^^57x^) which contain A and
3 f respectively* It will be noted that since no finite
number of points separate 3* by/lO* *Cls not a degenerate
arc* Since o( is the minimal arc separating A and B, and
since 8* is not separated by any k points, then a^* b^* x^
( iBl9***fk+l) are all common limit points of SA and Sg#

It can be shown* by repeated application ofJ 2 9 
k+1that 3-T7xi satisfies the conditions of y 5* and sinoe 1

there Is a <fQ auoh that when «<a f) t h e n ^1 * 1 *
is connected for every /<^0* then by #3* there is a
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simple closed curve J in 4 that do©81 1
k+1

not separata any point of 3- 27 ae* **& from • Since *(.
k + 1  X xis oonneoted then 3-^7 ac^-J is oonneoted ©nd Is con-*

— gTX  .naoted IS*J g )• Therefore, J must be an element
1 *of 'If # Slnoe there is ©ueh a 4 Intersecting *✓ * and1 f 0

ĉ b r for every f less than 4 9 and since there is a J1
9 V  JL

such that e intersects at most on® element of /7T whenal $1
then an element Cx of/7T' must contain and bx#
Let z he any point of ax * \  )• fhen there

are numbers and ©g such that xx,xg, # * **x3c+i z 

not belong to tf©g*al f *g# But G1 b0lon&s t0 
3A+S3+Ue ofai>/g+tJe^ bi>/g and Henoe xx,xz, ... ,xk+1 and 
z do not belong to Cx# Therefore, axbx has endpoints 
only on and the points xx,Xgf #* • do not belong
to 0X.

Now ax and x* are both common limit points of 3A
and 3^ and the component of U( x,e) *(«<+xx ) which contains
xn is just x1 itself# Also, when <f<4* *( r is an1 * l 9 o' ,ai»*
arc# Slnoe ^ I Q *1 satisfies the conditions of i 3, then
for any e there is in SA+3B+Vt'altf+u<*l»e> a s'imp 1©1 ̂
closed curve J which does not separate any point of 

k+ 1
3«»2Z7xiw r̂ from # But 4  is connected and

2 k+1 .....henoe is oonneoted# Since S-J £



then 3-J la oonneotod# Now 4 and & o&n be chosen suf
ficiently small that: Jl) -i*
and (8) TJ(x^,©)«G^ m Hence, J Is not an element of
Tf • This is a contradiction and hence, no finite set of 
points of 3* separates 3**

n
/13* lemmas Let a( be an arc in 3-27 0^ and let*1*3* be a component of « Then if 3* canno t be ©epar&t- 

@d by the omission of any collection consisting of k*l 
elements of <Jf and any finite number of points, then S* 
is not separated by any collection consisting of k ele
ments of 7T •

Proof: Notice first of all that 3-3* is connect
ed* How let C^,Cg,# f be any set of k elements ®f '77"* k
Set 5f*s*-27C4# Now consider S’-C,*2 k x

Since 3- 23 G. is connected, by #11, then every 2 1
component of 3 9-C. has a limit point on 3-3*. Since 

k3*- Z7 C4+C1 is connected when 1 < 1. £ k, then every oom- * *o ®
ponent of S ’-G. has a limit point on 0. * It may be* *o
assumed that is a subset of S9 * Also, S9 is a con
nected open subset of 3 which cannot be separated by the
omission of any pair of points* Then by §7, S-Ci is con-

k
nected and hence 3*-27 0* is connected*1



n
§ 14# Lenuo&s Let d  be an sro of S~ 2  Cj and let1

3* be a oomponeut of 3- #̂  * If 3* oanao t be separated by 
the omission of any collection consisting of k~l elements 
of 7T ariCl any finite number of points, then 3* oannot be 
separated by the omission of any collection oonslsting of 
k elements of and any finite number of points.

Proof: (by induction). Note that S~3* is justn
d  itself and since 3- 27 G4-,3C is connected, then everyn 1
component of 3*-27 ̂ ,-x has limit points on every component1 *
O f  3 — S * *

Let C^Cg,.. *,Cv be any collection of k elements
k

of and let x be any point* Then S*~ Z? G. is connected,
/ k \ 1 by /13, and 3*~(27 0,,+xJ+Q. is connected whon If i * k„

{
k v X xo2  • 2?his is a connected open subset of

3 which oannot be separated by the omission of any pairk
of points* Since 3*-27 0A is connected, then every com-1 /iCponent of has x as a limit point, and sine©

\ V1+xl+Ci is connected, then ©very component of 3 f~C has 
J x o 1

a limit point on when 1< lQi k* It may be assumed
that C^ is a subset of 3* and henoe by /7, is con
nected* Therefore, 3*~ [£ CU+x) is connected.1 / k

Suppose that 3* - fzj is not separated by any 
collection of m points* Let x^,Xg, • be any set of



m

n m+1
m+1 points* Since 3- 27 G* ** E* x* is connected, then every1 1 1 3*k m+1
component of S*- 27 CL-Cac. kas « Unit point of , andi 1 i 1hanoe on every exponent of 3«*£*. 3et 3* equal to S*- 
/ k »*l v >k m*l \
f S G4 + £?ac*N Since S*~(X1 G4 + 2 7 x*) *c-s is connected V 2 1 1 *■' \l 1 1 17 *o
when 1 ~ iQ ^k, then ©very oompoBient of 31 -G1 has a limit

s k m+1 \ A
point of Gi0* Since is connected
when l^i_^m+l then ©very component of S'-Cn has x4 aso - x i0
a limit point* also, 3f is a connected open subset of 3
which cannot be separated by any pair of points, and it
can be assumed that C is a subset of 3** Then by §*?91 /k m+1 vS*-^ is connected and hence S*-/T7 0. + 'T7 ac* 1 is connected*

1 k U  1 T  17Then, by induction, cannot b© separated by
the omission of any finite set of points*

n
j 15* Theorems let *̂  be any arc in 3- £  G4

1 1let 3* be a component of 3~<^* Then 3* cannot be sepa
rated by any collection consisting of k elements of 7T 
and any finite set of points*

Proof: By § IE, 3* cannot be separated by the
omission of any finite number of points* Hence, the lemma 
is true for k«0# Now suppose that the len&aa is true for 
k~m* Then by il3 and /14, the lemma is true for k»m+l* 
Hence, the lemma is true for any finite k*
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n/16* Lemmas No subaro of 8- C* separates n 1
3 - S  Gt.

1 1

n
Proofs By / 6, if Is an arc of 3-J3? 0. then1 1 nS - ^  is connected* But by/ IB, as 8**3- ̂  , s-of- 5^

» 3-27 C}-e<f is connected* Hence, <̂C does not separate n 1 1*-?v
x n$17* Theorems The set 3- 2? C* is homeomorphic1 1to a region on a sphere*

n
Proofs (X) The set 3- 2? CL 1® connected, byfll,1 1 nlocally compact and locally connected* Then 8- ̂  01 is a

P-space in the sense used by E* R* van Kampen* (2) Then
set 3-27 i® ® locally compact, locally connected set 1which cannot be separated by the omission of any point, 
by/ll* If x is any point of C^, then every U(x#e) con
tains points of 3-C- * Thus S-27 ^  is nondegenerate*

1 1 1
Since 3 is a continuous curve, 8 is separable* Then by
1*25 chapter III of Wilder, £ 5J , 3 is perfectly separ
able, and hence eny subset of 3 is perfectly separable*n
Also, 3 is normal* Then 3-YJ 0^ Is a nondegenerate, per
fectly separable and normal, locally compact, locally con
nected and connected set* Hence, by 3*38 chapter III of
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Wilder fcj. 3— 27 Ci Is oyclioly connected# Therefor©n ^ *
3- 27 contains at least one simple closed curve*1 1 n

(3) Let ^ he a simple closed curve in 3- 27 G^*
Then ^ ® 3 and S-|3 «S^| 3^» Now ^ contains a limit point or
3 « Since 3-27 C. is open, there is an a such that
x 1 1 1

n js - 23 C^# But U(x^, ex^#si Therefore
<S-£? similarly (S*27 Z6 0 • But then

n n i n
(3-J7 1,8 (3-27 G^)*S^MS-S *3g* Therefore ^
separates 3- 27 *1 1

(4) Let ah he a closed arc of a simple closedn
curve 8 of S- 27 0 . Then b y / 16, ah does not separate n 1 1S - S 1 Gi.

Then hy a theorem of 12. R* van dampen £ioJ ,
n3-27 C* is homeomorphio with a region on a sphere, and 1 1hence, to a region of the Kuclidean plane.
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^13* Lemmas Let 0 be a finite collection of arcs 
o(i such that: (1) - ai+bi whL@r© ®i
and b^ are endpoints of ^  (!•©*, the only points of in-

nterseotloa are endpoints); and (2) is conn©ctod. Then1
the arcs can be rearranged into the order »«••••»k 1 —
«^pn so that *s connected when 1 k # n*

Proof: Pick any arc and label ito^p^# Suppose
that, for some k_. lees than nf krt arcs have been labeled

ksuch that 'So(x> is oonneoted when *1 *2 *k0 i *i v
I f  k | k  * Suppose that no other are inter sects n «n 1Then is not oonneoted, contrary to hypothesis*

1 koTherefore some arc must intersect Label thisk 1 i
arc p̂ p. , • Then is connected when 1 f k f kQ+l.

^o ^ iSince the conditions of the lemma are obviously satisfied 
when k0«l, they are satisfied, by mathematical induction, 
when lc0“n.

£19# Lemmas Let G be a collection of a finitem
number of arcs ̂  (l®l,#.«»,m) such that i (1) ^  is

3*41
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oonneoted; and < 2) e(̂ * ^  S a^b.^ wher© and bA are
the endpoints of «<£» If la a component of 3~G* then 
no pair of points separates s*«

Proof j By §X2t the lemma is true for m*l* Sup
pose that the lemma is true when m»k-l# Let 0 bo any 
collection of k aros satisfying the hypothesis* Let x be 
any point of S* and suppose that S*-ac has a partition# 
There are three oases#

Gas© I# The collection 0 contains two arcs 
and where #̂ ** *1^1 and *2^2 such that 
( i“2, #,•,k) and 4  < 1”i ,3, *,k)# Since and
*S9 each have only on© point in common with S#<f4* it is S k k 3 1
obvious that + and 27^* are both oonneoted#3 2 *

If S*-x has a partition, then thero are points A
and B in 3^-x such that A and B lie in different compo
nents of S-( C*+x) • It may be assumed that A and B belong 
to 3- 27 . Since (i-2,*##,k) is a colleotion of
k-1 arcs which satisfies the conditions for C, and sincek3* is a subset of component of then A and 3 arek 2
in the same component of s- Z^.-x. Therefore, cJ - s©p~k 2 1
aretes A and B in 3- SVt-x*2

Now let ©^b^ be the minimal subaro with



kendpoint b~ which separates A and B in 3~ X W *  **x* 31 no a2
{ i“3f »* * ,k) la a collection of ls>l arcs which

satisfies the conditions for 0, and since 3s*1 is a subset
k

of a component of fcllan ̂  aTl̂  B are in the
ksame component of 3- 23*^i b _  -X* Therefor®, 0 separatesk 5 * x 1 &

