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Abstract

A certain parametrization of substantial planar curves yields a centroaffine arc- 

Iength s  and a centroaffine curvature k (s ) that remain invariant under G L (2,R ) 

motions. In Chapter 4 we search for those substantial curves with predetermined 

position and velocity at the initial and terminal points, which minimize the total 

square curvature JQr  ^ ^ - d s  as k  varies over all square summable functions on each 

interval [0, T], These curves are called centroaffine elastic curves. Thinking of the 

curvature k  as a control, we pose our problem as an optimal control problem over 

the Lie group GL(2, R) with fixed initial and terminal values but with free terminal 

time T. To find information about the elastic curves we apply a geometric version 

of the Pontryagin maximum principle. VVe find tha t the optimal k for these curves 

must satisfy the third order nonlinear differential equation

i l K = ( | K2 - 4 € ) ^ - K.
ds3 2 ' ds

To study the nonconstant solutions of this equation we consider it as a  second order 

conservative differential equation depending upon parameters. Using this necessary 

condition, numerical experiments are carried out to graph representative extremals 

for the case e =  1. We also pose the minimal centroaffine arclength problem b\r 

using the same framework. We apply the maximum principle and the generalized 

Legendre-Clebsch condition for optimality of singular extremals to show that the 

minimal centroaffine arclength problem has no solution. This improves a result by 

Mayer and Myller.

Motivated by the discussion of the curves with minimal centroaffine arclength. 

we look in Chapter 5 a t an extended optimal control problem in which the cen­

troaffine arclength is regarded as an additional control function. This problem

I V
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serves as a model for an extension of the minimal arclength problem for which 

unbounded nonnegative controls are allowed. In this dissertation we show that, 

in the absence of chattering controls, extremal trajectories for this problem are 

concatenations of trajectories determined by impulsive controls and null controls. 

We also describe the trajectories and costs associated with the null control and 

the impulsive controls for our dynamics.

v
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Chapter 1. Introduction

The geometry of the centroaffine plane is obtained by the action of the group of 

invertible matrices GL(2, R) on R2. A pair of centroaffine differential invariants can 

be singled out for a certain class of curves: the substantial curves. These invariants 

play the same role as the arclength and curvature functions do for the Euclidean 

geometry. Substantial curves can be described by the second order equation x(s) =  

—ex(s)+/c(s)x(s), where x  is parametrized by centroaffine arclength and is linearly 

independent to x, the fixed param eter e takes only the values ±1 and determines 

the local concavitity or convexity of the curve with respect to the origin, and 

k denotes the centroaffine curvature. This equation yields a Serret-Frenet type 

system characterizing the curve up to a GL(2, R) or centroaffine motion.

The first problem we consider in this dissertation is that of identifying the cen­

troaffine elastic curves, i.e., the curves with predetermined position and velocities 

at the initial and terminal points, minimizing the total square curvature functional
T 2 / \Jo ^r*-ds as k  varies over all square summable functions on each interval [0,T]. 

Under the same initial and terminal data, we also look a t the minimal centroaffine 

arclength problem for substantial curves.

Our key observation is that the centroaffine Serret-Frenet type equations lead 

to an affine control system over the four dimensional Lie group G L(2, R),

— (s) = Li(g(s))  +  K(s)L3(g(s)). ( 1 . 1)

Here,

respectively.

1
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Thus, these classical problems of the calculus of variations for this geometry 

can be posed as optimal control problems. In this framework, a coordinate free 

version of the Pontryagin maximum principle provides first order necessary condi­

tions for optimality analogous to the Euler-Lagrange equations of the Calculus of 

Variations. Any curve satisfying these conditions is called an extremal. In general 

the Pontryagin conditions are not sufficient to establish optimality. However, they 

provide a much narrower class of candidates for optimality.

Maver and Mvller [17] found th a t the extremals for the variational problem of 

minimal centroaffine arclength are curves with constant centroaffine curvature and 

that such an extremal can be optimal for the minimal centroaffine arclength only 

in the case e =  1 and |/c| < 2. In this dissertation, our optimal control standpoint 

enables us to improve this result. We show in Chapter 4 th a t the problem of 

minimal centroaffine arclength has no solution.

The minimizers for the corresponding elastic problem for the Euclidean geometry 

on the plane were known to Euler, via the Calculus of Variations. Bryant and 

Griffiths [8] obtained interesting results with respect to the existence of free elastica 

on the hyperbolic plane H 2 by using the theory of exterior differential systems. 

Langer and Singer [16] used variational methods to obtain the Euler-Lagrange 

equation for the curvature k of closed elastica on the sphere S 2. They obtained 

existence results for this case by analyzing the solutions of this equation in terms 

of elliptic functions.

Geometric optimal control theory provides an unifying link between these prob­

lems. Recently, Jurdjevic [9] obtained a complete characterization of the extremals 

for the elastic problem over any complete, simply connected, two dimensional sur­

face S  with constant sectional curvature. He posed an optimal control problem over 

the three dimensional Lie group of isometries of 5  with the geodesic curvature as

2
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the control function. He exploited the symmetries of the Hamiltonian system as­

sociated to the Pontryagin conditions to identify a set of independent constants of 

the motion tha t render the system completely integrable.

However, for the centroaffine elastic problem we cannot produce all the necessary 

constants of the motion to render the system completely integrable. In Section 4.3, 

using the maximum principle we easily obtain a nonlinear third order differential 

equation satisfied by any optimizing control ac. It is easily seen from this equation 

that the substantial curves of constant centroaffine curvature are also extremals for 

the centroaffine elastic problem. More interestingly, this equation also has noncon­

stant solutions. The long term behaviour of these nonconstant solutions is analyzed 

via phase space analysis in Section 4.4. This insight is used to produce numerically 

the graphs of various types of extremals for our problem in the case e =  1. These 

numerical experiments provide a glimpse at the nature of the extremals.

Our third problem, studied in Chapter 5, can be described in broad terms as 

follows. Motivated by the discussion of the curves with minimal centroaffine ar­

clength, we look a t an extended optimal control problem in which the centroaffine 

arclength is regarded as an additional control function. Namely, we consider the 

dynamics

X =  V T , x(0) = x 0. x(S)  =  x f ,

i) =  —exr  +  K V , ©ii v(S) = vf ,

y = WT, y(  o) =  2/0 , ■AIIg

w =  —eyr + kw , iu(0) =  wo, w(S) = wf ,

t =  r, m  =  0, t ( S ) =  T,

3
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where XqWq — voyo and x j w j  — v /y j  are both nonzero and have the same sign. Our 

problem is to minimize

over the set U  of ordered pairs (r, k) of nonnegative locally bounded functions. As 

will be seen, writing equation (1.1) in coordinates and taking r  =  1 in the extended 

control system (1.2), every trajectory of (1.1) for which k > 0 is also a trajectory 

of the extended control system. Moreover, the trajectories of this extended system 

associated with the choice r  =  0 model the responses of the system (1.1) under 

an impulsive control. The reparametrization technique leading from (1.1) to this 

extended optimal control problem has been applied previously by Dorroh and 

Ferreyra to model impulsive controls in some singular problems with unbounded 

controls in one [4] and two dimensional [5] Euclidean spaces.

Since the corresponding Hamiltonian function for the optimal control problem 

(1.3)-(1.2) is linear in the controls, the necessary conditions established by the 

maximum principle do not completely characterize some of its extremals. These 

types of extremals which are not completely characterized by the Pontryagin condi­

tions are called singular extremals. In this dissertation we show that in the absence 

of chattering controls, extremal trajectories for this problem are concatenations of 

trajectories determined by impulsive controls ( r  =  0, k =  1) and null controls 

( t  =  1,/c =  0). The main tool is the generalized Legendre-Clebsh condition for 

singular vector valued controls, a second order condition for optimality of singular 

extremals developed by Krener [12]. We also describe the trajectories associated 

to the null control and the impulsive controls for our dynamics.

This dissertation is structured as follows: Chapter 2 provides a self contained 

introduction to the subject of optimal control on manifolds. It contains a general

s
a r(s )  + 8 k ( s ) cI s . a  > 0 and >  0, (1.3)

4
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discussion on how to  pose optimal control problems in this setting as well as 

a review of the Hamiltonian formalism needed to sta te  an intrinsic, coordinate 

free version of the Pontryagin maximum principle. We also review the generalized 

Legendre-Clebsch condition as stated by Krener in [12].

Chapter 3 reviews the basic facts about the centroaffine geometry and substantial 

curves. We identify the privileged parametrization which leads to the centroaffine 

Serret-Frenet system and show its invariance under G L(2,R) motions.

Chapter 4 deals with the minimal arclength problem and the elastica problem. 

Here, the result by Mayer and Myller is improved by applying the coordinate free 

version of the maximum principle and the generalized Legendre-Clebsch condition 

for scalar controls developed in the second chapter. The maximum principle yields 

the equation describing the evolution of the extremal curvature k for the elastica 

problem. The study of the differential equation associated with the optimal con­

trol function k for the elastica problem is carried out there, as well as numerical 

experiments showing the graphs of representative extremals. Our results on the 

extended control problem are in Chapter 5.

5
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Chapter 2. Necessary Conditions for 
Optimality

This chapter has three main goals. The first one is to establish the general frame­

work on which to pose an optimal control problem on a smooth manifold. The 

second is to state  a coordinate free version of the Pontryagin maximum principle 

for optimal control problems on manifolds. The Pontryagin maximum principle 

gives a first order necessary condition for optimality. It will be our main tool for 

the variational problems we will consider in this dissertation. After looking at the 

version of the principle stated in canonical coordinates, we shift our attention to 

our third goal: to state the generalized Legendre-Clebsch condition for scalar and 

vector controls, a second order optim ality condition for singular extremals.

The definitions and general presentation used to achieve the first two goals follow’ 

closely the work by Jurdjevic in [10] and Schattler in [21]. The main source for the 

section dealing with the generalized Legendre-Clebsch conditions is the work of 

Krener [12].

2.1 C aratheodory C ond itions
D efin ition  2.1 . Let h be a function defined on some open set O x J c  R" x R  

Let (x0,to) E O x J.  A solution to the initial value problem

x  = h(x, t), x ( t0) =  x0,

is any absolutely continuous function x  defined on an interval I  C J,  such that (i) 

to € I,  (ii) x[t)  =  h(x(t),t)  holds almost everywhere on I ,  (iii) x(t) E O  for all 

t E I  and (iv) x ( t0) = x 0.

For a map with domain in a product space, Di denotes the partial derivative 

with respect to the first component.

6
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D efin ition  2 .2 . Let O x J  c  Rn x R be open. A map h : O x J  —» R" satisfies 

the C '-C aratheodory  conditions if

(i) for e v e n 't E J,  the map y  —> h(y, t ) is C l:

(ii) for every y E R" the maps t —» h(y. t ) and t D\h{y, t ) are measurable:

(iii) for every compact subset K  C  O and every compact subinterval I  a  J  

there exists an integrable function A in L l (I) such that for all £ 6 /  and all 

y e  K  we have ||/i(y,t)|| +  \\Dih{y,t)\\ < A(t).

A proof of the following theorem may be found in [18].

T heorem  2.3 . If h satisfies the C 1-C aratheodorv conditions, then for any (x 0, t0) 

belonging to O x J , the initial value problem (2.1) has a unique local solution 

x(t: x 0, t0). This solution is defined on a  maximal open interval

(r_(xo,*o),T-+(:ro,fo)) C  J.

The function x(<;x0,£o) is a continuous function of all its variables on its domain

D  =  {(£;x0,fo) : (2:0 ^ 0 ) €  O x J, t 6 (r_(x0, t0), r+ (x0,to))}-

Furthermore, x (t;x 0,£o) is continuously differentiable in the variables (x0,£o)-

2.2 M anifolds
An n dimensional topological manifold Ad is a second countable HausdorfF space 

such tha t for each x E Ad there is a neighborhood U of x and a homeomorphism 

d  from U onto a subset of Rra. The pair (U, (f>) is called a coordinate chart. Two 

coordinate charts (£/, <p) and (V, ip) are said to be C°° compatible if ip o <p~1 and 

(poip~l are C°° diffeomorphisms between the open subsets ip(Ufl V)  and <p(CJD F ) 

of R". An atlas is a set of C°° compatible charts that covers Ad. Two atlases are

7
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said to be equivalent if their union is an atlas. A C°° differentiable structure on 

A t  is a class of equivalent atlases. A smooth manifold is a topological manifold 

together with a C°° differentiable structure.

