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Abstract

The goal of this work is to develop an asymptotic formula for the behavior of a

scattered electromagnetic field in the presence of a thin metamaterial known as a metasur-

face. By using a carefully chosen Green’s function and the single and double layer poten-

tials we analyze the perturbed scattering problem in the presence of the metamaterial and

a background scattering problem. By using Lippman-Schwinger type representation for-

mulas for the two fields we develop the asymptotic formula for the perturbed field. From

here we prove the asymptotic formula holds up to a specific error term based on the size

of the particles comprising the metasurface. Arising from this asymptotic formula is the

polarization tensor which describes how the metasurface interacts with light based on the

component particles’ dielectric permittivity and geometry. We then use the polarization

tensor to derive key optical constants for the metasurface such as the reflection and trans-

mission coefficients for normal incidence.
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Chapter 1. Introduction

Metamaterials have been an active area of research for some time, with various ap-

plications in acoustics, infrared and microwave technology, and other engineering endeav-

ors. The intrigue surrounding metamaterials stems from their novel properties, which are

not found in naturally occurring materials. Examples dealing with electromagnetic radia-

tion include waveguides, negative index materials, and plasmon resonances [6], [25]. Meta-

materials also present a unique framework for new mathematics in scattering problems,

homogenization, and numerical techniques such as finite element methods. Mathematics

offers a unique perspective on the problem, often handling scattering problems by describ-

ing the metamaterial as an effective medium or effective material parameter that approxi-

mates the real problem up to a rigorously proved error estimate which tends to zero as the

size of particles go to zero.

The focus of this work lies in the intersection of the physical need to model and

construct new optical metamaterials and the rigorous mathematical framework for scatter-

ing problems involving small particles and metamaterials. As new fabrication techniques

have arisen, nano-scale geometry of the small particles of a metamaterial allows novel in-

teraction and control of electromagentic radiation in the optical range [6], [7]. In addition,

new materials such as noble metals (gold, silver, etc.) are being investegated. The chal-

lenge of modeling nano-scale geometries with materials such as noble metals is two-fold.

Firstly, the small geometry requires extremely fine meshing for traditional finite element

methods and Maxwell solvers, causing these methods to become more computationally ex-

pensive. Secondly, noble metals are dispersive in optical wavelengths and can possess a

negative real part of the dielectric permittivity. For dispersive materials, a range of inci-
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dent wavelengths must be modeled, and where the permittivity becomes negative in the

real part, we lose ellipticity of the governing partial differential equations. Here traditional

solvers such as RCWA require a large number of Fourier modes to converge, and in some

cases convergence is lost all together [15]. In this work, we present a first step towards a

mathematical solution to some of the above problems encountered in modeling these op-

tical metamaterials. We develop an asymptotic formula for the scattered magnetic field

from a periodic arrangement of inhomogenities which approximates the actual solution up

to certain error estimates. The asymptotic formula depends on the the polarization ten-

sor denoted by M , which is determined by solving a simpler partial differential equation

(PDE).

The polarization tensor is well studied and describes how waves behave in the pres-

ence of an inhomogeneous material, in this case small periodic particles [14], [20]. Because

the PDE for the polarization tensor is easier to solve, by using the asymptotic formula the

computational cost is reduced making it easier to inform design of new systems. Further-

more, by using techniques such as topology optimization and machine-learning techniques

one can predict the optical control over an entire design space [24], [26]. Using M we are

able to treat the metasurface as a scattering problem with an impedance surface similar to

the work in [1]. This formulation also allows us to represent the original scattering prob-

lem as scattering by an open waveguide. Lastly, we are able to derive approximations for

the radiating far-field reflection and transmission coefficients. Using approximate optical

constants or material parameters, we are able to aid in the design and inverse design of

new metasurfaces [24].

We start by considering a thin metamaterial consisting of a single layer with peri-
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odically spaced particles with period d and dielectric permittivity εm. The height of the

particles is of order δ with d > δ and the width is similar scale with w = aδ. Thin meta-

materials such as these are also known as metasurfaces. The periodicity of the particles

lies in the x1 direction and the particles are centered on the x2 axis. The particles are uni-

form in the x3 direction, so we can simplify the geometry to the 2D case. We denote each

individual particle as Bj and the collection of particles which make up the metasurface as

Bmeta = ∪n
j=1(d+ Bj) (1.1)

One key distinction for the metasurface of interest is the period, d, is not assumed to be

significantly smaller than the incident wavelength. Instead the height of the particles is

assumed to be small compared to the period as stated above. This allows the analysis to

hold for a wider range of incident wavelengths compared to traditional homogenization

techniques. With this in mind we shift from homogenization techniques seen in similar

problems [8], [21], and instead proceed with our formulation which is similar to works in

[3], [9], [17], [18], [23].