A and £ in S~ ZV^a^b^ac#3
Let egbg be the minimal subarc of ̂ g, with end** 

point bg which separates A and B in S ^ Z ^ ^ a ^ b ^ x *  Then
kA and B belong to separate components of S - X ^ ^ & j b ^ a g b g  

-x. Gall these components and 3g, respectively* Now
a^f ag and x are all common limit points of 3^ and 3g* 
Suppose that Cf =f and set equal to
1 /2  iain^ftaj^.bj^), ^ (a at^2) l .  Then C '-(o ; (f*C’. j-)la3L
oormaoted and ooxinectad wlien
Also, there is an e such that {XJeG U@Qag3 ,<r>« >
when f<fQ+ Then by ̂ 3, there are two simple closed curve® 
J, and Jg such tliati (Ij £ S^+Sg+TI^Gl ^ ' ^ 0^ * and1 ̂ t

^  sA+^B+TJeCa <f*Je°x tf* 6,11(1  ̂ S ~ J1 *s coniaaot®d and 
3-Jg Is connected* Now contains points of
Jg contains points of ueaaa,rf-* a®510®, Jx / J2» But Jj/Jg
contains x* Therefore, one of and *Tg„ say is not
a member of /7T# This is a contradiction*

Gase II* The collection 0 contains one arc
where ̂ l * ax^i su°h that a*̂  ( 1*2, * * * ,k) j and for



©very other arc *(x0 of C, where **10^1o { i0 / I ) ,
% € ° ^ i  a M  f o r  3osia J d i f f o r s f l ' t  firoM and

J2 different from ic * Again, lot A and B be point a of
a^-x such that A and B belong to different components of
3~C*-x* Now {*(£ {1*2,#* # ,1c) is a collection of k-l ai*es
satisfying the conditions for 0« Since 8* is a subset of

k
a component of 8- 27 ̂  * a and B belong to the same com-

k Z
ponent of 3-57V-x* Therefore, *( *» separates A and B in 

k 2 1
3 - 2 7 ^ - x # No w let a^b^ be th© minimal subaro of # ^ f with

^ kb^ as one endpoint, which separates A and B in S ~ I f
Ba  and Sg are the components of S~ T y ^ ^ a ^ b ^ x  which con
tains A and B, respectively, then and x are both common
limit points of 3. and 3g*

k
Suppose that SQ < ai>b^) « If G*5* 27**i^ajjb^+x,

then C*~< câ ,<j t/ ̂ connected when J*<fQ9 But then,
by $3, there is a simple closed curve J in SA+Ss+tJ0O ^  
+^eci,^ such that S-J is connected* Then as in the proof 
of $12, it can be shown that J is one of the elements of 
rTf , call it C1# and that 0^ contains and ac but does not 
contain any other point of Cf*

k>l
Du© to $18, it can be assumed that 27*% is con-

*■ 1 * neoted* 8ince ( i*=l» ** • ,k:-l) is a collection of
k-1 arcs satisfying the conditions for 0, and since 8*
is a subset of a component of 3- 2 3 V  then A and B belong1 1
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to the same component of S~ 2-^V* '”:}u Therefore, ^  eepa-
k ~ l  1 x Krates A and B in S- Yl*/. ~x* Let the oomponentfci of 3~C*-*x
1 1which contain A and B he Sĵ  and respectively* Nov;

let z he a point of where
Suppose that z is a common limit point of S*A

and 3g* Set £Q equal to 1/2 mln [f{ a^,z) b^zjTJ » If
C ’̂ C^x, then C*-*(C* +0* . } Is connected, Then by /5,

z *Jq *>cT0 * 9
there is a simple closed curve & In sJ[*S£*tJ0C^ € <f

such that S-J is connected* But S' contains z and henoe,
is not identical to C-̂ , and also, J contains x and, hence,
intersects C^. This is a contradiction* hence, z is not
a common limit point of 3^ and 3^*

Now consider the subarc a^z of If A and B
K>1belong to separate components of 3-5T^-zbjc-*x> then

■jV̂ , z b ^  ( i*l, *• is a collection of k arcs which
fall under case I* Hanca, A and B must belong to thek-1
same component of 3- ̂ 7^-zbv-x and a. z separates A and B

,  _ ,  X  K  Kk-1 1
in S- JjU'j-zbjg-x* Let a^z1 b© th® minimal sub arc of a^z
with a* as an endpoint which does this* Let 3A and 3„ b©k-1 A B
the components of 3- 27^ ^-zb^-a^z* -x which contain A and1B, respectively* Then z* and x are common limit points of 
SA and 3g* As before, it can be shown that there is a 
$ Qf and a simple closed curve 3 in ^A+^B+^e^if <f

such that 3-J is oonneoted, where C*r ^ ^ + a j s:z, + zbj;C+x»
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But J contains a* and x # and hence, J is neither nor
{ i«8,###,n)* This is a contradiction#

Case XIX# If is any arc of C with endpoints+o
ai and b# , then there is an at* and an o(4 belonging *o xo w 3%
to C such that: (1) j* 1D and jjg iQ ; and (a)

and bi € # Because of /is, it can be assumed
"a  k-i ° Jg k

that is connected# Let the components of 3***
-x which contain A and B be 3^ and 3^, respectively# As
before, it oan be shown that •tfw separates A and B in 

lc-1
S - £ J ^ « x f and hence, contains limit points of both Sj[ 
and 3g#

Let be an arc such that and suppose
that there are two distinct points z^ and zg of &£+*>&)
which are common limit points of 3* and 3* # S e t /A B  O
equal to l/2 min z^+Zg} f ^

then G*-( Cl > '►O’ j- ) is oonneoted and Cf~{ 01 ^  +01 x )x *cro z2»d0 0q '
is oonneoted# Also, {C* ,r)*{CI * )“ <P # Then by /s,Z1 * z2 *
there are two simple closed curves J^ and Jg such that:
(1) *x £  S i ^ U 0Ciif^ U e0if/o and Jg S 3 * , S ^ C ‘g / o
+UL0.L $ and ( 2) 3-fJ-, is connected and 3-Jo is connect-“ x * Oq —
ed# $ow Jn intersects Cl r and Jo intersects 01 r1 1 * *o 2#
and, hence, J^ f Jg# But J^ and Jg both contain x; hence, 
jx. j ^  This is a contradiction# Therefore, there are
not two distinct points of a^+b^) which aro common
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limit point® of Sj* and Sj|*
Let a be a point of  ̂ which 1® not a

common limit point of 3^ and 3^* Consider the two sub-*
ares ^.z and zb^ of a^b^# If a^a or xb^ separates A and
B in 3- Z7<k.-x, then this ease reduces th case II* There- 

1 lc~lfore# A and B belong to the same component of 3**
1Let z^b^ be the minimal subaro of ab^ which hae b^k***las an endpoint and which separates A and B in S~XU«(.**x
1 1-a^z* Similarly let be the minimal subaro of a^z

which has ak as an endpoint and which separates A and B 
fc=lin

Let S and Sg be the usual components of S~C*i*
where C*s '•‘a^Zg+E^bjj.+x* Then sŝ , and x are
common limit points of S and 3g* Let ^  be less than 
f (a^+b^, Zi+Zg) ♦ Then, as before, there are two simple 
closed curves and Jg such thats (1) / J^j and < S)
Jl«Jg contains x; and (3) S-J^ and S«*J are both connect
ed* This is a contradiction* Hence, in all cases, S*-x 
is connected*

Now suppose that x and y are two points of 8* such 
that 3*-{x+y) has a partition# Let Sjĵ and Sfe be two com-** 
ponents of S*~( x+y)* Then, since no point separates S*,
x and y are common limit point© of S* and 3** Now ifA B
O’ s C*-*x+y, then for any <fQ$ Cf-( GxfCr *°y,/  ̂ ®on-



nested* Hence, by /3, there is a simple closed curve 
in Si+St+U 0* such that oonneoted*9q ” y $
Since this is true for any SQ and It can be assumed
that (f> » There are now two cases#

Case I. There is in C an arc where *r * i V
such that (1-2,.. *3lc). Now 13 oonneoted
and ( i*“Ŝ  ** *,k) is a collection of k-*l arcs satis-*
tying the conditions for C# Since S* is a subset of a

kcomponent of S- 23^4 then A and B are not separated in 
k Z

3“ S ^ i * x*y> where A and B are points of 3*-( x**y) which 2
belong to different components of s-( C*+x+y)* Therefore,
*£» separates A and B in 3 - 2^^4-ac~y*B

Let bi be the minimal subarc, with b, as an end-k xpoint, of a*b, which separates A and B in -x-y*
1 1  B *

Let SA and 3^ be the components of 3-y-CT which contain
A and B, respectively, where O’ £f z x  l+a-^b^^x* i&low set
f0 - 1/2 f< a ^ ) .  Then C M  J is connected*
Since S-y satisfies the conditions for/3, then b y / 3,
there is a simple closed curve in s a+;3B+^©g&, ,r /jL * O ® O
such that 8-y-Jo is connected* But 3-J^ &  3-y-Jg and 
hence, is connected, and Jg intersects 0* and con
tains x, hence ^ J1 ^bie is a contra
diction*

Gasell# If *<i is an arc of G such that **0 Ao
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« a1 'fcller® is sn ^  and an such that? (X)
J1 f* 10 and jg / i0 j and ( B) €*(3\ G «̂ j •

Because of /lQ, it oan be assumed thatk-*l
£JV« is connected* Also# if A and B are points of 8*1 1
-(x+y) which belong to different components of 8~{ C*+x+y)
then it oan be shown, as before that ^ , separates A and k-1 K
B in 3- 27V, -x~y* Let the component® of 8«{ G**x+y) which 1 1
contain A and B be 3^ and 3ĵ « Suppose that there is a 
point z on ak*tolĉ which is a common limit point of
3^ and S|j*

Suppose that is given such that 4 < f <  W * >  
If C* = C*+x then C*«(C* ^ +C1 , ) 1® connected* Then byz*<r0
^3, there is a simple closed curve Jg in

such that S-y-Jg is connected* But then S~̂ Tg 
is connected* However, ^ and
Hence Jg j* and «Tg*«Ti <£, a contradiction* Therefore, 
no point of is a oommori limit point of S£ and
SB ‘

Let z be any point of a^b^ and let a^z and zb^
be the two subarcs of avb. determined by z* If A and B

k~l K K
are separated in 3 - 2 - / -a^z-x-y then the case reduces to
case I* Suppose, therefore, that A and B are not sepa- 

K -/
rated in 3- X T «<̂ -a^z-x-y• Let be the minimal sub
arc of zbfc which has b^ as an endpoint and which separate©
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A and B in S-^T? j-a^z-x-y* Set C f * an<̂

1 Xlet S^ and S^ ba tho components or s^y-C* which contain A
and B, respectively# If <fQ is less than then
G f-( c z ^ f  g  *Cxf /  ̂ eona^®^e<i*

Then by /3, there i© a simple closed curve J2 in 
SA+SB+C*1> /o+0if Sq auoh that 3-y-jg la connected# How
ever, as before, this can be shown to lead to a contra
diction#

Therefore, if the lemma is true for n^k-l, it is
true when n=k* Since the lemma is true when n»l9 then by
induction, it is true for any finite n#

/20* Lemma: If C is a finite collection of arcs
,n) where *̂ l“aiai such that a

finite number of components, then there is a finite col
lection C* of arcs V f (l^l,•*#,n*) such that* (X)1
«q.*t e. ai+bi ****** and b^ are endpoints of and 
( k) 0**0'*.

