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ABSTRACT

A dynamic water control, dubbed Downhole Water Sink (DWS) technology, is a 

well completion technique for production of hydrocarbons from reservoirs with bottom 

aquifer causing water coning. Typically, a DWS well is dually completed with top 

completion designated mostly for hydrocarbon production and bottom completion used 

for water drainage and coning control. Positions and flow rates of the completions are 

the DWS performance parameters to be determined by a process designer.

This dissertation presents a theoretical and experimental study of DWS 

performance for various reservoir conditions and production schedules. A new 

mathematical model, developed in this work calculates steady state pressure distribution 

around DWS well under two-phase inflow conditions, i.e. producing oil and water at the 

top and bottom completions.

Based upon the model, computational techniques have been developed for 

prediction of production rates of water and oil, calculation of water cone profile, and 

performance comparison of DWS with conventional single completions. The theoretical 

results show how to find a unique relationship between three performance variables of 

DWS: liquid rates at the top and bottom completions, and the total water production. 

The results also show DWS performance limit resulting from pressure interference 

between the two completions.

Experimental part of the work has been performed with a tabletop Hele-Shaw 

model. The model was calibrated and theoretically scaled-up so that the results from 

this model could be transformed to the radial flow systems. Preliminary experiments 

provided qualitative insight of the water coning reversal mechanism for conventional

vii
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and DWS completions. Also, more detailed studies demonstrated the similarity in water 

production control with DWS in the linear and radial flow systems. Also demonstrated 

in this study was a minimum 30% increase in oil recovery with DWS in comparison to 

conventional completions.

Also presented in this work is a mathematical model of DWS well at early 

time of production when oil and water is in transient and time-dependent. The new 

Moving Spherical Sink Transient Model (MSSTM) and the MSSTM computer program 

was qualitatively validated by comparing with results from a numerical simulator 

software of DWS system.

viii
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CHAPTER 1 

INTRODUCTION

The oil industry’s desire to accelerate the rate of hydrocarbon production is 

limited by the “critical” flow rate. If  oil production rate is above this critical value, 

water breakthrough occurs. After the breakthrough, the water phase may dominate the 

total production rate to the extent that further operation of the well becomes 

uneconomical and the well must be shut-in. In the oil industry, this phenomenon is 

referred to as coning.

Until recently, several technologies have been used by industry to fight water 

breakthrough to oil perforations due to coning. These methods include: perforating as far 

from the initial water-oil contact (WOC) as possible; keeping production rates below the 

critical value, and creating a low- or no-permeable zone above WOC by injecting resins, 

polymers or gels. However, all these conventional methods did not solve the water 

breakthrough problem.

It is usually uneconomical to keep production rate in a well below the critical 

rate. Benefits created by the low-permeable zone are temporary and not always 

successful. In some cases after this treatment, the well could produce neither oil nor 

water.

Perforating far above the WOC reduces the length of the perforations and, thus, 

increases the pressure drawdown around the well. This reduction o f pressure in the 

vicinity of the wellbore diminishes, if  not completely overcomes the positive effect of 

the increased distance from the aquifer. Thus, determination of the length of the 

completed interval is an optimization problem, related to the reservoir’s geometry and

1
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2

properties. A well performance depends upon the geometrical parameters of the 

reservoir, such as thickness of the oil and water zones. Thus, it is impossible to assure 

the optimal performance of the well while oil is being produced due to the constant 

changes of thickness in the oil and water zones.

Since premature water production due to water coning reduces the oil recovery 

and shortens the production life of oil wells, coning phenomenon and different 

approaches to reduce its negative effect have become topics of special interest in 

Petroleum Engineering technical literature. LSU Petroleum Engineering department 

published results of the first theoretical studies of DWS in 1991-1994. In 1995 the first 

field trial of the DWS completion was successful and received Special Meritorious 

Award for technical innovation. Texaco was the first major oil company got interested in 

application o f the technology and signed a cooperative agreement with LSU for its 

development in 1997. To date, nine oil companies participated in the Downhole Water 

Sink Initiative that was organized on the basis of the cooperative agreement with 

Texaco. The members of the Initiative are Baker-Hughes, Chevron, Mobile, Pan 

Canadian Petroleum Ltd., Pennzoil, Texaco, Sonat, and UNOCAL.
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CHAPTER 2

WATER CONING: PROBLEMS AND SOLUTIONS -  LITERATUR REVIEW

A statement made by Joshi (1991) - “Presently, no simple analytical solution 

exists to calculate post-water breakthrough behavior of a vertical well,” can make an 

epigraph to the literature review on the description of coning phenomenon. Only a few 

analytical models that used complicated coefficient, which must be read from graphs, 

are valid after water breakthrough. For example, the water-coning model, developed by 

Petraru (1997), employs a formal concept of “coning radius” and a graph of 

dimensionless flow rate versus dimensionless time. Parker (1977), and Byrne and 

Morse (1973a) developed set of curves where WOR is presented as a function of well 

penetration, horizontal-to-vertical permeability ratio and viscosity ratio. That is why 

most descriptions of post-breakthrough relations are based on numerical or 

experimental study.

2.1 Description of Water Coning 

2.1.1. Analytical Studies

Muskat and Wyckoff (1935) were the first to develop a theory of water coning 

in oil production. Muskat (1946) showed the way to determine the shape of water cones 

for various pressure drops and the critical pressure drop at the onset of water coning as a 

function of well penetration and oil-zone thickness for homogeneous sand formations. 

The pressure gradient controls the rate of oil production and the entry of water into the 

well. Muskat (1946) concluded that it is impossible to eliminate water coning when 

producing from a thin oil zone unless the production rate of the well is reduced to 

extremely low values or the well penetration is significantly decreased.

3
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Arthur (1944) extended the preceding theory to include simultaneous water and 

gas coning. In non-homogeneous sand, he found that coning might be restricted by 

small lenses of relatively low permeability directly below the bottom of the well. 

Richardson and Blackwell (1971) analyzed coning problems by assuming that one force 

(viscous, gravitational, or capillary) and one-dimensional flow are involved in the rate- 

limiting step, even though the flow is three-dimensional. By using such simplified 

assumptions, they developed a procedure to determine if the injection of a fluid into a 

well can reduce coning for a variety of coning problems. Boumazel and Jeanson (1971), 

and Kuo and DesBrisay (1983) have also developed analytical relations for coning 

evaluation based on physical and numerical modeling. Kuo and DesBrisay introduced 

dimensionless time of breakthrough and dimensionless water cut to describe the general 

form of post-breakthrough behavior of a partially penetrating well. These numerical 

results indicate that for a given reservoir geometry and properties there is a unique 

relationship between water cut and the value of oil recovery. Chappelear and Hirasaki 

(1976) derived a coning model by assuming vertical equilibrium and segregated flow 

for symmetric, homogeneous, anisotropic radial systems.

Chaperon (1986) theoretically estimated the water coning critical flow rates for 

vertical and horizontal wells. The critical flow rate increases with a decrease of vertical 

permeability in vertical wells. Horizontal wells may allow higher critical flow rates than 

vertical wells and would have the advantage of higher production rates. Nevertheless, 

we have to point out that once water breakthrough into a horizontal well occurs, it 

reduces production of the well dramatically, because a big part of the completion is cut

off by the water cresting into the middle part of the completion.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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2.1.2 Experimental Studies

Henley, Owens, and Craig (1961) conducted the first scaled-model laboratory 

experiments to study oil recovery by bottom water drive. They investigated the effects 

of well spacing, fluid mobilities, rate of production, capillary and gravity forces, well 

penetration and well completion techniques on the oil recovery performance in 

unconsolidated sand pack models with permeability ranging from 0.030 to 0.250 mD. 

To obtain a wide range for the dimensionless scaling parameters, they used two 

different physical models. Various oil and water solutions were used to obtain the 

combination of fluid properties to represent a practical range for field situations. Their 

results indicated that the ultimate sweep efficiency or the oil recovery did not vary 

significantly with well penetration. The results also indicated that gravity effects could 

have a major influence on sweep efficiency, while the capillary forces did not have any 

significant effect over the range of conditions considered. An impermeable pancake 

barrier at the bottom of the well moderately increased the oil recovery efficiency even at 

high Water-Oil Ratios (WOR).

Caudle and Silberberg (1965) suggested that for designing and operating scaled 

models for reservoirs with natural water drive, it is important to consider the resistance 

to flow in the aquifer and its effect on the movement of water into the oil bearing zone. 

They concluded that this is particularly true for high unfavorable mobility ratios and 

high production rates.

Smith and Pirson (1963) were the first to make an experimental investigation to 

develop a method to control water coning by injecting oil at a point below the 

producing interval. They found that the WOR was reduced by fluid injection and also
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concluded that the reduction was improved if the injected fluid was more viscous than 

the reservoir oil. For a given oil production rate, the optimum point of fluid injection 

was the point closest to the bottom of the producing interval that does not interfere with 

the oil production. For higher oil production rates, the point of injection was at lower 

positions for maximum efficiency in water coning suppression. No advantage resulted 

from initiating fluid injection prior to the water coning development. According to their 

study, a zone of low permeability in the vicinity of the injection point also improves 

WOR in the production completion. Under test conditions, little benefit was derived 

from the use of impermeable barriers or cement “pancakes.”

Karp, Lowe, and Marusov (1962) considered several factors involved in 

creating, designing and locating horizontal barriers for controlling water coning. The 

essential elements, which they considered for the design of a cement barrier, were the 

radius, thickness, vertical position and permeability. They constructed an experimental 

apparatus and conducted experiments to test the suitability of various materials as 

impermeable barriers. Their experiments result in the conclusion that reservoirs 

containing high-density or high-viscosity crude oils or having very low permeability or 

a small oil-zone thickness are poor candidates for the barrier treatment.

Sobocinski and Cornelius (1965) developed a correlation to predict the 

breakthrough time for water coning phenomenon. To generalize the applicability of 

their correlation, they expressed time and cone height in dimensionless groups based on 

scaling factors considered important for cone development. These factors were oil 

viscosity, WOR, density difference, oil-zone thickness, porosity, oil flow rate, and oil 

formation volume factor.
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Khan (1970) and Khan and Caudle (1969) studied water encroachment in a 

three-dimensional scaled laboratory model. The model contained a porous sand pack. 

Analog or modeling fluids represented thin oil and water sand layers. The results of the 

experiments indicated that mobility ratio had a significant influence on the value of 

WOR and the severity of water coning problem at a given total production rate. 

Regarding the shape of the cone, it was found that for mobility ratios less than unity, the 

water cones have relatively lower profiles and greater radial spread, while for higher 

mobility ratios, the water cone experiences an initial rapid rise followed by a radial 

spread.

Mungan (1979) conducted a laboratory study of water coning in a layered model 

when fluid saturation was tracked as a function of time and location. The seventy 

micro-resistivety probes used to measure water saturation were inserted in the pie

shaped test bed of sand having permeability of 0.14 and 7.28 Darcy. He studied the 

effect of oil viscosity and production rate on the behavior of the water cone. Some 

experiments were conducted to examine the effect of heterogeneity in the test bed, and 

the effect of injection of a polymer slug (10% pore volume) at the oil-water contact 

before water injection. Two different sand packs were used; a homogeneous one and 

one which contained two horizontal, low-permeability layers. The layers had 50-times 

lower permeability than the rest of the matrix bulk. It was found that the layered model 

resulted in lower oil recovery and higher water-oil ratio. Stratification appeared to be 

detrimental to oil recovery in a coning situation, even when the oil viscosity was 13 cP. 

Observations during the course of the experiment showed that in the two low 

permeability layers, the water saturation was higher than in the adjacent matrix. It was
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suggested that this variation in saturation be caused by imbibition o f water into the low 

permeability layers. It was also found that high oil viscosity or a high production rate 

led to lower recovery and higher water-oil ratios for the same amount of water injection. 

Injection of a slag of polymer solution at the water-oil contact delayed development of 

the water cone and resulted in a more efficient oil recovery.

2.1.3 Computer Simulation Studies

Several computer simulation studies of the coning phenomenon are available in 

the published literature. It is not the objective here to review all of the available papers 

in the field, but to briefly explain the progress made in the simulation of coning 

problems. Black Oil Numerical simulator of IMPES (Implicit Pressure Explicit 

Saturation) type, widely used for reservoir problems, were not found to be suitable for 

coning simulations. This arises primarily from the small size of the blocks immediately 

around the well bore, as a result of which, fluid pass-through over one time step in one 

of these blocks may be several times the block pore volume, as was shown by Alikhan 

and Farouq Ali (1985). Initial attempts to simulate coning problems were therefore 

restricted to using very small time steps.

MacDonald and Coats (1970) improved upon the small time step restriction of 

coning problems by making the production and transmissibility terms implicit. They 

were able to use time steps 16 times larger than those used for IMPES models. 

Letkeman and Ridings (1970) presented a numerical coning model based on implicit 

transmissibilities, and simple techniques of linear interpolation. They were able to 

obtain time step sizes of 100 to 1000 times larger than those previously possible by 

IMPES simulators. However, as simulation models evolved and implicit formulations
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became common practice, coning simulations became less difficult to handle. 

Weinstein, Chappellear, and Nolen (1986) presented the results of a comparative 

solutions project where eleven commercially available models were used to solve a 

three-phase coning problem that can be described in a radial cross-section with one 

central producing well.

It was found that over-all results from all the eleven models were in fairly good 

agreement.

A number of researchers have conducted sensitivity studies to delineate the 

relative importance of various parameters in coning situations. Mungan (1975) 

published experimental and numerical modeling studies of water coning into an oil- 

producing well under two-phase, immiscible and incompressible flow conditions. 

Results obtained with the numerical coning model indicated that oil recovery is higher 

and WOR is lower when the production rate, well penetration, vertical permeability and 

well spacing are decreased or when the horizontal permeability and the ratio of gravity 

to viscous forces are increased. When the ratio of vertical to horizontal permeability is 

greater than one, closer well spacing would be required for better oil recovery. Higher 

vertical permeability reduces the oil recovery due to severe coning and trapping of oil 

while the opposite holds true for horizontal permeability. In an isotropic medium, oil 

recovery increases with permeability at any WOR. In a non-homogeneous medium with 

ky/kh = 11/60, Mungan studied the effect of a high permeability layer on oil recovery 

and WOR. Most efficient oil recovery occurred when the high permeability layer was 

located away from the oil-water contact and near the top o f the oil zone.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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Byme and Morse (1973) showed that water breakthrough time decreased and 

WOR increased significantly as the production rate increased but, the ultimate recovery 

was not dependent on production rate. In addition, increase in well penetration depth 

reduced the water-free oil production. There was no significant effect o f well bore 

radius on WOR and water breakthrough time. Capillary pressure effect was not 

considered important in their simulation study.

Blades and Stright (1975) performed a numerical simulation study for the water 

coning behavior of undersaturated, high viscosity (up to 60 cP) crude oil reservoirs with 

strong bottom water drive. Based on results of 45 simulation runs performed, they 

developed a set of type curves (defined by oil zone thickness and oil viscosity) to 

predict coning behavior and ultimate recovery in specific reservoirs. To get suitable 

history match coning behavior in heavy oil reservoirs, which have significant oil-water 

transition zone thickness, Blades and Strihgt included capillary pressure in their model. 

They also conducted a sensitivity study to determine the effect of relative permeability, 

horizontal permeability, anisotropy, skin effect, capillary pressure, and oil viscosity on 

WOR. They concluded that an increase in horizontal permeability resulted in lower 

WOR. Oil viscosity was found to have a large effect on WOR. Presence of lower 

permeability layers in a reservoir reduced the WOR by retarding the water cone 

development, thereby making the homogeneous predictions somewhat conservative. 

Horizontal permeability and oil-water capillary pressure were the adjusted parameters 

for history matching well data.

Abougoush (1979) obtained correlation from the results of a sensitivity study for 

typical Lloydminster heavy oil pools (viscosity from 157 to 524 cP) where water coning
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is a frequent problem. He reported that the correlation, which combines the important 

parameters into dimensionless groups, could be derived for the heavy oil cases in a way 

that a single curve is adequate to define the WOR behavior. Oil production was found to 

decline rapidly and stabilize at a fraction of the initial productivity; the stabilized value 

was not sensitive to the oil zone thickness.

Castaneda (1982) conducted a numerical simulation study to investigate water 

movement into heavy oil reservoirs with the specific goal of developing operational 

guidelines to maximum oil recovery. His conclusions were similar to those of Mungan 

(1975). In addition, he reported that the aquifer thickness had very little effect on the 

production characteristics of the formation and that decreasing the permeability 

anisotropy (kv/kh) resulted in increasing the oil recovery.

2.1.4 Field Studies

Although coning is a problem in many field situations, there is a shortage of 

field data on coning, Blades and Stright (1975) have presented limited data for a heavy 

oil reservoir in southeastern Alberta where coning is a serious problem. They presented 

the performance history of two wells in the Hays Lower Mannville pool. The data were 

valuable in determining the economic limits of production and verifying a numerical 

model, which then could be used for predicting performance of other wells. No attempt 

was made to control coning in the wells for which the data were presented. Elkins 

(1959) used an electrical network analog model to interpret the observations in a field 

with no shale barriers to vertical flow and discussed an unconventional water flooding 

method to improve the natural bottom water drive.
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Farquharson (1985) presented experience from the Eye-hill field thermal project 

of Murphy Oil Company, in the Lloydminster area of Saskatchewan. Without giving 

many details, they stated that the combustion process used to recover oil in this field 

was expected to play some role in impeding water coning. Probably, the authors 

expected the increased temperature in-situ to reduce oil viscosity and consequently the 

pressure drawdown, which causes coning.

2.2 Coning Suppression Techniques

Beside numerous descriptions and studies of the coning phenomenon some 

works were aimed to develop techniques to reduce negative effect of the coning on 

production performance. We sorted these techniques into three groups. The first one 

includes methods applicable to single, conventional completions. In the second group 

techniques using offset well are included. And the last but not the least one is the group 

that includes methods using dual completions.

2.2.1 Single, Conventional, Completion

According to Alikhan and Farouq Ali (1985) in the mid-eighties, the techniques 

for controlling the water production or water coning suppression basically involved 

either creation of barriers to water up-flow, modification o f the mobility ratio or use of 

horizontal wells to increase the production critical rate.

The creation of a flow barrier involves horizontal fracturing at the water-oil 

contact and filling the fracture with cement. This technique increases the breakthrough 

time. The value of the breakthrough delay depends upon the lateral extension of the 

barrier and well drainage area. Pirson and Mehta (1967) after performing numerical 

experiments concluded that an impermeable pancake does not provide absolute remedy
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to the water-coning problem and can suppress a water cone only up to a certain time in 

the production history. Once the radius of the water cone becomes greater than the 

radius of the barrier, water overpasses the latter and breakthrough into the oil 

completion occurs. The technique is applicable only for shallow completions where it is 

possible to create a horizontal fracture.

Mobility control involves the use of chemical additives such as surfactants and 

polymers or other gelling agents in the water phase. Mungan (1979), Paul and Stroem 

(1998), and Zaitoun and Kohler (1989) proposed to inject water-soluble polymeric gels 

to control the bottom water mobility. For the same purpose, Islam and Farouq Ali 

(1987) suggested use of emulsions. One year later, in 1988 the same authors discussed 

use of surfactant and foams to control developing of a water cone.

Cram and Redford (1977), and Racz (1985) have considered in-situ low 

temperature oxidation as a possible method for blocking the upward flow of bottom 

water; but, a practical way of implementation is not yet available. A more promising 

technique for the control of bottom water mobility getting wide attention after 

publications of Saxman (1984) and Costeron et al. (1990) is to use bacteria either for in- 

situ permeability blockage or as a biosurfactant to mobilize the oil. Further research is 

required before the biological methods would become economical.

Pollock and Shelton (1971) patented a method to reduce water coning by gas 

injection. Their strategy involves injection of a pure gas or gas mixture having a 

substantially higher solubility in oil than in water. Under these conditions, higher gas 

saturation is created at the Water Oil Contact (WOC) thereby decreasing the relative 

permeability to water with resulting decrease in the water production rates.
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Use of horizontal wells became a popular completion technique to suppress 

water coning. But relative advantage of horizontal wells will decrease with increased 

kh/ky, as Butler (1989) showed. If the permeability along the length of the well is 

variable, it may cause a problem with horizontal wells that water would be produced 

prematurely from a high-permeability section and this may spoil the performance as a 

whole. To date, this potential problem does not have any solution in wells completed as 

an open hole or with a liner. In principle, an entire row of vertical wells can be replaced 

by a single horizontal well, which results in real loss of flexibility and control.