For now, we simply embed the metasurface in a domain denoted ΩR, where R is

some positive number which represents the distance the region ΩR extends to the right

and left of the metasurface respectively. The domain ΩR consists of a homogeneous

medium which we take to be air, so ε0 = 1 (see Figure 1.1). In this work, we only consider

materials with a positive real part of their permittivity (Real(εm) > 0), but otherwise the

permittivity can be complex-valued. Materials with negative real permittivity can also

be handled, but require careful treatment for existence proofs, so they will be handled in

future work.
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Figure 1.1. Material Geometry

The metasurface interacts with an incident electromagnetic wave propagating from

negative infinity in the x1 direction. The governing equations for the system are the classic

time-harmonic Maxwell equations with no source charges or current in the presence of an

inhomogeneous material [4], [16]. Here E will denote the electric field and H will denote

the magnetic field. The material is assumed nonmagnetic, i.e., µ = µ0, and ε = ε0εδ where

the relative dielectric constant εδ can depend upon x.

∇× E = iωµ0H ∇×H = −iωϵ0εδE

∇ · εE = 0 ∇ ·H = 0 (1.2)

We are interested in the case of Transverse Magnetic (TM) polarization which gives

E = E1(x1, x2)e
i(kx−ωt)e⃗1 + E2e

i(kx−ωt)e⃗2

H = H3e
i(kx−ωt)e⃗3

(1.3)

By using the TM polarization we ensure the electric field has a component which is paral-

lel to the direction of periodicity which provides the potential for plasmonic behavior and
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resonance in the metasurface [6]. We note that with the TM polarization we can write the

curl equation to give the relationship between H3 and the electric field components E1 and

E2

∂x1H3 = −iω
c
E2 ∂x2H3 = i

ω

c
E1 (1.4)

This allow us to solve for the magnetic field and then find the electric field using the curl

equation above.

The piece wise constant dielectric permittivity εδ describing the metasurface is de-

fined by

εδ =


1 x ∈ ΩR \ B

εm x ∈ B.

(1.5)

Recall µ0ε0 = c2 and set k = ω/c. Using the assumptions of TM polarization and some

vector identities we reduce the Maxwell system to the scalar Helmholtz equation in terms

of the magnetic field, H3. For notation, we will denote this field Hδ as it represents the

magnetic field in the presence of the metasurface, which we will also call the “perturbed”

field. The incident magnetic field is Hinc and Hδ = Hinc +Hs
δ where Hs

δ is the “scattered”

magnetic field. Hδ is the solution of the Helmholtz equation

∇ ·
(

1

εδ
∇Hδ

)
+ k2Hδ = 0, (1.6)

where Hs
δ satisfies the out going radiation conditions given by: There exists an R > 0 for

which

Hs
δ =

∞∑
m=0

rme
ikgmx1eiβmx2 , x1 < −R. (1.7)
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and

Hs
δ =

∞∑
m=0

tme
−ikgmx1eiβmx2 , x1 > R, (1.8)

where rm and tm are reflection and transmission coefficents. We also define the “back-

ground” magnetic field, H0 which solves the Helmholtz equation in the absence of the

metasurface,

∆H0 + k2H0 = 0 (1.9)

In the absence of the metasurface we just have the homogeneous region ΩR, so in this case

H0 is simply just the incident field Hinc.
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Chapter 2. Preliminaries

2.1. Weak Formulation and Quasi-Periodic Green’s Function

In the first step of our analysis we utilize the periodic geometry of the domain and

simplify the problem to a single particle on an infinite strip with −∞ < x1 < ∞, −d/2 <

x2 < d/2 and quasi-periodic boundary conditions in the x1 coordinate. The periodic do-

main has width d with a single particle, B, centered at (x1, x2) = (0, 0). We denote the

truncated domain by ΩR, which extends to a distance R above and below the particle in

the x2 direction. We denote the periodic strip with width d which contains ΩR and the

particle as R2
#. We recall that the height of the particle is denoted by δ and here we will

also take the width to be δ.

Figure 2.1. Periodic Domain

We define β = k sin(θinc) as the incident wavenumber for a prescribed incoming
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wave with angle of incidence θinc. The incoming wave is from the left and is of the form

Hinc = eikg0x1eiβx2 where g0 =
[
1−

(
β
k

)2]1/2
. The solution of the scattering problem is

written as Hδ. The variational form of the scattering problem (1.6)-(1.8) is given by

∫
R2
#

ε−1
δ ∇Hδ(y) · ∇v(y) + k2Hδ(y)v(y)dy = 0 (2.1)

where the solution Hδ belongs to H
1
#(β,R2

#) which is the Hilbert space given by

H1
#(β,R2

#) = {v ∈ H1
loc(R2) : v is β quasi-periodic} (2.2)

and v is any function in the space C∞
0,β(R2

#) of infinitely differentiable functions with com-

pact support on the closure of R2
# and that satisfy the same quasiperiodic constraint as

functions in H1
#(β,R2

#). We set p = 2π/d and define βm = β+mp for m ∈ Z. The solution

is of the form Hδ = Hinc + Hs
δ where Hs

δ satisfies the out going radiation conditions given

by: There exists an R > 0 for which

Hs
δ =

∞∑
m=0

rme
ikgmx1eiβmx2 , x1 < −R. (2.3)

and

Hs
δ =

∞∑
m=0

tme
−ikgmx1eiβmx2 , x1 > R, (2.4)

where rm and tm are reflection and transmission coefficients. Here

gm =

[
1−

(
βm
k

)2
]1/2

(2.5)

and g0 is associated with the incident wave and g0 =
[
1−

(
β
k

)2]1/2
. Existence of unique

solutions for all wave numbers k with the exception of a countable set for the scattering

problem are proved in [5], [25].
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For completeness, we relate the weak formulation to the classic strong formulation

by a proper choice of test functions. By choosing v with support in R2
# \ B and using inte-

gration by parts on (2.1) we have

∫
R2
#\B

[
∆Hδ(y) + k2Hδ(y)