Proofs Let K be a collection such that ©very 
member of K. is a component of some ^i#Yj* Then K ha© a 
finite number of members# Now every component of 
is a point or an arc* Let bp^,bp^,••«,bp^ be those members
of K which are points and let bn ,bp , *«»,b<D be theFk+1 te+2
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first and last points of those members of K whi oh are aros 
Now let b*# bg,»««, b* be th© points £bpj Jbp

5 1 Jarranged in the order of occuranee on o(̂  from 
to aj. Consider the ares ***5/ bq ai* kjbj+l* tor a11 
1 ^ 1  I n  and l ^ J < q £ *  This is a set of at most n(m+l) 
distinct arcs ( some arcs may be represented by two dif
ferent representations) • Let th© aros be labeled

wlxere e&ch distinct arc is counted only once* If 
Cf** ( i*l» ) then C* satisfies th© necessary
requirement s *

/si« Lemma; Let M 9 be a connected subset of 3 
consisting of th© sum of a finite collection 0 of arcs

(1*1*•»,m) such that; (1) M**0^ has a finite num
ber of components when isslf***9n| and {2) if ^  and 
are two members of Cf then = ai ^ i  ^  ail<*
b^ are the endpoints of <<£• Let a £a ^ and AgBg
be arcs such that; <1) (i«lf3)| (Z)
A xBi•A2e2«^5 (3) H.Ak ^ °ll <4)
» A^+Agj (5) (A^^Ag) •( a£**"A|>) ** <j>* Then in S-{M9 + 27 0^) 
there is an arc P^Pg joining a point of and a point

°r W
n n n

Proofs If M f I 2  0,, then S~( M f + S  G± )*S- 27 0\1 X 1 1
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which is connected by f 11* Since 5 A|A^*{
and (A^+Ag)*{ A£*A*) • <jb * then and A^B0 each contains
points or S*2C^t Let P, be such a point on Bn and let

1 nPs be such a point of A Bg* Then since S~ 22 G* Is oonneot-
z * n 1 xedf there is an arc F^Pg in S - S 0 4 *

1 nSuppose, theretoref that M # g £2 Q^* Set MQ equal 
to ^8^2*^s) *
empty, and if Mq •( -A£A^)* (p let b© an arc in S~
^ZTC^+A'A*! from C^A^A^) to Mq such that^+j/a^ and

eacil consist® ot a single point* Set
Nov suppose that has been defined when 1£ i^ k*

If f̂c-*l*ck / (j> let oCja+jc be the null set, and if (j)
nlet be an arc in S-27 Trom 0^ to such
1

that o<nr|.is:*GjS: end each consists of a single
point* Define 5^ to be ^k-l* ̂ m+k* Then, by induction,

can be defined such that: (1) “a Contains M * $ { £)
)*£*( Cl~A£A*) /*<£; and (3) 2^*0^ / (ft < !«£,»**, n) *

Let B* be the first point of intersection from 
^ n n

Ai to Bi of AiBi with + C^* Then1 £n
th© set M consisting of <fA|A0 ) + ZT « H  AiBi-Bl>£
-{AgB^-Bp is a closed connected set consisting of the 
sum of a collection of a finite number of arcs *

*L

(i«l,***,P*) such that 11618 a Tinit© number of
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components* then b y / 20, there is a finite collection 0 
of arcs ( i*l,*#*,p) such that: (1) a(^ ^
where and b^ are endpoints of s*̂ ; and ( 2) C**M#

Also, S-4£~A*A* § c , Let P, be a pointX M 1
of let Pg be a point of and
suppose that and ®g belong to different components of 
S - M - A ^ .  Kow A1B - ^ iA*+A8B£-( A ^ B ^ B *  ) is a connected 
subset of S-M and hence and Pg belong to the same com
ponent 3* of S-M. Let A”AW be a minimal subarc of Aj A*I S  X <5
which separates P^ and F*» In S*. Let 3^ and Sg be the com
ponents of S-lfi-A£A£ which contain P^ and Pg, respectively* 

Since b y / 19, no pair of points separates 3* then:
(1) A£ / Ag and ( 2) one of the components » say S^, has an
accessible limit point on A^A^-t A ^ A * ) • Let x be such aI S  1 2
point# Since S-(A"AJ?) is connectedt S-, also has an acoes-1 2  A
slble limit point on M* Let y be such a point* Then
there is an arc xy in S^+x+y which joins x and y*

nSince ( £ V m*i*Mf) *A*A^ « <f> t there is a <fD such 
— n

that [oU£ }UCal" ^ )J •(x+2><rm.*1*M») m <$>• If C*« M+
A£Ag then C'-(CI^ ^ c :gf/o)tM-(Gl£t(ro+Cigt<fo) ^ A |
-(C?n , j' ) which consists of exactly two components*Al**o A 2**o
Then by/3, there is a simple closed curve tT̂ in 3-̂ +Sg
+U CJt* r C?w x such that J* does not separate any point® Al» o 0 2» o
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of S-Ji from C*-( G* r+G* f r  )* Since this is true for
AX9 4o A&*4q .any e, it can be assumed that ttreGĴ * /O^xy* ^  t i **!,£) *

1* o
Now there la an arc *xyx of in Sg+x^yx ®ucfe ’feba'fc &x
and y^ belong to 0^ and x^y^oxy** (p « But then xy 1© an

in Since x^y^ doe© not separate any point of
S"Xiyi from Gf G1#, *CXW»<f )̂ 3cy then S-x^y^ 1© connect-1 o S o  ed* But by $6, this 1© a contradiction*

Therefore, and Pg belong to the same component
of S-dS-a^B* and there is an arc £ ^ 8  Joining P^ an<3t ^g in

whicti is a subset of S - M f~ 2>J Q^m

§ ZZm Lemma: Let ©x^l b® a minimal separating
arc with endpoints only on 0^ and let < axrl^l^ an^ ̂ 1*8^1^ 
be the two component© of G^-fa^+b^)# Then ^ x 3!.**!̂  and 
^a^Tgh^ belong to different component© of S-a^b^*

©x end b^ are common limit point© of all components* Sup
pose <vaxrl^l^ and<a^rgb^> belong to the same component 

of S-a^bi* Then 0^ g  Sx+ax+bx* Let £Q be suoh that:
(1) <To <  l/Sf( %19bx) j and ( S) <f0 < £ ( ©x+bx»ci) ( 1 ^ 1 ) .

Proof: Since &x**l is a separating arc,

If <-»]*!, then << g. * 4 *  s)•Of <£> ( i t 1) and
1  O  JL

r *°(h £  ̂ la oonneoted* But then by^S, there
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is a simple closed curve y whioh intersects  ̂ and
al ^ o

€S'b^ 9 <$0 and sg such that S~y is connected* (Sg is a 
second component of S-a^b^) • But this is a contradict ion* 
Therefore aad<a^pgl>jV belong to different
components of S-a^b^ .

§ 23# Lemma: Let ab b® an arc with endpoints only
on some element of IT9 and let <^ar^b> and ^argb^ 
be the two components of C^*( a+b) • Then ar^ b> and <argb)> 
belong to different components of S-*ab*

Proofs Let<K be an arc with endpoints only on 0^* 
Let these endpoints be a and b# Let r^ and r^ be points 
of which are separated in by a+b# Suppose that 
and Tg belong to the same component of 3~ab# Suppose that 
0g Is th© fir3t element of 7T that is intersected by ab 
from a to b# Let be the first point and b^ be the last 
point of aboCg from a to b* Then r^ and rg belong to the 
same component 3* of S**( a&^+a^b) •

Let ba a subarc of Gfi# Suppose that â yb-j.
separates rx and r2 in S*. Obviously a^yb^ % ̂  . Let 3^ 
and Sg be the two components which contain r^ and rg9 
respectively. Suppose that ©very point of cyyb^ is a 
ooumon limit point of 3^ and 3g«
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Let y^ and y^ be two point© of a^yb^-4 a^+b^) 
and set equal to 1/S mtn jf( y^y^) 9 *

If Q^aa^+a^ybj+b^b* then Qy£#*f an^ Gyg*^ *® a ®ut,se1j 
a^ybi when / < ^ *  Since a and b are both common limit 
points of and sgf then c-̂  °y^t<f^cygf ̂  consists of 
three componentst each of whioh contains a limit point of 

and a limit point of Sg*
Now by fst there is a simple closed curve £ in 

sl*sg+ue°ylf<r*0«Cy2*/ no point of S-J is sep
arated from 0-( cylt^ ^ y gf<r)# Now °y^f<r+<3ygi/^ contain® 
points of Cg and hence J Is not equal to Gg* Therefore*
J contains a point which does not belong to 0g* Let % be 
such a point* Then a lies in the complement of H  or in 
the complement of Sgt say the first* 3ince ^y^*^ 
is a subset of Cg# then there is a ©ubaro * i3a
complement of whioh has endpoints only on Gg# Then 
does not separate any point of from
But this set is oonneoted and hence 3-3^ is oonneoted* But 
by ^6V S-J-̂  is not connected* This is a contradiction, 
and thus some point of n^^l is not a oomHlon Ximlt point 
of and 3g«

Let y be such a point* Let ay^ be the minimal 
arc of aaj+a^y with endpoint a which separates and rg 
in S—(yb^+b^b) t and let ygb be th© minimal arc of ybj+bjb
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with endpoint b which separates and r^ in S~ay^♦ Let 
S£ and S«* be the two components of S-( whioh con
tain r^ and r^t respectively* Then y^ and yg are common 
liir,it points of and S^. Suppose that y^ ^g both 
belong to ^*xjhl> •

Set <$“£ equal to l/S y^+3Tg# C“ay^
♦ysbf tbe n C**( Oy^p<J,'f‘̂ ygfCT̂  consists of two components
when ^</^# On© of these components contains a and th©
other contains b# '.Therefore, both 3\ and S* have limitw X 8
points on every component of C-( How b y * 3 »
there is a simple closed curve «T in S #/^©^y^f /
such that no point of S~«T is separated from CH[ Oy^
Mow 0-C Gy^ ✓) contains points of Og and hence J
contains at least on© point which does not belong to Gg.
Let z b© such a point. It oan be assumed that % lies In
the complement of Since ^y^,d’+<Vg,/ a subset of Gg,
there Is a subarc J of J in the complement of 3* whioh1 l
has endpoints only on Cg, Then *T̂ does not separate any
point of s~Ji from Gy^f<f*^ygf^ * fcilis s
connected and hence is connected. Since this is a
contradiction, by $6, then at least on© of y^ and yg must 
lie In th© complement of <^yb£> • However» since aa^ 
*bjb does not separate r^ and in 8, then one of y^ and 
y gf say y^» still belongs to <®xJb.j> • Mow suppose that
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every point of ^yL**^ is a common limit point of 3* and