2.2.2 Well-to-Well Injection

Luhiting and Ronaghan (1988) patented a method, for water coning suppression 

through injection of a non-condensable gas at the injection well while the production 

well is simultaneously produced. Idea behind this method is similar to the one proposed 

by Pollock and Shelton (1971). The injected gas is more soluble in oil than in water. 

That is why, as a result of the injecting, the gas establishes communication with the 

production well along the oil-water interface. The layer along the interface, having 

relatively higher gas saturation, establishes a gas “blanket” suppressing the water 

production.

Kisman et al (1991 and 1992) patented two techniques for reducing water 

coning in oil reservoir. The methods involve injection of a small slug of carrier oil 

containing a water-wetting agent together with a relatively large slug of non- 

condensable gas. The injection is carried out in a well offset to a producing well while it 

is on production. The slug of a water-wetting agent ensures the main path of the
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following gas slag through the water zone where it would increased gas saturation area. 

Thus relative permeability to water would be reduced.

Reduction of permeability to water does not prevent water breakthrough but 

only delays it and reduces water cut in the produced fluid.

2.2.3 Dual Completion

Smith and Pirson (1963), and Hoyt (1974) suggested a method to delay water 

coning by injecting part of the produced fluid into formation below the production 

completions. The re-circulation of the produced hydrocarbons (“Hydraulic Doublet”) 

provides a pressure gradient barrier to delay coning. Pirson and Mehta (1967) 

discovered that the Doublets are most efficient when ratio of injected to produced oil is 

equal to 0.3. This method was not applied in the field due to the low economical 

parameters of the process: at later stages of production more and more produced 

hydrocarbons should be re-injected to prevent water breakthrough.

Fisher, Letkeman, and Tetreau (1970) made, probably, the first attempt of DWS 

evaluation. They used a numerical simulator to conclude that dual completions can 

reduce the effect of coning and in some cases eliminate them entirely. Castaneds (1982) 

checked the applicability of this idea to the heavy oil reservoirs. Even though, Cramer 

(1983) patented a method and apparatus to pump fluids from borehole, no field 

application of this water cut reduction method has been published.

Pirson and Mehta (1967) discovered that selective production of water and oil 

from their respective zones presently dubbed as Downhole Water Sink (DWS) may 

reduce cone growth, but would give the same water oil ratios at all times. Swisher and 

Wojtanowicz (1995a, 1995b) reported results of the first field application of DWS in
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Nebo Hemphill field. The production rate of the well completed with DWS was 30% 

higher than of a typical well. Water cut after two years of production was 0.1% 

compared to 92% for a typical well in the field.

In summary, the available literature shows that water production control in 

reservoirs with bottom aquifers is difficult and some of the mobility control and barrier 

methods are only marginally effective. It is also evident from the literature survey that 

although considerable effort has been made to understand the coning phenomenon, 

there are not many reliable methods to prevent water coning in field situations. The 

survey also indicates that very little work has been done to study the methods to delay 

or suppress water coning.
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CHAPTER 3

DOWNHOLE WATER SINK TECHNOLOGY

3.1 Principles of Downhole Water Sink (DWS) Technology

The interest of the oil industry returned to the DWS technology after 

Wojtanowicz and Bassiouni (1991) proposed completion with “tailpipe water sink.” 

This technology requires that an oil well be drilled through the oil-bearing zone to the 

underlying aquifer. Then, the well is dually completed both in the oil and water zones. A 

packer separates the oil and water perforations. Dining production, oil flows into the 

conventional completion while water drains from below the initial WOC. As a result, the 

produced oil is water free. Wojtanowicz and Xu (1994) used an analytical model to 

show that water drainage keeps the water-oil interface (WOI) below the oil perforations 

and prevents water breakthrough. Their model was based upon the substitution of the oil 

and water completions with spherical sinks. The theory behind this new completion 

method is relatively simple. Since water cones upward due to the pressure drop caused 

by oil production, an equal pressure drop in the water zone will keep the water from 

rising.

The water drained through the sink can be pumped to the surface or reinjected 

either into the same aquifer or into a different zone. These two methods of handling 

drained water distinguish the two ways of using DWS that are defined as Drainage- 

Production and Drainage-Injection technologies. In these completion methods, an oil 

well is drilled through the oil-bearing zone, to the underlying aquifer. Then, the well is 

dual-completed both in the oil zone (above the Oil-Water Contact, OWC) for oil 

production and below OWC for water drainage. The downhole installation includes a

17
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submersible pump that is packed-off inside the well and placed below the drainage 

perforations. During production, oil flows into the conventional completion while the 

submersible pump drains the formation water from under the OWC. In case of 

Drainage-Production application the water is being pumped to the surface. For 

Drainage-Injection application the well has an additional completion in the zone of 

injection, thus the pump takes the water from the water-drainage completion and injects 

it down the well and into the injection zone.

Moreover, depending on the relative rates of oil production and water drainage, 

three different types o f fluid inflow can be achieved:

• segregated inflow, when oil flows toward the top completion and water to the 

bottom one;

• clean-water sink, which represents the case of controlled water breakthrough when 

oil is produced only through the top completion but water gets into both of them;

• reversed coning presenting the situation of controlled oil breakthrough.

Figure 3.1.1 presents a generalized relation between different DWS implementations as 

a structural chart.

T O P :  O i l

B O T T O  M : W  a t e r  &  O  II B O T T O M  : W  a t e r B O T T O M  : W  a t e r

S E G R E G A T E D  I N F L O W

D WS  T E C H N O L O G Y

R E V E R S E D  C O N I N G C L E A N - W A T E R  S I NK

D R A I N A G E  I N J E C T I O ND R A I N A G E  P R O D U C T I O N

Fig. 3.1.1 Downhole Water Sink (DWS) technology structure.
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Despite the simplicity of this new completion idea, its design and application in 

the field present a real challenge to the engineer. This is due to the relatively large 

number of parameters that must be considered, such as the length and position of the 

perforated intervals in the oil and water zones, and the production rates of oil and water. 

These facts substantiate the need for a customized design for each particular case and 

the necessity of a special model describing the water coning phenomena.

3.2 Current Design of DWS Completions

Design of a well completion with DWS for the alternatives shown in Figure

3.1.1 is based on the shape o f the dynamic Water-Oil Interface (WOI) under steady 

state conditions. The WOI (water cone profile) can be predicted if the pressure 

distribution around a partially penetrating well is known. Shirman (1996) developed the 

Moving Spherical Sink Method (MSSM) and the Expanded Method of Images (EMI) to 

predict pressure distribution around wells with limited entry to flow in multilayered 

reservoirs. From the WOI, breakthrough conditions are determined both for the oil and 

water completions. Finally, an inflow performance window is developed, which 

determines the range of oil production and water drainage to ensure stable WOI, 

(segregated inflow conditions). Figure 3.2.1 displays an example o f the inflow 

performance window. There are two lines on the inflow performance window. The 

topmost one presents water drainage critical rates for different oil production rates. 

Thus its intercept with y-axis the critical rate for the bottom completions of DWS. The 

lowest line presents critical oil rates for different rates of water drainage. Thus, the 

intercept of this line with the x-axis gives the value of critical rate of the top completion 

if it were completed as a single, conventional well, without the DWS.
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Fig. 3.2.1 Three regions of DWS system shown as areas in the inflow performance 
window.

There is an area of segregated inflow between the two lines. The lines merge at 

the Two-phase Flow Point that means that outside the Segregated Inflow Envelope one 

of the completions will produce both oil and water. Beyond the Two-phase Flow Point 

the reversed cone areas is separated from the clean-water sink area by a Flip-flop line. 

3.3 Shortcomings of Current Design

Swisher and Wojtanowicz (1995) reported an example of DWS field 

application, which confirms that wells with DWS are able to work outside the 

segregated inflow envelope yielding oil production rates higher than the rate at the flip- 

flop point. However, to date, no design procedures have been developed for these 

operating conditions. The design procedure, to date, only predicts shape o f the 

segregated inflow envelope. The area above this envelope and the flip-flop line is 

qualitatively described as reversed cone or oil-breakthrough zone. Area below the
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segregated inflow envelop and the flip-flop line describes the clean-water sink or water- 

breakthrough zone. Thus, to make the design procedure complete, it is necessary:

1. to expand the procedure of production description outside o f the segregated 

inflow window;

2. to be able to predict changes of the inflow performance window in time due 

to the pressure transient behavior.

To ensure wide implementation of the new completion technology, it is also 

important to extend MSSM for the following cases of special interest:

1. effect of water re-injection into the same aquifer (water looping) and 

complications due to leaks between draining and injecting perforations 

along the well casing;

2. water cone suppression in conventional wells and wells with DWS.
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CHAPTER 4

OBJECTIVES OF THIS WORK

The main challenge of this work was to develop a DWS design method, which 

would be valid for all the production regimes, including post-breakthrough (two-phase 

flow) conditions. Accomplishing this formidable task required learning more about 

different ways DWS may operate and better understanding the DWS performance, 

particularly in comparison to conventional completions. Our approach was both 

analytical and experimental. Following is the short list of the objectives deemed 

necessary to develop a DWS design methodology.

1. Factors effecting segregated inflow DWS completions

1.1 DWS drainage-injection system with water looping (injection in the same

aquifer);

1.2 Imperfection of well integrity -- leaking between drainage and injection 

perforations;

2. Mechanism of cone development and reversal in conventional and DWS

completions -  theoretical and experimental studies;

3. Mathematical model of well inflow after breakthrough, i.e. two-phase inflow model;

4. Mathematical model of DWS under transient inflow conditions (MSSTM

software);

5. Procedure for prediction of steady state DWS production performance;

6. Build physical model and develop method for analysis;

6.1 Design and fabrication of DWS Hele-Shaw analog;

6.2 Mathematical model of flow in DWS Hele-Shaw analog;

22
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6.3 Transformation from DWS analog to radial flow systems;

7. Experimentally compare performance of DWS and conventional completion

7.1 Water cut reduction performance;

7.2 Oil recovery increase performance.
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CHAPTER 5

PHYSICAL MODEL OF DWS COMPLETION

Water coning behavior and post-water-breakthrough well performance have 

been extensively studied with various types of experimental models. Chierici, Ciucci, 

and Pizzi (1964) used a flat potentiometric model. Leverett, Lewis, and True (1941) 

performed their experiments using a cylindrical sand pack while Caudle and Silberberg 

(1965), VanDaalen and VanDomselaar (1972) and Hawtom (1960) prefer to 

experiment on the thin rectangular sand packs.

Pie-shaped models have also been very popular in hydraulic modeling of cone 

behavior. Matthews and Lefkovits (1956), Bobek and Bill (1961), Henley, Owens, and 

Crig (1961), Sobocinski and Cornelius (1965), Boumazel and Jeanson (1971), Khan 

(1970), Khan and Caudle (1969), Stephens, Moore, and Caudle (1963), and Mungan 

(1975) -all performed their experiments on the pie-shape models. Rectangular flat 

models without any porous media, Hele-Shaw models were used in the experiments of 

Meyer and Searcy (1956), Schols (1972), Butler and Stephens (1981), Butler and Jiang 

(1996), Greenkom, et al (1964).

5.1 Selecting a Type of Physical Model

Of the above-mentioned variety of experimental models the cylindrical and pie

shaped sand packs resemble the best geometry a real reservoir. However, they provide 

poor visibility of the cone phenomenon. These models should also be cleaned after each 

experimental run to return it to the initial conditions. Rectangular sand packs provide 

better visibility than the previous two models, but have the same problem of frequent 

cleaning. Moreover, they distort the paten; their flow in is primarily linear.

24
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The Hele-Shaw model is not packed giving the best visibility of all above 

mentioned set-ups. Also, it returns to the initial conditions without any need of 

cleaning. Its main drawback, however, is high conductivity, very small capillary 

pressure linearity of flow and absence o f wettability effects (fractional flow).Some of 

these problems can be overcome through transformation procedures, shown in the 

following sections.

The main goal of our experimental studies was visual observation of the cone 

phenomena in conventional wells and wells with DWS. To get the best quality of 

visualization and high repeatability o f the experiments, I chose the Hele-Shaw 

transparent-plain parallel-plate cell as an experimental model. In principle, if the flow 

in this model is laminar and mostly two-dimensional, it is similar to the flow in a linear 

porous medium. I could not find any information concerning the principles o f the 

model design in the relevant papers. To ensure that the model will be working properly,

I performed the following design analysis.

5.2 Analysis of a Hele-Shaw Model Design

For the sake of simplicity, I assumed that the reservoir to be modeled 

completely penetrated (100% penetrating well.) In the Hele-Shaw model this situation 

is represented by linear flow. The pressure drawdown for linear flow is described by the 

following equation:

Ap = 887.3^-4 (5-2.1)k A

According to Greenkom (1964), equivalent permeability for a gap of fine clearance and 

unit width is given by

k = S 2/ 12
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Bradley (1992) presents this relation for the case, when 5  is in inches and k in Darcies, 

in the following form

k = 54.4* 106 * S 2 (5.2.2)

We installed the production pumps on the outlet end of the Hele-Shaw cell in order not 

to over-pressure the cell. Thus, pressure drawdown in the cell could not be higher than 

14 PSIA. Substituting this value and the relation for the gap permeability into Eq. 5.2.1 

we obtain the mathematical expression of this limitation

887.3 qftL 12 < 14 (5.2.3)
54.4 *10 S hm5

Eq. 5.2.3 requires the minimum thickness of the gap in the model to be

6  = 0.00241i f 1) (5-2.4)V hm )

0.01

0.009

0.008

0.007

0.006

0.005
20 3 4 5

M odel's Iength-to-height ratio

Fig. 5.2.1 Hele-Shaw model size relation.
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We used “Monostart” peristaltic pumps. The maximum production rate, which 

can be achieved with these pumps, is 2000 cc/min of water. This production rate is 

equivalent to 18.1 BWPD. Substituting this value into Eq. 5.2.4, we found that the 

minimum gap size depends only on the model’s length-to-height ratio. Graphical 

analysis of this relation is presented in Figure 5.2.1.

The length of the model should be at least 3-4 times its height to ensure the 

presence of some stabilization zone and a zone for linear flow at the inlet side of the 

model. In this range of the model size, gap thickness varies from 0.009 to 0.01 inches. 

Stainless steel shims were used as spacers to create a gap. To get a gap of the estimated 

size, we chose O.Olinch thick shim. The model’s length-to-height ratio was chosen to

The minimum pressure drop required to create complete water breakthrough 

conditions (i.e. cone is to the top of the model) is

We may be interested in variation of the production rate (qmax/qmm) equal to a hundred. 

Thus minimum rate will be 0.181 BWPD. Substituting this value into Eq. 5.2.6, we 

obtain the necessary height of the model:

be 3.

b p = 0.433(/?w - p 0 )hm (5.2.5)

Substituting Eq. 5.2.2 and Eq. 5.2.5 into Eq. 5.2.1 we obtain

0-433(/?w -  p 0)hm <887.3
qfiL 12 

54.4 * 109/im S3
(5.2.6)

hm < 0.452 *10-*n = 0.452 *10"* 0.181*1*3 
0 .0 13 * 0.2

= 1.3 f t  (5.2.7)

Finally, we chose the height of the model to be 1 ft.
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The flow analogy between Hele-Shaw model and porous media is valid only 

when the flow is laminar. Thus, the maximum Reynolds number should not be greater 

than 2100:

N Re = 111.4 p °Vde <2100 (5.2.8)

Where the equivalent diameter for a rectangular channel is,

= 4A  4 8 ^
n  2(5+12 hm)

Recall that hm» S ,  and Eq. 5.2.9 can be simplified as follows

d e = 2 S  (5.2.10)

Substituting Eq.(5.2.10) into and Eq.(5.2.8), and taking into consideration that:

v  = — 12*5.615*?—  = o 00078_i_
24 * 3600 * ( S * h m) Sh

we obtain

= 0 .1 7 3 8 -^ -  <2100 (5.2.11)
A

Thus, for the chosen model sizes, condition o f laminar flow is satisfied for any 

production rate in the experimental interval.

The deflection in the middle of a rectangular plate with all edges built-in under 

hydrostatic pressure defined by Timoshenko and Wionwski-Krieger (1987) as 

W = 0.00005A/JZ.4 / D (5.2.12)

where D = - - (5.2.13)
I2(l - v 2)

For the very extreme case of a pressure drawdown of 14 PSI, we assume 

acceptable change of gap size of the model to be 40%, which corresponds to a glass
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plate deflection of 0.01*0.4/2=0.002 inches. For these conditions, it follows from Eq. 

5.2.12

D  = 0.00005 * 14 * 364 / 0.002 = 587865 PSI * in3

Substituting this value into Eq. 5.2.9 we obtain necessary thickness of the glass plate

112(l -  v 2 )D ~  112(l -  0.222 )587865 
V E V 10.4*106

This result means that a 3/4-inch-thick glass will, probably satisfy the conditions needed 

for the experiments: we are not going to create a complete vacuum in the Hele-Shaw 

cell. Conditions in the model will not be exactly the same as was assumed in the 

original problem to develop the method of the deflection calculation. Due to this 

simplification a special experimental study should be performed to consider the effect 

o f the deflections while calibrating the experimental set-up. The cell is to be built of 

two 3/4-in thick, 12 x 36-inch glass plates with a gap of 0.01 inches.

S.3 General Schematic of the Experimental Model

The scheme of the experimental set-up is shown in Figure 5.3.1; Figure 5.3.2 

presents the set-up in reality. Water and oil are stored in separate containers (1 and 2) 

with the oil container (1) being used as a gravity separator. Water and oil are gravity- 

fed from the containers to the top and bottom of the WOC-control cylinder (3), 

respectively. The WOC-control system includes two solenoid inlet valves and a float 

switch. The float switch maintains a set position for the WOC at the “reservoir end” of 

the cell (4) by opening and closing the valves. At the “well end” of the cell, two 

peristaltic pumps (5) draw oil and water from their respective completions; thus, 

simulating actual well segregation of oil and water intake in the well with a downhole 

packer.
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Through return lines (6), produced liquids return to the separator (1) so they can 

be recycled in this closed-loop system. Produced liquids can also be re-directed from 

the return line (6) to the fractional collector (7) in order to measure the concentration of 

oil and water in the produced steam. ISCO Retriever - II was used as a fractional 

collector. The retriever changes sampling tubes automatically with a variation of 

sampling time from 0.1 to 999 minutes. Since the sampling time and the volume of the 

sample are known, sampling becomes a tool to control production rates. The 

independent way of production rate control is very important because calibration of the 

peristaltic pumps is not accurate especially for two-phase flows.

c x i  -w a te r v a lv e (S> ■ pressure gauge

-o il v a lv e  fl

A  - th re e -w a y  v a lv e
- s o le n o id

111000.

Fig. 5.3.1 Experimental set-up

Distilled water and white oil were used for the experimental runs. To make the 

water-oil clearly visible the oil was dyed black. The total volumes of water and oil are

2.0 liters, and 1.5 liters, respectively.

Some of the experimental runs were videotaped. The most characteristic frames 

of the tape were digitized using “Snapper” hard- and software. Additional computerized
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data processing was performed on the digitized pictures in order to read the interface 

profile and sweep efficiency of the water drive.

Fig. 5.3.2 Experimental set in reality.

5.4 Calibration of the Model

To calibrate the model, several initial runs were performed with water only. In 

these experiments the pattern of flow was mostly linear, i.e. the number of holes open 

to flow varied but the holes were spread evenly along the model’s height. For each 

combination of the open holes, pressure differential across the model was measured at 

different rates o f water production. Theoretically, the response of the model should be a 

straight line passing through the origin o f coordinates. Figure 5.4.1 shows the results 

from these experiments, on which pressure drawdown is plotted vs. production rate.