]
v(y)dy = 0

Similarly taking v with support only in the particle B we have

∫
B

[
ε−1
m ∆Hδ(y) + k2Hδ(y)

]
v(y)dy = 0

Finally if we take v with support only on the boundary of the particle, ∂B we have

∫
∂B
ε−1
m

[
∂nHδ(y)|− − ∂nHδ(y)|+

]
v(y)dsy = 0

Combining the above variational forms we have the strong from of the scattering problem

on each domain

∆Hδ(x) + k2Hδ(x) = 0 for x ∈ R2
# \ B

ε−1
m ∆Hδ(x) + k2Hδ(x) = 0 for x ∈ B (2.6)

with the flux continuity boundary condition on ∂B

ε−1
m ∂nHδ|− − ∂nHδ|+ = 0 on ∂B (2.7)

and the continuity of Hδ across ∂B follows from our choice of weak formulation. Equations

(2.1), (2.7) together with the incident wave and outgoing radiation conditions constitute

the strong form of the scattering problem.

9



The main tool of our analysis is the representation of solutions by the Green’s func-

tion as formulated by Linton [19]. We introduce X = (x1 − y1) and Y = (x2 − y2) and the

quasi-periodic Green’s function, Gk
qp, satisfies

∆yG
k
qp(X, Y ) + k2Gk

qp(X, Y ) = −δ(x1)
∞∑

m=−∞

δ(x2 −mp)eimβd in ΩR (2.8)

where y = (y1, y2). The formula for Gk
qp given by,

Gk
qp(X, Y ) = − 1

2d

∞∑
−∞

e−γm|X|eiβmY

γm
(2.9)

where

βm = β +mp

γm = (β2
m − k2)1/2 = −i(k2 − β2

m)
1/2. (2.10)

As before d is the period of the metasurface, and we define β = k sin(θinc) as the incident

wave number for an incoming wave with angle of incidence θinc. Note if k2 < β2
m then

γm = |k2 − β2
m| > 0 and the mth order mode decays exponentially in |X|. On the other

hand for k2 > β2
m the mth mode is oscillating in |X|. The first case corresponds to (k <

β < p− k). The second consideration shows that as |X| → ∞, Gk
qp behaves as

Gk
qp ∼ − i

2kd

N∑
−M

eikgm|X|eiβmY

gm
, (2.11)

where M is a non-negative integer such that β−M−1 < −k < β−M and N is a non-negative

integer such that βN < k < βN+1 and gm is given by (2.5)
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The Linton’s Green’s function is essential to the analysis of the metasurface. The

leading order theory is found by relating decay properties of a suitable Dirichlet Green’s

function and the free space Laplace Green’s function to Gk
qp. We start with the periodic

Green’s function given by Linton, Gk
per, which can be written as the Green’s function for

the Helmholtz equation Gk
0 with zero Dirichlet data on the truncated domain ΩR plus

a smooth kernel. Similarly, we can write Gk
0 as the sum of the Green’s function for the

Laplacian, G0, plus another smooth kernel. The use of successive Green’s functions de-

livers explicit formulas for the leading order theory and bounds on the higher order error

that are valid when the scatter dimensions lie below the period length.

The Green’s function for the Helmhotz equation with zero Dirichlet boundary data.

For any x ∈ ΩR

∆Gk
0(x, ·) + k2Gk

0(x, ·) = −δx in ΩR

Gk
0(x, ·) = 0 on ∂ΩR (2.12)

We note here that Gk
0 is symmetric for all x, y ∈ ΩR with x ̸= y, as well as the following

relation between Gk
qp and Gk

0

Gk
0(x, y) = Gk

qp(x, y) +K1(x, y) (2.13)

where K1(·, ·) is a smooth kernel belonging to C∞(ΩR × ΩR). We also can express Gk
0 in

terms of the free space Green’s function for the Laplacian, G0, by

Gk
0(x, y) = G0(x, y) +K2(x, y) (2.14)
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where

G0(x, y) = − 1

2π
log|x− y| (2.15)

Again K2(x, y) is a smooth kernel for x ̸= y, belonging to C∞ (ΩR × ΩR \ {(x, y) : x = y}),

where for fixed x ∈ ΩR, K2 satisfies

∆K2(x, ·) = ∆Gk
0(x, ·)−∆G0(x, ·) = −k2Gk

0(x, ·) (2.16)

Lastly, we can relate the Linton Green’s function to the Green’s function for the Laplacian

by

Gk
qp(x, y) = G0(x, y) +K3(x, y) (2.17)