Exam ple 2.4. R" under its usual topology has a natural differentiable structure 

with (Rn. id) as its only chart. (Here id is the identity map on Rn .)

Exam ple 2.5. An open subset U of a sm ooth manifold M  is itself a smooth 

manifold. The coordinate charts (V ' , if-1) obtained by restricting ib to the open set 

V' = V n U  for each coordinate neighborhood (V' ip) of M  that intersects U provide 

an atlas for U, and hence define a C°° differentiable structure on U.

Exam ple 2.6. Consider the group of invertible n x n  matrices with real coefficients 

G L(n,R ). The elements of GL(n, R) are all the n x n  matrices with nonzero 

determinant. Since the set of all n x n matrices M n(R) may be identified with Rn‘ 

and the determinant of a matrix is a polynomial function of its entries, G L(n.R) 

is the complement of the closed set {A 6 M n(R) : det A = 0}. In particular, 

it is a smooth manifold. In fact, it is disconnected and has only two connected 

components G L (n , R)4- =  (.4 <E M n(R) : det .4  > 0} and G L(n,R )~ =  {.4 G 

M„(R) : det .4 <  0}. A proof of these statem ent may be found in [25].

In what follows let M  and N  be smooth manifolds of dimensions n and m  

respectively.

D efinition 2.7. A continuous map F : M  N  is said to be smooth if for any 

coordinate chart (U, <j>) a t x  on M  and every chart (V' ib) at F (x ) on N  the map 

ibo F o o ~ l is a C°° map from the open subset <j>(U) of Rn to the open subset ib{V) 

of Rm.

8
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For a point x  £  M,  let C(x) be the class of smooth curves a  defined on a 

neighborhood of zero which have cr(0) =  x. Define an equivalence relation on C{x) 

by saying th a t two curves a (t) and 3{t) on C(x) are equivalent if

^ 0  o a(t)\t=0 = (j> o 0 ( t ) |t=0

for any chart (£/, o) of M  with x  in U. An equivalence class under this relation is 

called a tangent vector to M  at the point x. A vector space structure is defined on 

the set of tangent vectors to A/ at x. This vector space, denoted by TXM,  is called 

the tangent space to M  at x. It has the same dimension as A/. The elements of TXM  

may be regarded as derivations. A derivation is a linear operator which obeys the 

product rule and acts on the set of smooth functions defined on a neighborhood of 

x. In this framework, if x i : . . .  , x n are local coordinates on M,  then . . .  , gl­

are regarded as a local basis for TXM.

Let F: M  —»• N  be smooth. The tangent map of F  at x  is a linear map 

F.x : TXM  —>■ Tp(x)N  defined by

dF,xv =  — ip o F  o a ( i ) |£=0, for any v 6 TXM

where {V.ip) is a  chart of N  containing F{x) and the curve a( t ) £ C(x) belongs to 

the equivalence class determined by v. The rank of F  at x  is the rank of its tangent 

map at x. A subset S  of M  is an inmersed submanifold if S  is a smooth manifold 

such that the rank of the inclusion map at each point of S  is the dimension of S.

The tangent bundle T M  of M  is the union of the tangent spaces to A/, i.e., 

T M  = UX£AfTxAf. It is a smooth manifold of dimension 2n. A point of T M  is a 

vector v, tangent to A1 at some point x. If ( x i , . . .  , x n) are local coordinates on A/ 

and u i , . . .  , v n are the components of v with respect to a basis of TXM , then the 

2 n numbers (xl5. . .  , x n, v \ , . . .  , vn) give a local coordinate system on T M .  The

9
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mapping 7r : T M  —> M  which takes a tangent vector v 6  TXM  to x, is called the 

natural projection.

D efin ition  2.8 . A smooth map W  : M  —>■ T M  such tha t 7r o W  is the identity is 

called a vector field on M.

Suppose a smooth curve x(f) on M  satisfies

^  = W o x ,  (2 .1)dt

where W  is a vector field on M.  Let /  be a smooth function on a neighborhood of 

x(t)  and regard each side of the equation (2.1) as a derivation, that is

dir
— /  =  W (x ( t ) ) f .

To express this equality in coordinates, let (£/, 0) be a coordinate chart around the 

point x(t) on M ,  let (xl?. . .  , x„) =  <f>(U) be local coordinates, and let . . .  , 

be the basis of Tx(t)M.  Let
dx i dxn

dt dt

be the coordinates of the vector ^  and let

W \ ( x i , . . .  , xn) , . . .  , W n(x i , . . .  , x n)

be the coordinates of the vector field W  with respect to  the basis of Tx{t)M.  Then

r —* dxi d e \ . . . .  . d

t = l  1 = 1

If we choose the coordinate function x, as / ,  we get

dx ■
= Wi^Xiit) , . . .  , x n{t)).

This is the standard way of writing the system (2.1) in coordinates. It follows 

from the existence and uniqueness theorem for ordinary differential equations that

10

Reproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



on a given interval J ,  for every initial initial time t0 6  J  and initial point x° =  

, x°n) belonging to there is a unique maximally defined solution

x ( t : x ° , t0) to the initial value problem

dx
— (t) = iV (*W ), *((„) =  1°.

By patching together coordinate neighborhoods, the following concept follows.

D efin itio n  2.9. Let x  be a point of A/. Let W  be a vector field on A/. An inte­

gral curve of IV through x  is an absolutely continuous curve x{t) defined in some 

maximal neighborhood J  of 0, that satisfies almost everywhere in J

dx
— (t) = w ( x m  *(0) =  *.

This integral curve will be denoted by (exp t\V)x.

For each fixed t in some neighborhood of 0, the map I£: M  —> M  given by 

I(x =  (exp t\V)x  for each x  G M  is a diffeomorphism. We will denote by {exp tW }  

the one-parameter family of diffeomorphisms generated by \ V .

If /  is a smooth function on M  and W  is any vector field on A/, the map 

x  —> \V(x ) ( f )  yields a smooth function on M  which will be denoted by W f .  An 

im portant operation among vector fields on M  is defined next.

D efin itio n  2.10. If W  and Z  are vector fields on M,  and /  is a smooth function 

on A/. The Lie bracket [W, Z ] is the vector field on M  given by

[W,Z]f  = Z ( W f ) - W ( Z J ) .

The collection X°°(M )  of all vector fields forms a Lie algebra under the operation 

of Lie bracket.

11
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2.3 O p tim al C ontrol on  M anifolds
From now on, let U be an arbitrary subset of R.m.

D efin ition  2 .11 . A smooth control system on M  with control set U is a map 

F  : M  x U —> T M  such that

(i) for each u €  U, the map Fu : x  —> F ( x , u) is a vector field on M ; and

(ii) for every coordinate chart (V' o) of M,  the map

F* : (j>{V) x U - > R n,

defined by

F Q{y,u) =  «?i.(0- i{y))F (0 _ l(7/),u),

has the property that and all of its partial derivatives with respect to its 

first variable are jointly continuous on 4>(V) x U.

E xam ple  2 .12. Let W0, \ \ \ , . . . .  Wm be a finite set of vector fields on M.  Then 

the map .4 : M  x U —»■ M  gi\ren by A(x, u ) =  W q{x ) +  uA^riix ) determines a 

smooth control system on M.  Any control system of this type is said to be affine in 

the controls. In this case, the vector field W q is called the drift and the remaining 

vector fields fields . . .  Wm are called controlled vector fields.

D efin ition  2 .13 . A Lagrangian is a  function c : M  x U —>■ R such that for every 

coordinate chart (V, 6) of M, the map

c* : d>(V) x U —> R,

defined by

c*(y,u) =  c(<f>~l (y), u),

is C l.

12
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Let F  be a sm ooth control system on M  and let c be a  Lagrangian. The class of 

admissible controls U. for (c. F ) is the set of all locally bounded Lebesgue measur­

able functions u which take values in U. Observe tha t on a given compact subset 

I  C R an admissible control u(t) takes values in a compact subset of U almost 

everywhere on I .  Thus, for every coordinate chart (V. o) of M  the maps

h(y,t)  =  F 0(y,u(£)),

L( y , t )  =  c*(y,n(0)

satisfy the C l-Caratheodory conditions. Therefore, if u is admissible for (c, F ), 

then it follows by patching together coordinate neighborhoods and Theorem 2.3, 

that on a given interval J ,  for every initial condition (x0, t0) € M  x J , a unique 

solution x ( t ; x 0,to) to the initial value problem

x  =  F (x , u),

X ( t 0 )  —  X q

on M  exists, and is defined in a maximal subinterval of J  containing to. Moreover, 

this solution is continuously differentiable with respect to xo-

D efin ition  2.14. Let F  be a control system on M  with control set U. Let x 0 6  M.  

A trajectory starting at x 0 generated by the admissible control u{t) is the absolutely

continuous curve x{t) in M,  defined on some interval [0, T], which satisfies

x  (t) = F(x(t) ,u(t)) ,  

x(0) =  x 0.

The pair (x(-),u(-)) will be referred to as an admissible input trajectory pair for 

the control system F .

13
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D e fin itio n  2.15. Let x  and y  be points of M. We say an admissible control u(t) 

steers x  to y if the corresponding trajectory starting a t x  has x(T)  = y for some 

nonnegative time T. We say y is reachable from x  if there is an admissible control 

steering x  to y. Let e > 0. The set of all points of M  which are reachable from x  

in time less than or equal to e will be denoted by TVX. The reachable set from x  is 

defined by 7Zx =  U(>0^ '

A control system F  has the strong accessibility property from x  if the reachable 

set from x  has nonempty interior. Let T  be the collection of vector fields Fu induced 

by U. The accessibility algebra C(F)  of the system F  is the smallest subalgebra 

of X °° (M )  that contains F .  Define C{F)(x)  to be the subspace of TXM  spanned 

by the vectors A"(x), where X  G C(F).  The following well known result yields a 

sufficient condition for strong accesibility. Its proof may be found in [10].

P rop osition  2.16. If C(F){x)  =  TXM ,  then 72.* has nonempty interior for every 

e > 0. In particular, the control system F  has the strong accesibility property from

x.

Let F  : M  x U —> M  be a smooth control system on M , c : M  x U -> R be a 

Lagrangian and U  be the set of admissible controls for (c, F).  For every admissible

input trajectory' pair for (c, F)  defined on some interval [0, T ] consider

T

$(*(•)> “ ( • ) )=  f  c{x{t),u{t))dt. (2.2)
Jo

The functional $  is called a cost function. Let S  be a predetermined inmersed 

submanifold of M  which intercepts nontrivially the reachable set from x0. The 

problem

min $(x(-), u(-)) (2.3)
u ( - ) € W

14
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subject to

x  =  F (x ,u ),

x(0) =  x0, (2.4)

x(T ) € 5,

is called a free-time optimal control problem with terminal conditions in S. An 

optimal solution for (2.3)-(2.4) is an admissible trajectory pair (x*(-), u*(-)) for 

(c, F) defined in some interval [0,T*] such that x *(T*) e  S  and

for all admissible input trajectory pairs (x(-), u(-)) having x(T)  e  S  for some T  > 0.

2.4 T h e H am ilton ian  Fram ework
The Pontryagin maximum principle provides a first order necessary condition for 

optimality for the problem (2.3)-(2.4). To formulate the principle in a geometric 

coordinate free setting, additional notions must be introduced.

A linear functional on TXM  is called a covector to M  at x. The space of covec­

tors on TXM  is called the cotangent space of M  at x  and is denoted by T ’M. If 

(xx, . . .  ,x n) is a local coordinate system at x, then dxx, . . .  ,d x n is the dual basis

for T ’M  with respect to the basis gfp  • • - , gf- of TXM.  Thus, locally a covector f

at x  is written as £ =  f jdx t.