In Figure 5.4.1, a family of curves originates from a single point offset from the 

origin of coordinates; the curves diverge slightly when the production rate increases.
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This was not exactly the result we expected to get from the model’s calibration. The 

offset, as we realized later, was resultant by the pressure differential gauge being out of 

zero. Non-linear flow effects causes the deviation of the experimental points from the 

theoretical, straight line, trend. Nevertheless all, the curves have a significant straight- 

line sections before deviation begins. These sections were used to determine the actual 

permeability of the model, because slopes of these straight lines are proportional to the 

average permeability of the Hele-Shaw model corrected for number of inlet and outlet 

holes open for production.

10.00

8.00

6.00

N u m b er o f  holes open

4.00

2.00

0.00

2.0000.000 4.000 6.000 8.000

Production rate. BPD

Fig. 5.4.1 Pressure drop across the Hele-Shaw cell for different number of holes 
open to flow.

The average permeability measured in these experiments represents combined 

frictional losses in the three zones having different cross-sectional areas: feed zone (12 

holes open), visual zone (no restrictions to flow), well-end zone (from 2 to 12 holes 

open to flow), and the end-flow effect of non-linear flow.
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Fig. 5.4.2 Schematic presentation of the Hele-Show model flow path.

This combined effect can be presented as a sequence of four zones in series, having the 

same permeability (theoretical permeability of the gap) but different cross-sectional 

areas as,

(5.4.1)
kavA k Ai

which gives an expression for average permeability as,

_ L  = I A y i ^  + i  h i .  (5.4.2)
kav k L f t  A, k L

The additional equivalent length of the model, Leq, represents has been introduced to 

take in consideration pressure losses in the pipes connecting the Hele-Shaw model to 

the pressure gauges and the effect of non-linear flow. Actually, the equivalent length of 

the model, Leq is an unknown function of A/Aj, but its effect becomes feasible only at
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high production rates through highly restricted outflow area. The non-linear flow 

effects results in deviation of the experimental lines presented in Figure 5.4.1. Since the 

deviated sections of the lines were disregarded, when we calculate average 

permeability, Leq becomes a constant. Eq. 5.4.2 implies linearity of a plot of reciprocal

of the average permeability versus A y  L< . Figure 5.4.3 presents a plot of
l  f r ,  a ,

experimental data in these coordinates.

0 . 6 ‘

0.4-

y = 0.2298x + 0.0361 
R2= 0.9732

0
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

— £ —
L U  A ,

Fig. 5.4.3 Determination of the equivalent permeability of the Hele-Shaw cell.

Linearity of the plot is evident. The intercept of the straight line with abscissa presents

effect of non-linear flow; the reciprocal of the slope gives equivalent permeability of 

the Hele-Shaw cell. The slope of the line is equal to 0.23* I O'6 mD'1, which corresponds 

to the permeability of 4350 Darcy. The theoretical permeability of the gap with 0.01- 

inch thickness is 5440 Darcy. Thus the difference between actual and theoretical 

permeability values of the experimental cell is about 20%, which seems reasonable.
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CHAPTER 6

TRANSFORMATION FROM LINEAR- TO RADIAL-FLOW SYSTEMS

Hele-Shaw models provide superior visibility and are easy to build and operate. 

Their potential drawback is the lack of porous medium and two-dimensional flow 

pattern. The use of these models, however, may not be limited to two-dimensional flow 

problems. Aravin (1938), Efros and Allakhverdieva (1957) showed that Hele-Shaw 

models can also be used to study flow phenomena with radial symmetry if the spacing 

between the glass plates varies with the cubic root of the horizontal distance. Later, 

Schols (1972) used a model of this type to study critical oil rate for water coning. 

Although uneven glass spacing caused variation of the model’s permeability, Schols’s 

results were in good agreement with correlations developed by Muskat and Wyckoff 

(1935), and Mayer and Garder(1954).

To avoid inaccuracy caused by permeability variation as well as technical 

difficulties of fabricating a model with a variable gap size, we decided to perform 

experiments on a regular Hele Shaw model. It may seem, however, that the difference 

between linear and radial flow patterns might cause the results obtained with Hele Shaw 

models irrelevant. There fore, we must derive a transformation from the Hele-Shaw to 

radial flow systems.

6.1 Pressure Distribution in Models with Partially Penetrating Wells

Theoretically, as shown below, linear flow can be transferred to radial flow only 

when the well completely penetrates the reservoir. For partial penetration there is no 

exact, analytical, transformation for pressure distribution from linear to radial flow 

systems. But, there is a way to perform an approximate, numerical, transformation. The 

idea of such transformation is the following:

35
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1. Calculate pressure around a partially penetrating well in Hele-Shaw model, 

p=f(x,z,q), As it is shown below the pressure distribution can be calculated as a 

superimposed effect of the real and image wells:

Ap = ^ — t [ y ( x e , z , ) - H x e , z b ) - K ' c, , z , h H x , , z b ) l4nkS(zt - z b)

2. Map this solution into a linear model having 100%-penetrating well with using 

match factors: p,=a(x,z)*f(x,z,q)

Coefficients aifazj) determined for each node of an imposed into the model mesh as 

ratios of pressure in partially penetrated reservoir to pressure at the point with the 

same coordinates the penetrated having complete (100%) penetration:

a,{xn z,)=-
khS

4nkS{zt - z b) qp(xt -x,.)£f 

that simplifies to the following form:

ai(xi, z l ) =

t [ r ( v , ) - Y ( x e , z l, } - y ( X i , z l ) + Y ( ^ i ) l

4<r(z ,'-z ,)  (x.H- x , ) t l [ Y (Xe ’Z‘ ) ~ Y (Xe ’Zb ’z b )], 

Thus the matching coefficients are independent of fluid properties and production 

rate value, they are constants determined by the system geometry only.

3. Transfer the solution from the linear system to the radial system that also has 100%- 

penetrating well p ’r=pi using conformal mapping, discussed in subchapter 6.2. The 

radial system has the same height as the linear one to keep the gravity effects 

constant.

^  k,8h e ’ k,8h
l - ±

V X e J

2nqp x e
2nktSh

ln(expl)-ln
f \xexp — 

x
W

2mkh
•In

\ r .

where r  = exp(x / xe); k,= 2nkr 8 / xe (6 . 1. 1)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



37

4. Map the results obtained at the previous step into the radial partially penetrated 

system using match factors, obtained with MSSM [Shirman (1955)]:p r= p ’r/bi(ri,Zi), 

where

1 h W 'T + (z, ~ zi) -  In -Z, + 4 re + (Z' ~Zi)
2(z, - z b) ln(re / /■) 3  -z, + 4 r< +("6 ~ z.)_ 3  + 4 r'2 + (Zf " - i ) j

From Eq. 6.1.1 it follows, that infinite number of radial systems are equivalent 

to a given linear model The variety of the equivalent systems is determined by the 

choice of the origin of the linear model coordinates. If the origin of coordinate is such 

that xw=0, it becomes equivalent to a radial system with the following parameters: 

radius of the wellbore, rw= 1; constant pressure boundary radius, re=2.72; permeability, 

kr= 192.5 mD. The units of radial equivalent model should be consistent, there is no 

difference whether rw is in inches, centimeters of miles as far as the re, and S are in the 

same units.

To achieve the transformation according to the proposed algorithm a description 

of pressure distribution around partially penetrating well in the linear system (thus 

Hele-Shaw model) is needed. To get this description, we developed Moving Horizontal 

Sink Method (MHSM) describing pressure distribution and OWI behavior in this Hele- 

Shaw model.

To simulate a point sink in the linear-flow model, we used a horizontal sink 

having length equal to the model’s thickness and radius approaching zero. Using this 

initial point element we described the pressure distribution in Hele Shaw model in the 

same way as it was done in the previous work to get Moving Spherical Sink Method 

(MSSM). The only difference in these two methods is that the description of the
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pressure distribution in the Hele-Shaw (2-D) model was derived from superposition of 

several horizontal sinks, while for MSSM, the effect o f  several spherical sinks was 

superimposed.

6.1.1 Pressure around a Well with Limited Entry in Infinite Hele-Shaw Model

To get a general solution to the problem of pressure distribution in a Hele-Shaw 

model, we begin with the following simplified case. The model is infinite in the vertical 

direction and semi-infinite in horizontal direction (a right half of vertical plane is 

considered) as shown in Figure 6.1.1. A finite well section having length izt-Zh) is open 

to flow. The boundary conditions include constant pressure outer boundary (x=Xe) and a 

uniform flux well (x=0).

O p e n  to flow  in terval

Z

Fig. 6.1.1.1 Infinite Hele-Shaw model with finite size completion

We remove the no-flow boundary at the well’s axis by using the method of 

images, which results in doubling the well’s production rate. Also, the well is 

considered a conglomerate of infinite number of horizontal sinks as Shown in figure
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6.1.2. The length of each of the horizontal sink is equal to the thickness of the gap 

between the model’s plates.

Zi

z-z

Fig. 6.1.2 Conglomerate of horizontal sinks

Under steady state conditions pressure distribution around each of the horizontal 

wells producing at the rate, q/(zrZb), can be calculated as:

A P j  =
iTtkS^Z,  -  z b)

•In (6 . 1. 1. 1)

The distance from the center of the axis of a horizontal well to the point at which the 

pressure is being calculated (point of interest) is equal to

r = V * 2 + (z “  Z' Y (6.1.1.2)

Substituting Eq. 6.1.1.2 into Eq. 6.1.1.1 we obtain
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A P j  =
I n k  8  ( z ,  -  z b )

■In yj x]  + (z  -  z,  Y  

y / x 2 + (z -  Zt y
(6.1.1.3)

The reduction of pressure at the point of interest, due to the fluid production through 

the completions o f length, z, - z b, will be a result o f the superimposed effect of all the 

horizontal wells:

-t

AP =  \ ( & P j ) d z

or in a complete form,

A p  =
Ij tkS { z t -  z b) ;JIn y J X 2 +  ( z  -  Z , . ) 2 

y j x 2 +  ( z  -  Z , ) 2
dz (6.1.1.4)

It is known [Weast (1972)] that

J l n( . t 2 + a 2 y *  = x  In^z2 + a 2 j -  2 x  + 2a  tan ' ( x / a )  (6.1.1.5)

With consideration of Eq. 6.1.1.5, Eq. 6.1.1.4 yields the following solution

Ap (x , z )  = qM------- \Y( xe, z , ) - Y ( x e, z b) - Y { x t, z , ) + Y (x,., zA)] (6.1.1.6)
AztkSiz, - z b)

where

.2/)  = (z  ~  z i ) +  (z " z - )2 ]+ 2xi t a n Kz ~ z i ) / x i ] (6.1 ■ 1.7) 

x„ =xe or x 

Zi=z, or Zb

Thus, Eq. 6.1.1.6 describes the pressure distribution around a completion with restricted 

entry to flow for the infinite Hele-Show model with constant boundary conditions on 

the inlet side. Note that production rate, q, in the Eq. 6 .1.1.6 should be twice as large as 

the real rate in the model.
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6.1.2 Infinite Line and Point Sink Cases

The model developed in subchapter 6.1.1 can be verified using two extreme 

cases, line source and point source.

In the case, where the well’s section opened to production is infinite, the flow in 

the model becomes linear. So, if we substitute -oo and +oo for the top and bottom 

coordinates of the completions into Eq. 6.1.1.6, it should yield the linear flow equation.

It follows from Eq. 6.1.1.7, after substituting infinite values for the top and 

bottom coordinate of the well,

F ( x g , + 0 0  ) =  ln (oo ) +  2 x en  

Y ( x e ,-oo ) =  ln( oo) -  2 x en  

y (x  ,+oo ) =  ln (o o ) +  2 x  7t (6.1.2.1)

y {x  ,-oo ) =  ln (oo ) - 2 x k

Substitution of this system of equations into Eq. 6.1.1.6 yields

Ap = -------— --------[4^(x -  *)] = ----- — ------ (.xe -  x ),
4n k S ( z , - z b) L Ve U kS(z, - z b) h

That is the equation of linear flow.

If the length of the completions is extremely short, only one horizontal sink

exists in the infinite Hele-Shaw model. This situation will result in pure radial flow

around the horizontal sink, and Eq. 6.1.1.6 should convert into a radial flow equation

when Zb=zt. But ifz, is substituted directly instead of z* into Eq. 6.1.1.6, the uncertainty,

0/0, occurs. To overcome this uncertainty the L’Hopital rule is used. L’Hopital rule

solves uncertainty of 0/0 and oo/oo, by substitution of function’s derivatives instead of

the function into the ratios.
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Substituting the system of equations 6.4.2.2 into Eq. 6.1.1.6 yields 

^  2akS \ r )

Which is the equation of radial flow.

6.2 Pressure Distribution in Models with 100% Penetrating Wells

Laminar steady state flow of incompressible fluid is described by Laplace 

equation:

d 2® d 2® d 2® n
 — h — h — =  0 ( 6 .2 . 1)
d x 2 d y 2 d z 2

For the systems having radial symmetry, Eq. 6.2.1 may be presented in cylindrical 

coordinates.

d 2® 1 d 2® d 2® n
— r  +  r  + — r  = 0 (6 .2 .2)
d r  2 r d y  2 d z 2

Flow between the two parallel plates is two-dimensional, thus derivative of flow 

potential with respect to y-coordinate is equal to zero, which reduces Eq. 6.2.1 to the 

following form:

d 2® d 2®+ —  = 0 (6.2.3)
d x  d z

Using conformal mapping transformation of coordinates, r=exp(x), which converts a 

rectangle into a sector, we can write Eq. 6.2.3 as
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1 d2® d 2® 1 d ®
t - r + X T - + “ J -  = ° (6-2-4)r d z  d r  r d r

If d ® l d z  = 0 , which represent the case of horizontal flow towards 100% penetrating 

well, both Eq. 6.2.2 and Eq. 6.2.4 simplify to the same form. 

d 2® 1 d ®
+ = 0 (6.2.5)

dr  r dr

This means that flow towards a 100%-penetrating well can be modeled in a Hele-Shaw 

cell exactly. Moreover, Eq. 6.2.4 should give reasonable results for systems with partial 

penetration in the zones where the flow is predominately horizontal, i.e. in the outer 

reservoir area and in the close-to-the-wellbore area. One of the practical conclusions 

from this fact is that Water Cut (WC) has the same value both in radial and linear 

systems. For example, limiting WC defined by Eq.6.2.6 is valid both for linear and 

radial systems.

WC = - m w  ■ (6.2.6)
M i w + h0

Thus, results of the WC development obtained in the linear models can be directly 

applied to the radial systems having the same fluid properties, permeabilities, and 

thickness of water and oil zones.

6.3 Critical Rate and Critical Cone Height

A simple transformation from linear to radial flow can be derived for finding 

two important parameters of water coning, critical rate and cone height. The 

transformation makes use of the flow equations for complete penetration in the infinite 

(radial and linear) flow systems. In conventional completions, critical is the maximum 

oil production rate, which does not cause water breakthrough. This rate can be
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determined by equilibrating gravitational and viscous forces along the well’s axis, for 

r=0 or x=0, which eliminates lateral position from calculations. For simplicity, we 

perform the calculations for infinite linear and radial flow systems with a single point 

sink, as shown in Figure 6.3.1

o w e

Fig. 6.3.1 Schematic of an infinite reservoir with one point sink

For a radial system, real and image wells are spherical sinks. The balance of gravity and 

viscous forces at the wwell’s axis is

<7A
Ink

1
r - h 2

= A pgz (6.3.1)

At the critical rate there is only one solution to Eq. 6.3.1, which requires the derivatives 

of the right and left side of Eq. 6.3.1 also be equal.

+ h2
2jik 2 \ 2(z - h  )

= Apg (6.3.2)

Manipulating the Eq. 6.3.1 and Eq. 6.3.2 gives

f 1 1
zcr+h

z 2cr- h 2) 1 ( 4  - a ' F J
(6.3.3)
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Eq. 6.3.3 can be solved by trial and error for the critical cone height, zcr. Then, critical 

rate can be calculated from either Eq. 6.3.1 or Eq. 6.3.2.

For a linear system, the real and image wells are reducing to horizontal sinks. 

Also, we use capital letters to distinguish the similar parameters in the linear and radial 

system. The force balance for the linear system is

Qp
2nk5

In
r Z 2 - H i y

r T ~
= A pgZ (6.3.4)

At the critical height, the Eq, 6.3.4 has only one solution for Z, thus:

Qm
IjikS

2 Z
Z 2 - H 2

= Ap g (6.3.5)

After rearrangement of Eq. 6.3.4 and Eq. 6.3.4, we obtain the following expression, 

from which the critical cone height can be determine by trial and error.

In
r z 2 - h 2^ f 2Z~ 1
I ) l Z l r - H 2)

(6.3.6)

An example calculation of the critical rate for the Hele-Shaw model is presented in 

Appendix. If we assume that all the reservoir and fluid properties are the same for the 

linear and radial systems, we can make the following transformation for the critical 

rates and critical cone heights values. The transformation formulas result from 

comparing Eq. 6.3.1 with Eq. 6.3.4, and Eq. 6.3.2 with Eq. 6.3.5. The comparison gives,

Q„ S z l + h '  Z i - H >

H z l - h ' - f  Z„

and,

2 Z= f c , - * 2)’ (
z „ S i ? l - H ' )  z l + h 1 1 z,rRl

(6.3.7)

(6.3.8)
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For transformation, first, Eq. 6.3.8 is used to convert the critical cone height measured

in the linear system, Zcr, into the equivalent critical cone height in radial system, zcr.

Then, the equivalent critical rate in radial flow os calculated from Eq. 6.3.1.

In conclusion we have to point out that experimental results obtained with the 

Hele Shaw model can be used to make conclusions regarding coning phenomenon in 

radial flow. Also, all other volumetric parameters such as Initial Oil in Place (IOP), 

cumulative produced oil and water have same meaning for radial and linear flow

systems. Therefore, the conclusive results can be obtained from the Hele-Shaw

experiments.
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CHAPTER 7

GENERALIZED STEADY STATE MODEL OF DWS

Current design o f DWS is based upon an analytical method developed by 

Shirman (1996) for description of pressure distribution around a well with limited entry 

to flow in stratified reservoirs, dubbed the Moving Spherical Sink Method (MSSM). The 

method gives an analytical solution for pressure around a finite-length well completion 

in an infinite homogeneous reservoir. With this solution, a homogeneous reservoir 

limited from the top and the bottom by no-flow boundaries was modeled by using 

method of images.

The MSSM became even more powerful when Shirman and Wojtanowicz (1996) 

developed the Extended Method of Images (EMI). This method transfers stratified 

reservoirs into homogeneous ones using an array of image wells producing at different 

“pseudo” rates. These pseudo-rates depend upon the permeability of the neighboring 

zones. The modified MSSM with EMI provided a theoretical base for a software to 

calculate dynamic interface between oil and water.

The computer program compares pressure distribution in the oil zone with the 

pressure distribution in the water zone to predict an interface profile. At the interface the 

following condition is valid:

The assumptions used in these calculations are:

• shape of the cone does not effect the pressure distribution in the oil and water zones;

• original oil-water interface is a no-flow boundary.

47
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The above theory describes only conditions prior to water or oil breakthrough. 

Of the two assumptions above the first one reduces the accuracy of the calculations 

while the second one makes this method incapable of describing the post-breakthrough 

flow conditions (two-phase inflow). Thus, there is a need for a new, generalized 

theoretical approach to develop a design procedure being valid for any production 

conditions.

7.1 Method of Calculations

After breakthrough, both fluids flow, thus, we should substitute the static no

flow boundary with a dynamic boundary between two fluids moving to the different 

sinks. This boundary obviously is a streamline starting at the initial oil-water contact at 

the outer reservoir boundary and enters the well at the water cone apex. This streamline 

divides the reservoir cross-section into two zones or two drainage areas. The part of the 

well covered by the water cone produces from the bottom drainage area; the rest of the 

well’s perforated interval produces oil from the top drainage area as shown in Figure

7.1.