Due to the definition of Gk
qp and the fact that K3 is uniformly bounded on any compact

set [27], we have that Gk
0(x, ·) is in Lp(ΩR) for p < ∞. Also since K2 ∈ C∞(ΩR × ΩR)

for x ̸= y we have K2(x, ·) is in W 2,p for any p < ∞. Therefore ∥K2(x, ·)∥W 2,p is uni-

formly bounded for any x in a compact subset of ΩR. Now by Sobolev’s Imbedding Theo-

rem [11],[13] for any compact set K ⊂ ΩR there exists a constant C such that

∥K2(x, ·)∥L∞(ΩR) + ∥∇yK2(x, ·)∥L∞(ΩR) ≤ C for all x ∈ K (2.18)

Here we note that H0 belongs to C∞(ΩR) and Hδ belongs to C
0,β for some β > 0 due to

elliptic regularity estimates [13]. We also have that Hδ is C
∞ in each domain separately,

i.e. Hδ ∈ C∞(B), and Hδ ∈ C∞(ΩR \ B) with the normal derivative of Hδ having the jump

relation across ∂B given by (2.7)
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2.2. Polarization Tensor

Here we introduce the well-known polarization tensor which describes how the par-

ticle interacts with the incident electromagnetic wave [14] [20]. First, we define the vector-

valued potential ϕ = ϕ1e1 + ϕ2e2 which solves the following equation. We note {e1, e2} is

the standard basis in R2 

∆ϕ = 0 in B and R2
# \ B

ϕ+ = ϕ− across ∂B

εm
∂ϕ
∂n
|+ − ∂ϕ

∂n
|− = −n

lim|z→∞||ϕ(z)| = 0

(2.19)

The existence and uniqueness of ϕ is established using single layer potentials with appro-

priate densities [14]. The polarization tensor, M , for the inclusion B is now given by

M(εm) = |B|I + (εm − 1)

∫
∂B
n(y)ϕ(y)dsy (2.20)

We can see for a given inclusion, the polarization tensor is dependent upon the ratio of

the dielectric permittivity of the particle and the surrounding medium, in this case just εm

since the background medium is air. In general M is a 2x2 matrix given by

M =

m11 m12

m21 m22

 (2.21)

Furthermore M is a symmetric and positive definite [14]. As we shall see in chapter 3 we

derive an asymptotic formula for the magnetic field with the only unknown being the po-

larization tensor. Therefore we just have to solve the simplified PDE (2.19) to find the

scattered field seen in chapter 4.

13



2.3. Well-Posedness of first and second order corrector problems

We begin by asserting the well-posedness of two auxiliary problems posed over the

truncated domain ΩR. The first problem is standard and is the Helmholtz problem over

a domain with dielectric constant ε0 = 1. The second problem is a Helmholtz equation

for a domain with dielectric constant one containing an inclusion of dielectric constant

εm. For each of the two problems well-posedness for the problem with nonzero right hand

side and zero Dirichlet data on the boundary is asserted. From there the well-posedness on

the truncated domain with zero right hand side and non-zero boundary data follows as a

corollary.

Define the background field u0 to be the solution to the following Helmholtz prob-

lem 
∆u0 + k2u0 = F in ΩR

u = 0 on ∂ΩR

(2.22)

In order to assure well-posedness we assume

−k2 is not an eigenvalue for the operator ∆ with Dirichlet boundary conditions (2.23)

With the assumption (2.23) it follows from standard elliptic PDE methods

[11],[13],[22] we have that (2.22) is well-posed, i.e. for any F ∈ H−1(ΩR) there exists

a unique solution and a constant C such that ∥u0∥H1(ΩR) ≤ C∥F∥H−1(Ω). Now we perturb

the background problem by adding an inclusion of dimension δ < k. The field uδ is the

solution of the perturbed problem
∇ ·
(

1
εδ
∇uδ

)
+ k2uδ − F in ΩR

uδ = 0 on ∂ΩR

(2.24)
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We state the well-posedness for this Dirichlet problem when δ is small relative to p

which is given in [27]

Proposition 2.3.1. Suppose condition (2.23) is satisfied. Then there exists constants

δ0 > 0 and C such that for any 0 < δ < δ0 and any F ∈ H−1(ΩR), (2.24) has a unique

variational solution, uδ ∈ H1
0 (ΩR). Furthermore, uδ satisfies

∥uδ∥H1(ΩR) ≤ C∥F∥H−1(ΩR) (2.25)

To extend the well-posedness for the background problem to the scattering prob-

lem in the presence of the metasurface for given Dirichlet data f we apply the corollary of

Proposition 2.3.1 which is also given in [27]

Corollary 2.3.1. Suppose condition (2.23) is satisfied. Then there exists constants δ0 > 0

and C such that for any 0 < δ < δ0 and any f ∈ H1/2(ΩR) the problem
∇ ·
(

1
εδ
∇uδ

)
+ k2uδ = 0 in ΩR

uδ = f on ∂ΩR

(2.26)

as long as δ is sufficiently small has a unique variational solution, uδ ∈ H1(ΩR). Further-

more, uδ satisfies

∥uδ∥H1(ΩR) ≤ C∥f∥H1/2(ΩR) (2.27)

With the well-posedness in hand we now obtain the leading order terms and bound

the error for inclusions of size δ/p < 1. This is done in the following sections.