Let ys be a point of and set 6 % equal
to 1/2 min £f< yi*y3)» f ( ygtaiO . If C-fay-j+ygb), then
C~fCy j y * Cy3 i<*) three components when ^«Cg«
Two of these components oontain a and fe, respectively, and
the third contains points of y,ytt* Stow at b and all points1 3

and S'.
By /3t there is a simple closed curve J in S'+3*X «

+veQy i^+U©°ys »̂  such that no point of is separated 
from C-( cylf<T+Gy3#^)* cHfSy^$<f*Qyg$<f) contains points
of Ggg and hence some point z of J does not belong to Gg*
Aasm© that z belongs to the complement of S* * Then asJL
before, there is a subare of J vjhich belongs to th©
complement of 5£ and has endpoints only on Cg# Also, no
point of 3-J-j. is »©P©^at©d from S|*(M
this act is oonneoted and so is connected* Since,
by $6, this is a contradiction, then soem point of
is not a common limit point of 3£ and S^#

Let yf be such a point* Let y^y£ be the minimal
subare of whioh separates r^ and rg in S-fay^ygb),
and let ayl be the minimal subarc of ayf which separates a

and rg in S-( y^y^+ygb) * Suppose that y* belongs to 
^ 6lybl̂  • Lot S1 3& b® components of 3~( eyg+y^y^

of yxy3 are limit points of QJ
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♦ysjb) whioh oontaia r^ and rg, respectively*
Set /3 eaual to f(y|» a-j_). If C-ayfc+y^yj+ygb

then, when cAj/g, C-( Gy, t<f+Gy* t<̂ ) will consist of at most
three components* two of which will contain a and b* re*«
spactively* and the third (If it exists) of which will
contain y^* Therefore* every component of C-( 0y« ,<f+cyl »<<■51 2
contains a limit point of S* and a limit point of ST*1 «

Bjr i z ,  «.». Is e .Iwl' .*».« «»». J to s j w ;  
+U®cy{.<r+U«°y^»y suoh that no point of 3-J is separated

from C-( Cytf̂ +Cy* • How C-(Cyt t<f*Cyt #<f) contains point©I S  I S
of Gg* and hence some point 2 of J does not belong to Gg*
Assume that z belongs to the complement of S£* Then as
before* there is a subarc of J which belong© to the
c o m p l e m e n t  o f  S£ and has endpoints only on Gg* Also* no
point of S-Jx is separated from Sn+0-( Gyt #̂ +Gy* ^ ) • But1 2
this set is connected and so S»J^ is connected* Since by
§6a this is a contradiction* then y! does not belong toa^a^ybj^- • Then ayfe and ygb are both subsets of «< 

Now suppose y^+yi separates and rg in S-( ay^ 
♦y^b)* Then y^ +y j[ would separate and in S-* * But
by £ 19 , no pair of points separates any component of S«* K  • 
Therefore \ (1) y^ y£ and (2) some point of y^
^y^) is a limit point of Stj* and some point of y^yj^t ŷ +yj^) 
is a limit point of S"# X*et y^ and y| be such limit
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points of S* and of SJ, respectively#
Sot <T4 equal to l/* p( y4*yjp * ** C*ay|

♦y^^ygt, then, when <f<cf̂ t th© set CM Gy «om~
slots of tores components* too of which son tain a and b*
respectively, and tbs third of whioh contains y4 and y£#
Thtrifore* every component of **°y|i^ contains a
limit point of $* and a limit point of S*«

By f3, there is a simple closed starve J in S£*8”
♦UeCyii<f+U#Cy£t<f *uoh that no point of is separated
from C-( °y ^+Gy# How G~<Cy contains1 1points of Cg, and hence seme point,s of 1 does not belong 
to Og. Assume that a belongs to the oompleaant of S|. 
Then as before, there la a subaro ^  of JT which belongs 
to the complement of S£ and has endpoints only on C£.
Also, no point of S**T̂  is separated from &**0*(0y 9s+ 
Cy£9£)* But this set is oonneoted and so is con~
nested* But by, i6, this is a contradiction, and he nee 
aljrbl 4oe* no* separate r^ and rfi in S~( aa^bjb)*

If o(2 is defined to be aaj+ajyb^bjb, then 
(1) has endpoints only on C^j (2} does not have any 
subaro with endpoints only on Gg, and (6) does not sep«» 
or ate r^ and r^•

Since there are only It elements in T% this process 
need be repeated at most fc-1 times to yield an arc
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such that (X) has -endpoints only on 0^$ f 8) y  ̂  
doss not have any subaro with endpoints only on 0^ (i»Et 

| and (3) does not separate x^ and rg® But as 
a result of /©* ^  ̂  is a minimal separating are# $here*» 
fore by •< ̂  must separate and r^# This is a eon-
tradietlon and hence must separate r^ and rfi« There** 
fore# ^ar^b^ and ^argb> must lie in separate components 
or S*g( *

§ S4* Lemmas If a^b^ la a minimal separating arc 
then S*a^b^ has only two oomponents *

Proofs Suppose S^a^b^ has at least three com-*
poaenta Slf Sg and S^* Then and b^ are summon limit
points of S^9Sg aaA s3* ^  **aXfel ĥ®n there is a ^
sufrieiently small that* (1) «( *■<*<* ^ x J Is eon*
nested; and (a) <✓ * intersects only on© element of

®l**o
7T • But by $3* there are two simple closed ourTes *nd
Jg »uoh that: (1 ) Jx £  (2 )

J2 = 3i+s2+ua»<a ^ ^  ' (3) a-Jl is oonnaotaaj1 ^ 0  1 o
and {4) S-̂ Tg is connected#

Now and Jy intersect different components of
3-a^bx and hence f Jg« But «T̂ and Jg both intersect
*✓ and hence they cannot both be an element of TT*el**o
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This is a ooairadio t ion, and hence S***ibx lias only two 
components#

f 25# Lemma i Suppose that the are xay separates 
S. Suppose that M is a connected set containing xay suoh 
that <xay> is connected* Let 30 he any component of 
S*aay« Them there is an are achy in S~©0 with endpoints

a
x and y such that xby does not separate S*

Proof i Let agbg he a minimal separating subaro 
of xay Wiwre *2 la th. «**t polat of agbg from x to y« 
Then by agbg has endpoints only on an element of 7T 
(sail it Qx )* Also, by fs# it is seen that no proper sub« 
are of a2bg has endpoints only on any element of 77%

Let a^b^ be the maximum subaro of xay with the 
properties that: <1) agbg Is a subaro of ai^if {
and b^ belong to C|* Let agr^h^ and agrgbg be the arc© 
into whioh ag*bg divides Ĉ <* How if and bx«»bg9
then by $23, and f24# 3*ax^l exactly two com
ponents, Sx and S2f one of which, say S^, contains 
and the other of whioh# Bg, Contains ^Sgr^bgV *

Any eomponent of 3-xay is a subset of either Sx 
or 3g« Let 30 be a component®of 3~xay and suppose that 
So = Now consider the arc xagrgbgy« This lie® in
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S-so# has x and y as endpoints* and intersects only in 
a single are*

Haw suppose that / a2 or b^ bg or both*

Lemma £6*1* Both of the points and b^ 
belong to the same one of or Sgfgbg* say to
the first*

Proof of lemma 8t«ls Other eases being obvious* 
suppose that a^ € < a^r^bg> and b^ e s^r^h^V *
How S^agbg has a partition and by f23* there are 
components 3^ and S2 of $«agbg such that ^  6 3^ 
and r2 € Sg* But M* <xay> ♦asa^h^y is a connected 
set whleh does not intersect agbg and this set joins 
a point of and a point of Sg* fhis is a centra* 
dlotlon and henoo and b^ belong to the same are 
a2r^bg of C * The lemma is proved*

Let 0£*‘aioifex*alsB*>I wil6ra alalbl al®£fel are 
the two arcs into Which aj+b^ divides Gj* Since and b^
both belong to agr^bg then sg and bg both belong to one 
arc of C1# say a^Sjb^ Since agbg is a subset of a^b^ 
then every component of s~ajb^ is a subset of a component 
of S-*agbg *
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Suppose that J x* € S-a^b^ and there la an
are xfy* ia S^a^b^y* which joins xft and a point y* of

a n d  £ * f i * f ^  and x’ ^  S|J *
It la to be shown that SjJ$| la a partition of S-a^b^# 

First suppose * Then
But a i s  a aubaro of ajb^ which has endpoints only on 
0^# This la a contradiction and thus there is an Xg in 
alsS^l fiUCb that S-a^bx# Therefore 3| la not empty#

Now since as and bg are both points of then
either agr^bgS a^s^h^ or agrgbg £ ax®xfel* since
and b^ are points of agr^bg and since either â f# ag or b^
^ bgt then a2r2b2 £ y°r similar reasons to those
Siren above* a^rgbg contains at least one point %  of 
S-a^b^* Let s^y* be any are Z joining x^ and a point y® 
of <sisgbj> • Sines asr2b2 J ax*lH* then <a1sgb^> S  
^agr^bg> t «^d y joins a point of <agrgb^ and a point 
of <aar1bî> . But by § 83, <;agr1bg>«nd agr 2b2^ are 
subsets of different components of 3~agbg« Hence <1 inter- 
sects agbg and hence, a-jb̂ # Therefore J ̂  S-a^b^+y® • 
Therefore £ S£ and hence S£ and are not empty# Now 
3-a^b^ is locally connected, and hence, no point of one 
component can be a limit point of any combination of other 
oomponents# Obviously, if any point of a component of 
S-a^b^ belongs to S^f the whole component does# Therefore,
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if any point of a component of Xiongs to than
the whole component does* But then » 4> *
Therefore, S-a^b^ ** 3j[ | 3|«

Lemma 2$»2& If P is any point of then
P belongs to a^s^b^«

Proof of lemma 25#2s Suppose that P belongs to 
^ a ^ S g b ^  * Since a^b^• K ®l0l^l^^ *P » there is a
subarc Pq of < a^b^^ such that P 6 and q 6
^€^,s^b1> 9 Let Q* be the first point of PQ from
F to q on 6x*ibx» Let P* be the first point of Pq®
from q* to P on a^Sgb^# Since Pq < a ^ b ^  , then 
ax ^  P*q* and b^ ^  P*q* * Then p® ^ q ® and P*q* is 
an arc with endpoints only on 0^* Then by/©, P®q® 
separates S« Also as a result of /as, and are 
in separate components of S~P® q?* But M«* ̂ acay)* *:xa

«L
♦b^y is a connected set joining and b^ which does 
not intersect P*q?« This is a contradiction, and hence 
P belongs to airi V  *■*•• 25 #2 is proved#

Lemma 25*3% The set a^Sgb^*S£ ®* <jp and the set 
&i»ibi*s2 - p  ,
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Proof of lemma 25*3 s Obviously (fy »
Now suppose that P €  If P £ a^b^ then ob-

b^* Let
^ P^PPgV b® the component of axsi^i‘ttaifei ^bloli 
contains B* Then and Pg belong to e^b^* Sup
pose that P̂ l belongs to the sub arc a-̂ P end th© sub arc 
Pjbi of n^b^ Intersects Pb^> where a^P and Pb^ are 
the subarcs of a^Sjb^* Let P^ be the first point of 
intersection of Pjb-^ with Pb^ from P^ to b^# Let
be the last point of intersection of P„P* with a-P1 2  1
from P^ to P^* Since by lemma 26*2* does not
intersect a^sgb^» than has endpoints only on
and by ̂ 6* S-P^Pl is not connected* Also* it is 
easily seen that by § 23* P end a^Sgb^ belong to sep
arate components of S«P*P*» Kenoe any arc joining P1 2
and a point y of mus1s intersect ctnd
hence ei^# Therefore P 8^* l e m a  25*3 is proved#