Fig. 7.1.1 Shape of the interface at post-breakthrough conditions
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Pressure at any point of the reservoir can be expressed as a superimposed effect 

of drawdowns created by the sections of the completion situated above and below the 

dynamic interface. According to the MSSM theory, each section can be presented as a 

spherical sink. In addition, we assume that when we calculate pressure drawdowns 

created by either the oil (upper) or water (lower) sections of the completion, the entire 

reservoir is filled with oil or water, respectively. This intuitive assumption may 

introduce some inaccuracy into calculations. However, the inaccuracy disappears when 

the produced water-oil ratio (WOR) approaches ultimate value. In this case, pressure 

drawdowns created by the spherical sinks representing the oil and water sections of 

well’s completion are:

= g ( l - W Q m *

A p w =  * W C »

1 l '

a/*1 + ( z - z , ) ! '•
- P . g z  (7 .1. 1)

4 nk %
1

\

\ x 2 + ( z - z b)2 re
~ P wg z  (7.1.2)

At any point, the summation of the Eq. 7.1.1 and Eq. 7.1.2 gives total pressure 

drawdown at this point. Also, the difference between the Eq. 7.11 and Eq. 7.12 

represents tendency of the fluid particle to move toward one of the two well sections. 

Totality of the points when this difference is equal to zero is the drainage area boundary 

for each section o f the completion, or the oil/water interface profile.

7.2 Algorithm and Computer Program

The following algorithm has been developed for calculation of the dynamic 

oil/water interface:
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1. Calculate the critical rate and ultimate WC for the given reservoir and fluid 

properties;

2. If given production rate is below critical, there is no breakthrough in the well;

3. Assume the interface position in the well;

4. Calculate WOR that corresponds to the assumed position of the interface at the well 

as: W O R ^ M h ^ l K , .

5. Assume that oil is produced from both the oil and water zones and calculate the

pressure drawdown in the reservoir due to the production of this fluid through the

top part of the completion (above assumed WOI);

6. Assume that water is produced from both the oil and water zones and calculate 

pressure drawdown in the reservoir due to the production of this fluid through the 

bottom part of the completion (below assumed WOI);

7. Calculate the difference between the pressures determined in the steps 5 and 6.

8. Add the effect of gravity, determined by the density difference of the fluids.

9. The points, at which the result, obtained in Step 8, is equal to zero, represent 

boundary between drainage areas of the two sets of completions, hence the interface 

profile.

10. Check whether the obtained interface position in the well matches the assumed in 

Step 3 value;

11. If the result of step 10 is ‘TRUE” the solution is obtained, otherwise repeat the 

procedure from step 3, using the corrected value of the cone height (interface 

position in the well).
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I wrote a computer program, which works according to the above algorithm. The 

program was written in Excel Visual Basic with input output procedures performed 

through Excel spreadsheets.

To demonstrate the independence of the obtained solution from the direction, in 

which the cone develops, we used a case of deep completion for the example 

calculations. A well is considered deep completed when it is perforated below the initial 

WOC. This type of completion has been used to prevent gas from braking through into 

oil perforations in water-drive oil reservoirs with gas cap [Wadleigh, Pailson, and Stolz 

(1997)]. Figure 7.2.1 shows the sketch of the reservoir and the well completion for the 

example case.

o w e

Fig. 7.2.1 Example completion geometry

Figure 7.2.2 shows the input data sheet from the EXCEL program used for the 

calculations. The sheet contains the actual data used in this example. As a result of a 

computer run, the program provides a map of pressure drawdown difference created by 

the two parts of the completion producing fluid independently, as shown in Figure 7.2.3. 

As shown in Figure 7.2.3, the assumed position of the cone apex was correct: the line 

representing zero value of the drawdown difference passes through the assumed point in 

the well completion.
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Cone Profiles in Multi-layered Reservoirs. 
Input Data:
OIL
Pressue at the outer boufoary, PSIA 100
Constant pressure boundaarv rarfius, ft 600 Horizontal permeabiitv. mO 0.0001 500
Fkid wscosity. cP 4 Vertical pemeabittv. mO 0.0001 250 0.0001
Fkiddendty. gr/cc 0.901 Boundary vertic. coord.. It 13 -24
Formation vokme factor. bbVSTB 1.12 - -
Number of steps in r-direction 25 -
r-mrinun.lt 0.5
r-4tep.lt 4 WBlradiis.lt 0.5
Nurber of steps in ̂ direction 37 TopofperibratiarB.lt -12
smininun.lt -24 Bottom of perforations. It -13.15
sstep.lt 1 Raditsofweffsaias.lt 0
Nirnber of layers (5 - max) 3 Wb(  production rate. STBAd 68.79
Number of wets (5 -max) 1 WbI  is perforated in layer 2

WATER
Pressue at the outer boundary, PSIA 100I ■ ■ ■ ■ ■ m m
CorBfantpressueboirdaarytacSus.lt 600 Horizontal permeabiity. mD 0.0001 500 0.0001
Fkid viscosity. cP 0.506 Vertical permeabiity. mD 0.0001 250 0.0001
Fkid dencity, grfcc 1.04 Boundary vertic coord.. It 13 -24
Formation vokme factor, bbi/STB 1L__________________
Nurber of steps in r-direction 25
r-minimun, ft 0.5
r-step.lt 4 Wei radus.ft 0.5
Nurber of steps in z-direction 37 Top of perforations, ft -13.15
z-mirinun.lt -24 Bottom of perforations. It -18
zstep.lt 1 Radius ofweffs axis, ft 0
Nurber of layers (5 - max) 3 Wei production rate. STB/d 1000.00 !
Nuiberofweis (5-max) 1 WbI  is perforated in layer 2

Fig. 7.2.2 Input data sheet from Excel program; the table contains data 
for the example calculations.
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-3 ■ 0 2 0 0 0 .3 0 0  
■ 0  1000  200

-5
□ 0 .0 0 0 0  100

-7 ■ 0 1 0 0 0  000
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-11
■ 0 .3 0 0 -0  200
■ 0 4 0 0 - 0  300

-13 ■ 0 5 0 0 -0 .4 0 0
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-17 ■ 0 .7 0 0 - 0  600 
□ 0 .8 0 0 -0  700

-19 ■ 0 .9 0 0 -0 .8 0 0
-21 ■-1 000-0.900

-23

Fig. 7.2.3 Determination of the cone profiles as a boundary between two drainage 
areas.
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R e s e r v o i r  r a d i u s ,  f t

0 10  20  30  4 0  50  6 0

0

3

6
Production rate, bbl/d

-9
C ritical

1 2

  100
  200
  500

-15

18

21

-24 -

Fig. 7.2.4 Calculated oil cone profiles — deep completion example.

Needless to say that it took several trails before the match was obtained. After 

the matched is reached, the computer program stores the coordinate f  all zero-pressure- 

difference points and makes a plot of the cone profile. Five cone profiles shown in 

Figure 7.2.4 obtained for different water production rates, (different value of water cut) 

in the example.The above method and software for calculating dynamic interface 

oil/water profile was validated by comparing the results with those from a commercial 

numerical simulator. The validation is presented in Chapter 9. Prior to the validation, 

however, the method must be qualified and improved in view of its underlying 

assumptions. The main one is the assumption of constant flux completion. This 

assumption defines the value of the ration of the length of the water and oil well’s 

sections (hww/hw0) proportional to WOR. Typically, the value of equilibrium WOR is 

unknown for a given rate o f liquid production. Although, the trial-and-error procedure of
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this method eventually gives the converged values of (hww/hWo), there is still lack of 

proof that this ratio should determine the WOR value as

WOR = M ^
A-

Therefore, ther is a need for independent calculation of the equilibrium WOR. This 

method is presented in Chapter 8, below.
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CHAPTER 8

EQUILIBRIUM WATER CUT PREDICTION METHOD

8.1 Post-Breakthrough Performance of Single Completion

Equilibrium water cut represents a balanced water cone situation after 

breakthrough for liquid production rates greater than critical rate but lower than ultimate 

rate. For rates greater than the ultimate rate the water cut is almost constant and equal to 

limiting water cut WCiim. Therefore, it follows that for each value of production rate, 

qcT<q< qiim, ther is a unique value of water cut, 0<WC<WCijm.

A shortcoming of the model presented in the previous Chapter 7 is the 

assumption that WOR after breakthrough is proportional to the ratio of the completion 

intervals open to flow for water and oil. In this chapter we will develop a more general 

approach to the problem of evaluation of post-breakthrough well performance.

We start description of post-breakthrough behavior of the wells with the 

simplest case -  a 100% penetrating well, which penetrates both the oil and water zones. 

(Even though this case seems to have no practical meaning, it gives a basis for more 

complex analysis.) For steady-state flow into this type of completion a constant 

bottomhole pressure along the completion can be assumed. Thus, pressure drawdown 

may be expressed as follows:

(8 .1.1)

and.

(8.1.2)

55
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As drawdown in the oil zone should be equal to the drawdown in the water zone, 

comparison of Eq. 8.1.1 and Eq.8.1.2 yields the value of limiting (ultimate) Water-Oil 

Ratio (WORiim) as

The value (WOR|jm) is the maximum WOR that can be reached in the reservoir of a 

given geometry for any completion’s length. Also, it follows from Eq. 8.1.3 that at any 

production rate greater that qlim and for completely penetrating well, the following 

relation is valid:

Now, we will study the second case of completion where a well penetrates only 

the oil zone and the bottom of the well’s completion is at the initial Water-Oil Contact 

(WOC). For this case the value of the drawdown will be greater comparing to the 

previous case with complete penetration of oil and water zones and pure radial flow of 

the oil and water. Following the idea of Boumazel and Jeanson (1971), we can use the 

“cone shape factor” to match the radial flow equation for drawdown determination.

(8.1.3)

(8.1.4)

(8.1.5)

and,

(8 .1 .6)

Comparing Eq. 8.1.5 and Eq. 8.1.6 we conclude that for this type of completion the

relationship between produced water and oil can be written as
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< l .= " O R j^ -q .  (8.1.7)

The third, most general case of completion is a well partially penetrating oil 

zone. For this case, according to Boumazel and Jeanson (1971), pressure drawdowns at 

the well in the oil and water zones can be expressed as

Ap  = Yo ^
y ° 0 I nkh

/  \  rm
(8 . 1.8 ) 

and,

/  > 
a n  ( r  1

+ Apgzcr (8.1.9)A p w = r „ Inf— ^
'* 2  * k j iw [ r wj

Where: zcr = critical cone height for water to breakthrough into the oil completion. We 

extend the Boumazel and Jeanson theory and restate the water breakthrough conditions 

in terms of pressure drawdown rather than the critical cone height or critical rate. An 

additional drawdown needed for water breakthrough to a partially-penetrating well as 

compared to a well completely penetrating oil zone. When the oil production rate is 

equal to the critical value, the water rate is equal to zero and the height of the cone is 

equal to the critical height, zcr, which yields

r . T Z r t * * * * ” (8-U0>2 nkoh0

Substituting Eq.8.8.10 into Eq.8.1.9 and further substracting Eq. 8.1.9 from Eq. 8.1.8, 

we obtain

= Yo (<Io (8 111)
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Thus, for a well of any penetration, there is a linear relation between the rates of the 

fluid being produced and the breaking through fluid as,

q . ^ W O R j a . - q . )  (8.1. 12)
7W

If the well is completed in the water zone the indices in Eq. 8.1.11 should be switched, 

and Oil Water Ration (OWR) should replace WOR.

Since WORum and qCT can easily be determined from the reservoir and fluid properties, 

the only unknown parameter left in the equation is the ratio of the oil and water flow 

shape factors.

8.1.1 Determination of the Cone Shape Factors

To determine the unknown coefficient, which is the ratio of the two shape 

factors, we compare predictions made using Eq. 8.1.12 with results obtained with a 

numerical simulator. In numerical experiments all the parameters have exact, 

completely determined values; thus, experimental error is not involved.

To study the effect o f the cone shape factor on WC, results presented in the 

paper of Van Golf-Racht and Sonier (1994) were chosen. Van Golf-Racht and Sonier 

used five different models to examine the coning behavior in fractured reservoirs. The 

total pay (60 feet) and the well penetration (50%) were kept constant for all five cases. 

The thickness of the oil zone, ho, was variable in the performed experiments. The 

change of the oil zone thickness caused the change of the thickness of the aquifer, 

because the total reservoir pay was kept constant. Oil mobility was assumed equal 

unity, as Muskat and Wyckoff (1935) had made it in their calculations. Table 8.1.1.1 

presents the characteristics of the five well models used in the simulation.
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Table 8.1.1.1. Parameters of the studied cases.

Case A B C D E
Oil zone thickness, m 6 15 30 45 54
Water Zone Thickness, m 54 45 30 15 6

Perforated Interval, m 3 7.5 15 22.5 27

1. Van Golf-Racht and Sonier presented results of the simulation runs they made in 

the form of a graph showing water cut in the produced fluid after 100 days of 

production versus production rate. I have rearranged these data and presented them 

in water rate vs. oil rate coordinates in Figure 8.1.1.1.

y=&2B19c-63625 
R?=Q9944

20000

18000

16000

14000

92000

6000

2000

0 2000 4000 8000 10000 14000 1600012000 18000 20000

CH ratal QJuriD

Fig. 8.1.1.1 Simulated post-breakthrough well performance.
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As can be seen in Figure 8.1.1.1, experimental points for each case lay along straight 

lines. The fact that the experimental data lay along the strait lines in the linear 

coordinate qw vs. q0 proves the following:

2. theoretical analysis of the post-breakthrough well performance is correct; 

ratio of the cone shape functions, yo/yw, remains constant regardless of the production 

rate. Least square analysis performed on the data proves an almost perfect linear 

relation between rates of water and oil in the produced fluid after water breakthrough 

occurs. The smallest value of the R2 for all five straight lines is 0.9873 (R2=l represent 

exact functional relation).

According to the Eq. 8.1.12, the slope of the straight line should be proportional 

to the ultimate WOR, and the ratio of the intercept and the slope are equal to the critical 

production rate. Table 8.1.1.2 displays values of the slopes and intercepts obtained as a 

result of the regression analysis of the experimental data presented in Figure 8.1.1.1. In 

the same table ultimate WOR and values critical rate calculated by different method are 

also shown.

Table 8.1.1.2. Determination of the critical rate and ultimate WOR from 
the experimental data.

Case A B C D E Reference
Intercept 636.25 979.41 1436.70 73425 508.57
Slope 9280 1$71 1.050 0302 6.129
Theoretical ultimate WOR 9.000 3.000 1.000 0.333 0.111 Van Golf-Racht & Sonier (1994

Critical rate, bbl/d (Intercept/Slope) 68.6 341.1 13683 2431.3 3942.4
Qitical rate, bbl/d (Simulated) 45 210 1100 3000 4600 Van Golf-Racht & Sonier (1994
Critical rate, bbl/d (Analytical soluti3 te l 222 1061 2647 3992 Muskat & Wjckoff (1935)

To determine the effect of the cone shape factor ratio, we have constructed a 

correlation graph, where we plot theoretical values of the ultimate WOR vs. slopes of 

the corresponding experimental lines, as shown in Figure 8.1.1.2.
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Fig. 8.1.1.2. Correlation of the ultimate WOR data.

As shown in Figure 8.1.1.2, the ultimate WOR, calculated as a slope o f a 

straight line presenting the graph of water rate vs. oil rate, is in excellent agreement 

with the theoretical values of WOR|jm. The relation is almost functional (R2=0.9992), 

and the coefficient of proportionality, 0.9762, has no statistical difference from 1 .Thus, 

the value of the cone shape functions ratio is a constant equal to unity.

The value of the critical rate cannot be used to estimate the effect of the cone 

shape factor on the WOR, but comparison of critical rates obtained by means of 

different methods is a good illustration of the proposed technique’s accuracy. Figure 

8.1.1.3 displays a comparison of the analytically calculated and numerically simulated 

values of oil critical rates for the reservoirs of different geometry vs. critical rates 

determined using Eq.8.1.12, as a ratio of the line’s intercept to its slope. Figure 8.1.1.3 

presents good evidence of the fact that Eq. 8.1.12 gives an accurate method to predict 

critical rates for the partially penetrating wells.
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Fig. 8.1.1.3 Correlation of the critical rate vs. ratio of the lines’ intercepts to their 
slopes.

Analytically predicted critical rates are in good correlation with the values of 

intercept to slope ratios. The analytical results are also in good match with critical rate 

obtained from simulator for the low production rate (up to 2000 bbl/d). At higher rates, 

predictions of the simulator looses accuracy, probably due to the low accuracy of 

extrapolation of calculated results to the low-water-cut zone, used by the authors of the 

paper to predict critical rates.

Thus Eq.8.1.12 may be used to predict WOR for post-breakthrough well conditions in 

its final, simplified form:

9.= V O R im( q .- q „ )  (8.1.1.1)

Division of the left and the right parts of this equation by q0 yields
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WOR = WO (8.1.1.2)
9o

Or after taking in consideration that WC = WOR/( WOR+1), we obtain

WC = W C ,J  1— (8.1.1.3)
V 9 J

8.1.2 Validation of the Method

In the previous paragraph, we established a relation between production rate and 

water cut. The relation was obtained using the analitical steady state solution for 

pressure destribution in the reservoir after water breakthrough. The unknown match 

factor was found to be equal to unity by comparing the results from numerical 

simulation with predictions of the relation. Now we are going to test the new relation 

applying it to the results of the physical experiments using different model types and 

fluids.

8.1.2.1 Radial Flow Model

Leverett, Lewis, and True (1942) studied the effect of production rate on water 

cut on a cylindrical sand-packed model, having a one-foot inside diameter and height. 

They used glycerin and S.A.E. 70 lubricating oil for the experiments. The fluids’ 

mobility ratio was 1.75. Thickness of the oil and glycerin zones were 16 and 8 inches 

respectively. Thus, the ultimate glycerin cut (equivalent of water cut) determines as 

follows:

Mk. _ ! - 7 5 . 8 . g047
bm Mhw + h0 1.75*8 + 16

There is no approximation available to predict the critical rate for the completion the

authors used in their model: 2-foot length slots 5.5 feet above glycerin-oil contact. The

results of the experiments are presented in Table 8.1.2.1.1 and Figure 8.1.2.1.1.
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Table 8.1.2.1.1 Change of the glycerin cut vs. oil rate from Leverett, Lewis, and 
True (1942)

Total rate, cc/hr 100 337 650 1960 7960
Glycerin cut, % 1.9 18.8 28 35.8 44.5

4 0 0 0 - -

3 5 0 0  -  -

s  2 5 0 0  -  -
y » 0 8 3 5 *  • 189  89 

fC -  0  9 9 5 6

O  1 5 0 0 - -

1000 --

5 0 0  - -

0 500 1 000 1500 2000 2 5 0 0 3 0 0 0 3500 4 0 0 0 4 5 0 0 5 0 0 0

O il r a te ,  c c /h r

Fig. 8.1.2.1 1 Determination of ultimate water cut and critical rate
for the experimental data of Leverett, Lewis, and True (1942).

A straight line that fit the data points has a slope of 0.835 and intercept of -189.89.

Thus, the experimental ultimate glycerin cut (WC) is equal to

WC= 3-- =0.455 
0.835+1

taht is pretty close to the theoretically calculated value; relative error is 3.2%. The value 

of experimental critical rate, calculated as a ratio of the line’s intercept to its slope, 

gives 227.4 cc/hr. This value is twofold higher than the first experimental reading of 

1.9% of glycerin at 100-cc/hr oil rate. Figure 8.1.2.1.2 displays the glycerin cones 

corresponding to the experimental oil rates and explains the phenomenon. It is seen 

from the figure that at the 100-cc/hr oil rate, there is no glycerin breakthrough into the 

oil completion and, most likely, glycerin is just being produced through a channel along 

the wellbore.
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Fig. 8.1.2.1.2 Coning in dimensional model of oil well at various rates of production 
[after Leverette et al (1942)]

8.1.2.2 Hele-Shaw, Linear Flow Model

At this stage of the experimental verification, we try to predict the composition 

of the produced mixture of different fluids in the same model with different 

permeability. The following combinations of fluids were used in this part of 

verification: S.A.E. 70 oil and glycerin, kerosene and glycerin, and white oil and 

distilled water. All experiments were performed on Hele-Shaw models. The range of the 

spacing between the glass plate (spacing determines the permeability) in the models 

varied from 0.154 to 0.318 mm. The experimental runs made with white oil and water 

are results of our experiments. The other two sets of experimental data belong to Mayer 

and Searcy (1956).