2.4. Use of single and double layer potentials

The leading order theory and error bounds follow from integral representations of

the solution to the scattering problem using boundary layer potentials [2], [10]. The single
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layer potential S acts on an element ψ belonging to the Hilbert space, H−1/2(∂ΩR) and

sends it to an element of the Hilbert space H1/2(∂ΩR), i.e.

S : H−1/2(∂ΩR) → H1/2(∂ΩR) (2.28)

The single layer potential is defined as

S : ψ →
∫
∂ΩR

Gk
qp(x, y)ψ(y)dsy (2.29)

The double layer potential operator,D, is given by

D : H1/2(∂ΩR) → H1/2(∂ΩR) (2.30)

where D is defined as

D : φ→
∫
∂ΩR

∂Gk
qp(x, y)

∂n(y)
φ(y)dsy (2.31)

Here we also note the boundary relations for the single and double layer potentials [10].

For x ∈ ∂ΩR

∂S±

∂n
(x) =

∫
∂ΩR

ψ(y)
∂Gk

qp(x, y)

∂n(x)
dsy ∓

1

2
ψ(x) (2.32)

where the normal derivative is understood as a limiting value approaching the boundary

∂S±

∂n
(x) := lim

h→0
n(x) · ∇S(x± hn(x)) (2.33)

For the double layer potential

D±(x) =

∫
∂ΩR

φ(y)
∂Gk

qp(x, y)

∂n(y)
dsy ±

1

2
φ(x) (2.34)

where D± is similarly understood as a limiting value approaching the boundary

D±(x) := lim
h→0

D(x± hn(x)) (2.35)
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We also define the Dirichlet to Neumann map

Nδ : H
1/2(∂ΩR) → H−1/2(∂ΩR)

Nδ(f) =
∂uδ
∂n

(2.36)

where uδ solves

∇ ·
(

1

εδ
∇uδ

)
+ k2uδ = 0 in ΩR

uδ = f on ∂ΩR (2.37)

We also define the Dirichlet to Neumann map for the background problem

N0 : H
1/2(∂ΩR) → H−1/2(∂ΩR)

N0(f) =
∂u0
∂n

(2.38)

Similarly u0 solves

∆u0 + k2u0 = 0 in ΩR

u0 = f on ∂ΩR (2.39)

We note that n will always denote the outward facing normal component on the bound-

ary ∂ΩR or ∂B. Without loss of generality we have assumed k2 is not an eigenvalue of the

operator −∆ in ΩR with Dirichlet boundary conditions on ∂ΩR.

Using the operators defined above we can derive the Lippman-Schwinger equation

seen in [10] using the variational form (2.1). The Lippman-Schwinger equation recasts our

problem in terms of the double and single layer potentials, setting up the framework to

derive the asymptotic formula for Hδ in terms of the polarization tensor.
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First, we consider (1.6) on R2
# \ ΩR and define the rectangle ΩL ⊂ R2

# such that

ΩR ⊂ ΩL with L > R. Here we suppose x lies inside Ωc
R = ΩL \ ΩR. Using G

k
qp as our test

function and integrating over Ωc
R we have

∫
Ωc

R

(∆Hδ(y) + k2Hδ(y))G
k
qp(x, y)dy = 0 (2.40)

Here we proceed by using integration by parts which gives

∫
Ωc

R

∇Hδ(y) · ∇Gk
qp(x, y) + k2Hδ(y)G

k
qp(x, y)dy

−
∫
∂ΩR

∂Hδ(y)

∂n
Gk

qp(x, y)dsy +

∫
∂ΩL

∂Hδ(y)

∂n
Gk

qp(x, y)dsy = 0 (2.41)

We note the boundary integral on the vertical boundaries vanish due to the quasi-periodic

boundary conditions. Applying another integration by parts to move the derivatives onto

Gk
qp gives

∫
Ωc

R

[
∆Gk

qp(x, y) + k2Gk
qp(x, y)

]
Hδ(y)dy

+

∫
∂ΩR

(
∂Gk

qp(x, y)

∂n(y)
Hδ(y)−

∂Hδ(y)

∂n
Gk

qp(x, y)

)
dsy

+

∫
∂ΩL

(
∂Hδ(y)

∂n
Gk

qp(x, y)−
∂Gk

qp(x, y)

∂n
Hδ(y)

)
dsy = 0 (2.42)

Using the definition of Gk
qp on Ωc

R gives,

−Hδ(x) +

∫
∂ΩR

(
∂Gk

qp(x, y)

∂n(y)
Hδ(y)−

∂Hδ(y)

∂n
Gk

qp(x, y)

)
dsy+

+

∫
∂ΩL

(
∂Hδ(y)

∂n
Gk

qp(x, y)−
∂Gk

qp(x, y)

∂n
Hδ(y)

)
dsy = 0. (2.43)

On the other hand choosing ΩL, H0 = Hinc, and x ∈ Ωc
R gives

∫
Ωc

R

(∆H0(y) + k2Hδ(y))G
k
qp(x, y)dy = 0, (2.44)
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and proceeding similarly we obtain

−H0(x) +

∫
∂ΩL

(
∂Hδ(y)