How let 30 be a component of 3-^ay# Then 30 is 
e subset of a component of which is a subset of
one of 3* or 3*f say 3* • Then by lemma 25#3* &iSgb^ does

X W A-
not intersect 30* How consider th© ©ro xa^Sgb^y* It 
contains no subarc with endpoints only on 0^* Also* it 
does not intersect 30*

vlously P ^  8* * Suppose then that P<£
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Hence, In all oases , It is possible to obtain an 
arc xb*y in S-S0 which does not ha ire a aubaro with end* 
points only on C^* If xb*y separates B then the &rgu*» 
ment can be repeated with 0g# ©to* In a finite number of 
steps an are xby will be obtained in &**BQ such that xby 
does not have a subaro with endpoints only on any 
(i“lt#***u)* Therefore by id, xby does not separate 3*

/ 26* Lemmas If 0  is a primitive skew curve 
( ax)*H xb)+( ay)+(yb)+(az)*( ab)+(xu)*( yu)+{ zu) of type one 
in S, then there is a primitive skew curve of type 
one suoh that -0-̂  • ( ax)*+( kb) *+{ ay)* +(yb) **(azj zb)*
♦{ xu) *♦( yu)*+( zu) * and -0-̂  has the property that nei ther 
(az)S (art))*, ( ay) *» (yb)* , (as)*, ( zb) *, (xu) ** (yu)* 
nor (zu) • separates S«

Proofs Consider any on© of the arcs, say ax, and 
suppose that S-ax 1® not connected* Now 0-&x+a*x la qou- 
neoted and by ieb, there is an arc (ax)* in 3~s0 which does 
not separate S, where &0 Is any component of 3~&x«

Since 0*-ax is connected, then it belongs to one 
component of 3~ax* If this component Is chosen as SQ9 
then (ax)* does not intersect 0-~ax« Hence, ax)+(ax)'
Is a primitive skew curve of type on© such that (ax)*
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does not separate 3*
This process can be repeated for eaeli or the 

other eight area*

/2V* Lemma: If dHla a primitive skew curve or
type one in s, then there is a primitive sltsv/ curve -6>%

no f type one in S^y"! 0.»
1 1

Proofs Suppose that 0 “* &x+xb+ay*yb*&z+zb+ux-Hiy
♦ uz and lot he a primitive skew curve of type one in S*
Then by f 26, it ean be assumed that no one of the nine
arcs of O  separates 5* Kote that each of the points a« b,
z9 yf z and u is the endpoint of three area* Therefore
in small neighborhoods of these points, there are esse-*
oiated points a’, bf, xf, yf, zf and u? belonging to O-n
such that! (1) each primed point belongs to q4 j

1 x
and (2) (using a and a* as examples) either a*** or

nelse afa*a ^ S-22G49 where a*a ia a subaro of either ax
1 x

or ay or as#
The proof of the lemma will b© divided into two 

parts* In part j% it will bo shown that -O-oan be replaced 
by a "Qr* whose vertices a^» b^f and u*̂  all lie
in 3* &  In part B it will be shown that O '1 oan be

/ nreplaced by a which lies in 3*27
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n
Pert At Bow considerthe point a* If & e S~ J2

B Iw t  ®*«H ♦ Suppose that a does not belong to By 2  G*#
Ithe* a* belongs to on* of ax, ay, or as* eay *** Shore 

ere now two possibilities'
Case Is The point x* belongs to aau How ax does

not separate S and hence the intersection of ax with ajiy
element of 4T la a point or an are or empty* Since at* a la

na subset of xa and since aa*-a la a sunset of 3*»2? Q*t
1

then the intersection of x*a* with any element of Hf is a
point or an are or empty*

Let AS he sueh an intersection, say with
where A precedes B on x*aa* from x* to a*# Consider tfoe

met M*at2-»'xf r^xh+yh^ah^ux^uy^un^ fhis is a closed con*
nested set composed of a finite number of area which ln«*
ter sect only at the endpoints# Also, there is an arc A**®"
in 0^ such thatt A" / A, B* / B} (S) AB % A"B*f and
(3) A^B"*!^ &  * How the arcs x*A and Ba* have end-*
points only on A rtB" and each Intersects M* Hones, by f &1,nthere is an are A,:^ in S-{M+5U o^) which Joins x®A and Ba* *IHenee, the are 3Cfaf can be replaced by an arc x
which does not intersect <3̂ * 61nce x*a* intersect© only
a finite number of elements of If , then by .repeating this
process, an arc (x’a*)* will b© obtained which i© a subset 

n
of 8 * 2
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Hour consider the arc y&a** Let be th© first
point of intersection of yaaf and ( xf a?) * from y to a*#
Not® that a^y amy still contain a* but a«jy contains no
point of any element of /fTnot previously ©ontined by ay*
Then the set xx*aj^a^+a^y*xb+yb*sb*xu+yu*ssu is a primi-*
tive shew curve of type one* no are of which separates

n
Sf suoh that 6 S~ 2  €^*

Case XI s The point xf does not belong to ax# In
tills ease x* €  xb or x* €  xu* say x* € xb* Sinn® the
Interaction of xa end any 0i i. a point or an are {if it
Is not empty) and sinee xfx**x and aa’-a are subsets of n
3 * 2  0^! then the interseetion of x*a% where xf a**»xf xaa* *
with any element of /Tf%& either a point* an are* or empty*
If tt^x^b+a*&+yb+»b+uy**ya* then as In ease I* the are x®a*

n
oen be replaced by an are (x ’af )* in 3«»(M+Z7 0*)* Now

1 1let x^ be the first point of intersection from u to xf of
the are uxr* with ( x ' a M 1 and let be the first point
of intersection from y to a* of the are yaa* with (x*a’) * *
Hote that while a^y and ux^ may still contain a and x* re*
speotively* aiy and ux^ do not contain any point of £
not previously contained in ay and uau Then the set
xlal*aly*^la*x!fe*y^*zk+2au*u3r*uz is a primitive ©hew curve
of type one* no arc of which separates S* such that 

n3- 2  ci*
1



Since this can be repeated for 000b of the six
points &| b, x9 y, £ and u it can b® assumed that there
is a primitive skew curve d*# of type one in 3 suoh that*
(1) no one of the nine ares of separates Sg and ( 2)

neach of the points a*b9 x* yt s and u belong® to 04*
1 *

Part B* Consider any are of ’©-% say ay* How
ay does not separate 8 and hence its inters® at ion wi th
any element of 1f is either an are* a point or empty* Xf
M«* «©“ -ay^a-^y* then as In ease X of part A, ay ©an be
replaced by an are ( ay)7 with endpoints a and y suoh that 

n
( ay)’ * S - S  G** Since this can be done for each of the 1 1
nine ares of - & 4 * then there Is a primitive skew curve ofn
type one In 3*»23 C« *1 x

f £8* theorems The set 8 la homeomorphlc to a 
subset of the plane*

nProofs By /l7t is homeomorphlo to a sub**
set of the plane* Then according to a theorem by 3* 

r nClaytor £5j j S-̂  ̂  does not contain a primitive skew
1curve of type one*

How suppose S contains a primitive skew curve of
type one* Then b y /8 7 f 3«* 27 0* contain® a primitive skew

1
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curve of type one* This is a contradiet ion ant hence 3 
oannot eon tain a primitive skew curve of type one*

Hence* by a theorem of Hall £oJ * 3 toes not eon** 
tain a primitive skew curve of type two* Therefore 3 is 
a Peani&n continuum which does not have any out points 
and which does not contain any primitive skew curves of 
type one or two* Then by Glaytor*s theorem [5] * s Is 
homeosorphlo to a subset of a spherical surface*

Xf the collection 77"is empty* then Bing H43 has 
shown that the set S is home amorphic to the entire sphere* 
Assume that 77" is not empty* l»et he an element of 77" 
and iet C£ be the homeomorph of 0^ in Sg* the £*sphere* 
tfcM, by Jordan* a curve thaorem, 0*-^ ooat.la. two com- 
ponents and Dg* Then the homeomorph of S-G^ in Sg 
must he a subset of (or Pg) else it is easy to show 
that S-C^ is not connected* Therefore S Is homsomorphle 
to a subset of and hence to a subset of the plane*
Note that 3 is homeomorphie to a bounded subset of the 
plane*
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j $&• Tw© theorems and a lemma by A# 0©htaan jf?J « 
Definition: Lot Iff and MV be point seta in th© piano® R
and B ff respectively* Lot f be a homeomorphlsmwhioh 
carries H Into M f# Then it 1® said that f can bo extend** 
od In the sense of Antoine ( A-extended) to a correspon
dence between R and R f if there is a homeomorph!am W ©f 
R into H f such that Rote that is not
neoessarily equal to t( x) when x belongs to M»

Definition; Two plane continuous curves M and M* 
are in the same interior class with respect to the planes 
3 and 3* in which they lie if there exists; (a) a con** 
tinuous 1-1 correspondence T  such that T( M ) » M *  j a n d  ( b )  

a 1-1 correspondence between the set of all s i m p l e  closed 
curves in U and the set of all simple closed • urves in 
K *  9 which is such that if J  is a  simple closed curve i n  

M and Jf is the corresponding simple closed curve i n  M %  

and if R  is the set of all point® o f  M  w h i c h  a r e  i n t e r i o r  

to J a n d  if JSf is the set of all p o i n t ®  o f  M r wjhich a r e  

interior to J f 9 then there exist® a  continuous 1 - 1

7 3
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correspondence w such that
01" course if M and M t are two simple closed 

curves* as they are in all applications in this paper * 
they are in the same interior class #

In the following theorem and lemma the author 
lists several sets of eonditions involving the number of 
simple elosed curves* endpoints* and outpoints* any set 
of which will satisfy the theorem (or lemma}* Only the 
set of conditions applicable to the situation in this 
paper have been copied*

Theorem 01* If H  is a continuous curve lying in 
a plane 3, and T Is a continuous 1<*1 correspondence such 
that T(M)*Hv9 where H* lies in a plane 3 %  then T can be 
A-ex tended to a correspondence between the planes 3 and Sf 
provided that* (1) M and M* are in the same Interior 
class with respect to 3 and sf $ and ($) U has one simple 
closed curve* lees than four endpoints* and the same num
ber of branch points as endpoints.

lemma &: The plane continuous curve M is rever*
sible If M has one simple closed curve* less than three 
endpointsv and the same number of branch points as end* 
points*

Notes The general notion of reversibility of 
oontinuous curves is complicated* All plans simple closed
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curves axe reversible and ar© the only type considered 
below*