Values of critical rate and ultimate WC for our data were obtained during the 

experiment. For the data obtained from literature, WC|jm was calculated using initial
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thickness of the glycerin and oil (kerosene) layers. Values of the critical rates were not 

presented in the paper and we could not find any correlation to estimate critical rate for 

flow in Hele-Shaw models in literature. Thus, we developed a special technique, 

presented in Appendix A to obtain this missing piece of information. Table 8.1.2.2.1 

presents experimental data obtained by Mayers and Searcy (1956) as well as determined 

in values of the critical rate for each run.

Knowing the values of the critical rate and the ultimate water cut for each 

experiment, we used Eq. 8.1.1.3 to predict WC corresponding to the conditions o f each 

experiment. Experimental values of the WC are also presented in Table 8.1.2.2.1. Data 

in Table 8.1.2.2.1 demonstrate close match of the experimental and calculated values of 

the WC even for very small values of the latter. Comparison of the calculated and 

experimental results are also presented in Figure 8.1.2.2.1.

0.0001 0.001 0.01

0 .01

■  SAK 70 oil & glycerine 
♦  Kerosene & glycerine 
▲ W hite oil & water

0.001

0.0001

Fig. 8.1.2.2.1 Correlation of the calculated and experimental results of Meyer and 
Searcy (1956), and Shirman (this study).
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Figure 81.2.2.1 also contains our experimental results obtained with white oil and water 

and demonstrates validity of the proposed method for a wide vairity of reservoir 

geometries and fluid mobility ratios.

Table 8.1.2.2.1 Determination of critical rate in Hele Shaw model using
method of images.

Mm Visccstycf "Wta',visc. Thickness cf Thickness of Flowgp, FfovnteGbneoitka Qitical WC WC
"ofl,"cP cf"wafa;"cf "nil" Tme, nr watef'2HE.cni cm ccftr height, an iate,ccftr pxppiingta caknlafrri

3 256 347 870 19.80 00318 00066 15.050953 0002 02033 01631
4 296 411 350 25.00 00318 00199 18(92369 0003 00839 00791
5 286 39* 260 25.90 00318 00133 1929*603 0003 00536 OQ527
6 265 360 3.00 2550 OQ318 00089 19.027919 0.003 00*15 00517
7 263 357 1800 1050 OGB18 00160 7.7671866 Q001 06289 05289
8 272 380 1850 1Q00 QQ318 00102 72454755 0001 05244 05281
13 180 230 750 21.00 00188 00055 15.916738 0001 01942 01902
14 217 288 850 2000 00188 00043 15.196354 aooi 01718 02112
15 208 273 750 21.00 00188 00019 15.916738 0001 01302 01453
16 250 337 14.00 1450 00188 00044 11.0290*5 QOOO 0390 03892
17 223 296 13.00 1550 00188 00028 11.813536 QOOO 04120 03374
18 174 220 1350 15.00 00188 00012 11.422821 aooo 02903 02663
19 196 255 3.95 2455 00450 00755 18288267 aon 00963 00935
20 215 283 3.70 24.80 00450 00*13 18557461 ooio 00885 Q0759
21 216 285 4.70 23.80 00450 OQ245 17.876935 aoio 00592 00780
22 237 318 7.70 2Q80 00450 00572 15.773537 0007 0170 01886
23 240 323 750 21.00 00150 Q0376 15516737 0007 019*1 01689
24 203 265 7.80 2070 00450 00271 15.701766 0008 0150 01540
25 180 230 1350 15.00 00150 0080 11.422821 0006 03481 03832
26 184 235 14.00 1450 0.0150 00183 11.029045 0005 03810 03815
27 196 255 14.00 1450 00450 00268 11.0290*5 0005 03321 03440
39 1.48 260 1Q70 17.80 00161 0L3973 057205 0053 00032 00030
40 157 298 1050 1800 00161 02326 0.722009 0051 00025 00024
41 153 270 1030 1820 00161 01554 0.871498 0053 00006 00021
42 153 272 550 23.00 00161 04916 17225229 0075 OOOO Q0011
44 154 280 550 23.00 00161 01982 17225229 0075 00009 00008
47 155 276 0.80 1470 00161 01496 11.186924 0038 00039 00039
51 1.75 323 020 1520 00145 01619 11.657616 0026 00055 00039
52 1.72 295 0.00 1550 00145 0036 11.813531 0027 00048 00039
53 1.82 374 1220 1630 00145 00759 12432365 0028 OOOBO 00023
54 1.77 328 1220 1630 00145 00379 12432365 0028 00017 Q0010
55 1.83 348 5.40 23.10 00145 02312 1729*552 0016 aooio aooio
56 1.81 336 520 2320 00145 01672 17.463771 0047 aooio 00009
57 1.8* 351 5.10 2140 00145 01210 17.601902 0017 OOOO* 00007
6* 1.85 378 7.00 1650 00154 00680 12585868 0033 00023 00013
65 1.86 386 9.10 14.40 00154 00755 109*9917 0027 00032 00020
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8.2 Post-Breakthrough Performance of the Wells with DWS

As it follows from the previous subchapters, in conventional completion, WC at 

any rate is determined by the values of the ultimate WC and the critical rate. Ultimate 

WC is a function of the reservoir geometry and fluid properties (mobility ratio), and 

does not depends upon the type of the completion. In opposite to the ultimate WC, the 

critical rate depends also on the position and length of the completion. In conventional 

completions, for the given position of the initial interface surface, critical rate is a 

constant. The main difference between the conventional and DWS completions is that 

in the latter, the critical rate becomes a variable depending upon the position and length 

of the water sink, and water drainage rate. The higher the water drainage rate, the higher 

the oil critical rate would be. I concluded from the results that, most likely, Eq. 8.1.1.3 

should be valid for the DWS completions if the corrected critical rate is substituted into 

the equation.

8.2.1 Effect of DWS on Critical Rate at the Top Completion

To verify the hypothesis proposed in Subchapter 8.2, a series of experiments 

was performed on the Hele-Shaw model in which oil was produced at different rates 

under effect of different water drainage rates. Table 8.2.1.1 presents the results obtained 

during these experiments.

Table .8.2.1.1 Experimental WC for different oil production and 
water drainage rates.

Water rate, 
cc/min

Oil Production Rate, cc/min
6.34 12.45 28.67 45.63 73.06

0.00 0.76 0.81 0.82 0.90 0.85
12.78 0.44 0.65 0.73 0.82 0.82
30.80 0.00 0.36 0.64 0.78 0.78
50.33 0.00 0.00 0.40 0.64 0.70
81.00 0.00 0.00 0.10 0.46 0.61
107.53 0.00 0.00 0.00 0.23 0.45
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Oil rale varied from 6.34 to 73.06 cc/min; water drainage rate ranged between 0 

and 107.53 cc/min. Three very top and three very bottom perforations were open for 

flow of the oil and the water respectively.

For each group of experiments performed with a fixed water rate, ultimate water 

cut and the critical rate were determined using graphs of the water versus oil rate in the 

top (oil) perforations. The values of these rates were calculated using measured 

production rate and WC. Results of the estimated values of the critical rates and 

ultimate cut are displayed in Table 8.2.1.2.

Fairly stable values of the ultimate WC were obtained from all the experimental 

runs; average ultimate WC is 0.86. Using obtained values for the ultimate water cut 

and critical rates, we made a forecast of the WC in the top perforations after water 

breakthrough due to the low water drainage rate. Figure 8.2.1.1 displays comparison of 

the experimental WC with values calculated using Eq.8.1.13. As seen from Figure

8.2.1.1, forecast o f the WC in the top completion of the well with DWS is very 

accurate: the maximum relative error is less than 8%.

Table 8.2.1.2 Experimental determination of the critical rate and ultimate water 
cut
Wale drainage, 

cc/min
Total rate at the top perforations, cc/min Slope Intercept Critical rati 

cc/min
Ultimate

WC6.34 1145 28.67 45.63 73.06

0.00
WC
Oil rate, cc/min 
Water rate, cc/min

0.76
1.54
4.81

0.81
141
10.04

0.82
5.24
23.43

0.90
4.56

41.06

0.85
10.69
6136

6.30 3.34 0.53 0.86

1178
WC
Oil rate, cc/min 
Water rate, cc/min

0.44
3.53
181

0.65
4.31
8.15

0.73
7.79

20.88

0.82
8.21

37.41

0.82
1195
60.11

6.09 18.91 3.11 0.86

30.80
WC
Oil rate, cc/min 
Water rate, cc/rrrin

0.00
634
0.00

0.36
7.96
4.49

0.64
10.42
18.24

0.78
10.21
35.42

0.78
16.13
56.93

6.02 38.53 6.40 0.86

50.33
WC
Oil rate, cc/min 
Water rate, cc/min

0.00
6.34
0.00

0.00
1145
0.00

0.40
17.20
11.47

0.64
16.22
29.40

0.70
2102
51.04

5.17 64.87 1155 0.84

81.00
WC
Oil rate, cc/min 
Water rate, cc/min

0.00
6.34
0.00

0.00
1145
0.00

0.10
25.80
187

0.46
24.65
20.98

0.61
28.57
44.49

7.67 179.16 23.37 0.88
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Thus, we now have proof that Eq.8.1.1.3 can be expanded to forecast the post

breakthrough performance of wells with DWS. In this case the critical oil rate should be 

determined by some independent method, say with MSSM for the value of water 

drainage rate of interest. Thus the stable, segregated inflow window becomes a basis for 

prediction of the post-breakthrough performance of the wells with DWS. The next 

subchapter contains an explanation how to do this prediction.
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Fig. 8.2.1.1 Correlation of experimental and calculated values of WC for different 
production rates through top completion of the well with DWS
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8.2.2 Water Cut Isolines for the Rates below the Two-Phase Flow Point

Wojtanowicz and Shirman (1995) proposed a visual presentation of the DWS 

performance. This presentation is a graph of the critical oil and water rates on the top 

completion rate vs. bottom completion rate plot. The critical rate lines create an Inflow 

Performance Envelope (IPE) for DWS. The envelope shows the zone where oil and 

water may be produced separately. Water and oil breakthrough zones could be 

estimated from this graph only qualitatively. In this subchapter we are planing to get a 

quantitative description for any production condition using an Inflow Performance 

Winow (IPW).

Swisher and Wojtanowicz (1995) used computer program, developed by 

Shirman (1995), to determine a range of stable production for a well in Nebo-Hephill 

field. Table 8.2.2.1 presents the critical rate for top completion (oil rate) for different 

rates of water drainage (bottom completion rate).

Table 8.2.2.1 Oil critical rate for different rate of water drainage, after Swisher 
and Wojtanowicz (1995)

Water drainagerate, bbl/d 0.0 80.0 28.6 485.3 771.4 986.7

Oil critical rate, bbl/d 7.5 10.0 15.0 20.0 25.0 30.0

By solving Eq 8.1.1.3 for qt, we obtained an expression to predict the rate at the top 

completion for a given rate at the bottom one that yields a new value of rate at the top 

completion resulting in the assumed value of WC at the completion.

' • - r X c \  (8'2'2 1 >

Table 8.2.2.2 displays example calculations made on the basis of the data from Table

8.2.2.1, using Eq. 8.2.2.1. The ultimate (limiting) water cut, WC|,m, is equal to 0.97.
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Table 8.2.2.2 Top completion production rates for different WC at the completion 
and different water drainage rates.

W C@ the 
top completion

Water drainage rate, bbl/d (bottom completion)
0.0 80.0 28.6 485.3 771.4 986.7

0 7.5 10.0 15.0 20.0 25.0 30.0
0.1 8.4 11.1 16.7 22.3 27.9 33.4
0.2 9.4 12.6 18.9 25.2 31.5 37.8
0.3 10.8 14.5 21.7 28.9 36.2 43.4
0.4 12.7 17.0 25.5 34.0 42.5 51.0
0.5 15.5 20.6 30.9 41.2 51.5 61.8
0.6 19.6 26.1 39.2 52.3 65.4 78.4
0.7 26.8 35.8 53.7 71.5 89.4 107.3
0.8 42.5 56.6 84.9 113.2 141.5 169.8
0.9 101.7 135.6 203.4 271.2 339.0 406.8

In this manner we can predict post-breakthrough performance for the wells with 

DWS, if the critical rate is known for the given rate of drainage. Thus, this method is 

only applicable for the drainage rates below the two-phase flow point, i.e., up to the tip 

of the stable inflow envelope. Above the stable inflow envelope, critical rate is 

undetermined and other, independent technique is required for performance forecasting 

in this region.

8.2.3 Water Cut Isolines for the Rates above the Two-Phase Flow Point

We start our reasoning with an introduction of new indices: t - for top 

completion and b - for the bottom one. Without losing generality in our approach, we 

will discuss the case of water breakthrough; the oil breakthrough case is symmetrical to 

the former one. At any time, total WC, i.e., water being produced through both the top 

and the bottom completions, may be calculated with Eq. 8.2.3.1.

WCto, = WC,q‘ +- b- (8.2.3.1)
<1, +<lb
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Assuming that the total production rate is above the ultimate value yields, i.e., 

WCtot ~ WC]im, it follows from Eq, 8.2.3.1 that at the above ultimate rate, top and 

bottom completion production rates are in direct proportion. A line presenting this 

relation on the DWS performance window is a straight line coming through the origin 

of the coordinate according to Eq. 8.2.3.2.

WC -W C
q = ---- —------- -q  (8.2.3.2)

l ~ w c um

Moreover, if the top perforation production rate is equal to critical value, Eq. 8.2.3.2 

simplifies to the following form:

q „ = ----  qb (8.2.3.3)
WORlimVi

The straight line presenting this condition on the top completion rate vs. bottom 

completion rate graph (IPW) will tend to merge with the limiting WOR line.

Due to the symmetry, the critical rate at the bottom completion at the rates 

above ultimate is equal to

qcr ~ WORiimqt (S.2.3.4)

On the DWS performance map, Eq. 8.2.3.4 is presented by the same line as Eq. 8.2.3.3, 

which means that the boundaries of the IPE merge at the production rates close to the 

ultimate values.

Concluding Chapter 8 we offer the following algorithm for DWS performance 

forecast:

1. Calculate ultimate water cut;

2. Calculate the stable inflow region (critical rates of oil for given water rates and 

critical rates of water for given oil rates) using MSSM software;
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3. If production conditions are outside the critical range but less than flip-flop value, 

use Eq. 8.2.2.1 to predict WC or OC depending on the direction of the cone 

developing;

4. If production range is above the flip-flop value, use Eq.8.2.3.2.

Using the proposed algorithm, an IPW has been constructed around the IPE 

presented by Swisher and Wojtanowicz (1995). Figure 8.3.2.1 displays the IMW for the 

well, which was completed with DWS, and has been put on production.
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0.0'
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Top completion rate, bbl/d

Fig. 8.2.3.1 Inflow Performance Map for a well in Nebo-Hamphill Field.
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After the whole range of bottom completion productions had been studied, we 

changed the setting on the pump producing through the top completion to the next rate. 

This cycle of experiments was repeated until we had experimental values of WC over 

the production area from 0 to 100 cc/min for the bottom completion and from 0 to 70 

cc/min for the top one. Interpolation of WC between the experimental points results in 

the inflow performance window presented in Figure 8.2.3.2.

I-0.2--0.1 S - 0 . 1 - 0  □0- 0 . 1  S O . 1-0.2 S O . 2-0.3
10.4-0.5 S O . 5-0.6 S O . 6-0.7 S O . 7-0.8 0 0 . 8 - 0 . 9

1 0 20 30 40 50 60
Bot tom complet ion rate,  cc/min

10.3-0.4

1 00

70

Fig. 8.2.3.2 Experimental inflow performance widow obtained 
on the Hele-Shaw model.
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Theoretical and experimental performance windows are in good qualitative 

agreement, as it follows from comparison o f Figure 8.3.2.1 and Figure 8.3.2.2. 

Unfortunately, the Hele-Shaw model has a very small area of production without 

breakthrough. Any way, it can be identified at the lower part of the zone presenting 

production with WC in the range from 0 to 0.1. For experimental conformation of the 

stable zone presence experiments similar to those described above, but for low rates 

were performed. The origin part of the inflow performance window obtained as a result 

of these experiments is shown in Figure 8.3.2.3; segregated inflow envelop is marked 

white.

■  07-08
□ Q&0.7
■ 0.50.6
■ Q4-0.5
□ 0 5 0 .4  

■ 0 2 0 .3
■ 01-02
■ 00L1 
Q -0.1-0 
0 -0 2 -0 .1  
■ -03 -02
■ -0 4 -0 3

Bonoro conpwuon ccmin

Fig. 8.2.3.3 Stability zone in the Inflow Performance Window
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8.3 Maximum Production Rate in Wells with DWS

It is well known that wells producing from the same reservoir affect on each 

other’s production characteristics. This fact is widely used in well testing and is known 

as a pressure interference test. The smaller the distance between the wells and the 

higher their production rates, the stronger they affect each other.

Placing of an independent completion in the close vicinity of the original one, as 

it is made in DWS technology should result in the completion’s interference. The 

interference would be especially pronounced after breakthrough, because completions 

start sharing the produced fluid. The main problem for DWS application related to the 

pressure interference effect is a possible reduction of oil production in top completion at 

a constant flowing bottom hole pressure.

Experimental evaluation of the interference between the top end bottom 

completions was performed on the Hele-Shaw model, having the top three and bottom 

three perforations open for oil and water production, respectively. Two reservoirs with 

different geometric parameters were studied. The first one has oil and water columns 

thicknesses of 7 and 4.5 inch. In the second model the oil and water columns were 5.5 

and 6 inch, respectively. Figures 8.3.1 and 8.3.2 displays the pressure interference effect 

of the DWS completions on each other measured on the first model. The results, 

presented in Figure 8.3.1 show the relation between production rate and pressure draw 

down in the bottom completion for different rates at the top completion. It is evident 

that increase in production rate at top completions increases the drawdown at the 

bottom one. The points representing different groups of experiments lay along parallel
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lines, which means that the productivity index of the bottom completion remains 

constant in the whole experimental interval.
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Fig. 8.3.1 Effect of production through the top DWS completion on performance of 
the bottom one.
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Fig. 8.3.2 Effect of production through the bottom DWS completion on 
performance of the top one.
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For the studied cases, interference of the bottom completion production on the 

drawdown at the top completion is more pronounced. The increment rate at bottom 

completion shifts the performance line of the top completion and also tilts them, i.e. 

changes productivity index of the part of the well completed in the oil zone. This fact is 

displayed in Figure 8.3.2.

To exclude pressure drawdown from the further analyses, we cross-plot the 

production rate at the bottom completion versus rate at the top one. The cross-plot 

creates a fan of straight lines shown in Figure 8.3.3.
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Fig. 8.3.3 Production rate cross-plot for DWS; modell

A curve, which is a tangent to all of these lines, separates the area of possible 

combinations of production rates at the top and the bottom completions. We refer this
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curve as a Maximum Performance Line (MPL). Any combination of rates that is below 

the MPL is possible to accomplish in practice. Combinations of production rates, which 

plot on the graph above the MPL, are unrealistic: they would create drawdown higher 

than the reservoir pressure.

Similar cross-plot and MPL yield from experiments performed on the model, 

having different thicknesses of the oil and water zones. This cross-plot is shown in 

Figure 8.3.4 and illustrates the fact that reduction of water column reduces the area 

outlined by the MPL.
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■ l.CSPSE
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1295PSI 
□ 5.80 PSI
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Fig. 8.3.4 Production rate cross-plot for DWS; model 2.
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8.4 Final Form of the Inflow Performance Window

To obtain the MPL the same coordinates as for the inflow performance window 

graph are used. Thus, the MPL becomes a natural part of Inflow performance Window, 

limiting the range of possible production rates on it. It is obvious that the limiting 

pressure should not always be equal to the initial reservoir pressure. It can represent any 

natural production limitations, as bubble point pressure, for example maximum fluid 

velocity, etc.