The cotangent bundle T ’M  is the union of all the cotangent spaces to M  at all of 

its points. It is a smooth manifold of dimension 2n. A point on T ’ M  is a covector £ 

on the tangent space to M  a t some point x  of M.  The local coordinates of a point 

of T ’M  are (x1?. . .  , i „ ,  f i , . . . .  f n), where (x i , . . .  , xn) indicate the coordinates of 

x and ( fx, . . .  ,£n) are the coordinates of the covector £ at x with respect to the
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basis dx i , . . .  , dxn of the cotangent space T ’M.  The natural projection on T ’M  is 

the mapping tt : T ’M  —>■ M  which takes a covector £ E T ’M  to its base point x.

Let r >  0 be an integer. A differential r-form on M  is a  smooth map that assigns 

to each x  E M  an r-linear antisymmetric mapping ujx : TXM  x  . . .  x  TXM  —>• R.
N V ^

r
A 0-form is a smooth real valued function on M.  Denote by / \ r (iV/) the collection 

of all r-forms on M.  Let uj be an r-form and a  be an s-form. Let Vi, . . .  , vr+s be 

vector fields on M.  The exterior product uj A a  is the (r +  s)-form given by

lj A a ( v i , . . .  , vr+s) = ] P  ( — . . .  , v ir)a(vj i : . . .  ,vj t ),

where ( i j , . . .  , ir, j  1, -. - , j s) is a permutation of (1 ,2 , . . .  , r  +  s) and

1 if the permutation is odd;

0 if the permutation is even.

In particular if u; and a are 1-forms u  Acr(vi, V2 ) = u)(v\)cf{v2 ) —c(vi)uj{v2 ). Define

A(-W) = u r>„Ar(M)-

The exterior derivative is the map d: /\(A /) —> f \{M )  such that

(i) if /  is a 0-form. df  is the differential of / ;

(ii) if uj is an r-form . then du  is an (r +  l)-form:

(iii) for uj E A r (*^) anfi a  ^ A S(-^)r

d{ui A a) = duj A a + (—1 )ruj A d a ; and

(iv) dr = 0.

A form is said to be closed if its exterior derivative is zero. A form uj is exact if

it can be written a s u  =  dzo for some form zo. Thus, if uj is exact it must also be

closed since then du> = d2w  =  0.

We refer the reader to [2] for a proof of the next proposition.

16
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P ro p o s itio n  2.17. Let 0 be a 1-form. For any vector fields Wx and W 2 on M  the 

exterior derivative dd is given by

A 2-form c; is nondegenerate if for each x, qx{v, it?) =  0 for all w only if t? =  0.

nondegenerate 2-form can be defined. This form is called a symplectic form.

The cotangent bundle has a natural symplectic structure. The natural projection 

t t  : T ’M  —> M  defines a canonical differential 1-form 6 on T ’ M ,  given by the 

dual of the tangent map of t t .  Namely, for a vector u € T^(T’M )  tangent to the 

cotangent bundle at the point £ 6  T ’M ,  define 0(u) =  £ 7 r.(i'). To express 9 in 

local coordinates let x i , . . .  , x n denote the coordinates of a point x  on M  and 

let p i , . . .  ,pn denote the coordinates of a covector £ in T*AI relative to the basis 

dx 1 , . . .  ,dxn. The vector v  is given by v  =  Since t t , { u )  -

z=l
Let u  =  — dO. Then a? is a  closed 2-form. To see that u  is nondegenerate and 

thus a symplectic form for T* M  we first express u j  in terns of canonical coordinates.

be functions which are constant in a neighborhood of the point £ in T ’M.  Then 

the vector fields

dd(V\\. \V2) =  W l(0(W2)) -  W z M W J )  +  9([IVU W2]).

D efin ition  2.18. A symplectic manifold is a smooth manifold on which a closed

E L i  Gigf-, we have

n

Let

A't , .. , A'n, P i , . . .  ,P n and Yu . . .  , Yn, Q u . . .  Qn

17
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are constant vector fields on T ’M .  It follows that d{X)  =  PiAr, and Y (0(A')) =  

X)r=i Qi^ i-  Since X P i ,  Yi and Qi are constant functions [X, Y] = 0. So, by Propo­

sition (2.17) we have

The nondegeneracy of uj  follows from seeing th a t if X  is such that u>(A\ Y)  =  0 

for all V', then P: =  u > ( X ,  ^ - )  =  0 and Q i  =  u j { X ,  ^ - )  =  0. Thus, we must have 

tha t X  =  0. In what follows, u j  = —d9 will be the symplectic form we consider on

Vector fields on M  induce functions on T ' M  as follows.

D e fin itio n  2.19. Let W  be a vector field on M .  The Hamiltonian lift of  the 

vector field W  is the function H w  : T*M —*■ R defined by H w {£) =  £lF(x) for 

each £ G TXM.

By the nondegeneracy of the symplectic form u j ,  there is a one-to-one corre­

spondence between functions on T*M  and vector fields on T*M.  This is obtained 

as follows.

D e fin itio n  2.20. Let H  be a smooth function on T*iV/. The Hamiltonian vector 

field H  induced by H  assigns to each f  G T ' M  the unique H (f)  G T^ iT 'M )  that 

satisfies dH^(u) =  u j ( H ( £ ) ,  u )  for all v  G T^(T'AI).

Let H  be a smooth function on T 'M .  To obtain an expression for the components 

X x, . . .  , X n, P i , . . . , Pn of the vector field H  in term s of the canonical coordinates

n

(2.5)

T ' M .

18
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for T' M,  we write

«  =  i A' r  +  pr '“  d x  i dp t

and let

v  =  £  Yt±  +  Q, A
dxi fy i

be a vector in Te(T'M).  We also take ....................... as canonical coor-
v  • ax\ ■ • dxn ’  dpi * apn

dinates of d H .  From the definition of the Hamiltonian vector field H  and equation

(2.5). we get

d H „ ,  d H

s r  9x‘ s r
from which it follows that

dH , x
A ‘ =  aS* <2-6>

p  =  JJL
dXi'

In particular, this means that if an integral curve £(£) of H  is expressed in canonical 

coordinates, say (x(t),p(t)), we must have

x  (t) = Hp(x(t),p(t)), (2.7)

p(t) = - H x(x{t),p(t)). (2 .8 )

It is customary to call p{t) the adjoint variable and to refer to the system of equa­

tions obtained from (2.8) as the adjoint system. An im portant operation among 

functions on T ' M  is defined next.

D efin ition  2 .21 . Let F  and H  be smooth functions on T ' M .  Denote by {expt/f} 

the one-param eter group of diffeomorphisms generated by the Hamiltonian vector 

field H.  The Poisson bracket {F, H }  is the function on T ' M  defined by {F, H}(£)  =  

o exp tH(£)\ t=o for each f  G T ' M .
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The following propositions provide important properties of the Poisson bracket 

that will be useful to us later. VVe refer the reader to [10] for a proof of these 

statements.

P ro p o s itio n  2 .22 . The Lie bracket [F, H] of two Hamiltonian vector fields F  and 

H  is a Hamiltonian vector field and [F, H\ =  {F, H}.

P ro p o s itio n  2 .23 . If H w and H z  are the Hamiltonian functions on T ' M  which 

correspond to vector fields W  and Z  on M  then { H w .H z }  = H[w,z)-

As a consequence of the preceding propositions the Hamiltonian lifts of vector 

fields on M  form an algebra under the Poisson bracket operation isomorphic to 

the Lie algebra of vector fields on M.

2.5 F irst O rder N ecessary  C onditions
We are now almost ready to state the first order optimality conditions for the 

optimal control problem (2.3)-(2.4). The final step is to look at an extended system 

on R x M  obtained by considering the cost as an additional sta te  variable

x 0 =  c(x, u) x  = F(x, u), (2.9)

and to carry out the following construction. Each u in the control set U defines a 

vector field Wu =  (c(x,u), F(x.u))  on R x M.  This vector field defines a Hamil­

tonian function H u on the cotangent bundle T*(R x M)  of R x M.  The family 

of Hamiltonians H  = {Hu : u € U} is called the Hamiltonian lift of (2.9). An 

admissible control u(-) defines a time varying Hamiltonian lift H  (£ ,u(t)) with 

f  € T ’(R x M ).  Denote by H  (£,u(t)) the corresponding time varying Hamilto­

nian vector field. The projection of an integral curve £(£) of 71 (f;,u(t)) onto M  is 

a solution to (2.9).
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Notice that the cotangent bundle of R x M  equals T*R x T ' M .  Moreover, 

T*(R) =  R x R ,  so each point of T*R is represented by the coordinates (x0 ,Po) 

relative to the basis dxo in TI 0 *R. Since the vector fields in (2.9) do not depend 

explicitly on the variable x 0, we have that for each %(-,u(£)), the coordinate po 

must remain constant along the integral curves of U(£,u(t)) .  Therefore, regarding 

P o  as a parameter, the domain of 71 can be reduced to the cotangent bundle of M.  

Indeed, we define

^po(€> u ) =  Poc(x, u) +  CF(x, u), £ E TIM .

We refer the reader to [21] for a proof of the next theorem.

T heorem  2.24 {The Pontryagin maximum principle). Suppose that x(t)  is an op­

timal trajectory of the optim al control problem (2.3)-(2.4) on [0, T] and let u(t) be 

an admissible control function tha t generates x(t).  Then, there is a constant p0 <  0 

and an integral curve £(t) of the Hamiltonian vector field 7iPQ{-,u{t)) defined on 

[0, T] such that

(i) the trajectory x(t)  is the projection of £(£) onto M  for all t in [0, T].

Moreover, if po =  0 then £(£) ^  0 for all t.

(ii) 'Hp0(£(t ) i u (t )) =  suPu6t/?*po(f(0,“ ) for almost all t e  [0 ,T],

(iii) supueU H P0((i(t),u) = 0  for all t 6  [0 ,T], and

(iv) the transversality condition £(T)(v) =  0 holds for all v € Tx(t)-S.

A pair (£(t),u(t)) satisfying the Pontryagin conditions is said to be an extremal 

pair. The trajectory £(£) of an extremal pair is called an extremal. The extremals 

that are independent of the cost functional associated to the problem correspond 

to po =  0 and are called abnormal. Extremals with po ^  0 are called regular. For 

regular extremals it suffices to consider only the case p0  =  —1 .
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2.6 N ecessa ry  C onditions for O p tim ality  o f  
Singular E xtrem als
Assume that our control system F  is affine with a control set U  which is a subset of 

R with nonempty interior. Further assume that the Lagrangian function is linear 

in u. Therefore, the extended control system on R  x M  leading to the Pontryagin 

maximum principle is also affine of the form A{x, u) =  WQ(x) 4- uWi{x).  Consider 

an extremal pair (f  (£), u(t)) defined on [0, T ] for the optim al control problem (2.3)- 

(2.4). Let x{t)  be the projection of f(£) onto M.  In the case that 

vanishes identically on a subinterval (£i, t2), the value of the control u(t) th a t gen­

erates £(£) is not completely determined by the maximization condition (Theorem 

2.24, ii) of the Pontryagin principle. Extremals of this type are said to be singular 

on {ty,t2). Accordingly, necessary conditions have been developed to test the opti­

mality of singular controls. The generalized Legendre-Clebsch condition is one of 

them. To sta te  it we need to introduce some additional concepts.

For vector fields W  and Z  defined on a manifold N ,  let ad°(lV)Z  =  Z  and 

adk{W )Z  =  [IV, adfc_1 (W)Z]. Let D l(x(t)) be the span of the set

{sidk(W0) W l (x(t)) : k  = 0 , . . .  , oo}.

The degree of  singularity of the control u(t) is h +  1  if h  is the smallest nonnegative 

integer such th a t \W\, ad/l(lT'o)I'Fi](a:(£)) does not belong to D l(x(t)). Let Hi and 

•^ad/,(vvo)vv1 be the Hamiltonian lifts of the vector fields and a.dh(W0)Wi  respec­

tively. The following result has been shown by Krener in [12] under the assumption 

that the optimal control is C°°.

T heorem  2 .25  (The generalized Legendre-Clebsch condition for scalar controls). 