Theox«» 021 Given (1) a point set M lying in a 
piano 3, and a continuous (1-1) correspondence T such 
that Tttf)*!!* where M f lies in a plane s* j (g) e©ch com- 
ponont ©f X Is bounded and except for at most one com
ponent* each la reverslhlef (3) If 0 denotes a simple 
closed curve in either 3 or 3** 0 encloses points of at 
most a Unite number of components of either M ox M* f 
{4) for each component X| of X t the correspondenca T 
between X^ and the component of M* can be ex
tended to a correspondence between the planes B and S* |
“ 4 U 1  1 , M 1 “ 4 M J 4*aot* *wo *>««>**•*»** of Hf * • »  

lies in tee domain5** of bounded by the subset B
of Hj9 if and only If lies in the domain5^ of
s-aa» bounded by f(B)» Under these conditions* the cor- 
respondenoe T between M and H* can be A-extended to a 
correspondence between the planes 3 and 3* *

$50* Lemmas Let 39 be tee homeomorph of 3 In 
the plane B« Let D be a component of H-S* # Suppose t h a t  

the boundary of 2) contains a simple closed curve «r# teen 
j s S ’ and @*-J is connected*
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P r o o f *  S i n e *  I) i s  a  c o m p o n e n t  o f  R * S % .  a n d  s i n c e

3 f I s  « X o M d |  t h a n  J  l a  a  s u b s e t  o f  a *  « L o t  7 7 ^  b e  t h e

c o l l e c t i o n  o f  d e m e n t s  ®uo3:i tliat 0* l a  the homeo<*
m o r p h  o f  0 ^  ( i - 1 * « « » » & ) *  S u p p o s e  t h a t  3 * ~ J  h a s  a  p a r t i *

t i o n *  Then J  I s  n o t  i d e n t i c a l  t o  a n y  m e m b e r  o f  Tf * *
Hence* there are two points Pt and Pg of J such thatH * z a
= S*-Z? C »  How l*t •, > o ba email tbat (1)i * n
W P ^ O j J ^ P g . O g } -  £  | a n d  f a )  t f t P j + P g ,  e ^  * 2  0 ^ *  <p *

b y  t h e o r e m  2 *  c h a p t e r  X X  o f  M o o r e  £ g j  « t h e r e  l a  a  p o i n t

? *  I n  U f P ^ # e ^ > 9 B  s u c h  t h a t  P |  i s  a n  a c c e s s i b l e  l i m i t  p o i n t

o f  B *  s h o r e  B  i s  t h e  b o u n d a r y  o f  D  a n d  i « " X * £ *
,  n

B y  J l l *  S ’* 2 - 7  c i o a n n o t  h e  s e p a r a t e d  b y  a n y  X 1
f i n i t e  n u m b e r  of p o i n t s *  e n d  h e n o e  t h e r e  a r e  t h r e e  a r e s  

P ^ X j P * .  P ^ P ’ a n d  I n  S » ^  C j  s u c h  t h a t  ( P ’x ^ )

• } *» P ^ P J  w h a a a v e r  1  /  J. A l s o *  s i n c e  P £  a n d  P *

a r e  a c c e s s i b l e  l i m i t  p o i n t s  o f  D *  t h e r e  i s  a n  a r e  F ^ y B |  

i n  I H F * + P 1 .X s
M o w  o n e  of t h e  t h r e e  a r c s  ^

a a y  P £ x ^ P * f i s  s u e h  t h a t  l i e  i n

d i f f e r e n t  c o m p o n e n t s  o f  B ^ P ^ y P J e P J a ^ P J ) *  S i n c e  < P J x g P | >

e n d  ‘0 >£ acg ^ g ^  a r e  s u b s e t s  o f  3 %  t h e n  S  * P £ y F ^ + P  Jat^PJ^)

has a  p a r t i t i o n *  S i n c e  ^ P J ^ y P ^ V  l a  a  subset of D # then
S * - P £ x j P |  h a s  a  p a r t i t i o n *

B u t  P fx  P *  l a  a  s u b s e t  o f  s * * j ?  0 1  a n d  n o  s u b a r c  1 1 2  v 1
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has endpoints on any element of '&'** Therefore* 
by /et 3*-PjXjP£ la connected# This is a contradiction 
and hen00 S*-J la connected#

/5l* Lanas Lot 3* bo the homeomorph of 3 la
the plane R# If contains more the one element thens

a
(1) the boundary of S* la the eel 2? 0* where 0* te the1 1 1
homeomorph of Gjj < S) there la an dement* say of *Tf 
euoh that Sf«0* is in the bounded component of R«-0£ $ (3 ) 
0| is Interior to G£ when i*&»«#»0ng and (4) 0* la
exterior to 0£ when i / X* j / X *

Proof % (l) Let 7Tf be the collection of simple
closed curves which are homeomorphs of elements of '7K
Let C} be any element of'TT'*# 31nee 01 Is a simple xo *o
closed curve9 then B*»C? has exactly two components* B.xo *
and Dgi such that £ 15̂  and C|^ § "Sg* Mow Sf**0|̂  must
be a subset of one of or Dg* say D^» else 3-Q̂ wouldo
have a partition# Hence* Dg § R«»S*« Thue G| g S* ando
0 * § Therefore* C{ s B( S*)« Since this is true*o b j|
for every i0 (1 = ie - n ) * then ^7 0* g B( s1)*1 *o

Let D be any component of R«*3f and let y be any 
point of B<D)* How by theorem 41* page 341* of Moore [bJ * 
B( D) contains a simple closed curve J* By f 309 y ~ S*
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and Sf-J is connected* Sine© J is a simple closed curve 
then R-»J » D̂ ) Bg* Because J s* s# then D is a subset of
one of or Bgl say D^#

It is possible to draw arcs x^Xg end alaS suotl
thats (1) <x1x2> S B  and < aiag> = S^Jj (g) ai*ag
♦Xj+Xg S  J ; and (3) a^ag separates x^+Xg on J* If s*-y
were a subset of then <a^ag> and <x^xg> would
both be subsets of the same component of R-J* Since
; c a^a2> • < x 1x g> * (f> , this is impossible* Thus Sf is
not a subset of B^* Sinoe is connected then it must
belong to Dg* Therefore S’ ^ Ug and B^ *s R-S’ » Thus
is a component of R-S* which contains D* Since and D
are components of R~S* and contain points on common, then
B*«D* Therefore y € J* Sinoe S’-J is connected then 3 is

n
an element of ir1# and therefore ye £  C?*1 i nNow let y € B(S’) and suppose y f S C ] *  Then

1 1there are an infinite number of components ^»Bg»*«* 
of B~Sf and a sequence such that y^ £ B^ and
£y^J ^  y* Sinoe for every i 5 1, y^ belongs to B^ and 

y belongs to Sf and hence to a sequence
f y^i^ ®ucl1 y^ belongs to B( Bp^) and [Vp^ y*

nBut this 18 a sequence of points of 2  QJ which convergesn n 1to a point of R-2j Cl* Since 5j Cf *a closed, this is a
1 x 1 x



contradiction* Hence, B( S* } S j Q J ,  But then 3( S’) n “ l i
• ^  G£*

(S) Since S’ ie hounded, then H«*3f contains on© 
unbounded component B %  Then, as in (X), the boundary of
B* is an element G£ of 77"f * Then S*-C£ is interior to Q£*

( 5) This follows from ( Z) •
(4) Let C* be any element of fr9 different from G£*

Let 0’ be any element of 77*’ different from C£# Since
S-C* is connected and since C£ is exterior to 0* then
S«*CJ is exterior to C %  But G! § S*~C# and thus 0* isi i J 1 j
exterior to 0|«

§ 3&* Lemmas Let M be the sum of a collection 
of n noninteraecting simple closed currea C^,Cg,«*,$Ca 
in a plane R*

Let M f be the sum of a collection of n noninter**
seating simple closed curves ^Pg* * * *#^Pn a #^aa®
R» such that if C* and 0 • are any two curves of M %Pi P 3
then 01 is in the interior of 0’ if and only if is

1 3in the interior of Cj*
Then there is a homeomorphicm T carrying H into 

H f such that T ( ( i«*l,' * * »n), where is one of



80

Proof s (1) X»et bo on© of the simple closed 
ourves of M* Then there is a home ©morphism fj carrying 
Q% Into How Ci and are in the same interior
class with respeet to H and R*• Therefor© by theorem 
(Gofeman)* there la a homeomorphisrn f^ carrying a into E # 
such that tfiQ%)mQp • How define T* :M as followsi
TMx)«f|(i) (x £ % ) •  How T* is a homeomorphtsm carry* 
log M into U S

is) By lemma G a simple closed curve is rever
sible* Also* every simple closed curve in the plane is 
hounded* Therefore every component of M is hounded and 
reversible*

(3) Sinoe M and M ? have only a finite number of 
components, obviously any simple closed curve 0 can con
tain points of only a finite number of components of M or 
Of M f*

(4) Vor each component of &* T* ( 0  ̂)mf^( C^) 6 
and thua TMC^) (the notation of Lefsoh@t$, page 2» Is 
T* 0^) can be extended to the plane R#

(9) Let and Oj be two components of M* How 
since Gj la a simple closed curve, there Is only one bound
ed component of R~C^ and that is bounded by Gj* Any 
point whioh belongs to this bounded component of R-Gj is
interior to Cj* The same la true for 0* * Sinoe G« is

p3
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Interior to if and only if 0 ’ is interior to Cl t thenI ¥ i Pj
C^ belongs to th® bounded component of B*»Cj if and only 
if belongs to the bounded component of fi<*Q£ * Hence 
by theorem &29 ther© is a homeomorphiam TgR —*R* which 
carries H into M f • Bow ©mob of the simple closed ourves 
of M must go into a simple olosed curve of M 9. let the 
curve of U which 0^ goes into be labeled G£# Then T 
carries 0  ̂ into C*#

/53# Theorems The set S la homeomorphio to the 
plane region bounded by n nonlnterseeting circles#

Proofs The proof will consist of two parts#
Part X will consider the case when 'Tf consists of a single 
element# Part IX will consider the case when 'Jf consists 
of more than one element#

Part I# The collection 7f consists of a ©ingle 
element C^*

In f 23 It was shown that S was homeomorphio to 
a proper subset of the sphere and that 3«*Ĉ  was connected# 
It is easily shown, by projection, that S is homeomorph!© 
to a subset of the plane R suolx that is in the
bounded domain D* of Then S’ § “S7*# Now suppose
that there is a point x of Df which belong® to R~S* » Let



Bjp be the component of R~3f which contain® x* Sinoe 
Q£ ~  S* then S D*• Also sinoe 3 ’«»G£ is not empty then 

la a proper subset of D# * How by theorem 41, page 261 
of Moore £sj the boundary of contains a simple closed 
ourr© y* Bine* Dx ia a proper subset of D* then the 
boundary of Bf oannot be identical with <7* But by $  20# 
S*W* le connected* Since I f  eontalns a single element# 
this is impossible* Therefore D* 3 3f» But then"®5* I  S* 
and S ' - W .  hot 0£ be a oirole In R* Then there is a 
homeomorphlsm x of K with itself which carries G| into C£. 
If D* is the bounded component of B*Q£# then T carries D* 
into Bw* But then T carries S1" into 5^ and S is horaeo* 
morphic to *5”# Therefore 3 is homeomorphio to the plane 
region bounded by a circle*