Example of an Inflow Performance Window with a Maximum Performance Line 

is displayed in Figure 8.4.1. It is obvious that the points of intersection of the MPI with 

the graph axes presents the maximum production for the bottom and the top 

completions of DWS, respectively if the other completion does not produce.
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Fig. 8.4.1 Inflow Performance Window with the Maximum Performance Line.
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CHAPTER 9

USE OF GENERALIZED MODEL FOR OIL-WATER INTERFACE 
PROFILE PREDICTION

9.1 Calculation Method

Algorithm described in Chapter 7 has a limitation that the assumed WOR is 

proportional to the ratio of the areas open to water and oil. As we have shown, the WC 

depends also on the shape of the cone, which creates a problem with two independent 

unknowns. The fact that we can predict the equilibrium WC at a given production rate 

using Eq. 8.1.1.3 is very helpful in reducing the number of unknown parameters. Use of 

Eq. 8.1.1.3 makes the position of the cone in the well completion to be the only 

unknown parameter. A corrected algorithm to determine the interface profile is 

constructed as follows:

1. Calculate critical rate and ultimate WC for the given reservoir and fluid 

properties;

2. If given production rate is below critical, there is no breakthrough in the well;

3. Otherwise use Eq. 8.1.1.3. to calculate WC;

4. Assume the interface position in the well;

5. Assume that oil is produced from both the oil and water zones and calculate the

pressure drawdown in the reservoir due to the production of this fluid through 

the top part o f the completion (above assumed WOI);

6. Assume that water is produced from both the oil and water zones and calculate 

pressure drawdown in the reservoir due to the production of this fluid through 

the bottom part of the completion (below assumed WOI);

7. Calculate the difference between the pressures determined in the steps 5 and 6.
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8. Add the effect of gravity, determined by the density difference of the fluids.

9. The points at which the result, obtained in Step 8, is equal to zero, represent

boundary between drainage areas of the two sets of completions, hence the 

interface profile;

10. Check whether the obtained interface position in the well matches the assumed in 

Step 4 value;

11. If the result of step 10 is “TRUE” the solution is obtained, otherwise repeat the

procedure from step 5, using corrected value of the cone height (interface

position in the well).

9.2 Analytical Solution versus Numerical Simulation

To verify the results obtained with the drainage area approach to predict post-

breakthrough behavior, it was decided to make a comparative calculation of the same

example as we used in Subchapter 7.2 using a SSI “Workbench” numerical simulator.

MHaaiwariirr ■iwin—niiMBcautTŝ r̂ -- -jiawa

Fig. 9.2.1 Oil cone profile for 200 BWPD production rate through deep completion; 
result of a simulation run.
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The way the simulator presents results on water-oil profile is shown in Figure

9.2.1. In the figure, two zones can be distinguished: the first one having an oil saturation 

of 0.3 and the second with a water saturation of 0.3. The boundary between these two 

zones presents the cone profile. Once the grid used for the simulation is scaled into 

actual dimensions, the interface profile could be compared with the shape of the cone 

obtained using the drainage area method (Figure 9.2.2).

R e se rv o ir  R a d iu s , ft

0 to  20 30 40 50 60 70 80

0  ----

<r

- ❖ —N u m erica l s im u la tio n  

D arin ag e  a re a  m e th o d

1x
c.
X

-14

-18

Fig. 9.2.2 Oil cone profiles obtained with drainage-area method and numerical 
simulator.

From the comparison, two conclusions can be made:

1. qualitatively the results obtained with the numerical simulator are similar to the 

predictions of the drainage area method; and

2. comparison of the interface profiles forecasted with different methods is not a good 

tool for quantitative estimation of the accuracy of the methods.
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I decided to use predictions of WC as a tool of quantitative comparison. To 

predict WC using drainage-area method, we have to make changes in the algorithm. The 

only difference between the conditions we had in the algorithm presented above is that 

water and oil production rates are unknown. It is more correctly to say that only the 

position of the interface and water cut in the produced fluid are unknown, because the 

total rate is given.

According to our experimental observations, if the production rate is above 

critical value, cone develops relatively fast as a thin spike growing along the wellbore. 

After the spike breakthrough into the well, the cone starts gaining body, and water cut 

changes mostly due to cone’s body change, and not due to the its height. Thus, it looks 

more practical to reduce the number of the unknowns in the problem by assuming a 

fixed position of the cone. With this assumption, the only parameter to be determined is 

WC. The conditions corresponding to the appropriate solution are:

1. Water-oil interface height at the wellbore radius equal to the assumed position of the 

cone;

2. The interface has a smooth shape, i.e. interface accepted, as a solution should have a 

minimum value of its maximum second derivative.

The limitations of this proposed method for calculating WC after breakthrough is 

that it will not give any solution if the production rate is not high enough to raise the 

cone to the assumed height. This limitation is not very serious, because the WC values 

can be easily interpolated in this production range. For the position of the cone 

stabilization, it seems reasonable to take the coordinate, which divides the completion 

into intervals, proportional to the thickness of the oil and water zones of the reservoir.
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The estimation of the WC made with this simplified method is presented in Figure 9.2.3. 

The same figure displays the results obtained for the same case using a numerical 

simulator and simplified an analytical model described in Chapter 8. It is evident that all 

three methods describe the oil cut development in drained water in a similar way. The 

maximum difference in the value of the oil cut predicted by the analytical model and by 

the other two methods are not greater than 0.01.
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Fig. 9.2.3 Oil cut in reversed cone at different rate of water drainage.

It seems reasonable to use the drainage area method to predict interface profiles for 

post-breakthrough conditions. There is no need to use complicated techniques such as 

numerical simulators or the drainage area method to calculate stabilized fluid saturation 

in the production stream; the analytical Eq. 8.2.2.1 derived in Chapter 8 gives 

reasonable results.
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CHAPTER 10

USE OF GENERALIZED MODEL FOR SEGREGATED INFLOW SYSTEM 
DESCRIPTION 

10.1 Conventional Completion

10.1.1 Theoretical Analysis and Example Calculation

If the water cone is stable (i.e. it does not change with time), pressure on both 

sides of the oil/water interface is balanced. Thus, the condition for cone stability is

Since water does not flow and the effect of the cone's body on oil flow is 

ignored, the original water-oil contact (WOC) is assumed to be a no-flow boundary; 

Muskat and Wyckoff (1935) used the same assumption. Therefore, pressure distribution 

in the oil column can be calculated from a mathematical model of a partially penetrating 

well located between two, lateral, no-flow boundaries. To solve this problem, or in 

other words to find the value of the left side of Eq. 10.1.1, the Generalized Steady State 

Method was used. For the single completion before water breakthrough, the drainage 

rate at DWS was set equal to zero.

As an example, calculations were made for the following assumed reservoir and 

production conditions, summarized in Table 10.1.1.

A graphical solution to Eq. 10.1.1 for this particular case is shown in Figure 10.1.1. In 

this figure, the straight line and the family of curved lines represents the right-hand and 

left-hand sides of Eq. 10.1.1, respectively. To plot these curves, values of pressure 

differentials at different levels below the perforated zone were calculated using the 

MSSM computer program.

( 10. 1.1)
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Table 10.1.1 Input data for the example calculation.
V a r i a b l e D i m e n s i o n V a lu e

C o n s t a n t  p r e s s u r e  b o u n d a r y  r ad ius ft 2 00

R e s e rv o i r  p r e s su re ps i 1000

R e s e r v o i r  t h i c k n e s s ft 50

Pen e t r a t i o n  rat io - 0.5

W e l l b o r e  r ad iu s ft 0.5

H or i z o n t a l  p e r m e a b i l i t y m D 30 0

V er t i c a l  p e r m e a b i l i t y m D 3 0 0

Oi l  v i s cos i t y cP 5

4

3

25 bbl/d

q critical
2

15 bbl/d

q reversal

10 bbl/d
z critical

0
0 5 10 15 20 25

Height from the original W OC (ft)
Fig. 10.1.1 Graphical evaluation of critical rate and cone height

Physical interpretation of the graphical solution is as follows. For production 

rates represented by the curved lines above the straight line there is no stable cone 

height, which results in water breakthrough. The line having a single point of contact
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with the straight line represents the critical production rate. Characteristically, the water 

cone height for this critical condition (i.e., just before water breakthrough) is 

significantly shorter (19-ft.) than the distance to the oil completion (25-ft.)

Curves having two intercepts with the straight line represent production rates for 

which a stable water cone exists. The stability conditions correspond to the lower 

intercept. For example, a 15-BPD rate gives a stable 12-ft high water cone. Upper 

intercepts in Figure 10.1.1 represents conditions for unstable cones, i.e., cones having 

the same tendency for moving either upwards (water breakthrough) or downwards 

(stable cone at the lower intercept).

Figure 10.1.1 describes how an existing water cone would respond to the change 

o f production rate. Such analysis considers the curve representing the new production 

rate and the height of the existing cone. If the cone height falls above the upper or 

below the lower intercept for this curve, the cone will move upwards to reach either 

water breakthrough or stable position, respectively. Alternatively, when the cone stands 

up in between the points of intercept, it will collapse to reach a stable position at the 

lower intercept. Consequently, if the cone stands above the oil completion (water 

breakthrough), the only way to make it move downwards is to reduce the production 

rate to one having a curve with an upper intercept above the bottom of the oil 

completion. The maximum rate satisfying this requirement is depicted by a curve with 

an upper intercept at the bottom of the oil completion, which in Fig. 10.1.1 corresponds 

to the production rate of 10-BPD. Thus, a plot of the water cone height vs. rate of oil 

production shows typical histeresis (depicted in Fig. 10.1.2.)
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A practical consequence of the water cone histeresis is that after water 

breakthrough, reduction of oil rate to its critical value, which is 20 bbl/d in this 

example, will not reverse the cone. The cone would not start recessing until the 

production rate is reduced to its reversal rate of 10 bpd. In all examples calculated in 

this study the reversal rates were much smaller than the critical rates, ranging from 30 to 

50 percent of the critical rates values.

30  —

Bottom o f  perforations

20 -L

■a
1
ueoU

0 IS 20 255 !0

Production rate, bbl/d

Fig 10.1.2 Theoretical path (histeresis) of cone developing and suppression

10.1.2 Experimental Verification of Water Coning Histeresis

The phenomenon of water coning histeresis was verified in laboratory 

experiments using a physical Hele-Shaw model, described in Chapter 4. Distilled water 

and white (Semitrol 30-40) oil were used for the experimental runs. To make the water- 

oil interface clearly visible, the oil was colored black. Experiments included two stages. 

During the first stage, oil production rate was gradually increased until water 

breakthrough occurred resulting in a rapid increase of water cut. During the second
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stage, the production rate was reduced step-wise until the water cone visibly collapsed 

and there was no water in the produced liquid.

An example of typical results from an experimental run is shown in Table

10.1.2.1 and Figure 10.1.2.1. The reservoir - well system simulated in this experiment 

was characterized by a critical rate of 0.85 ml/min and a cone reversal rate of 0.6 

ml/min. Also, the critical size of the water cone was 12.5 cm or 2.0 cm below the 

bottom of the oil completion. The plot in Figure 10.1.2.1 clearly demonstrates histeresis 

of water cone development and reversal.

Table 10.1.2.1 Water cone buildup and reversal
P r o d u c t i o n  r a  t e  

( c c / m i n )
C o n e  h e i g h t  

( c m  )
W  a t e r  c u t  
( f r a  c t i o  n )

0 . 6 I 0 . 5 0 0 . 0 0
0 . 7 1 1 . 9 0 0 . 0 0

00o

1 2 . 5 0 0 . 0 0
0 . 9 1 4 . 5 0 0 . 0 7

I I 5 . 0 0 0 . 1 3
0 . 9 1 5 . 2 0 0 . 1 3
0 . 8 1 4 . 9 0 0 . 1 1
0 . 7 1 4 . 9 0 0 . 0 9
0 . 6 1 0 . 3 0 0 . 0 0

16.00 t

14.00 - -
EO

“  12.00
u
coU

10.00 —

8.00

Bottom of 
perforations

0.5

I

♦
♦

t
i
i
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I
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- experiment
- histeresis path

0.6 0.7
9rev

0.8 0.9 l.i

Production rate, cc/min

Fig. 10.1.2.1 Experimental results on position of the cone apex 
during cone developing and reversal.
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In conclusion, I would like to point out the following results of the study made in 

Subchapter 10.1

1. Theoretically, for each rate of oil production below the critical rate there are two 

equilibrium positions of the top of the water cone: stable (lower equilibrium point), 

and unstable (upper equilibrium point). When production rate is increased, the water 

cone builds up and assumes an equilibrium position at the lower equilibrium point. 

The positioning of a water cone at or around the upper equilibrium point is only 

possible when the rate of production is lowered during the process of cone buildup.

2. Reversal of water coning requires knowledge of the relationship between production 

rates and upper equilibrium points for a given well-reservoir flow system. The 

reversing can be made during water cone development or after water breakthrough. 

Reversal of a developing water cone requires that the upper equilibrium point for 

the reduced rate be located above the present cone height so that the water cone will 

be reversed; otherwise, the cone will continue upwards until water breakthrough 

occurs.

3. Reversing water cones after breakthrough requires lowering the rate o f production 

to or below the value o f the cone reversal rate, q^y. The cone reversal rate is

defined as such that its upper equilibrium point coincides with the bottom of the oil 

completion above OWC. Typically, values of cone reversal rates are smaller by 50- 

30 percent than critical rates for the well-reservoir flow systems.

It seems feasible that in some cases of wells with acceptable values of critical rates, 

cone reversal might be needed and could be accomplished without entirely shutting-in 

the well for a long time.
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10.2 Segregated Inflow in DWS Completion

This subchapter deals with a special type of DWS - Downhole Drain-Injection 

System (DDIS). The objective of this study was to determine the effect of hydraulic communication 

between the water drainage and injection zones. Such communication may reduce the area of water 

drainage under the oil-producing perforations and make the system inefficient. Computation of this effect 

should be included in the well completion design, optimization of oil production, and the diagnosis of 

inflow problems.

The downhole drainage injection was mathematically modeled as a system of 

three sinks operating under steady state flow conditions in a multilayered porous 

medium. An isolating stratum having a zero vertical permeability separated the water 

drainage and injection zones. Specifically, this study targets the issue o f a faulty 

subsurface isolation between hydraulic components of the drainage-injection system 

because the actual field systems are likely to operate under conditions of partial 

hydraulic communication between their components. That is why, a leaking wellbore 

cement sheath was modeled as a linear channel of finite conductivity. Therefore, our 

approach for this study was to develop an analytical tool and to qualify the effect of 

imperfect isolation on the performance of the drainage-injection systems.

10.2.1 Problem Definition

The drainage-injection system is a conglomerate of three sinks of finite size 

within four no-flow planar boundaries. Figure 10.2.1.1 shows the nomenclature for the 

mathematical treatment of this system. The following assumptions have been made:

1 Each of the three areas of flow, the oil zone, the aquifer, and the injection zone, 

is laterally homogeneous (kx= ky = kh) with a different vertical permeability 

(kv*kh), and a constant-pressure outer boundary.
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The isolating zone is impermeable, so its thickness can be ignored. 

Consequently, the zone can be replaced by a single, no-flow boundary, as shown 

in Figure 10.2.1.1.

The annular leak constitutes a laminar flow in a linear channel (length, 1) having 

a finite conductivity, K, and extending from the injection source to the drainage 

sink.

The height of the water cone at any point results from equilibrium of pressures 

above and below OWC.

Top of the pay

OIL

Static OWC

AQUIFER

Isolating Zone

Mi nl” Qp

INJECTION ZONE

Bottom of Injection Zone

Figure 10.2.1.1 Nomenclature of water drainage-injection system.

Assumption 1 is simply a transformation of coordinates from the actual reservoir 

with anisotropic flow pattern caused by different values of horizontal and vertical 

permeability to the equivalent isotropic medium having one value of spherical 

permeability.
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Assumption 3 implies that the leak flow can be expressed by the formula

_ 2nrvK  o (z ,r , )  <t>(zd rw)

z i ~ zd [  K kd

where 0(z,r) are the flow potentials around injecting and draining wells. Values of the 

flow potentials were determined using MSSM. To simplify the analysis, spherical 

sources or sinks modeled all the wells.

The effect of annular leak is introduced in the mathematical model using a 

simple material balance illustrated in Fig. 10.2.1.1 which modifies the water drainage 

and injection flow rates, respectively, as follows:

10.2.2 Results and Discussion

From numerous computations, we identified several regularities regarding the 

way drainage injection systems operate under a variety of conditions. These regularities 

may constitute principles for designing the system for a specific reservoir. Below we 

will present these principles using an example oil reservoir. Table 7.2.1 shows reservoir 

properties and the well geometry data.

Table 10.2.2.1 Well data properties.

Parameter Zo Zs Zd rw re kh kv P° fiw P o Pw

Units ft Ft ft ft Ft mD mD cP cP g/cc g/cc

Value 45 i o -10 0.25 1300 236 23 2.4 0.87 0.81 1.15

The results of simulation runs reveal principal relationships between the 

reservoir engineering factors (fluid mobility, configuration of geological strata, and the
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degree of zonal isolation) and the production design factors (the position of well 

completions, and the oil production and water injection rates).

We approached the problem by delineating four possible operating conditions 

for the drainage injection system with regard to the presence of an annular leak and an 

isolating zone, which are discussed below.

10.2.2.1 Complete Isolation between Drainage and Injection Sinks

This case represents the existence of an impermeable stratum underlying the 

reservoir aquifer and isolating the aquifer from the injection zone. Also, the annular seal 

of the well exhibits a complete integrity. Thus, the performance of water drainage in 

this case will not be affected by water injection.

Fig. 10.2.2.1.1 presents the results of calculations for this case. The figure is a 

plot o f the maximum and minimum rates of oil production for various rates of water 

drainage (Segregated Inflow Envelope).

70
z„=45 ft; 
zd= - l0  ft

60

Water  breakthrough 
Oil breakthrough

so

0 10 20 30 60 70 8040 50 90 100
Oil p roduct ion ra te , bbl/d

Fig. 10.2.2.1.1 Inflow Performance Window for water drainage-injection system.
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It is evident that the system provides a limited control of the oil production rate. 

The upper line in Figure 10.2.2.1.1 represents the maximum rate of water production 

without oil breakthrough, while the bottom line is the minimum water rate to prevent 

water breakthrough into the oil drain. These two lines intercept at the point (60,94). The 

point of interception represents the maximum practical stable performance of the 

system. When operate at this point (oil rate o f 94 bbl/d and the required water drainage - 

injection rate, qp = qd = qi = 60 bbl/d), both water and oil sinks produce only one fluid. 

Production at the maximum performance point results in a very small margin of 

stability so either the water or oil breakthroughs may occur (flip-flop conditions).

Figure 10.2.2.1.2 displays the dynamic profiles of OWC around the well. The 

four profiles correspond to the oil rate of 50 bbl/d and different water drainage rates. 

The water rates used for these calculations are also displayed in Figure 10.2.2.1.2 as 

points along one vertical line. The line corresponds to the oil rate of 50 bbl/d.

60

W a t e r  d r a i n a g e  
r a t e

50
Oil rate, qo=50 bbl/d

■10 b b l / d  

■20 b b l / d  

■30 b b l / d  

■40 b b l / d

40

30

20

10

0
5 0 100 2 5 0150 200 3 0 0 3 5 0

10

-20

R a d i u s ,  ft

Fig. 10.2.2.1.2 Effect of drainage on stability of dynamic OWC.
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The uppermost and lowermost curves correspond to the extreme rates of water 

drainage (10 bbl/d, and 40 bbl/d) that destabilize the system by causing either the oil or 

water breakthroughs. The intermediate profiles (q<j = 20 and 30 bbl/d) are the controlled 

water cones with some margin o f stability. It is evident that the optimum design of the 

drainage - injection system would require an analysis of the simulated OWC profiles to 

provide some pre-determined margin of hydraulic stability.

10.2.2.2 No Isolation between Drainage and Injection Sinks

This case is equivalent to a downhole water loop. The formation water is 

produced from and returned to the reservoir aquifer. It is also assumed for this case that 

the casing cement sheath provides a perfect annular seal. Any potential reduction of the 

system’s performance in this case is controlled by flow properties of the aquifer. Effect 

of vertical distance between the water drainage and injection points is summarized in 

Figure 10.2.2.2.1.