Suppose that the extended control system on R x M  for the optimal control prob­

lem (2.3)-(2.4) is affine of the form A{x,u)  =  W q(x)+uW i{x) .  Let (f(£),u(£)) be a
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singular extremal pair defined on ( t l} 12), such th a t u(t) is in the interior of U and 

has degree of singularity h + 1 for some nonnegative integer h. If u(t) is optimal,

then

( — 1) - {H\.  }(£(0) ^  0 f°r  ̂ ^   ̂1 ? 2̂ )- (2-10)

To consider the situation of vector valued controls let us look again at a general 

optimal control problem where F  is not necessarily affine and the control set is a 

subset of Rm. By restricting our attention to a coordinate neighborhood (V. <f>) we 

may consider the optimal control problem defined on <f>{V) C R" by the extended 

control system f  =  (c^, F^)T. We will abuse notation and denote the n +  1 vector 

of state variables (x0 ,x )T by x. We will also assume tha t the terminal condition is 

written as t/,(x(T)) =  0 where i =  1 , . . .  , m. Let p  be an n -f- 1 vector and define 

the Hamiltonian function

H (x, p, u ) = <  p, /(x , u ) >  .

In this context, the optimality conditions given by the maximum principle for an 

extremal trajectory amount to the existence of a nontrivial adjoint vector p(t) =  

(Po,Pi(t), ■ - • ,Pn(£)) with po < 0 such that for almost all t €  [0, T\, the equations

±{t) =  Hp(x{t),p(t),u(t)),  

p{t) = - H x(x(t) ,p(t) ,u(t)),

as well as the maximization condition for the Hamiltonian

H{(x(t),p{t) ,u(t))  =  sup H{x{t) ,p{t),u)  =  0,
U6t/

and the transversality conditions

p (T ) =  F .  < * i j £ y i ( x ( T ) )  +  ( p o ,  0 , . .  ■ , 0 )

hold. The following concept was introduced by Krener in [12].
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D e fin itio n  2.26. The control u, is singular of  degree hi + 1 on [ti, £2 ] if h, is the

smallest integer such that for some t £  { t \ , t2) there exists a p(t) satisfying the

adjoint equations as well as the constant and linear necessary conditions

H ( x ( t ) :u(t),p(t)) = 0, (2.11)

and

=  0 . (2 .12)

for j  =  0 , 1 . . . 0 0  on any nontrivial subinterval of [f 1, t2] such that for some t in this 

interval

<213>
We end this chapter by quoting a general theorem due to Krener, [12] which 

provides necessary conditions for vector valued singular controls u to be optimal. 

We will refer to it as the generalized Legendre-Clebsch condition for vector valued 

controls.

T h e o re m  2.27. Suppose (x(t),u(t))  is an input trajectory pair for the optimal 

control problem on [0, T] such tha t u(t) is in the interior of U and each u, is C°° 

and singular of degree hi 1 on (fi, t2). If u{t) is optimal, then there is an adjoint 

vector satisfying the Pontryagin maximum principle on [0, T] such that on the 

interval [ti,t2]

=  a  ( 2 1 4 )

for k =  0 , . . .  , 1 <  i j  <  m Moreover, if h, < 0 0  for i =  1 . . .  , k < m,  then

the k x  k  m atrix whose i , j  entry is

', i+l d  d  2 ^ +l d
( - ! )  2 -----VM7  .-a.. H(x(t) ,u(t) ,p(t))  (2.15)

dUi d<-V i + 1 dui
must be symmetric and nonpositive definite.
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Chapter 3. Differential Invariants for 
Curves in the Centroaffine Plane
The arclength s and the curvature /c(s) are familiar geometric differential invariants 

of a smooth curve in an Euclidean plane. Since arclength remains unchanged under 

reparametrization and distance preserving transformations, the natural equation 

k  =  ac ( . s )  provides a signature for the curve from which the curve can be recovered 

up to an Euclidean motion. Under the arclength parametrization of the curve, 

the tangent and normal vectors to the curve yield a moving frame of linearly 

independent vectors along the curve. The evolution of this frame along the curve 

is governed by a system of differential equations called a Serret-Frenet system. Of 

course, a similar construction can be done in higher dimensional Euclidean spaces 

with the added complication of having to deal with more curvature functions.

The aim of this chapter is to provide a general introduction to the planar cen­

troaffine geometry' and its differential invariants. We begin with a brief general ex­

position on affine spaces and n dimensional centroaffine geometry. Then the class 

of substantial planar curves are discussed. These are the curves in the centroaffine 

plane for which the centroaffine differential invariants are well defined. These in­

variants play the same role as the arclength and curvature functions do for smooth 

curves in the Euclidean plane, in the sense that they characterize a smooth cen­

troaffine curve up to a centroaffine motion. Thus, by analogy they will be referred 

to as centroaffine arclength and centroaffine curvature. Substantial curves can be 

described via a Serret-Frenet type system by parametrizing the curves with re­

spect to this centroaffine arclength and by choosing moving frames appropriately. 

We conclude the chapter with a description of the curves of constant centroaffine
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curvature as it appears in [17]. This well known result will be useful to us in later 

chapters.

The theory of invariants for the geometry of the centroaffine plane goes back 

to the work of Mayer and Myller [17]. Some sections of the classical book by 

Schirokow [22] on affine differential geometry deal with the centroaffine differential 

geometry of curves and surfaces in two and three dimensions. Laugwitz produced 

some global results for ovals on the centroaffine plane [15] as well as a monograph 

on the centroaffine geometry of curves and surfaces [14]. An application of the 

centroaffine curve theory to  differential equations may be found in the book by 

Boruvka [3].

Recently, Gardner and Wilkens [6 ] developed a complete theory of differential 

invariants for centroaffine curves in arbitrary dimensions by using C artan’s method 

of moving frames. Wilkens [26] related these centroaffine invariants to feedback 

invariants for control systems with two states and one control.

The following survey synthesizes the basic results on these invariants in a manner 

agreeable to our ultim ate goal, the study of variational problems for this geometry 

using the techniques of optim al control.

In this chapter we will regard R" as a set of column vectors. However, we will 

abuse notation and write x  =  ( x i , . . .  , x n) to denote elements of R” .

D e fin itio n  3.1. A set A  is an n  dimensional affine space, if there is an n dimen-
F —*sional vector space V  and a function F  : A  x A  — >■ V given by (A, B)  —► A B , 

satisfying the following conditions:

(i) there is a P  € A  such that for every v €  V, there is a unique A  €  A  with 

P A  =  v;

(ii) if PA  =  a and P B  =  6 , then A B  = b — a.
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In the following, the n  dimensional affine space A  is related to the vector space 

V' by the function F.

P ro p o s it io n  3.2. If A  G A  and 7  G V, there is a point B  G A  such that A B  =  7 .

Proof. Let v = PA.  Then 7 -t-u is a vector in V.  By the definition, there is a unique 

B  in A ,  such that P B  =  7  +  u. Therefore,

A B  =  P B  — P A  =  7  -f v — v =  7 . (3.1)

□

The preceding proposition shows that any point of A  may play the role P  plays in 

the definition of an affine space.

If a point O is chosen as the origin for A ,  then there is a unique correspondence 

between each point M  G A  and the vector OM .  The vector O M  is known as 

the position vector of M .  A choice of a basis 3  =  { e i,. . .  , e„} for V  determines a 

coordinate system {O; e i , . . .  , en} for A.  Thus, we may refer to the point M  by the 

coordinates x =  (2 7 , . . .  , x n) of its position vector with respect to /?. Since there 

is no preferred origin, a different choice of origin P  and basis 3' =  {e \ , . . .  ,e'n} 

determines a new coordinate system {P;e'1;. . .  ,e'n} for A.

Let us suppose tha t P  has coordinates b =  (6 1?. . .  , bn) with respect to {O; et , . . .  

,en}, and let A be the change of basis matrix from /?' to ,3. Suppose the coor­

dinates of a point M  with respect to the coordinate system {P ;e[ , . . .  ,e^} are 

x =  ( x i , . . .  , x n). It follows that the coordinates x  =  ( x j , . . .  ,x„) of M  with re­

spect to {0 ; e i , . . .  ,en}  are

x =  A x  +  b.

A transformation T  : Rn —> Rn of the form

T(x) =  A x  -(-6 , A G G L(n, R), b G Rn
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is called an n dimensional affine transformation. From the preceding observations 

we see that these transformations are precisely the change of coordinate transfor­

mations between two coordinate systems in an n  dimensional affine space. The set 

T  of all n dimensional affine transformations is a group. Affine geometry studies 

the properties of an affine space which remain invariant under subgroups of T .  The 

elements of this subgroups are referred to as the motions of the geometry. In this 

framework, the content of Euclidean geometry is obtained by allowing translations 

and rotations as motions.

A centered affine space C is an affine space in which a preferred origin O is chosen. 

So every point of C is identified with the coordinates of its position vector in the 

system of coordinates determined by the basis {ex, . . .  ,e„} of V. The centroaffine 

geometry is obtained by considering the subgroup of 7~ that leaves the point O 

fixed. Therefore, an element of the centroaffine group of motions has the form

T(x)  =  Ax, A  E G L (n,R ).

We will refer to any such transformation as a G L (n , R) motion. The planar cen­

troaffine geometry is obtained by letting the dimension of C be two.

In the following, let Ro2 denote the set of nonzero column vectors on R2 . For 

x  and y  in Ro2 denote the 2 x 2  matrix having x  as first column and y  as second 

column by (x, y). Let I  be an open interval.

D efin itio n  3.3. An inmersed curve x  : /  —> Ro2, which is at least three times 

differentiable, is called a substantial curve if

(i) x(u) and x '(u) are linearly independent for all u in / ,  and

(ii) x '(u) and x"(u) are linearly independent for all u in I.
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It follows inmediately from the definition that no line through the origin may be 

tangent to a substantial curve. A little more work is needed to establish the next 

statem ent.

P ro p o s it io n  3.4. Consider a substantial curve x, defined on the open interval / .  

Let uq € I  and let L be the tangent line to x  a t u0. Define

_  . det(x"(u), x '(u))
s gn ? x r(u))

(i) If e =  1, then on a neighborhood of uq the curve x  lies to the side of L 

that contains the origin.

(ii) If e =  —1 , then on a  neighborhood of u0 the curve x  lies to the side of L 

th a t does not contain the origin.

Proof. Let x(u) =  (x (u ) ,y (u )) be a substantial curve defined on the open interval 

/ .  Since x(u) and x'(u) are linearly independent there are unique functions a(u) 

and b(u) such that

x"(u) =  a(u)x(u) +  6 (it)x'(u). (3.2)

The linear independence of x '(u) and x"(u) implies that a(u) is nonzero on / . 

Moreover, the linear independence of x(u) and x '(u) implies that

-  det(x"(u),x '(u))
Q(U) -  det(x(u),x '(u )) ’ (3'3)

so th a t a is continuous on / .  Since a(u) is a nonvanishing continuous function on 

/ ,  its sign must remain the same along I.  Thus, e =  — 1 if and only if a is positive 

on /  and e =  1  if and only if a is negative.

Let Uq € I.  Write x(u0) =  (x 0,y 0) and x'(uo) =  (x'o,yo)- The equation of the 

line L  tangent to x  at u0 is given by

x Uo Vx  o =  xoyo yox o-
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Let

L~ = {(x, y ) : xy'0 -  yx'0 < x 0y'0 -  y0 x'0}

and

L+ =  {(x, y ) : xy'Q -  yx'Q > x0y'0 -  y0x'Q}.

Since no line through the origin may be tangent to a subtantial curve, it follows 

that the origin belongs to only one of these sets. Define

F{u) = x (u )yr0 -  y{u)x'Q. (3.4)

The linear independence of x(u0) and x 7(uo) makes F(uQ) #  0. In particular, the 

origin lies on L~ if and only if F(u0) > 0. Also note that F '(u 0) =  0. Since

F"{u) =  x"(u)y'0 -  y"(u)x'0

= [a(u)x(u) + b(u)x'(u)]y'Q -  [a(u)y(u) + b(u)y'(u))x'0

= a(u)F(u) + b(u)F'(u),

it follows th a t F"(u0) =  a(u0)F(u0). Assume first that F(u0) > 0. If e =  1 , then 

F  has a local maximum at u0. Thus, there is a neighborhood N  of uq where

x(u)y'0 -  y(u)x'Q < x 0y'0 -  x'0y0 (3.5)

holds. Hence (x(u),y(u)) lies on L~ as long as u belongs to iV\{u0}- So the curve 

lies to the side of L  that contains the origin.