∂n
Gk

qp(x, y)−
∂Gk

qp(x, y)

∂n
Hδ(y)

)
dsy = 0. (2.45)

Subtracting (2.45) from (2.43) gives

−Hδ(x) +H0(x) +

∫
∂ΩR

(
∂Gk

qp(x, y)

∂n(y)
Hδ(y)−

∂Hδ(y)

∂n
Gk

qp(x, y)

)
dsy+

+

∫
∂ΩL

(
∂Hs

δ (y)

∂n
Gk

qp(x, y)−
∂Gk

qp(x, y)

∂n
Hs

δ (y)

)
dsy = 0. (2.46)

where Hs
δ = Hδ − H0 satisfies the out going radiation condition and passing to the limit

L → ∞ gives the Lipmann-Schwinger equations for x ∈ R2
# \ ΩR. The Lippman-Schwinger

equations are common integral representation tools seen in [10].

Hδ(x) = H0(x) +

∫
∂ΩR

∂Gk
qp(x, y)

∂n(y)
Hδ(y)dsy −

∫
∂ΩR

∂Hδ(y)

∂n
Gk

qp(x, y)dsy (2.47)

This integral equation holds for x ∈ R2
# \ ΩR where n is this unit outward normal to ∂ΩR.

We note (2.47) holds up to the boundary of ΩR, but not for x ∈ ∂ΩR. However, we can

take the limit as x → ∂ΩR and use the double-layer potential relation (2.34) to give a

boundary integral equation for x ∈ ∂ΩR

1

2
Hδ|∂ΩR

= H0|∂ΩR
+

∫
∂ΩR

∂Gk
qp(x, y)

∂n(y)
Hδ(y)dsy −

∫
∂ΩR

Gk
qp(x, y)

∂Hδ(y)

∂n
dsy (2.48)

Now we can use the layer potential definitions to recast the boundary integral equation

(2.48) in operator notation as,(
I

2
−D + SNδ

)
(Hδ|∂ΩR

) = H0|∂ΩR
(2.49)

Similarly, H0 satisfies (
I

2
−D + SN0

)
(H0|∂ΩR

) = H0|∂ΩR (2.50)
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Using the two operator notation equations we can define two new operators which describe

the full scattering problem and background scattering problem in terms of layer potential

operators. First we define

Tδ :=
I

2
−D + SNδ (2.51)

where Tδ sends an element from H1/2 on the boundary of ΩR to the same space, i.e.

Tδ : H
1/2(∂ΩR) → H1/2(∂ΩR)

Similarly for the background problem we define

T0 :=
I

2
−D + SN0 (2.52)

where

T0 : H
1/2(∂ΩR) → H1/2(∂ΩR)

If we subtract (2.50) from (2.49) we find that

Tδ(Hδ|∂ΩR
)− T0(H0|∂ΩR

) = 0 (2.53)

Furthermore, we have

Tδ((Hδ −H0)|∂ΩR
) = S(N0 −Nδ)(H0|∂ΩR

) (2.54)

We now have everything we need to state and prove our main results provided in the next

chapter.
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Chapter 3. Asymptotic Formula for Hδ

3.1. Asymptotic Formula for Hδ

In this chapter we derive our main result giving the desired asymptotic formula for

Hδ. We begin by stating an asymptotic formula in terms of the operators Tδ and T0.

Proposition 3.1.1. Let Tδ and and T0 be defined by (2.51) and (2.52) respectively. Then

the following hold:

(a) Tδ converges to T0 pointwise

(b) For δ sufficiently small, there exists a constant C that is independent of δ such that for

any f ∈ H1/2(∂Ω), T−1
δ exists and

∥T−1
δ f∥H1/2(∂Ω) ≤ C∥f∥H1/2(∂Ω)

(c) The following asymptotic formula holds:

(T0 − Tδ)(H0|∂ΩR
(x) = S(N0 −Nδ)(H0|∂Ω(x)

=

(
1− 1

εm

)
δ2∇yG̃

k
per(x, 0) ·M(εm)∇H0(0) +O(δ3−η)

(3.1)

The asymptotic term O(δ3−η) is independent of the point x ∈ ∂Ω

The proof of Proposition (3.1.1) is involved and the full proof is provided in the Appendix.

We define the leading order term in (3.1) as δ2H(1) where

H(1)(x) =

(
1− 1

εm

)
∇yG̃

k
per(x, 0) ·M(εm)∇H0(0) (3.2)

Using the above notation we can use (2.54) to restate part (c) in Proposition 3.1.1 as

Tδ((Hδ −H0)|∂ΩR
) = δ2H(1)|∂ΩR

+O(δ3−η). (3.3)
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Lemma 3.1.1. Let the correction term H(1) be defined by (3.2). Then the following equa-

tion holds

T0(H
(1)|∂ΩR

) = H(1)|∂ΩR

Proof. Let u(1) be the unique solution to
∆u(1) + k2u(1) = 0 in ΩR

u(1) = H(1) on ∂ΩR

(3.4)

In terms of the Dirichlet to Nuemann map,

∂u(1)

∂n
= N0(u

(1)|∂ΩR
) (3.5)

Then we have

∫
ΩR

Gk
qp(x, y)

(
∆u(1) + k2u(1)

)
dy = 0.