80

P o s i t i o n  o f  
th e  i n j e c t o r

P o s i t i o n  o f  t h e  
w a t e r  d r a i n  - 10 ft70

in f i n i t e  

-4 5  ft 

-2 5  ft

6 0

^  50  •S
2
V=0eoc 4 0

2-a

a=S
20

0 10 20 4 0 5030 60 70 80 9 0 100

O i l  p r o d u c t i o n  r a te ,  bb l /d

Fig. 10.2.2.2.1 Effect of the distance between drain and injector (water loop) on 
system performance
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It is evident that while the injection point approaches the drainage perforations, 

the Inflow Performance Window of the system moves into the area of larger water rates 

and smaller oil production. Also, the system becomes more tolerant to variations in the 

water-pumping rate. The designer’s challenge in this case is to determine a distance 

between the drain and injector - so that the downhole loop's pumping rate is at its 

minimum, the dynamic OWC is stable, and the oil production rate is maximized.

10.2.2.3 Isolation with a Leak between the Drainage and Injection Sinks

In this case the leak provides the only conduit between the aquifer and the 

injection zone. Outside the well, an impermeable isolating stratum separates the zones 

and control of water coning is a function of the leak's conductivity. When an annular 

leak develops around the well completed in the isolated water zones, the amount of 

leaking water becomes proportional to the total water-pumping rate, as shown in Figure

10.2.2.3.1.

25

D istan ce  b e tw een  d ra in  and  in jec to r - 35 ft

C h a n e l  c o n d u c t i v i t y
20

► -100  m D * f t  

► -300  m D * f t  

5 0 0  m D * f t  

♦“ 7 5 0  m D ' f t  

< - 1 0 0 0  m D * f t

15

10

5

0
0 10 20 30 5 04 0 6 0 70 8 0 9 0

T o t a l  w a t e r  p u m p i n g  r a t e ,  b b l / d

Fig. 10.2.2.3.1 Determination of leak rate through a channel
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Therefore, a reduction in the system's performance caused by the leak depends 

only on the leak's conductivity. The reduced performance can be estimated using the 

predicted rate o f leakage (Figure 10.2.2.3.1) and the Performance Window plot 

(Fig. 10.2.2.1.1). In this case, the effect of the leak reduces the actual rate of water 

drainage by the value of the leak flow rate. Thus, the Performance Window without the 

leak can be modified and used to predict the reduced performance with the leak. For 

example, an annular leak having conductivity K = 1 D - ft would reduce the actual 

water drainage and oil production rates from 45 bbl/d to 31 bbl/d and from 80 bbl/d to 

67 bbl/d, respectively. Also, it seems that the drainage-injection systems may tolerate 

small annular leaks by suppressing their effect with increased drainage rates.

10.2.2.4 No Isolation and Leak between Drainage and Injection Sinks

This case considers the effect of an annular leak and the absence of an isolating 

stratum. The downhole loop circulates water within the aquifer. However, the flow is 

diverted between the annular leak and the aquifer's rock. In this case, the combined 

effects of the leak's conductivity and the aquifer's properties control the system's 

performance.

Figure 10.2.2.4.1 shows the destabilizing effect of an annular leak on the 

theoretically optimized production program. In the figure, the bottom curve is a stable 

OWC profile corresponding to optimized rates of oil production and water drainage and 

injection. The upper curves show that the development of an annular leak quickly 

destabilized the system, causing water encroachment and breakthrough. The hydraulic 

connection between water drainage and injection completion through the leack reduces 

the amount of water produced through the drainage completion. Thus the pressure
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drawdown around the water drainage completion reduces as well as suppressing effect 

that the DWS implies on water cone.

60

q„=55 bbl/d; <i,= 35 bbl/d
z 0= 4 5  ft; Zt= 10 ft; Zj=25 ft50

K = 7 5 0  m D * f t  

K = 3 0 0  m D * f t  

K = 0  m D * f t

U-C
u

0    . _ .-------------
0 50  1 0 0  150  2 0 0  2 5 0  3 0 0  3 5 0

R a d i u s ,  ft

Fig. 10.2.2.4.1 Destabilizing effect of annual leak on dynamic OWC.

Findings of this study are summarized as follows:

1 For each drainage-injection system, there is a unique relationship between the 

oil production and water pumping rates. We dubbed the relationship a Performance 

Window. The window envelops the area of all possible combinations of oil and water 

rates that would provide stable operation of the drainage-injection system.

2 The performance of an actual drainage-injection system is highly dependent 

upon the integrity of the well's annular seal and the hydraulic isolation between 

geological zones. The two factors may work either independently or in combination. 

Their effect is significant and may cause the whole system to be inefficient.

3 It is proved that MSSM provides an analytical tool for designing drainage- 

injection systems for oil wells. The model accommodates the effect o f annular leakage 

in the homogeneous or hydraulically isolated geological formations.
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CHAPTER 11

DWS VERSUS CONVENTIONAL COMPLETON:
EXPERIMENTAL COMPARISON

11.1 Water Cone Development

The objective of this experimental research was two-fold: to determine OWI 

shapes and water/oil mixing patterns during water cone development and reversal; and, 

to learn how the DWS system outperforms conventional completions. The experiments 

were performed with a transparent Hele-Shaw physical analog that visualized all stages 

of water cone development, reversal, and creation of the inverse oil cone. The 

experimental physical analog has been described in Chapter 5.

A conventional completion (three top holes were open for oil production) was 

used in these experiments. The experiments were performed at a constant production 

rate of 36 cc/min. Every 6 seconds samples of produced fluid were collected 

automatically into graduated centrifuge tubes using the fractional collector; the 

accuracy of the readings was 0.05 cc. Then, values of production rates and WC were 

calculated using measured volumes of produced fluid and time intervals set for 

sampling. To increase the accuracy of these measurements, we used two 3-way 

solenoid valves, which would dispatch flow into the return lines while the fractional 

retriever was changing the centrifuge sampling tubes.

Typically for these experiments, after the oil pump was put on production, 

OWC would bend upward creating a uniform convex OWI. When the growing cone 

reached the height of approximately 2 inches above the initial OWC, a thin spike of 

water having an approximate width of ‘/4-inch would start upwards accelerating towards 

the oil completion, as shown in Figure 11.1.1.

102
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Fig. 11.1.1 Developing of water cone around a well with the conventional 
completion.

This observation can be explained with the well-known concept of critical cone height. 

At a certain distance below the oil completion, the viscous force component becomes 

greater than the gravity component so the two components cannot be balanced to create 

a stable cone. The resultant force accelerates the cone upwards until water breakthrough 

occurs. After the water spike reaches the oil completion, the water cone “gains body” 

and its shape becomes convex again with a flat top as shown in Figure 11.1.2.

Fig. 11.1.2 Stabilized cone shape for a well with conventional completion.
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The water cone stabilization time was one order of magnitude longer than the 

breakthrough time. After the cone stabilization, water cut in the produced fluid 

remained constant and equal to its ultimate value determined by the thickness of oil and 

water zones and mobility ratio of the fluids. Figure 11.1.3 shows results obtained in this 

experiment in comparison with predictions made using the Kuo and DesBrisay (1983) 

method. Their method is based on experiments performed with a numerical simulator 

for real reservoir conditions. Matching of our experimental results with those of Kuo 

and DesBrisay support the assumption that studying OWI profiles in the Hele-Shaw 

models can be used to predict the performance of wells in real reservoirs, at least, in the 

sense of water cut developing after breakthrough.

1.2

E x p e r i m e n t

D e s b r i s a yK u o  &
0.8

0.6

0 .4

0.2

0
0.1 10 100

D i m e n s i o n l e s s  t i m e

Fig. 11.1.3 - Effect of the water cone developing on water cut in Hele-Shaw model 
and real reservoir.

According to Kuo and DesBrisay, after the time needed for the cone 

stabilization, established WC in the produced oil is always equal to its limiting, ultimate 

value. As we found during our experiments, this is not always the case. As can be seen
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from Figure 11.1.3, water cut increases in time up to its ultimate value. This increase is 

due to the fact that with a continuing upward water encroachment, the cone gains body 

and covers a larger area of the oil completion, which in turn produces more water. 

Thus, the height and the shape o f the cone are the main factors controlling water cut. 

Eventually, at a high production rate, the effect o f the viscous force makes the presence 

of the gravitational force negligible and the cone does not change shape any more. At 

this point, the fluid mobility and the water and oil column thickness ratio determine 

WC. Thus, the reservoir flow properties restrict water production and the water cut 

stabilizes at its ultimate value.

If the oil production rate were not high enough to bring the cone up to the 

position where the reservoir geometry plays a restrictive role, the water cut would 

stabilize at some value lower than the ultimate value. Figure 11.1.4 presents our 

experimental results, which completely support the above reasoning.

80t

70.

60.

3U
u

40.
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Q  R a d i a l  s a n d p a c k .  L evere t t ,  L e w is  an d  T r u e  ( 19 4 1)20 .

O  H e l e - S h a w  m o d e l ,  th is  s tu d y

1000 20 60 80 120 14040

Production rate, cc/min

Fig. 11.1.4 - Effect of production rate on water cut
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The experiment was performed with OWC fixed at the feed end of the model. 

Oil rate was increased in small increments starting with the value of 0.6 cc/min. When 

the position and shape of the water cone became completely stable, the water cut was 

measured.

It is evident from Figure 11.1.4 that, with increasing oil rate, water cut 

increases, up to its ultimate value. We denote the oil rate corresponding to the offset of 

the ultimate water cut as an “ultimate” rate, qui. Similar behavior of WC has been 

observed in a radial (sand packed) model and reported by Leverett, Lewis, and True 

(1941). The results of their study are also shown in Figure 11.1.4.

The second parameter, which can be used to control WC in conventional 

completions, is the distance between the perforated interval and the initial OWC. To 

illustrate this type of control, we have performed a series of experiments where the flow 

rate was constant but the position of the producing openings varied. Figure 11.1.5 

displays the results of the experiments. It is evident that placing perforations far enough 

from the water zone reduces the WC, in the produced fluid, down to zero.

0 . 6  -

0.5

0 . 4

0.3

0 .2

0.1

0
0 122 4 6 8 10 14 16 I 8 20

H e i g h t  o f  t h e  p e r f o r a t i o n ,  c m

Fig. 11.1.5 Effect of completion position on the water cut.
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The distance between the completions and the initial WOC defines the value of 

critical rate. Figure 11.1.6 presents the same experimental results but in a form where 

the geometric characteristics of the completion (height of the perforated interval) is 

expressed through the production rate term, dimensionless rate.

0.6

0.5

0.4

0.3

0.2

0.1

0
0 2 3 5 6 74 8 9

Dimensionless rate (qD=q/qa )

Fig. 11.1.6 Effect of critical rate on WC.

Comparison of Figure 11.1.6 with Figure 11.1.4 results in the following 

conclusion: in conventional completion, the effect of both WC-controlling parameters 

may be expressed as the dimensionless production rate.

11.2 Water Cone Suppression in Wells with DWS

Very often production engineers start fighting water problem after it has already 

developed. Thus, it is important to find whether the area in the vicinity of the well may 

be recovered after the water has invaded it. In the case of conventional completion,
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gravity is the only force that can pull water-oil interface downward to its original 

position. That is why this process is very time-consuming and inefficient: the well must 

be shut-in for a substantial period of time. Butler and Jiang (1996) experimentally 

proved that the water cone would collapse if the well were shut-in. These authors also 

found out that the time needed for the WOI to return to its initial position is of the order 

o f years.

On the contrary, in completions with DWS, water-draining sink creates an 

additional dynamic force directed downwards. In this case the motion of the interface is 

much faster than in conventional completions. Moreover, there is no need to terminate 

oil production from the top completed interval; oil production and water drainage rates 

may be adjusted to ensure the cone suppression or even a complete reversal. This 

feature of the wells with DWS opens a new area for the application of this type of 

completions and should become a subject for a separate study.

0.400 A  A D

0.350 a a  a  LJ
O il ra te  = 26 cc/m in 
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A
a  - 22 cc/m in 
□ - 17 cc/m inc 0.300o

!  0.250
B
8  0.200 Water pump is on

.£ 0 1 5 0   ̂ 0.100

0.050
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 1
7 8
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Fig. 11.2.1 Water cone reversal after breakthrough with DWS
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At this stage o f our experiments, we let the cone develop and stabilize and then 

switch on the water pump to drain water through the completion below OWC. We 

repeated this experiment at two different drainage rates. At each drainage rate, the 

water cut in the oil produced from the oil completion was measured at equal time 

intervals. Results of these measurements are displayed in Figure 11.2.1. As can be seen 

from Figure 11.2.1, the time of the cone reversal is similar to the cone stabilization 

time.

After the reversal, a new equilibrium of the OWI established having a 

characteristic shape with a flat “table” in the center surrounded by a circular “ridge” 

elevated above OWC, as shown in Figure 11.2.2. This result is in excellent agreement 

with theoretical predictions made using the MSSM [Wojtanowicz and Shirman (1996)].

Fig. 11.2.2 Water-oil interface profile after water cone reversal 
and oil breakthrough into water draining completion.
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We also observed that in all cases of cone reversal there was oil breakthrough 

into the water completion, which resulted in an additional amount of oil produced as 

“oil cut” in the drained water.

Physical modeling of water coning control with DWS completion demonstrates the 

feasibility and hydromechanics of this process and leads to the following observations:

1. water cone reversal eliminates water cut in oil production by removing water from 

the area around and below oil completion;

2. productivity o f a “watered out” well can be recovered to give a significant increase 

in the production of oil; and

3. duration of the reversal time is comparable with the cone stabilization time and is 

about an order of magnitude longer than water breakthrough time.

11.3 Effect of DWS on Water Cut

One of the most frequently asked question related to the DWS applications is 

whether the new technology reduces the WC in the produced oil. Theoretical study of 

this problem is presented in Chapter 5. Here we present some experimental results on 

the subject. Figure 11.3.1 shows well production history obtained on the Hele-Shaw 

model. For the first six minutes the well produced as a conventional one; the downhole 

water sink was shut in. At these production conditions, the average value of WC was 

0.31.

At 6.5 minutes after putting the well on production, the pump at the bottom 

completion was switched on. As a result of the water drainage, the water cone was 

suppressed, which is indicated by the reduction of WC in the fluid produced through
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the top completion. After 4.5 minutes of water drainage the WC at top completions 

became equal to zero.

'Top completion
Average WC "  ~ 'Total

0.4 *

uy
a

Water pump is on Oil breakthrough

0 2 6 84 10 12 14 16 18

Time, min

Fig. 11.3.1 Experimental well production history.

In the same time overall or total WC, which includes water produced at the top 

and the bottom completion went up. This increment was due to the additional 

production of water through the bottom completion. In two minutes after the DWS was 

on, the total WC started declining, as a result of the cone suppression.

Finally, when the oil breakthrough occurred into the into bottom completion, the 

WC total stabilized at the value of 0.25, which is 6% lower than the conventional 

completion had before the DWS was on. Since the water cut fluctuated in time, the 

small reduction in total WC can not be accepted as meaningful. Thus, as it seems to us 

at this point the drainage-injection systems of DWS looks more promising for the 

industrial application, because of the dramatic reduction in surface WC they provide.
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To exclude the effect of WC fluctuation in time, i.e., to provide more accurate 

measurements, at the next stage of the investigation, we studied DWS at steady state 

conditions. The experiments were performed using both conventional and DWS 

completion. Figure 11.3.2 presents the results of the experiments, where total oil rate is 

plotted against the total production rate. For conventional completion the line simply 

presents effect of post-breakthrough WC. In the well with DWS total production is a 

summation of the fluids produced both at the top and the bottom completions. 

Respectively, the total oil rate is the amount of oil produced through the top and the 

completions.

80 Initial rate at top 
completion, cc/min

70
♦ 6.24 

■ 12.23

* 2427 
D 37.83 
0 552

60

50
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40

30

20
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0
0 20 40 8060 100 120 140

Total rate, cc/min

Fig. 11.3.2 Performance of conventional and DWS wells.

During the experiments we set a production rate for the top completion and ran 

the initial test with DWS shut-in, getting a point for the conventional completion
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performance line. Then, without changing production at the top completion we varied 

rate at the bottom one. In Figure 11.3.2 lines having different graphical style presents 

experimental conditions with a constant production rate at the top completion.

Two different types of the oil rate trends were observed during experiments. As it 

is seen from Figure 11.3.2, if the production at top completion is above 10 cc/min, 

produced oil is the same as in conventional completion until increment of bottom 

completion rate causes reversal of the cone. After the cone reversal, additional oil is 

being produced at the bottom completion

At top completion rate equal to 6.24 cc/min, which is below the ultimate rate, oil 

breakthrough occurred at the slightest rates of water drainage at the bottom completion. 

As it was shown in the previous chapters, the reduction of the rate below the ultimate 

value yields a disproportional reduction in WC. That is why initially sharp increment in 

the oil rate was achieved. It is interesting to note that this oil rate trend has a maximum 

at total rate of about 60 cc/min. If the total rate is above this rate, amount of additional 

oil rate (compare to the rate of the conventional completion) reduces. The reduction of 

WC in the top completion is, probably, due to the pressure interference from the bottom 

completion, becomes lower than the relative increment of water drainage at the bottom 

completion.

Plotting the total WC versus ratio of the rate at the top completion to the well’s 

total rate, we discover the optimum bottom completion rate that yields the minimum 

overall WC. The similar minimums exist for each production rate at the top completion. 

Figure 11.3.3 illustrates this DWS behavior. DWS produces with the maximum WC 

when the water cone is fully developed and at maximum Oil Cut (OC=l-WC) if  oil
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breakthrough occurs. For the rates above ultimate, WC reaches local maximum. For the 

rates below the ultimate rate, value of WC passes through a minimum value. It is 

interesting to point out that the ratio of the production rate at the top completion to the 

well’s total rate is close to the value of the ultimate WC.

0.60

Rate at top 
conviction

♦ 6.24 cc/min 
■ 12.23 cc/min

0.10 a 24.47 cc/min
x 37.83 cc/min 
x 5520 cc/min

0.00
0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

qtOfVqtotal

Fig. 11.3.3 Two types of DWS behavior.

11.4 Effect of DWS on Oil Recovery

The production history of any oil reservoir with water drive depends on the 

efficiency of oil displacement by water. The volume of the reservoir invaded by water is 

mainly the function of the resistance to fluid flow in different parts of reservoir. 

Numerous studies of this phenomenon have been reported in literature. Byme and 

Morse (1973), Settari and Weinaug (1969), Kuo and DesBrisay (1983) performed
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simulation study of oil recovery. Caudle and Silberberg (1965), and Henley, Owens, 

and Craig (1961) performed experiments on the scaled models. The numerical results 

indicate that for a given reservoir geometry and properties there is a unique relationship 

between water cut and value of oil recovery. Kuo and DesBrisay (1983) introduced 

dimensionless time of breakthrough and dimensionless water cut to describe the general 

form of post-breakthrough behavior of a partially penetrating well. Henley, Owens, and 

Craig (1961) noticed the relation between reciprocal of sweep efficiency and WOR is 

linear for the 2<WOR<20 and proposed a simple correlation based on this observation. 

Two coefficients used in the correlation are taken from the special set o f  graphs, which 

is an obvious drawback for the proposed approach. Due to the fact that recovery 

efficiency is in functional relation with WOR, application of DWS could significantly 

improve oil recovery by reducing the WOR.

To study the effect of DWS on oil recovery a special set of experiments was 

performed. The experiments model oil production from a reservoir overlaying aquifer. 

The float switch controlling the position of the WOC during the steady state 

experiments was disconnected. Thus, the inflow of additional oil from the storage 

container was closed. At the same time, the solenoid valve controlling the influx of the 

water remained open. Sampling of the outlet streams on the fractional collector 

provided measurements of the production rates at the top and the bottom completions.

Three top openings (#1, #2, and #3) simulated the top completion and one 

opening (#10) -  bottom one. Experiments were performed at five different 

combinations of production rates at the top and the bottom completions. Table 11.4.1 

presents production conditions related to the studied cases.
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Table 11.4.1 Oil Recovery Study Cases
q top

cc/min
q bot 

cc/min
Np
cc

Wp
cc

Np/N

Case 1 11.36 0.00 234.6 1843.0 0.521
Case 2 12.41 12.43 345.4 969.7 0.768
Case 3 12.13 30.00 362.0 1287.0 0.804
Case 4 7.63 37.30 343.1 1695.3 0.762
Case 5 11.76 57.72 396.8 1392.2 0.882

We stop the experiments when practically undetectable amount of oil got into 

the sampling tubes. Motion of the oil and water in the Hele-Shaw cell was videotaped. 