If e = — 1, then F  has a local minimum at u0. It follows th a t on a neighborhood 

N  of uo the inequality

z(u)y'o ~  y(u)xo >  x 0y'0 -  x'Qy0 (3.6)

holds, and (x(u),y(u)) lies on L+, the side of L that does not contain the origin, 

as long as u belongs to N \ { u 0}. To complete the proof observe tha t in the case
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that F(u0) <  0, the origin lies on L + and the function F  attains a  local minimum 

at uQ if e =  1 and a local maximum if e =  — 1 . □

The substantial curves stand out as the class of planar curves for which the 

notions of centroaffine arclength and centroaffine curvature may be defined. The 

next theorem makes this explicit. A proof based on Cartan’s m ethod of moving 

frames appears in [26].

T h eo rem  3.5 (Mayer and Myller [17]). Let x  : I  —> Ro2 be a substantial curve 

parametrized by u. The curve x may be reparametrized with respect to a GL(2. R) 

invariant parameter s. Denote the reparametrized curve by x(s) and differentiation 

with respect to the param eter s by a dot. The vectors x(s) and x(s) form a moving 

frame satisfying the Serret-Frenet type equations

x(s) =  y(s),  (3.7)

y(s) = - e x ( s ) +K(s)y(s) ,

where

k; =  In | det(x. x)|. (3.8)as

If the curve is parametrized with respect to s, then the coefficients e and k ( s ) are 

also GL(2,R) invariant and determine the curve up to a GL(2, R) motion.

Proof. Let x  : I  —► Ro2  be a substantial curve. Let .4 be any element of GL(2, R).

Define Xj(it) =  Ax.(u). We will use a prime to denote differentiation with respect

to u. Since

(x i(u ),x /l (u)) =  (,4x(u),.4x'(u)) =  .4(x(u), x'(u)), (3.9)

it follows that det(xi(u), x 'i(u )) =  d e t.4 d e t(x (u ),x /(u)). We also have

(x*i (u), X^! (u)) =  A(x'(u),x"(u))
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by differentiating both sides of (3.9) with respect to u. Therefore, 

de t(x 'i(u ),x " i(u )) =  det A det(x '(u ),x"(u)).

Hence,

det(x /1 (u ),x"i(n )) det(x '(u), x"(u))
(3.10)

d e t(x i(n ),x 'i(u ))  det(x(u), x'(u))

Let J  be an open interval and d>: J  —> I  a diffeomorphism. Also, define x (t) =  

x(e>(f)). Repeated differentiation with respect to t yields

|x { ! )  =

| r * m  =

It follows that x(t) is substantial since

det(x(t), ^ x ( t ) )  =  ^ 0 (t)det(x(<?(t)),x '(^(t))), and

are both nonzero. Moreover,

de t(^x (Q , Jp-x(t)) _  ( j fo ( t ) ) 2 det(x/(0 (t)), x"(o(t)))  
det(x(t), J^x(t)) det(x(<?>(t)),x'(<?(£)))

(3.11)

As a consequence of equations (3.10) and (3.11) the value of e is invariant under 

GL(2, R) motions as well as under reparametrizations of the curve. Moreover, for 

any uQ, u i € / ,  the change of variables formula yields

r i I det(x '(u ),x"(u)) _  f u * 1(ui) / det(x '(0 (£)),x"(0 (t))) d
J u 0 V  det(x (u ),x ,(u)) J t 0= o - H u o )  V  det(x(<?(t)),x'((?(t))) dt

_  r  (3 . i 2 )
J t o  V  det(x(t), ^x(O )

Equations (3.10) and (3.12) imply th a t

-  s(“ >= £ / < 3 i 3 >det(x(u),x '(i/))
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is also an invariant with respect to GL(2, R) motions as well as to reparametriza- 

tion.

The parameter s is precisely the param eter needed for the coefficient of x  to be 

± 1  when x  is written as a  linear combination of the independent vectors x  and x. 

This can be seen as follows. Since x(u) and x '(u) are linearly independent there 

are unique functions a(u) and b(u) such that

x"(u) =  a(u)x(u) +  b(u)x'(u).

Consider a reparam etrization u =  u(s) with u > 0. Then

x(s) =  x '(u(s))u  +  x"(u(s))u 2

=  x'(u(s))ii  +  [a(u(s))x(u(s)) +  6 (u(s))x '(u(s))] u2 

= a(u(s))u2x(u(s)) +  [&(u(s))u2  +  fi] x '(u(s))

a(u (s))u 2 x(s) +
b(u(s))u2 +  ii

u
x(s).

From equations (3.3) and (3.13) we obtain ^  =  y j —ea(u(s)). So,

1u~ =
—ea(u(s))

It is clear now that a(u(s))u2 = — e, since |e| =  1. Define

.,r„\ _ Ku(s))^2 + u 
ac( s )  —  ;

u

and write

x(s) =  -e x (s )+ K (s )x (s ) . (3.14)

Since x(s) is substantial the vectors x(s) and y(s) =  x(s) are linearly independent, 

so they determine a moving frame for the curve. Writing (3.14) as a first order 

system we obtain the Serret-Frenet system (3.7).
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From equation (3.14) we now see th a t (3.8) follows

det(x . x)
k =  - — — rr (3.1o)det(x , x)

=  In | det(x, x)|. 
as

The invariance with respect to G L(2,R ) motions of k follows from (3.15) by an 

argument similar to the one used to establish the GL(2, R) invariance of e.

To see that e and k determine a substantial curve up to a GL(2.R) motion

' a  4\
I of GL(2, R). The existence and uniqueness 

vc d j
theorem guarantees that the scalar differential equation

consider an arbitrarv element

x(s) =  —ex(s) +  k ( s ) x ( s )

has solutions xi(s) and x2 (s) satisfying the initial conditions x^O) =  a, Xj(0) = c 

and x 2 (0) =  6 , x'2 (0 ) =  d respectively. Let / x and / 2 the maximal neighborhoods 

of zero on which each solution is defined. Let J  =  I x P| / 2. Since the Wronskian at 

s =  0 is ad — be #  0. the solutions x ^ s )  and x 2 (s) are linearly independent on J. 

Define x  =  (x1; x2). Clearly, x  is determined up to a GL(2, R) motion and satisfies 

(3.14). Since det(x(.s),x(s)) =  xx(s)x2 (s) — xo(s)xl (s) 7  ̂ 0 and det(x(s),x (s)) =  

—ed et(x (s),x (s)) it follows that x(s) is substantial on J.  □

The order of a differential invariant is the order of the highest derivative that 

occurs in the local expression for it. The fact that ds is an invariant of the lowest 

possible order enables us to refer to s as the centroaffine arclength parameter. Since 

given e the coefficient k ( s )  determines the curve up to a centroaffine motion we 

will refer to k ( s )  as the centroaffine curvature.

The following representation of substantial curves will be crucial for our work 

in later chapters, where we formulate several variational geometric problems as 

control problems over Lie groups.
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C o ro lla ry  3.6 . The frames x (s) and x(s) of a substantial curve parametrized by 

centroaffine arclength determine a curve g(s) =  (x(s), x(s)j in G L (‘2. R) which 

satisfies the matrix differential equation

( o  - A
y ( s ) = y ( s )  . (3.16)

\ l  K(S)J

Proof. The result follows inmediatelv by differentiating g(s) and using the Serret- 

Frenet type equations (3.7). □

To conclude this introductory chapter we review the work of Mayer and Myller 

[17] who classified the centroaffine curves of constant centroaffine curvature k ( s )  =  

k  into the following four types.

(i) If e =  — 1, then

§
x(s) =  exp(m s). y(s) =  exp (----- ),m

where m 2 — Km — 1 = 0 .  Up to a centroaffine motion the curve x(s) =  

(x (s).y(s)) lies on the graph of

•»
.771“ 1xy  — 1 .

Note that when k  =  0 this is a  hyperbola.

(ii) If e =  +1 and |k| > 2, then

x(s) =  exp (ms), y(s) =  exp (—),
m

where m 2  — Km — 1 = 0 .  Up to a centroaffine motion the curve x(s) =  

(x(s), y(s)) lies on the graph of

x  =  ym~.
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(iii) If e =  +1 and |/c| < 2, then

x(s) =  exp (ms) cos(rcs), y(s) =  exp(ms) sin(ns). where

m = — and 2

So up to a centroaffine motion the curve x(s) =  (x (s),y (s)) lies on the graph 

of the logarithmic spiral with center at the origin and equation

log(x2 4- y2) =  — tan 1 —
n x

Note th a t when k  = 0 this is a circle with center at the origin.

(iv) If e =  4-1 and k = ±2, then

x(s) =  exp s, y{s) =  s exp s.

Up to a centroaffine motion the curve x(s) =  (x(s),y(s))  lies on the graph of

y — x  logx.

These curves are obtained by solving the second order equation (3.14) with k (s ) =  

k and choosing the initial conditions x ( 0 ) and x ( 0 ) such as to simplify the equations 

of the curve.
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Chapter 4. Two Variational Problems for 
Substantial Curves

In this chapter we deal with the problem of finding the substantial curves with 

predetermined position and velocity at the  initial and terminal points, with min­

imal centroaffine arclength. Under the same data  for initial and terminal points 

we are also interested in the centroaffine elastic problem. This is the problem of 

searching for the substantial curves minimizing the total square curvature func­

tional / Qr  as k varies over all square summable functions on each interval

[0 ,T],

Our first crucial observation is that G L(2, R) serves as a group of isometries for 

the centroaffine plane, and that Corollary- 3.6 naturally suggests an affine control 

system on this group. This allows us to study the above variational geometric prob­

lems as optimal control problems over the group of isometries on the centroaffine 

plane with the curvature k ( s )  as the control function. Once the variational prob­

lems are set up as problems on the Lie group GL(2, R) we apply the maximum 

principle as done by Jurdjevic in [9] for o ther geometric problems.

For the minimal centroaffine arclength problem this leads inmediatelv to the 

realization that extremal trajectories are the curves of constant curvature. But 

to obtain further results we go further and use the generalized Legendre-Clebsch 

condition. Using these tools wre obtain our first striking result. Unlike the analogue 

minimal arclength problem in the Euclidean plane, the minimal centroaffine arc­

length problem has no solution in the centroaffine plane. This result goes beyond 

the results by Mayer and Myller [17] who proved that the extremals for the vari­

ational problem of the centroaffine arclength are the curves of constant curvature
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and that a minimum is not possible in the case th a t e =  - 1  or the case tha t e =  1  

and |k| > 2 .

For the centroaffine elastic problem, aided by the maximum principle we prove 

that an optimizing control k must satisfy the nonlinear third order differential 

equation

It is then easy to see from this equation that the curves of constant curvature are 

also extremals for the centroaffine elastic problem. Unfortunately, it appears tha t 

this nonlinear ordinary differential equation cannot be solved in closed form. To 

study the nonconstant solutions of this equation we consider it as a second order 

conservative differential equation depending upon parameters. Then nonconstant 

solutions may be classified in terms of their qualitative behaviour.

We used numerical routines to produce solutions to (4.1). In principle, the graphs 

of the various types of extremals for the centroaffine elastic problem may be ob­

tained by plugging these solutions into the Serret-Frenet centroaffine equations. 

We follow this program in the case e = 1 and obtain numerically the graphs of the 

extremals corresponding to each type of qualitative behaviour of the solution to

(4.1)

(4.1).

4.1 C ontrolled D ynam ics over GL(2,R)
Let e = ± 1  and let L\  and L3 be vector fields on G L (2,R )+ such that for g € 

G L(2,R)+

respectively.
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Define the vector fields

£ 2 (9 ) = [L i ,L3](g) — g | | and
1 0

L4{g) = [Lu L2\{g) =  g

The Lie bracket relations among the vector fields Li can be summarized by Table 

4.1 in which the first entry for [-, -] is taken from the first row and the second entry 

for [•. -] is taken from the first column.

TABLE 4.1. Lie bracket relations.
*, * L v l 2 Lz l 4
L\ 0 l 4 l 2 —4 eZ,2
U - l 4 0 L i —AeLi
l 3 C-l1 - u 0 0
L a 4eL2 AeLi 0 0

P ro p o s it io n  4.1. Consider the affine control system F  : G L (2 ,R )+ x R —> 

T G L (2 .R )+ given by

F(g,K.) = L x(g) + K,Lz {g). (4.2)

For every g 6  GL(2, R)+ the control system F  has the strong accessibility property 

from g.