Part XI* The collection 7T"consists of more than 
one element*

Let S* be the homeomorph of S in the plane R and
let C? be the homeomorph of C. for ©very element 0. b©«*1 l *
longing to I t  • Then by^Slt (1) 3*~G£ is a subset of
the bounded component of and { £} Cj Is excorlor to

when £i f  1# J / ij* How let nonin**
terseoting circles in R such that: (1) G" is interior
to C" when i la different from 1 and (2) C" is exterior

pi



to 0* when £i / 1* j £ i^* Not© that 0” 1© interiorA *
to C" if and: only if C* is interior to Cl* Then by/SS*P j i 4 '
there is a Uomeomorphiem T i H s u c h  that fi*( 0J 1*0?» ClfX i i
being one of 0” »•«•»££ •*TL 'n

Suppose Sn is the set into which T carries 3**
nThen Sn is homeomorphie to S* By/3X* B{3**)« 23 C!% 

a 1 1Bines S*-27 C* is connected* then S" § IF where D’ is the X X n n
component of R-2J Cw whose boundary is JE7Cf# Note thatX i X 1there is only one such component and that it is bounded*
Now suppose that x is a point of Df which does not belong
to 3 %  Then as in pert X# it can be shown that there is
in 3" a simple closed curve J whioh is not a subset of
a,X  CJ such that 3”«d is connected* Binoe this is a 
i 1oontradiotlon then every point of D1 belongs to 3?f* There
fore U** £ S" and Sw»!Jr* Therefore 3 is homeomorphia to 
the plane region bounded by n noniritersecting circles*
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^-Numbers in brackets refer to the bibliography*

sSinoe U can be covered by a finite number of
connected domains of diameter less than e for every e > 0*
M is locally connected (Wilder £sl r page 106* theorem 
3*9)* Then by a repeated application of $U9 M«4 x*y) can 
be covered by a finite number of connected domains of 
diameter less than e for e > 0*

3Let be a point of Let y^ be a point of
C-( x+y) • Since no pair of points separates Iff* there are 
three aros ^ i #g* tTom ^i to ^i ln M ®uo&
that " zi^ i  J J* &)* Tb®» at
least one on does not Intersect x+yv Then let ^  ^
be this arc* Let y* be th© first point of ^ from xAi ®
to 7 . of C. It xx 6 M-(Da +Db ) then a^y’-y* la a subset
of M-{Da+Db). If ̂  6Da , then â y|** *1 *  Di* if *L €r% ’
then “ db*
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* i $X9 ^ i f8 and ^ i fS '( ••*»»} 15® the
same as in 3* Let y* bo the first point from to y^
°f ^  ^ on C • Let ^ i#k **e $ke subaro of from
xi *° yitk# at one of ^  * 0OJitai1*na * &,fe
most one of f contains y* Let ^i*x ^e/the arc which
contains neither x nor y# ^ x fS arc whioh toes not
contain x but may contain y and let fi be the arc which 
does not contain y but may contain x# Then these are the 
desired ares*

5Suppose &j+g contains a point of B9 and a 
point *8 of IM>*. Than there le an arc *,*, from ^  to
Xg in Df which toes not Intersect 0* Since x^xg does not 
intersect Q it must intersect °^*x* ad B( B#} # 0*
Then in ^j+^a^Xg there is an arc *<$+% ftpoa Xg to 0^ 
whioh lies in D^»Df+0^«

Suppose = 8MDf* Let x^ be the first point
•* fj+s,i troa DJ*S to °i °“ ci*°<Vl» 8114 lmt fi*s b* 
the aubaro from Dj+g to ^x* 1110,1 in ^ U g  + th0r«
la an are <✓ from D^+g to C^« But ^  j+2* * Dj,J «
• Df+0^* Xn either case, *̂ 3+2 is the desired arc*

sIn the following discussion *««»&• Let H
bo any point of D^. If R 4 i lfl than Jolna »t and
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0£. Soppoee S € p 1>1# If a f th®» H 4 f ±t&* 
Therefore9 B does not disrupt from aa& R does
not disrupt Dj, from 0i*cy9^ *  R*8̂  then there is a
subarc of ^iti which Joins and 0^# In any case H does 
not disrupt B^ from and R does not disrupt
from 0 'x+Q7$s^  By Binges l r n a  there is an arc $ from 
cx#<f to i& ®a+cx#/ which does not disrupt
B^ from in B^+0^* Lot be an arc from 3)̂  to 0| in 

Then ^  does not intersect J and hence 
do®s not disrupt Cx^ o from Cy> ̂  la V ° * t  A>+c7.

"consider Gx  ̂, . since <j£+«tf j**..* «<n la a 
closed compact set, then for every there Is a
<fx ,< e^/300 ouch that •( Cj + pf-̂ J m <p § where

Uz^  is the component of Ufxi/g*) which contains x4 Let 
he the union of Bxj ^ #for all x'f t Then g^ is a

connected domain of diameter less than e1/l00 which con-«JL
tains CXff  » does not intersect G^+

A set containing Gyf^  can be obtained with
similar properties*

^Suppose g is an demon* of G# Suppose also that 
g#Dz f and g«(M-Dz ) / if • Then g*B{ B^) / ^  #
£.0 and g*C» <p • Therefore, either g « \  or ®



tt g 5 to® lassoargument gives that g s or g f
* “®B* Soaee* g 5 j> t or g = w  g = &M % * Dg ) *

• s i a c *  ^  1 *  A o e ®  n D *fc d i a r o p n  €fac# ̂

***“ °y.<f0 ^  ***** 18 *n *r® J from c*t^0
to °y. rf0to 0A+oi,<ro+oy, ,/< *<V 'V**•* ̂ n> • *****
point of belongs to some element of &* Lot O f 0©
too sot of all ©1 meats of Gwhlcfc eon tain a point of 
?«&£» toon G ’+g^vgy is an open covering of Sine© J 
is oospsotf there is a finite number of elements of 0 * 
which* together with gx and ĝ .* ©over *T# These olomenta 
must all he subsets of Therefore* there is a finite
eelleetlon of elemonts of 0 whose ana Is a connected sub- 
set of h joining gx and g # Sines there Is a finite

if
number of domains with this property* there Is a small
est number whleh does this# Lot 0^ be such a collection*

lOtfotationt Let Qt̂ m bo the collect ion of all
elements of GA except those which have preaesigned sub
scripts belonging to the sot faff* How suppose ĝ . inter- 
sects more than on© element of 0^* Lot these elements bo 
g ^  t^kg • Let be to© union of ©11 components
of 6? a. i» ^ 7 which intersects « Then one of

*m V*x9 z****9 pj *
toe M 7  must intersect gy. But then ®X*&2,.. .,1c,/
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connects 8^ end gy (1* e. the union of nil elements of
### ,k ̂  contains a connected subset which inters

sects and^gy) • But this is a contradiction, tor
la tbs snailsst possible oollsotlon ot domains which doss
this* Therefore, g_ intersects only on© element of § fx A
Call this element gg# Wow suppose gte intersects but
no other element or ®A.£x# for some 3c< q~8 (g^c g^} •
Set Kx • 23* g^* Suppose Intersects more than one
element of fr*.£gf ̂  #,k*l3 # Denote these elements by g^ ,1
Sfcgt** *»8v • Suppose one of gj^, »ay g ^ ,  interstate gy.
Then ^gB»»«»,gl{.<.̂ »«\f3 la a «tt*>oollection of G. wblob
Join. gx an* gy, T M .  i. a eontradiction. Therefore.no
gj^ intersects gy# But then if C*^ Is the union of all
components or ®5.£g####tfc+itfc wbloh intersects
g ^ t  one or the G£ intersects gy# Say is the one#
Then 0A rv v 7 is a subsoilaction of 0 A which Joins

A' LKZ* •••**$) A
gx and gy, a contradiction• Therefore, by induction, the 
collection may be numbered In the desired manner#

^Suppose that g* is a component of E * ^  ( an
element of 0) which does not Intersect any element of g ,
ggf###,Br# Let x be a point of and let J b© an arc in
g + y  from x to a point y of *• * *+ân * Since x 6 22**

rBi ^kan J oust intersect 27 g^# Let y* be th© first
X 1



rpoint of J from x to y on K  27 &*)* Then xy* is a eon-
1 xne&te& subset of gk * Also, no point of xyf can be Joinedr

to Cx in Therefore, xy* § g£* Since y* # g*
there Is an /y0 such that XJyt ̂  s ̂  for *)< *fQ+ If ©very
point of V . / ^  bel0n«* t0 B f0r *ola® "1 1 < *IQ V . ^ l
5 g£* But eontains points of 27 g^* therefore,

contains points ©f M-E for every /ij < ̂ Q# Since
Has only a finite number of components, and since every
point of M*S ©an be joined t© 0^, then M-S+C^ has a finite
number of components* Let 2Ŝ #Mgf be the components
of M-B+c£* Bov there is an infinite sequence of points
£yi3 *n which converges to y %  It can be assumed
that £yi3 belongs to M^« But then y* € %  and 3cy*+IŜ
is a connected set which j o i n s a n d  Cl but does not in- 

r
tersest 27 S^t a contradiction* Therefore, Intersects

I*
t o M  g| { i«l»*«*9r)*

Suppose gk is an element of & and g^ is a com
ponent of E*gfc* Suppose that g^ intersects and gj
©here j = i+B* Since one of or gj is different from 
g^ or gr then g£ (and hence g^) is a subset of or °f
Dg, say But than g.̂  •&£• * *• *®>i •̂ j*4*! * * * *
tains a subcollection of at most r-8 element® of 0 which
lie in and join ĝ . and gy* But <*A contains the smallest



number of such elements and it contains r**2 elements#
This le a coatresistion* and thus does not intersect 
two ©lemeats of that do not lie in a consec
utive set of three#

13The only condition that is not obvious is ($)« 
Suppose x 6 M and x 4 (h^+hg*###*!^) * Then there is a 
connected set K in M which joins x and some component of 

but does not intersect gx*g$*** ##*gr# Suppose y €
(«1+Sg^#**4'3r ))* Then gj+gg*## #+gr does not separate y 
from G^t a contradiction* Therefore* £*$» dp and h^hg*
• • *+hB does not separate x from G^#

Id^et be the elements of Q which
intersect and let &j*x»&j+2****»% be the elements
of G which are subsets of H*# for each 1 ( i*l0 »* * * j}
let be a degenerate arc consisting of a point of
g^«( • These arcs do not intersect 1 and henoe ©an-
not disrupt h ^ ^  from b^x o  in

how let X** § r - c u x ^ - n » and 
I>{M-b£) be the sets Bt D’ * M, K* and X* respectively* of 
Bing’s lemma# Since no point of L disrupts Sj*x from 
L«( M-Hj) 9 there is an arc from k*(hx*l(P®^l
whioh does not disrupt ffrom Ti«( M-h£) « Therefore*
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there Is all are from gj+ĵ  t© S7*l M«h£) that does not
disrupt fromT.rE— ).a* in ^ X ^ I A O '

Let L f be the component of L-®^^ which contain® an open 
aro fro* to

Suppose x e (gj+2)•(»•&*)• Let y be a point of 
Let xy be an arc joining x and y* Let y* be the 

first point of xy from x to y on Then in
xyf+ j+i there is an are from gj+g to M«*h£ which doe® 
not intersect L f» Suppose 6j+g # L f # Let H be any 
point of L f • Then there is an aro in MHBj^*L~B from B3+2 
to M"»a£t and hence there is in L^R+lM-aJ)* *( an arc 
from 6j+s to ( ^ • Therefore no point of L* dla~ 
rupts gj+g from (M-h£* ̂ 3+1 )* ®y ®n application of Bing’s 
lemma, there is in L* an open arc joining and
^TTo-nT whloh do«  Bot dUrap* 8j+g f*o* * > x.
Thu® there is in M—Hĵ +L an arc ^3+% from to M«*h£
such that *<3+1+ ^ 3+2 Aoe® n°t disrupt E£'^*Hj£ from *Kj*
in 1 * * 5 ^ * ^  #10.