Figures 11.4.1 - 11.4.2 show the initial results obtained during the experimental runs 

that display dependence of cumulative oil production on variation of drainage rate at 

bottom completions.
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completion
C 150 —
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20 60 1000 80 120 140 160 180 200
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Fig. 11.4.1 Effect of combination of rates at the top and bottom completions of 
DWS on cumulative oil production.
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It is seen that DWS insure production of larger amounts of oil in shorter time. 

Cumulative oil recovery increases with increment of the drainage rate at the bottom 

completion as shown in Figure 11.4.1 and Figure 11.4.2. As it is known, change of 

production rate in conventional completion does not result in variation of ultimate 

recovery. Figure 11.4.2 displays effect of the production rate at the bottom completion 

of DWS on oil recovery. For the water drainage rate five times greater than rate at the 

top completion, oil recovery increased 1.7 times.

W C maY= 94%
1.7

1.6

1.5
 4

1.4

1.3

1.2

1.1

(NpVnnv=52.1%
1

20 1 3 4 5 6
b̂ot̂ fltop

Fig. 11.4.2 Increment in oil recovery due to the water drainage through the bottom 
completion of DWS.

It is also evident from Figure 11.4.3 that the existence of DWS does not increase the

amount of cumulative water produced. Cumulative water production depends upon the

cumulative oil produced and all the experimental lines follow the same trend. In addition,
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amount of the produced water is smaller for the completion with DWS then for the 

conventional completion for the four out of five studied cases.

4500
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3500 -
x  Case 1
o Case 2
a, Case 3

3000 - Case 4
♦  Case 5

Q 1500

0 50 100 150 200 250 300 350 400 450

Cumulative oil (Np), cc

Fig. 11.4.3 Total water production history for different experimental cases.

For better interpretation of the obtained results, we performed the following 

theoretical analysis.

For the production rates above ultimate, the following equation is valid:

WOR = M  —  
h

Current thicknesses of the oil and water zones respectively are

(11.4.1)

h = H a ---------- ------ h = H - K (11.4.2)

Substitution of Eq. 11.4.2 into Eq. 11.4.1 and yields

WOR H
M  Ha -  N Swe))

-1 (11.4.3)
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Eq. 11.3.4 can be presented as

M  Hn N„
(11.4.4)

M  + WOR H HA<t>{\-Swc)

Since Eq. 11.4.4 is valid only after breakthrough, we should adjust initial conditions to the 

time o f breakthrough, which transfer Eq. 11.4.4 into the final form.

M  Af + (N  )BT — N
-------------= ----------—  p-  (11.4.5)
M + WOR HA<f>(\-Swe)

Eq. 11.4.5 means that experimental points for the post-breakthrough condition should give 

a straight line, if we plot complex M/(M+WOR) versus the cumulative oil production. The 

line connects point that corresponds to the initial WOR on the ordinate with the point 

representing the Initial Oil in Place (IOP), N , on the abscissa.

0.9

s
0.4 -

0.3 -

0.2 -

0.1
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Fig. 11.4.4 Correlation between oil and water production; Case 1 (conventional 
completion).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



120

Figure. 11.4.4 presents the experimental data for Case 1 (conventional completion) 

in the proposed coordinates. As seen from the Figure 11.4.4, at rate 10.62 cc/min (Case 1), 

water breakthrough occurs instantly. Experimental data follow the strait line path, which 

indicates 450 cc of OEP. Total recovery from the well is 52.1%.

Figure 11.4.5 presents results from the Case 3. For production history of wells with 

DWS, we plotted two lines on the same graph. One o f the lines is calculated using amount 

of water produced at the top completion only, the other one takes in consideration also the 

water drained at DWS.

0.7

A AxO
£
s

♦0.3 ♦ ♦
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0 -

50

A  WOR at top comietion 

♦  Total WOR

A

♦

♦ ♦

♦ I
♦

100 150 200 250 300

Np, cc

350 400 450 500 550

Fig. 11.4.5 Correlation between oil and water production; Case 3 (suppressed cone).

Case 2 presents production history when the water cone was suppressed. Cone 

development of the cone was comparable with the encroaching of the WOC. From the slope 

of the lines, it is seen that the well produces as if  it were completed in a much large 

reservoir than it really was. Resultant recovery for this case was 76.2%.
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Figure 11,4,6 presents results of experimental Case 4. For this case, the water 

drainage rate was high enough to keep cone stable. In other words, there were neither water 

nor oil breakthrough until 90 cc of oil had been produced. WOR at the top completions was 

equal to zero, but rate at the bottom completion was so high that the line corresponding to 

the overall WOR indicates almost actual size of the initial reserves. Overall recovery for 

this case was 88.2%.

▲ WOR at top completion

♦  Total WOR

Water BT

0.6 ♦

0
0 50 100 150 200 250 300 350 400 450 500 550

Np, cc

Fig. 11.4.6 Correlation between oil and water production; Case 3 (stable cone).

In Case 5, the drainage rate at the bottom completion was high enough to 

reverse the cone. Thus, initially the well was producing at conditions of oil 

breakthrough. Figure 11.4.7 displays the results of the experimental Case 5. From 

comparison of Figure 11.4.7 with Figure 11.4.6, we concluded that there were no 

significant difference between production histories for the cases with stable and
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reversed cones, even though, the water breakthrough time is longer for the latter case. 

Overall recovery is equal to 88.2%.

▲ WOR at top completions
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Fig. 11.4.7 Correlation between oil and water production; Case 5 (reversed cone).

It is evident that higher drainage rate at the bottom completion of DWS yields 

higher overall oil recovery for the given completion geometry. Excessively high 

drainage rates results in increment of cumulative water produced. Thus, further 

theoretical and experimental work needed to get general correlation between the 

reservoir parameters and optimum completion and production schedule.
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CHAPTER 12

TIME DEPENDENT MODEL OF DWS

MSSM was developed to describe the pressure distribution around partially 

penetrating wells. To model the behavior of a partially penetrating well, Shirman (1996) 

substituted well’s perforated interval with an infinite number of spherical sinks. Thus, 

the pressure distribution around a partially penetrating well is equal to the superimposed 

effect of the all sinks and their images. To calculate this effect, steady state equation of 

spherical flow was integrated along the completed interval. This integral yields a steady 

state solution for the well with restricted entry to flow.

Evidently, strict steady-state conditions are virtually impossible to attain, since 

these provisions are abstractions of the mind not the properties of the system. From the 

practical standpoint, this fact does not exclude application of steady-state relations, 

because in many cases they are closely approximated. So-called readjustment time, tr, 

determines the extend of transient behavior [Chatas (1966)]. In spherical reservoir 

systems readjustment time is approximated by Eq. 12.1

0.000264 fa c r;
2k { ]

Evidently, the readjustment time depends on the properties of the system. If these 

properties yield large readjustment time, transient, unsteady-state mechanics should be 

used in the system. In a strict sense virtually all flow phenomena associated with 

reservoir systems are unsteady state. Transient behavior of this phenomenon should be 

considered. To do so a special time-dependent model of pressure distribution in 

partially penetrated reservoirs should be developed.

123
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12.1 Model Derivation

The fundamental differential equation of flow in spherical coordinates can be written as:

+ ——  = (12 .,.!,
dr2 r dr k dt

Effect of gravity in Eq. 12.1.1 is neglected.

Define some dimensionless variables as:

rD = —  ( 12. 1.2)
rw

0.000264kt
' d = — -----7— (12.1.3)

<t>Mcrw'

„ t \ _  Pi  ~  P d  (*£> ’1D ) / n  1 /l\
P d  ~ P d v d ^ d ) ~  /. \ (12.1.4)

P i - P o  v U J

tec denotes dimensionless time the system needs to achieve steady-state conditions. 

Substitution of the equations 12.1.2, 12.1.3, 12.1.4 into Eq. 12.1.1 result in 

dimensionless form of the differential equation of flow.

(12.1.5)
drD‘ r drD dtD

In solving Eq. 12.1.5 the classical approach is illustrated by Carslaw and Jaeger 

(1959),and Chatas (1966). The approach consists of introducing a new variable, b, as a 

product of dimensionless time and pressure. This transformation reduces Eq 12.1.5 to 

the following form.

d 2b db
( 1 2 1 6 )drD otD

The general solution of Eq. 12.1.6 can be written as:
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b = C x cxp(-rDJ s )  + C2 exp(rD^ )  (12.1.7)

A particular solution to this subsidiary equation corresponding to specifically imposed 

boundary conditions is obtained upon appropriate evaluation of the constants that 

appear in its general solution. For the specific case of our interest, system with a 

constant pressure at the external boundary, Chatas (1966) presented the following 

solution

„  (r t )  reD ~ rD , V
P d V D ‘> ^ D / ~  _  /  .

exp sin reD~rD 
V reD~\ y

reDrD fls| VcD f a >  “  l )  +  K  ]C 0S(W „ )
( 12.1.8)

where wn are the roots of the Eq. 12.1.9. 

tan(w) _ 1
w -1

(12.1.9)

Further on we will use this solutions to make MSSM applicable to transient flow.

Having a solution for pressure distribution around spherical sink, we can 

describe pressure behavior in the vicinity o f a well with a limited entry to flow. To do 

so, we need to integrate the solution for the sink along the completed interval. In the 

same manner the MSSM has been derived for steady state conditions.

“f

( P  D \o ta l I p d ^ d ^ d ) ^ 2  ( 1 2 .1 .1 0 )
zb

Since the problem becomes two-dimensional, dimension radius is defined as,

ro =
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It is impossible to integrate Eq. 12.1.10 analytically. To obtain a relation we 

need to describe the pressure distribution around wells with limited entry to flow; we 

should use numerical methods of integration. From the variety o f the numerical 

integration techniques we have chosen Gaussian quadrature.

Gaussian quadrature chooses points for evaluation of integrals in an optimal 

way, rather than in an equally spaced, manner. The nodes, zi, z2, .. .Zn, in the interval [zt, 

Zb] and coefficients, C j ,  c2, . . .C n ,  are chosen to minimize the expected error obtained in 

performing the approximation of integration.

2' n
J P o O W d  )dZ ~  X  CJ ( Zi)

OOm

oo

i

Fig. 12.1.1 Integration using Gausian quadrature.
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Presence of n arbitrary selected points and n coefficients, q, gives 2n parameters to 

choose from. A polynomial degree at most (2n-l) also contains 2n parameters. This, 

then, is the largest polynomial for which it is possible to expect the formula to be exact. 

Thus, accuracy of Gaussian quadrature improves with the increment of the root number 

used for the evaluation. Values for the constants and roots are tabulated and can be 

found in Strout and Secrest (1966).

To approximate Eq. 12.1.10 we used three-point approximation. Practically it 

means that we substituted the well’s completion with three spherical sinks, as shown in 

Figure 12.1.1.

12.2 Computer Program

Numerical integration of Eq 12.1.8 yields the description of the pressure 

distribution around a well with the limited entry in the infinite system with a cylindrical 

constant pressure boundary. To model the effect of layers of different permeability and 

horizontal no-flow boundaries an expanded method of images is used as explained in 

Shirman and Wojtanowicz (1996). The resulting mathematical model, Multiple 

Spherical Sink Transient Model (MSSTM) involves extensive numerical procedure so 

that a computer program was written in EXCEL Visual Basic to perform computations. 

To validate the MSSTM program, we compared pressure transient behavior in a 100% 

penetrating well with the solution obtained using exponential integral. The difference in 

the predictions was smaller than 2%.

To demonstrate the way the program works a case with a conventional partially 

penetrating well was modeled. The input data for the example calculation is presented 

in Figure 12.2.1
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Fig. 12.2.1 Example interface data for MSSTM software.

The MSSTM program calculates and makes plot o f pressure distribution in a 

reservoir around the well. On the plot, each colored area represents value of pressure in 

a specified range. The lines between neighboring areas of different color are isobars.

As an example, the dat from Figure 12.2.1 was used to calculate pressure 

distribution in the reservoir at different time intervals after the well was set on 

production as shown in Figure 12.2.2. At early times, isobars have spheroidal shapes 

around the completion, indicating infinite reservoir behavior. When pressure impulse 

reaches the no-flow boundary (bottom of the reservoir), the pattern of pressure variation 

is similar to the one of radial flow. In this example the reservoir achieves steady state 

conditions after approximately 20 hours of production.

By combining the MSSTM with the Generalized Model of DWS a computerized 

tool could be developed for prediction of water-oil cone development during the initial, 

transient period o f DWS production.
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Elapsed time = 0.1 hr

Elapsed time = 1 hr

Elapsed time = 10 hr

Elapsed time = 100 hr

Fig. 12.2.2 Change of pressure in the example reservoir from beginning of 
production till steady state conditions.

12.3 DWS Production Schedules -  MSSTM Validation

As shown in Eq. 12.1.3 dimensionless time is a function of the reservoir and 

fluid properties. Thus two different fluids, say, water and oil will have different value of
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dimensionless time when the water and oil completions are put on production 

simultaneously. The reason is high mobility of water comparing to the oil. This 

difference will affect the pressure balance at the interface, which can result in changing 

the direction, the cone development. Figure 12.3.3 illustrates this mechanism for a well 

completed with DWS.

Elapsed tune = 1 hr

Elapsed tune 20

Fig. 12.3.3 Change of direction of cone development in time.

It is evident from Figure 12.3.3 that at early time of production pressure 

drawdown caused by water at the bottom completion (light color) production is stronger 

than the one caused by the top completion and an initial oil breakthrough is possible. 

Later, when the pressure disturbance in the oil zone reaches the interface, it may reverse
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the oil cone by pulling it upwards, which may eventually lead to the water 

breakthrough. Similar results were obtained by the means of numerical simulator.

To eliminate this “flip-flop” cone behavior during the initial period of 

production in wells with DWS, a special schedule of putting completions on production 

should be developed. The schedule should have a delay in the starting of production o f 

less viscous fluid. The delay period can be determined using developed software.
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CHAPTER 13

CONCLUSIONS AND RECOMMENDATIONS

The main objective of this work was to develop a design procedure for wells

completed with DWS, which is valid for all production regimes, including post

breakthrough conditions. The following conclusions are drawn:

1. For conventional completions, water cone reversal requires reduction of production 

rate much below the critical rate (50 -  70% of critical rate).

2. In conventional completions at equilibrium steady state production, water cut may 

be in the range from zero up to limiting water cut value. A mathematical formula for 

water cut prediction for any given production rate has been developed theoretically 

and verified with experimental and simulated data.

3. In conventional completions at steady state flow conditions, rate of water production 

is a linear function of oil production rate. Parameters of the straight line (slope and 

intercept) give limiting water cut and the critical rate. Thus a complete description 

of coning, based upon production history, can be made without knowing reservoir 

flow properties.

4. For DWS completions, water cut in the production steams of the top and bottom 

completions can be predicted using the Modified Inflow Performance Window 

(MIPW) procedure, described in this work. MIPW describes the DWS performance 

through the well qtop -  qbonom domain.

5. The top and bottom completions of DWS interfere with each other. This 

interference determines the limit of maximum performance for a given DWS 

completion system.
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6. For a linear flow, such as the one in Hele-Shaw model, water cut response is the 

same as that for radial flow in conclusion 1.

7. A new analytical method has been developed to predict post breakthrough well 

performance for both conventional and DWS completions. The method gives 

analitical description pressure distribution at any point of the reservoir. It also uses 

this distribution to predict dynamic oil-water interface.

8. For each production rate at the top completion unique rate at bottom completion can 

be found to ensure a minimum overall water cut in the producing streams. We 

observed up to twofold reduction in overall water cut compare to conventional 

completions.

9. At the optimal conditions, DWS can provide additional oil recovery' (up to 30% 

increment).

10. Pressure transient effects may create flip-flop cone behavior at shortly after the 

DWS completions were put on production. A new analytical model was developed 

to describe development of the pressure impulse around partially penetrating wells. 

Time of stabilization can be predicted with the proposed model.

11. To eliminate transient flip-flop water cone behavior, it is recommended to put the 

bottom completion on production with a time delay after the top completions have 

been producing. The period of the delay can be determined using developed 

software.
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NOMENCLATURE

Unless otherwise noted within the body of the text immediately following 

presentation of the mathematical expressions, the following nomenclature applies 

through this work:

A cross-sectional area

B - formation volume factor

c = compressibility

E = Young’s modulus

g = gravity constant

H = initial zone thickness

h = zone thickness, height o f the well above WOC

k = permeability

L = length

M = mobility ratio

N = initial oil in place

Np = produced oil

Nrc = Reynolds number

P - pressure

q = production rate

r - radius

s = glass plate thickness

S = saturation

t — time

134
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V = velocity

Wp = produced water

w c = water cut

WOR = water-oil ratio

x,y,z = coordinates

Y = cone shape factor

8 = gap thickness

<D = flow potential

♦ = porosity

P = dynamic viscosity

n = perimeter

n = 3.14....

P = density

Subscripts

av = average

b = bottom

cr = critical

d = drain

D = dimensionless

e = outer boundary

eq = equivalent

i = point at well’s completion; injector

j = index
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1 = linear

lim = limiting, ultimate

m = model

o = oil

r - radial

t = top

total = total

w = water, well

wc = connate water
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APPENDIX

Estimation of Critical Flow Rate for the Hele-Shaw Model.

In the experiments o f Meyer and Searcy (1956), a small hole near the top of the 

flow region served to drain the fluid. The small size of the producing opening simplified 

the solution of our problem. For the modeling process, we substituted the opening with 

a horizontal well which length was equal to the distance between the glass plates in the 

Hele-Shaw model. The top of the model and the initial glycerin-oil contact were 

considered no-flow boundaries. We used three image wells to simulate these 

boundaries, as shown in Figure A. 1

Image well

Top o f the model

Real well

U

Cone profile a.

Original glycerin-oil
contact

Image well

Image well

Fig. A.1 Simulating scheme of the Hele-Shaw model
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According to the assumed modeling scheme, pressure drawdown at the apex of the 

water cone expressed as a superimposed effect of the four wells should be equal to the 

gravitational force:

■ <In
Vr/  +0*-z + 1.8)2 + ln yjr; + (h - z - l .8 f

nkS h - z + 1.8 1

1 N 1 00 I

+ ln
■\jr~ +{h + z — 1.8)

+ ln
Jr* +{h + z + 1.8)2

A + z-1.8 h + z +1.8
(A.l)

Moreover, this equation should have only one solution for the critical height of the 

cone. At any other than critical production rate, Eq. A.l has two solutions; for the 

breakthrough conditions there are no solutions at all. Geometrically, it means that the 

straight line representing the left side of the equation in the Cartesian plot should be a 

tangent to the curve corresponding to the right part of the equation. This limitation 

implies equity of the first derivatives of the two sides of the equation with respect to 

cone height. Thus,

( a , -P o )s  =
h — z + 1.8 1 h - z - 1.8

n k S [ h - z  + \.8 r* + ( h - z  + \.8 )2 h - z - 1.8 r * + ( h - z - 1.8)2
• +

h + z -1.8 h + z +1.8
h + z - 1.8 re2 + {h + z —1.8)2 h + z + 1.8 r^+{h + z + \.^ f

Comparison of Eq. 8.1.2.2.1 and Eq. 8.1.2.2.2 yields

(A.2)

In

+ In
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[ 1 h - z  + 1.8 1_________h - z - 1.8 |
~  [ h -  z + 1.8 r ; + { h - z  + \ . 8 f  + h - z - 1 . 8  r 2 + { h - z - 1.8)2 +

1 h + z —1.8 1 h + z + 1.8
+ h + z - l . 8 ~  r ;+( h + z - l . 8 f  h + z  + \ . 8~  r 2+{h + z +  \ . 8f

Eq. A.3 has been solved for z  by trial and error; practically I used “excel’s” “solver” to 

determine critical cone height for each experiment reported by Meyer and Searcy 

(1956). After the critical cone height was found, it was substituted into Eq. A.1 or Eq. 

A.2 to calculate value of the critical rate. Input data and calculated results for prediction 

of critical rates and WC are presented in Table 8.1.2.2.1.

(A.3)
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