An integration by parts gives

u(1)(x) = −
∫
∂ΩR

∂n(y)G
k
qp(x, y)u

(1)dsy +

∫
∂ΩR

Gk
qp(x, y)∂n(y)u

(1)dsy

and sending the sequence xn ∈ ΩR to any x ∈ ∂ΩR gives the desired result

u(1)|∂ΩR
=

(
I

2
−D + SN0

)
u(1)|∂ΩR

. (3.6)

Lemma 3.1.2. The following estimate holds on the space H1/2 on the boundary of ΩR

∥Hδ −H0 − δ2H(1)∥H1/2(∂ΩR) = o(δ2) (3.7)
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Proof. From (3.3) it follows that

Tδ((Hδ −H0 − δ2H(1))|∂ΩR
) = δ2H(1) − δ2Tδ(H

(1)|∂ΩR
) +O(δ3−η). (3.8)

Lemma 3.1.1 gives

Tδ((Hδ −H0 − δ2H(1))|∂ΩR
) = δ2(T0 − Tδ)(H

(1)|∂ΩR
) +O(δ3−η). (3.9)

Since Tδ − T0 → 0 pointwise in H1/2(∂ΩR) we can write

Tδ((Hδ −H0 − δ2H(1))|∂ΩR
) = o(δ2), (3.10)

and from part (b) of Proposition 3.1.1 we conclude that

∥Hδ −H0 − δ2H(1)|∂ΩR
)∥H1/2(δΩR) = ∥T−1

δ o(δ2)∥H1/2(∂ΩR) ≤ C∥o(δ2)∥∂ΩR), (3.11)

and the lemma is proved.

We now arrive at the explicit expansion for the solution Hδ of the scattering prob-

lem for points x ∈ R2
# \ ΩR bounded away from ∂ΩR.

Theorem 3.1.1. Let Hδ be the solution to (1.6), and let M(εm) be the polarization tensor

for the particle B defined by (2.20). Then for x ∈ R2
# \ ΩR bounded away from ∂ΩR, we

have the expansion

Hδ(x) = Hinc(x) + δ2
[(

1− 1

εm

)
∇yG

k
qp(x, 0) ·M(εm)∇Hinc(0)

]
+ o(δ2). (3.12)

where the remainder term o(δ2) is independent of x.

Proof. Using Lemma 3.1.2 we have Hδ −H0 in ΩL \ ΩR satisfies

∆(Hδ −H0) + k2(Hδ −H0) = 0 in ΩL \ ΩR

(Hδ −H0) = δ2H(1) + o(δ2) on ∂ΩR

outward radiation conditions (1.7), (1.8)

(3.13)
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Next we define the outgoing Dirichlet Green function, G, on the domain ΩL \ ΩR

∆G(x, y) + k2G(x, y) = −δx in ΩL \ ΩR

G(x, y) = 0 on ∂ΩR

outward radiation conditions (1.7), (1.8)

(3.14)

Multiplying (3.13) by G, integrating over ΩL \ ΩR and using Green’s Theorem and sending

L to ∞ gives the representation for Hδ −H0

(Hδ −H0)(x) =

∫
∂ΩR

∂G
∂n(y)

(x, y)(Hδ −H0)(y)dsy ∀x ∈ R2
# \ ΩR (3.15)

Choosing x ∈ R2
# \ ΩR bounded away from ∂ΩR we can apply the boundary estimate from

Lemma 3.1.2 on (Hδ −H0) inside the integral of equation (3.15)

(Hδ −H0)(x) = δ2
∫
∂ΩR

∂G
∂n(y)

(x, y)H(1)(y)dsy + o(δ2) (3.16)

where the error term o(δ2) is independent of the point x. We now follow steps identical

to identifying (3.15), i.e., integration by parts and the definition of the outgoing Dirichlet

Green’s function, to derive the following identity for any x ∈ R2
# \ ΩR and x′ ∈ ΩR∫

∂ΩR

∂G
∂n(y)

(x, y)∇x′Gk
qp(y, x

′)dsy = ∇x′Gk
qp(x, x

′) (3.17)

Application of this identity to H(1) in equation (3.16) gives desired asymptotic expansion,

completing the proof.

Our last result in this section is to give an energy estimate on the norm of the scat-

tered field Hδ −H0 in H1(ΩR).

Proposition 3.1.2. The following energy estimate holds,

∥Hδ −H0∥L2(ΩR) + ∥∇Hδ −∇H0∥L2(ΩR) = O(δ). (3.18)
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Proof. Let uδ be defined as the unique solution to
∆uδ + k2uδ = 0 in ΩR

uδ = Hδ on ∂ΩR

(3.19)

Since H0 also satisfies Helmholtz equation in ΩR we have
∆(uδ −H0) + k2(uδ −H0) = 0 in ΩR

(uδ −H0) = Hδ −H0 on ∂ΩR,

(3.20)

which leads to

∥uδ −H0∥H1(ΩR) ≤ C∥Hδ −H0∥H1/2∂(ΩR). (3.21)

Moreover from Proposition (2.3.1) it follows that C is independent of δ for 0 < δ < δ0.