Proof. Since the matrices
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form a basis for the vector space of 2 x 2 matrices over R, the corresponding 

vector fields form a basis for 7^G L(2, R)+ for every' g £  G L (2,R ). It follows from 

Proposition 2.16 tha t the sm ooth control system F  has the strong accessibility 

property. □

4.2 T he O ptim al C on tro l P rob lem  on  GL(2, R)
Let A, B  be arbitrary  elements of G L (2,R ). Assume that the smooth control 

system (4.2) has the property th a t B  is reachable from .4, and denote by h(s) the 

trajectory^ joining .4  and B  generated by a control k ( s ) .  Then g(s) =  h(0)~lh(s) 

joins the identity element /  to  A ~ lB  by means of the same control. This forces 

A~lB  to lie in G L (2,R )+ , the connected component of G L(2,R ) containing the 

identity m atrix / .  Since the trajectories g(s) and h(s) are both generated by the 

same control, then for any' Lagrangian /  depending only' on the control set, the cost 

functional f(K,(s))ds will have the same value for both trajectories. So, without 

loss of generality we will assume th a t the initial data is the identity' element I  £ 

G L (2 , R) and th a t the terminal point is a given matrix C with positive determinant 

that is reachable from the identity. Thus, we consider the optimal control problem 

[OCP] :

min I f{K{s))ds,
Jo

over all locally bounded measurable functions k ,  such that

^  = Li(g(s))  +  K(s)L3 (g(s)), (4.3)

has a solution ^(s) 6  GL(2, R)+ satisfying #(0) =  I  and g(T)  =  C, for some T  > 0. 

As an example, consider the case where e — 1 . the Lagrangian is / (« )  =  y1 and

( °  -A  •the terminal sta te  is C = I I . Notice that for this case, we can steer the
\ i  o ;

system from the identity to g(T)  =  C  with no cost in time T  = f  by taking k =  0.
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This leads to a substantial curve which minimizes the elastic energy. Integrating 

the Serret-Frenet equations with k  =  0, we see that the curve must be an arc lying 

on the unit circle. On the other hand, since GL(2, R)+ is a Lie group, the integral 

curve h(s) through I  of the vector field L\  +  L3 is defined for all s € R. In other 

words h(s) is a solution of the system (4.3) with k  = 1 and h(0) =  I. Clearly h{f ) 

is reachable from the identity. The elastic energy of this configuration is The 

natural question is: what necessary conditions must hold for a curve joining the 

states h{0) and h (f)  to have minimal elastic energy? As we will see in the next 

section, the maximum principle will be useful for this purpose.

However, let us first observe that any solution for the problem [OCP] that renders 

the optimal control to be almost everywhere continuous yields a substantial curve 

which minimizes the corresponding functional over the class of substantial curves. 

This is a consequence of the following:

L em m a 4.2. If k(s ) is an admissible control for the optimal control problem 

[OCP] that agrees almost everywhere with a continuously differentiable function 

k  on [0,7'], then the trajectory of (4.2) generated by k (s ) determines a substantial 

curve on [0 , T}.

Proof. Observe that a trajectory g(s) generated by k (s ) is an integral curve of 

the time varying vector field F(- , k(s )), thus it must be an absolutely continuous 

solution of

=  U { 9 {s)) +  «(s)L 3 (^(s)), (4.4)

0 (0 ) =  I-
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So. it must satisfy

g(s) = g(s)
f 0  - «

; (4.5)
y l «(5)

f x(s) v(s)
Write g(s) =  I J . The fuctions x, v, y  and w must be absolutely con-

w(s) ̂
tinuous with

x  = v v = —ex -F kv (4-6)

y =  w w =  —ey +  kw

almost everywhere on [0, T] and must satisfy the linear independence condition

xw — yv > 0. (4.7)

Since v is absolutely continuous, x  is continuously differentiable. Moreover, the

absolute continuity of v yields, that for any s G [0 , T],

v(s) =  — e f  x(t)dt  +  f  K.(t)v(t)dt
Jo Jo

= —e I  x(t)dt  +  I  k(t)v(t)dt.  
Jo Jo

Therefore, v — —ex + kv on [0, T]. A similar argument shows that the equations for 

y and w are satisfied everywhere on [0, T\, when we replace k by k. It follows that 

the curve x(s) =  (x (s),y(s)) is C 2 and de t(x (s),x (s)) =  det g(s) > 0. Moreover, 

x satisfies the equation

x(s) =  —ex(s) +  k ( s ) x ( s ) ,  (4.8)

from which we see a t once that x(s) is differentiable and that

det(x(s), x(s)) =  —edet(x(s), x(s)) ^  0 .
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Observe th a t if we write equation (4.8) as a first order system, we obtain our Serret- 

Frenet type equations. Thus, the curve is param etrized by centroaffine arclength 

and has centroaffine curvature k. □

The following example illustrates that the choice of the function /  is im portant 

for the nontriviality of the control problem. Let e i and e 2  be the standard basis 

vectors for R2 . Let k  be any admissible control th a t steers I  into C  in time T.  Let 

g(s) be its trajectory. Write x(s) =  <7(s)ei. Then x(s) =  —ex(s) + k (s)x (s) almost 

everywhere on [0, T], It follows that

_  det(x, x) 
det(x, x)
d , j=  — In det g

as

almost everywhere in [0, T). Thus,

T
n{s)ds = In det g(T)  =  In det C. (4.9)

So tha t, if we take f {n)  =  k we see that the cost is the same for any trajectory' 

that joins /  to C.

4.3 M ain  R esu lts
For each p £  R we define the Hamiltonian function

* 0  =  p / ( k )  +  +  * t f 3 ( 0 -

Here, Hi  is the Hamiltonian lift of the left invariant vector fields The H[s 

satisfy a Poisson bracket table isomorphic to Table 4.1. The case where / (k )  =  1 

corresponds to the minimal centroaffine arclength problem. The choice / ( k ) =  ^  

yields the Hamiltonian for the centroaffine elastic problem. We now state the first 

consequence of the Pontryagin maximum principle for our problem.
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P ro p o s it io n  4 .3 . The problem [OCP] has no abnormal extremals.

Proof. Let f(s )  be an abnormal extremal. Then f(s) is an integral curve of H° = 

Hi  -F k (s )H3 for some function «(s). By maximixing the Hamiltonian with re­

spect to k we have the condition H 3(€(s)) =  0. Since £(s) is the integral curve 

of the Hamiltonian vector field H°,  the definition of the Poisson bracket yields 

^ / / 3 (£(s)) =  {H3, = 0. The Poisson bracket table for the Hi, yields

{H3, H 0} = {H3, H X} =  — Hi,  so it follows that H 2(£(s)) =  0. Differentiating 

this constraint along £, we get £ H 2(£(s )) = {H2, i/°} (f(s ))  =  {H2, Hy}(£(s)) +  

k (s ) {H2, H3}(€(s )) = Hi(€(s))  +  k (s )H i (£(s )) = 0 .  But condition (iii) of the max­

imum principle (Theorem 2.24) implies Hi(£(s))  =  0, then i/.j(£(s)) =  0 . Since 

=  ^(s)L , =  0 and all the L f s  form a basis for the space of two by two 

matrices, we must have £(s) =  0, a  contradiction to the Pontryagin maximum 

principle.

□

In [17] Mayer and Myller identified the curves of constant centroaffine curvature 

as the extremals for the variational problem of finding the substantial curve of 

minimal centroaffine arclength, given its initial and terminal position and velocities. 

By using the second variation they were able to show th a t a minimum is not 

possible in the case that e =  —1 or the case that e =  1 and |/c| > 2. As an 

illustration of the power of the optimal control formulation we improve this result.

P ro p o s it io n  4 .4 . The minimal centroaffine arclength problem has no solution.

Proof. Let £(s) be a regular extremal defined on [0, T\  of the problem [OCP] with 

/ ( k )  =  1 . The Hamiltonian function is H  =  —  1 +  H x +  k H 3. T o maximize H  with
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respect to k. it is necessary that H 3( £ ( s ) )  = 0. Upon differentiation:

° = ^ H 3 ( S )  =  { / / 3 , - l  +  ^ l + ^ 3 } ( e ( s ) )

=  - H 2{8),

and similarly 0 =  ^ i / 2 (s) =  H 4( ^ ( s ) )  +  k (s ) H i ( £ (s)). Since we have a free time 

problem H i ( £ ( s ) )  =  1, so that n ( s )  =  —/ / 4 (f(s)). Now,

A  =  ^ H i K W )

=  { — H 4, —  1  +  H i  +  k H 3 } ( £ ( s ))

= -4eHa(f(s)) = 0

and k  must be constant on [0, T]. Let M  =  |ac|. It follows from Lemma 4.2 that 

the projection of an extremal £(s) for [OCP] onto GL(2, R) yields a substantial 

curve x(s) th a t must be an extremal for the variational problem of the centroaffine 

arclength. In particular, if x(s) yields an optimal solution, then it would also be 

an optimal solution of the problem of finding the substantial curve with mini­

mal arclength having the absolute value of the curvature no greater than M  -F 1 . 

Accordingly, f ( . s )  must be a singular extremal of the problem

rTmmlin I ds,
Jo

subject to

^  =  -M 0(s )) +  K(s)L3(g{s)), where |k | <  M  +  1, (4-10)

and <7(0 ) =  /  and g (T ) =  C, for some T  > 0. In particular, if the projection of

£(s) onto G L (2 ,R ) is optimal, then the generalized Legendre-Clebsch condition 

(Theorem 2.25) guarantees that {H3, { / / j ,  Z/3 }}(f(s)) =  — i? j(f(s)) > 0. This

contradicts the fact that Hi(£(s))  =  1  on [0 , T]. □
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Let us consider now the centroaffine elastic problem. It follows from Proposition 

4.3 that this problem has no abnormal extremals. So, it is enough to look at regular 

extremals.

P ro p o s itio n  4.5. Suppose that f(s) is a regular extremal for the centroaffine 

elastic problem. Let k ( s )  be the curvature function th a t generates £(s). Write 

Hi(s) to denote the function Hi(£(s)). Then

(i) the Hamiltonian function is H  = + H\ + kH 3.

(ii) k(s) =  H3 (s), and

and the Poisson bracket relations among the Hi  s. Finally, to get (iv) differentiate

(Hi)

Ts H  
d „  , ,

- H2{s ),

4 eH2 (s).

(iv) An optimal curvature function must satisfy the differential equation

(4.11)

Proof. The first statem ent follows from the fact th a t / (« )  =  y  for the centroaffine 

elastic problem. The second condition of Theorem 2.24 yields /c(s) =  H3(s). The 

equations in (iii) follow from

4-Hi  =  {H u H } ( s ) =  {Hi ,Hi}(s )  +K(s) {Hi ,H3}(s )

(ii) twice to get k  =  —Hi — —H 3Hi + H4 . But the third condition of Theorem 2.24
2 /  v ^

implies Hi(s) — ~ * 2 -. Thus, k  = ^  + H 4. Differentiating once more we obtain

the differential equation (4.11). □
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4 .4  Search ing  for E xtrem als o f  th e  C entroaffine  
E lastic  P ro b lem
Equation (4.11) describes the evolution of the optim al curvature for the centroaffine 

elastic problem. In principle, the graphs of the various types of extremals for the 

centroaffine elastic problem may be obtained by plugging its solutions into the 

Serret-Frenet centroaffine equations. Equation (4.11) is a stationary version of the 

modified KdV partial differential equation. Rather than trying to look for closed 

forms solutions to (4.11) we study the qualitative behaviour of its nonconstant 

solutions by considering it as a second order conservative differential equation 

depending upon param eters. Our results are summarized in Proposition 4.6. For 

the case e =  1 , we use this information to identify all possible types of behaviour for 

the extremal curvature function. Finally, we use a  numerical routine to generate the 

extremal curves for an example that includes all the possible qualitative behaviours 

of the optim al curvature. By writing (4.11) as the first order system

k = I 

I = m  

m  =  (^ac2 — 4e)f,

it is easy to see th a t a  point on phase space is stationary if and only if it lies on 

the a c  axis. These fixed points correspond to constant solutions of (4.11). As noted 

earlier, the centroaffine substantial curves of constant curvature are the extremals 

for the problem of minimizing arclength between two nearby points. To look for 

nonconstant solutions of (4.11), we integrate it once and get

AC3
k  =  — —  4 cac +  D , D  £  R. (4.12)

Since (4.12) is independent of k  it determines a one param eter family of cylindrical 

surfaces in phase space. Therefore, whenever the initial values of k and its first two

47

Reproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



derivatives belong to one of these surfaces, the triplet (/c, k , k) remains in that 

surface. The curves in phase space are completely determined by their projection 

on the kk plane via

k = L (4.13)

L  =
AC

— 4 cac +  D.