Continuing thin process provides aro a *Vtx»*>** 
o( n such that *(j+ ***+ o( 3* 2+1* *****< n &oea* a°t
disrupt , *H| from 3,0•H1 ln L+^l7l+^l» t* 11 is

nobvious that 27 does not disrupt h ^ x * ^  from

from ^1(10* Hi in ha.,i+***+hi,t*



5,SL«t 3 be an aro from to *n
L *hl,l+hX ̂^0 which lies in L except for endpoints and 
which doss not intersect K/*# 3 luce £ is connected* J
intersects h ^  ̂  < i»S* »« • *&) # Haw ©Tory point of I lies
in and hence .belongs to at least one
element of $*• Since J is compact there is a finite
covering* Since J intersects and at least one
element of any open covering of 3* Intersects h j ^  and at 
least one element intersects Also* any covering of
5 by open components has for its stmt a oonneeted domain* 
Hence* there is at least one finite collection of elements 
of C* whoso sum is a connected domain intersecting h^^^
(i*l*«**,10)* Since there is one finite collection which 
will do this, there is a collection O* such that the sum 
of the elesients of G %  but the sum of no subcollection of 
G v with fewer elements than G*V 1* & connected domain In
tersecting h* « ( i**lf *• • ,10) •* *

^^The proof that such an assumption can be made 
is identical* except for obvious changes in notation* 
to that of 10*

^7Iet Xjl be a point of *gx and ^1 be a 
point of Since &x *8 8 oonneeted domain, there is



an are in joining and y^* Since is
elosed and aĉ ŷ  is closed and oompuet, then there 1® a 

such that £ < xxyX^ " z *l9 n°* Iet / h® tha «®0ia~
*.»«, or w . , ^ )  * i »  *• s«* «l‘o w i  *»
Z7 0- ^ 9 Than g* la a connected open set whose

" V r  1
olosure la a subset of g^» Also* g£ Intar sects ^  ̂  and 
gg.

How suppose that g» has been defined for 1 less 
than or equal to w*l when m £ r* let x^ belong to ®^»x#sra 
and let rm belong to B̂ Bm̂ X *fc«e ®a*+x ? H #10 if ***** 
Then as before, a eosnnoted open set g^ oan be construct- 
ed sueh that gj Is a subset of g^ and interseots
aad «*♦!•

-̂®Tba proof of this statement is identical, except 
for notation, to 11 and IE*

19 (1) Evident.
( 2) Suppose Z & M~&« Then there Is a connected

set H joining Z and G£ In ®+6l. ,u+h10
X̂plX̂  *0 *̂ X9t̂• Slnoe no point of H is separated from
% ln V ° 1  by bl+% ,l+***+%,a+b10+lll,ll+***+bl,t* tu*a
H»S» (£> • Therefore, Z is not separated from 0£ in M by E*



<$) Let g* be an elements of $*• Them either a 
point of K* la accessible from g* or else a point of M^l^8 
la accessible from g %  Sine# (a^H*)+r* = M  then a point

JL
of IMS la accessible from g %

i*ot *lti0 be any element of sl,i#**®*®itu* ® L#n 
«ltl0 la made tip of at leaat three consecutive elements 

®j0# of gj* ( *  SFew by the method
of construction, &%0m\ oohtaina a subset of S-j0*&r 
contains a eubset of and gj ^  contains a subset of 
g j +1* Suppose that x is a point of g| which belongs to 
gj^* Since gj^ Is an element of $* then there la am arc 
xy* in gjo+f* from x to a point yf of let y be
the first point from x to yf of xy* which belongs to M**$♦ 

Suppose that there Is a point % of xy«y which 
belongs to Since gj Intersects only dj ^ i  ****
gj ^  then xy*y does not contain any points of h^^* g£#
g£***«t dj0+gt #* »#8̂ f ^itlof ^ us 2 must
be a point of a eoB$>onent g* of the intersection of an 
element g* of G* with 3 such that gw does not intersect 
gj gj or g| Let Z be the set of all points z
of xy-y which belong to ^"*&x,i0# **et ®f first
point from x to y of xy which belongs to U# Suppose a* 
belongs to gxfi0* Since &lfl0 °'P0n then it contains 
points of Z» This is a contradiction, and thus z 9 4 &x % •



Then € Z+ But from above* »* belongs to some component 
Bn or the intersection of an element or g* of 0* with M 
such that S ^ S ^ i o *  <$> ♦ since gw Is open then It contains 
points of n * * i S  But then s* is not the first element of "$ 
•xy from x to y«

Thus the assumption that some point of xy-y be*
longs to leads to a contradiction* Therefore* y
Is a point of tt*B which is accessible from g* , * There* 
fore (3) la true for €3̂ 1**• Obviously* the con*
ditlon is true for h^, ^1*1 C1*11#••**t),

*®3ince gifi H e < * * i i )  ana (J»ll,***,t}
are open sets which do not Intersect* then H\9i®&xf J**
Suppose that 1* (p * 1st j
How there exists a connected open set TJ(y) of diameter 
less than e^/4 containing y which does not contain any 
point of £  g£ since ~ B± <= Ij* Since T5ty) is open 
there is a point x belonging to T?( y)*«x*i# s*n<** y) Is
connected there is an aro xy in TJ(y) which joins x and y*
Let y* be the first point of xy from x to y which belongs 
to M-h£* N o w  consider xy’-̂ y*# Since (i0 < X <
is a shbset of bi§3+**•♦&!,©t then no connected subset of 
H* of diameter less than e^/d joins ®x#x ami ^laj  ̂**** 
10*11*.♦♦*t). Hence, since xy*~y* is a subset of 1*
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which 1© of diameter Less than ®^/4t and since acyf^yf
intersects &xf i* it cannot intersect hx*J' (5
«*•»£}« Since aqrf»y* la a subset of U{y)f then It does

Pnot iateraaot XJ g %  But then xy’-*y* Is a ooaneoted set1
which Joins x and yf and do®® not Intersect *
+*;+hi, There for® 9 x does not belong to E*
But this is a contradiction* Therefore* $1,1 *( •
M m s  *l,i =

BiNote here that all of the g* s have been re-' 
placed by elements of hg^x* Also* note that h| ^ is 
obtained in the last step of the process#

^2fhe proofs of (1}9 ( 8) and (3} are the same as 
in footnote 19* Properties (4) and (6) follow from the 
method of combining the sets to form hg^^»

Bow consider property (6}« Let hi a intersect* * *o
h«* — and let h- 4 intersect h a ^ and suppose n >  m « 2tft0 l» Jo «tBo ° °
Wow either ( j ) •< k g ^ ^ - h g ^ )  contains a
connected set Joining hx*i0 and *1,J0 *1*0 (hl,J0****
♦h^*! ) •( •-l'iIS*ii0  ̂ oontaius a connected set Joining
h« * and h*, 4 • Suppose the first i© true* lfi0 *»j©

Consider htl;i0tJ0) and Hi £ jm0»n0) • There arc 
element® ^2 whar,B ^2,iĉ  con**
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tatos oontalns fc^r+l* ... j and H , * -  «®a“
tains ta*<n. Hotioa t&at kj+100 <  k ^ .  Than
SS,lc^h8,kj♦!*• **+h*#3cJ+1 £ hl,10J+l+» * 104+31 *

Let and be suoh that . and ^
*1 * ^8

are not elemants of H( Sjm^n^,), but k*^, is an aloaant 
of S( 2 when 4* < 4 jg. Then k2>. is an element
of when k, < i<ltj^+g and h2 n̂ is an element
of {kg when kj g < i<kjg. Therefore ki4i0 is an
element of kj^xojj/ ^l.lojj+l kl,104j+42* AlBO» *xl#40
is an element or klti0jg-20» bl,1042«19» •**» tol,104^+88*

Vow m  2 jm0,n0J § g *...♦
^l,1042+20* But lll,1041+l+***",'Bl,1042+20 = hl(io*100

J -t-ioo tous fiTTim^n^) r B(l}tQf^0] « Slmilay-
Xy W z i k ^ S ^ f  s

SbLet be any ©lament of 5*hen there ay©
elements ^x93& aad **1,^ 0U0h that s (1) is an
element of j ♦I® and ( 2) there is
a sufcohain E| of Hg In Joining hi§ ̂
and iu s • Since the sum of the element* of rig is a oon~ 

f J1neoted subset of ĥ , j j ~x Joining h^ j and© 1 © 
k - then some element of El inters©ots iu a for ©very 11 f *1 *
between j0 and let ^z9n^ be ^ le tlr&t element of Eg
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fro© to which intersects ^ >4j+i* I*©t
bo the first element of from hg#&0 to hi# j which 
intersects ttli 4.x. Then i* •
connected set Joining and &i(j+i» Slnoe the
diameter of any such aet Is (raster than or equal to 
100es, then the collection hg^^, ^gf~ ♦j>*«*** h2>J4o must 
aoatala at least 100 elements* How consider hg#ai*2_*
This element oannot interseat hj« (1 < J) and it can- 
not Inter seat hj* (1 > j) • Therefore it is a subset 

a r

84Let H be any point of Jp^ different from I* or $•
Then there exists an 1D snob that ei^/300*
Therefore R does not belong to h^ p * ̂ i«ePi *#-100

o* iD ° *0
♦h^^^.ioo ■̂ •••+H o,Qio+100» But H{

H* 1 o ^ i o » P i0 ) “ h i o» p i0”^°°+ * * *+^ o * p io+ -̂00+ll^o» ”10 * 100

♦ •#%+h^ +100* Therefore* since R belongs to Hf i0$F^®
(*io )t R does not belong to H( i05% 0»&%0) • Therefore*
R does not belong to

s&Let ajb^ be an arc with endpoints only on °i- 
If a^b^ does not contain any subarc with endpoints only
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on Gg set agbg equal to If does contain a
aubare with endpoints only on Gg set agbg equal to tills 
subaro* Then agb2*C^» (f> * In either case agbg has end
points on one element of {O*# Ogl> and no subaro of

iSi * 8

has endpoints on the other element of
Sinoe Tt contains only a finite number of elements* 

there is obtained in a finite number of steps an aro anbn 
whioh Is a subarc of with endpoints only on some
element of suoh that no proper subarc of 11810 en^~
points only on any element of 'Jf •

s^The author eyldently means the bounded domain*
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