Figure (4.1) illustrates some of the phase diagrams in the case e =  1 as the value of 

D changes. The plots were produced using the MATLAB routine pplane5.m [19]. 

We can state  the following

rr

FIGURE 4.1. Phase diagrams for D  =  -£a.  —a,  - f , 0 , %,a, fa .

P ro p o s itio n  4.6. If e =  —1, then for each D,  the system (4.13) has only one fixed 

point of saddle type. If e  =  1 , let a  =  p(—^ / |)  where p(k ) =  ^  -  4 acc, then for 

each D  all the fixed points of (4.13) may be classified as follows:

(i) Whenever |D | <  a,  the system has three fixed points: a center at (kd,0) 

with |acd| < y / | ,  and two saddle points located at

^ f t p  4 -  y / 3 2  3 k 2d  ^

and
 ̂ up y/32 Zk2d ^

4 8
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(ii) For \D\ — a , the system has two fixed points: a cusp point a t (k£>,0) with 

|ko | =  and a saddle point a t (—2 /cd .O).

(iii) Finally, if \D\ > a,  then the system has a unique fixed point of saddle 

type a t (« d ,0 ) with |kd | >  y^f.

Proof. Consider the function

F £(k. L) = L 2  F 4.CK2 — 2Dk . (4.14)
4

Along any trajectory- (k(s ), L(s)) of (4.13), we have

£ ( » ) ) =  0.

Therefore, the level curves of F £ are unions of trajectories of (4.13) on the phase 

plane. Since k = L, the trajectories move from left to right on the upper half of 

the kL plane and on the opposite direction below the k axis.

Let g(n) =  p(tc) +D.  Any fixed point of (4.13) must have the form («,, 0), where 

k. is a root of g. The local phase portrait of the system around a fixed point («:., 0), 

may be obtained by sketching the level curves of F e on a neighborhood of (k,,0). 

Note that the gradient

V F £(k, L) = (- K 3 +  8 € K  -  2D, 2L) = (-2^(/c), 2L).

So the fixed points of the system are precisely the critical points of F c. Observe 

further that F CKK = — 3 k 2 +  8 e ,  F el l  =  2 and F (kL =  0. Define

A £(k.) =  F £kk(k .,0 )F £l l (k .,0) -  F \ l2(k„  0).

When e =  — 1, the fact that g'{k) > 0 guarantees that the system has only one 

fixed point, say at ( k d , 0 ) .  Since we have A £(«d) < 0 , the second derivative test 

shows that it must be a saddle point.
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Assume now that e =  1. Observe that the polynomial p is an odd function. Also, 

the value of A £(«.) is positive for |« .| <  y j §, and negative for |ac. | > y / | .  To see

(i) note that if |Z?| <  a , we have

= a  + D > 0 > - a +  D = g { ^ ) -

Therefore, by the intermediate value theorem g{Kn) =  0 for some |kd | <

Since

9 ( K ) =  ~  k d ) ( k 2  -  k d k  +  k d 2  -  8 ) ,

the quadratic formula yields the other two fixed points. Since \k d \ < \ J §, we have 

F (kk(kd ,0) > 0 and A c(kd) > 0. Thus, F e has a local minimum at (kd,0). The 

points where the gradient vanishes are isolated, so there is a neighbborhood N  of 

(ko, 0) such that every (/c, L) ^  (ac#, 0) in N  has F c(k , L) < F*(k d , 0). By the fact 

that F e has a strict local minimum at (kd .0), the level curve passing through any 

(k , L ) 7  ̂ (kd , 0) in N,  must enclose the point (acd,0). Therefore (/cd,0) must be

a center. Let K\ =  KD+'*~2 3k° and denote the remaining root of g by k2- Since

v /i  and ac2 <  we conclude tha t the other two fixed points must be

saddle points.

To get (ii), observe tha t if D  =  —a  , then g (— ^ / |)  =  0. If D  — a,  the fact that 

p is an odd function implies that <7(^/1) =  So, taking kd = y j § sign D  we have

9 { k )  —  ~  k d ) 2 ( k  +  2k d ) .

Therefore, when \D\ =  a  we have the required fixed points. The second derivative 

test shows that the fixed point at (—2kd ,0) must be of saddle type. Therefore, we 

need only check that we have a cusp point at (*£>,0). Now, if Kp = — y j |  then the 

point («£>, 0) lies on the the level curve F c(k , L) = It is sufficient to show that
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this level curve has a cusp point at (acd, 0). Let

/(k )  =  - ---- 4k2 +  2D k —
4 3

The level curve containing («o,0) must lie along L2 =  / ( a c ) .  Since

f ( K) =  t ( «  — «d )3(« — 3«:p).4

we must have that if D = a,  then /  is nonnegative when k  > k q  or k  < — 3 k d - 

Clearly ( a c £ > ,0 )  belongs to the part of the curve having k  > k d . The result follows

from the fact tha t L  =  ± y / / ( k).

The same type of argument applies when D  =  —a.  However, in this case /  is 

nonnegative when k < kd or k >  —3kq- So, (k£>,0) belongs to the part of the 

curve having k < k q -

To see (iii) let us consider first the case where D > a.  Note that since p(tc) >  —a  

for k > —\J\ ,  we must have g(K.) > 0 for k > —y j | .  Being a cubic polynomial g 

must have at least one real root kd , with kq €  (—oo, — ^ /f )  • Since g'(K) is positive 

on this interval, (kd ,0) must be the only fixed point of (4.13). Using the symmetry 

with respect to the origin of p(«), we see tha t if D  < —a  , the cubic polynomial g 

has only one zero k d , which must lie on (— ^ | ,  oo). Since |acd | > \ J \ ,  the second 

derivative test guarantees that ( k d , 0 ) must be a saddle point.

□

In the case e =  1, Proposition 4.6 leads to the following observations:

(i) For any |ac0| > there are suitable initial conditions ac(0), «(0), k(0) such 

that equation (4.11) has a solution /c(s) converging to k0-

(ii) Initial conditions may be chosen such th a t the solution to (4.11) is periodic.

(iii) Initial conditions may by chosen such th a t a  solution to (4.11) blows up.
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MAPLE’s RKF45 routine was used to generate numerical solutions for (4.11) via a 

fourth order Runge K utta Fehlberg method. Initial conditions were chosen accord­

ing to the preceding criteria. By feeding this solution to the second order equation 

(3.14), and using again the RKF45 routine we obtained graphs for some extremals 

corresponding to some nonconstant solutions of (4.11).

For example, in the case e =  1, choosing k(0) =  0, k(O) =  6 , £(0) =  0, the

solution of (4.11): (i) goes to  — oo for b < —4, (ii) converges to — >/& for b =  —4,

(iii) is periodic whenever 0 <  |6 | <  4, (iv) converges to \ /8  for 6  =  4, and (v) goes 

to oo for 6  > 4. Figure (4.2) illustrates some of the possible extremal trajectories

for values of 6  for each of the cases (i) through (v).

t2 It

■ 12

• •

4 t

' 3

.,o  -2 -12 -«0 -« -4 -4 -2 °

FIGURE 4.2. b=-5, -4, 1,4,5.

\
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Chapter 5. A Problem with Impulses

In this chapter we consider the optim al control problem of minimizing

^ ( r ,  k) = f  ar(s)  +  /3n(s)ds, with fixed a  > 0 and /? >  0, (5-1)
Jo

over the set U. of ordered pairs (r, k) of nonnegative locally bounded measurable 

functions on [0 , oo) subject to

x V T Z x ( 0 ) = x 0, x { S ) = x f , (5.2)

v —exr + kv, u(0) =  u0, v(S) = Vf ,

y W T , y(  0) =  yo, y{S)  =  y/,

w —eyr +  k w ,  w ( 0 )  = w0, w(S)  =  Wf,

t r. t{0 ) = 0 , S  and t ( S ) free,

where x 0wo — v0y0 and x j w j  — v jy f  are both nonzero and have the same sign. 

Here a dot denotes differentiation with respect to s. We show that in the absence 

of chattering controls, extremal trajectories for this problem are concatenations 

of trajectories determined by impulsive controls ( r  =  0 , k = 1 ) and null controls 

(r  =  1 ,  k  =  0). The main tool is the Pontryagin maximum principle along with the 

generalized Legendre-Clebsh condition for singular vector valued controls, a second 

order condition for optimality of singular extremals developed by Krener [12]. 

We also describe the trajectories associated to the null control and the impulsive 

controls for our dynamics and compute their costs.

Problem (5.1)-(5.2) is motivated by the free-terminal time problem of minimiz­

ing

a  +  (3u(t)dt, with fixed a  > 0 and (3 > 0, (5.3)
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over the set 14q of all the nonnegative locally bounded measurable functions u 

defined on [0 , oo) subject to

x'  = v, x(0) =  rr0, x(T)  =  x f , (5.4)

v' — —ex + uv, v(0) = Vq, v(T) = Vf,

y' =  w, 7/(0) =  7/o? y(T)  =  yf ,

w'  =  —ey + uw,  tti(O) =  w0, w{T) = w j ,

where a prime denotes differentiation with respect to t and x 0wo — v0y0 and x /W / — 

v /y j  are both nonzero and have the same sign. Problem (5.3)-(5.4) is related to 

the minimal arclength problem of Chapter 4. The dynamics (5.4) correspond to 

writing the system (4.3) in coordinate form. The cost functional (5.3) reduces to 

the arclength functional in the case tha t a  =  1 and /? =  0. In geometric terms, 

problem (5.3)-(5.4) may be thought of as a variational problem for substantial 

curves under the constraint that the curvature is nonnegative.

The fact tha t no locally bounded measurable control is optim al for the minimal 

centroaffine arclength problem, leads us to search for meaningful optimal control 

problems involving the centroaffine arclength functional. A possibility is to restrict 

the class of admissible controls so tha t the control functions satisfy a uniform 

bound, as in the classical Dubins problem. In such a case the so called bang-bang 

controls guaranteed by the Pontryagin conditions would yield a way to construct 

extremal trajectories. However, since bang-bang trajectories are generated by a 

bounded control, no part of this extremal would be optimal for the general min­

imum arclength problem. At the other extreme one may enlarge the class of ad­

missible controls to allow for impulses. One may suspect then tha t by applying 

an impulsive control we may reach any given point a t no cost. This would render 

the problem as hopelessly uninteresting. But, as we shall see, impulsive controls
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are not cost free, and not every state can be reached by applying an impulse. By 

allowing only nonnegative controls, extremals may include trajectories generated 

by both impulses and bang controls.

controls. Another complication lies in the fact that the Hamiltonian for this prob­

lem is linear in the control. This makes the existence of singular extremals a likely 

possibility. The more general problem (5.1)-(5.2) provides a model for the impul­

sive behaviour of the optimal controls of (5.3)-(5.4). It is posed by applying a time 

reparametrization technique used by Dorroh and Ferreyra to model the action of 

impulsive controls for some singular problems with unbounded controls in one [4] 

and two dimensional [5] Euclidean spaces.

To see th a t problem (5.1)-(5.2) is indeed a generalized version of the problem 

(5.3)-(5.4), let us consider a trajectory (x(t), v(t), y(t), w(t)) of (5.4) generated by a 

control u in Uq. We can write k(t) = u(£)d£. If we introduce a reparametrization

of time, say t  =  t(s) with t > 0 , and denote differentiation with respect to s with 

a dot, then the formula of change of variables for integrals gives

where the prime denotes differentiation with respect to t. Under the reparametriza­

tion, the change of variables formula implies that the cost of this trajectory is

As stated problem (5.3)-(5.4) has no solution, for it leads to impulsive optimal

x vt

V —ext +  k'tv

y wt

w —eyt +  k' iw ,

/  a  +  0/c'(Od5
Jo

f  a i (0+Pk ' ( t ( 0 ) i ( S )dZ ,
Jo
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where S  =  t~l (T). Thus, any admissible trajectory for the problem (5.3)-(5.4)

generated by u is a trajectory of (5.1)-(5.2) for which r  =  1 and k(s) =  k'{t{s)).

In particular, <l>(ii) =  ^ ( L k').

To model jumps in the trajectories of (5.3)-(5.4) due to impulsive controls, we 

can consider any trajectory of (5.1)-(5.2) generated by a pair (r, k ) £ U such that 

7-(.s) =  0 in a nontrivial interval (s1; s2). In this case the components t(s), x(s) and 

y ( s )  of the trajectory of (5.2) remain constant through the interval, but v { s )  and 

w ( s )  can still change according to the equations

v  =  KV,

w  =  KW.

Indeed, if this is the case,

j*s2
v ( s 2) = v { s  i ) e x p ( /  K(Odf) (5.5)

Js\

and

/c(Ode) (5.6)

Since equations (5.5) and (5.6) involve / / 3 k (0 ^ £  they determine the cost of such 

a jump. The following proposition summarizes this discussion.

P rop osition  5.1. If the system (5.4) starts a t the point

and an impulse is applied at time t = 11, then the system jum ps instantaneously 

to a point (xj, v ,  y\ .w),  where the values of v  and w satisfy the following relations:

(i) If Vi and wi are nonzero, then — =  — > 0.
V '  1 1 7 t / j  W l

(ii) If v \  = 0  and ^  0, then v  — 0 and ^  > 0.
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(iii) If Wi =  0 and iq ^  0. then w =  0 and ^  >  0.

The cost of such a jum p is 0  In ^  in the first two cases. In the case that ^  0 

the jum p cost is 0  In

With this understanding of the problem (5.1)-(5.2) we proceed to obtain infor­

mation about its extremals by using the maximum principle. Consider our parame­

ter s and the cost c as state variables by adjoining two equations with corresponding 

initial data

s =  I, s(0) =  0, 

c =  a r  +  3k , c(0) =  0,

to the system (5.2). Define x =  (s , x , v , y , w , t , c ) T so that the extended control 

problem (5.1)-(5.2) is posed as

m in c(S) (5.7)
T.K .Q U

subject to

i  = a0(x) + ai (x)T-t - o .2( x ) k , (5.8)

where

a0(x) = (1 . 0 , 0 , 0 , 0 , 0 , 0 ), 

a t (x) =  (0 , v, — ex, w, — ey, 1 , a),

a 2 (x) =  (0 , 0 , v, 0 , w, 0 , 8).

Write u = (r, k ) , p =  (A, p, 77, tp, p, a, po) and let the Hamiltonian H{x,u ,p)  be 

defined by the dot product:

H ( x , u , p ) =  p(a0(x) +  ai (x ) r  + a2 (x)/c) (5.9)

=  A +  Htt  +  H kk , (5.10)
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where

H k =  tjv + pw + p0/3: (5-11)

H T =  pv  +  ipw — e(rjx + py) + a  + apQ. (5-12)

By the maximum principle there is a nontrivial adjoint vector p(s)  such that its

components satisfy the system

A =  0

p  =  €TJT

Tf = —p r  — KTj

ip =  epr (5.13)

p =  — ipr — Kp

a  =  0 

po = 0 ,

with po{S) <  0. The transversality conditions A(S) =  cr(5) =  0 force A and a  to 

vanish identically on [0, S].

Along an extremal (x(s),p (s)) defined on [0,5] we must have

H(x(s) ,  u(s) ,p(s))  = max{ HT(s)r + H k(s )k} = 0.
T ,K >  0

This equation is satisfied in the following four cases, and no others:

( i )  H r ( s )  <  0, H k ( s ) <  0, t ( s ) =  0, k ( s ) =  0;

( i i )  H t ( s ) <  0, H k ( s ) =  0, t ( s ) =  0, k ( s ) €  (0, oo);

( i i i )  H t ( s ) =  0, H k ( s ) <  0, k ( s )  =  0, r ( s )  €  (0, oo);

( i v )  H r ( s )  =  0, H k ( s ) =  0, r ( s ) ,  k ( s ) €  ( 0 ,  o o ) .
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The first case is not interesting, since it only leads to trivial trajectories. Propo­

sition 5.1 describes the trajectories associated with the second case. In case (iii) 

the value of r(s) is not unique. Since we are interested in extremal trajectories 

of (5.1)-(5.2) which are also trajectories of (5.4) we solve the nonuniqueness by 

taking r(s) =  1. Let us now describe the trajectories associated with case (iii).

P ro p o s it io n  5.2. Suppose th a t a t time s =  s L, system (5.2) has 

(x (s i) ,u (s i) ,y (s 1 ) ,^ (s i) ,< (s1)) =  ( x i , v i , y i , w u ti),

with x\W\ — yiVi 0. Let s2  > si  and apply the controls t  =  1  and k =  0 on the 

interval [s i,s2].

(i) If e =  1, then

x(s) =  x i cos(s — Si) 4- vi sin(s — Si), u(s) =  cos(s — si) — x x sin(s — si),

y(s) =  2/i cos(s — si) + wi sin(s — Si), w(s ) =  wi cos(s — s ^  — yi sin(s — Sj)

on [s i ,s2]- So that x(s) =  (x(s),r/(s)) lies on the ellipse

(y\  -I- w\)x2 -  2(x1t/i + viwi )xy  -I- (x2 +  v2)xf =  {xxwi -  yiVi)2 (5.14)

and x(s) =  (r(s), w(s)) is tangent to the ellipse at x(s).

(ii) If e =  — 1, then on [st , s2],

x(s) =  Xi cosh(s — Si) +  ui sinh(s — si), v(s) = vx cosh(s — si) — xi  sinh(s — si),

y(s ) = 2/i cosh(s — si) +  Wi sinh(s — S j ) ,  w(s) = w\ cosh(s — si) — y\ sinh(s — si).

In this case, x(s) lies on the hyperbola

(w2 -  y \ )x2 +  2{xly l -  v ^ w ^x y  -I- {v\ -  x ^ y 2 = ( n w i  -  j/iUi)2, (5.15)

and x(s) =  (v(s), w(s)) is tangent to the hyperbola at x(s).

For both cases t(s) =  ti +  s — Si. The cost of such a trajectory is a ( s 2 — si).
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Proof. Write x(s) =  (x (s),y (s)). The choice of k =  0 and r  =  1  in system (5.2), 

leads to

x  =  -e x , (5.16)

with x(sO  =  ( xu yi) and x ^ )  =  (vu wi). (5.17)

cos(s — Si) ,
Since the matrix of initial

, xi  ^
Thus, if e =  1 we have x(s) =

' 2/i w i ^sin(s -  Si)

( COS(s — S i )  1
values is invertible, we can solve the last equation for I I . The equation

ysin(s -  s i)y
for the ellipse follows from using the Pythagorean identity. Since cosh(s — Si) and 

sinh(s — Si) form a fundamental set of solutions for (5.16) when e =  — 1, a similar 

argument establishes the second statement. We get the expression t(s) = t i + s  — si 

by solving the initial value problem i =  1 , t(si) =  ti. The cost of this trajectory is 

f** ads = a(s2 -  si). □

The next proposition ensures tha t controls u with values in (0, oo) x (0, oo) are 

not optimal for the problem (5.7)-(5.8) whenever case (iv) holds. To prove this, we 

use Kreners higher order conditions for optimality for vector controls (Theorem 

2.27).

P ro p o s itio n  5.3. Let (x (s ) ,p (s ) ,u(s)) be an extremal defined on [0,5] for the 

optimal control problem (5.7)-(5.8). Let J  = (si ,so) be a subinterval of [0,5]. 

If the control u(s) takes values on the interior of the set [0, oo) x [0, oo) and 

HK(x(s),p(s),u(s))  =  HT(x(s),p(s) ,u(s))  =  0 on the open subinterval J , then 

x(s) is not optimal for (5.7)-(5.8).

Proof. Let

L = pv -f- ipw + e(rjx + py). (5.18)
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Note that using the adjoint and system equations we obtain

(5.19)

d
—  Hr = kL,
ds

(5.20)

and

L  =  n(pv  +  (pw — e(rjx + py )) +  2 er[(T)v +  pw) — (tpy +  px)).  (5.21)

Write u =  (r, k). Suppose p0 = 0. Then r/u +  pw =  0 and pv  +  ipw = e(r]x +  py). 

Since HK vanishes and r  is positive, it follows from (5.19) that L = 0. In other

the adjoint vector is trivial. This is a contradiction.

Thus, without loss of generality we may take p0 = —1 . By hypothesis the ex­

tremal is singular. The degree of singularity of the controls is different from zero 

since the expressions for HT and H K do not depend on the controls. Equation (5.19) 

forces L = 0. It follows from equation (5.21) tha t

words.

pv  + (pw =  —e(rjx -I- py).

Thus, pv  +  ipw =  px  +  py =  0. Moreover, L — 0 implies '2er((py -I- px)  =  0.

Therefore.

Since the matrix is invertible, it follows that p = r] = <p = p = Q. Hence,

0 = L = ock +  2 er[/? — (px  +  yy)]. (5.22)
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Let B  =  P — (fix + ipy). Since + tpy) =  t L  =  0, B  is a constant. Moreover, B

is nonzero since k > 0. This implies that the degrees of singularity of k and r  are 

both 2 because — ZckB  ^  0 and = c u t  ^  0. Now suppose that

x(s) is optimal. It follows from Theorem (2.27) tha t the matrix

—2ckB  2 erB  

—cm olt

is symmetric and nonpositive definite. The eigenvalues of M  are Ai =  0 and A2  =  

q t  — 2 £kB.  However, equation (5.22) yields k = — . Thus, A2 =  >  o.

Contradicting the nonpositivity of the eigenvalues of M.  □

C o ro lla ry  5.4. In the absence of chattering controls an optimal trajectory for 

problem (5.1)-(5.2) is a concatenation of trajectories generated by either an im­

pulsive control ( r  =  0 , k =  1 ) or a null control ( r  =  1 , k =  0 ).
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Chapter 6. Conclusions and Open 
Problems

Variational problems analogous to the Euclidean minimal arclength and the elastic 

energy problem may be defined for the class of centroaffine substantial curves. 

After parametrizing with respect to centroaffine arclength, these problems may be 

posed as optimal control problems over the Lie group GL(2, R). The coordinate 

free formulation of the Pontryagin maximum principle provides an elegant way to 

obtain information about the optimizing control functions. We showed that the 

minimal centroaffine arclength problem has no solution in the class of substantial 

curves, by using the generalized Legendre-Clebsch condition. For the centroaffine 

elastica problem, the maximum principle leads to a differential equation describing 

the evolution of an optimizing control. The study of this nonlinear equation via 

phase space analysis provides the qualitative behaviour of the possible nonconstant 

extremal controls. Numerical solutions for the optimal control may be obtained, 

by studying the phase portraits. Plugging in this numerical solution for the control 

into the state equations, some extremal trajectories can be constructed numerically. 

A description of the optimal synthesis and the location of conjugate points remains 

an open question.

The fact that no locally bounded control is optimal for the minimal centroaffine 

arclength problem, leads us to search for meaningful optimal control problems in­

volving the centroaffine arclength functional. Problem (5.3)-(5.4) is related to the 

minimum centroaffine arclength problem under the constraint that the centroaffine 

curvature is positive and leads to impulsive controls. Problem (5.1)-(5.2) is a more 

general problem which models the action of the impulsive controls. We show that 

in the absence of chattering controls, extremal trajectories for problem (5.1)-(5.2)
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are concatenations of trajectories determined by impulsive controls ( r  =  0 , k = 1 ) 

and null controls ( r  =  1 ,/e =  0 ). The main tool is the generalized Legendre- 

Clebsh condition for singular vector valued controls, a second order condition for 

optimality of singular extremals developed by Krener [12]. VVe also describe the 

trajectories associated to the null control and the impulsive controls for our dy­

namics and compute their costs. Obtaining the optimal synthesis for this problems 

remains an open problem.
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