Using Lemma 3.1.2 we see that Hδ − H0 is of order δ2 in the H1/2(∂ΩR) norm. Note that

Hδ − uδ belong to H1
0 (ΩR) and for any v ∈ H1

0 (ΩR) we can write∫
ΩR

1

εδ
∇(Hδ − uδ) · ∇vdx− k2

∫
ΩR

(Hδ − uδ)vdx

=

∫
ΩR

1

εδ
∇Hδ · ∇vdx− k2

∫
ΩR

Hδvdx

−
∫
ΩR

∇uδ · ∇vdx+ k2
∫
ΩR

uδvdx

+ (1− 1

εm
)

∫
B

∇uδ · ∇vdx

= (1− 1

εm
)

∫
B

∇uδ · ∇vdx. (3.22)

Now we can bound the last term using the Cauchy-Schwarz inequality giving,∣∣∣∣∫
B

∇uδ · ∇vdx
∣∣∣∣ ≤ ∥∇uδ∥L2(B)∥∇v∥L2(ΩR). (3.23)

Applying the triangle inequality

∥∇uδ∥L2(B) ≤ ∥∇uδ −∇H0∥L2(ΩR) + ∥∇H0∥L2(B), (3.24)
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and

∥uδ∥L2(B) ≤ ∥uδ −H0∥L2(ΩR) + ∥H0∥L2(B). (3.25)

Since

∥uδ −H0∥H1(ΩR) = O(δ2),

∥H0∥H1(B) = O(δ), (3.26)

we get

∥uδ∥H1(B) = O(δ), (3.27)

and

∣∣∣∣∫
ΩR

1

εδ
∇(Hδ − uδ) · ∇vdx− k2

∫
ΩR

(Hδ − uδ)vdx

∣∣∣∣ = O(δ)∥v∥H!(ΩR), (3.28)

for all v ∈ H1
0 (ΩR). So from Proposition (2.3.1) it follows that

∥uδ −Hδ∥H1(ΩR) = O(δ). (3.29)

Collecting results and using the triangle inequality gives

∥Hδ −H0∥H1(B) ≤ ∥Hδ − uδ∥H1(ΩR) + ∥uδ −H0∥H1(B) = O(δ), (3.30)

and the theorem is proved.
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Chapter 4. Far-field Scattering: Reflection and Transmission
from an Impedance Surface

4.1. Impedance Formulation for Scattered Field

We reformulate our asymptotic expansion in Chapter 3 as an impedance boundary

condition at x1 = 0. We recall from Theorem (3.1.1) that the perturbed field, Hδ is given

by

Hδ = H0 + δ2H(1) + o(δ2) (4.1)

where H(1) is given by (3.2). We first have that

∆H(1) =

(
1− 1

εm

)
∆x∇yG

k
qp(x, 0) ·M(εm)∇H0(0)

=

(
1− 1

εm

)
∇y∆xG

k
qp(x, 0) ·M(εm)∇H0(0)

= −k2
(
1− 1

εm

)
∇yG

k
qp(x, 0) ·M(εm)∇H0(0)

= −k2H(1) (4.2)

Therefore H(1) solves Helmholtz equation and since Gk
qp(x, y) satisfies the outgoing radia-

tion condition we have
∆H(1) + k2H(1) = 0

H(1) satisfies outgoing radiation condition

(4.3)

From here we will show H(1) = H
(1)
1 +H

(1)
2 where H

(1)
1 is driven by a source term and H

(1)
2

is driven by a surface current. We define H
(1)
1 H

(2)
2 respectively as follows

H
(1)
1 = ∂y1G

k
qp(x, 0)∂y1H0(0) (m11 +m12) (4.4)

H
(1)
2 = ∂y2G

k
qp(x, 0)∂y2H0(0) (m21 +m22) (4.5)
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We note we can replace the derivatives on H0(0) with the electric field using the curl equa-

tions (1.4), which gives

H
(1)
1 = ∂y1G

k
qp(x, 0)

ω

c
E2

0(0) (m11 +m12) (4.6)

H
(1)
2 = ∂y2G

k
qp(x, 0)

ω

c
E1

0(0) (m21 +m22) (4.7)

where E1
0 is the e1 component of the background electric field and E2

0 is the e2 component

of the background electric field. We first set y1 = 0, then by the definition of Gk
qp we can

write down the y1 and y2 derivatives of Gk
qp as,

∂y1G
k
qp(x, 0) = − 1

2d

∞∑
−∞

e−γmx1eiβmx2 for x1 ≥ 0 (4.8)

∂y1G
k
qp(x, 0) =

1

2d

∞∑
−∞

e−γmx1eiβmx2 for x1 ≤ 0 (4.9)

∂y2G
k
qp(x, 0) =

1

2d

∞∑
−∞

e−γmx1

γm
iβme

iβmx2 for x1 ≥ 0 (4.10)

∂y2G
k
qp(x, 0) =

1

2d

∞∑
−∞

e−γmx1

γm
iβme

iβmx2 for x1 ≤ 0 (4.11)

Now if we take the limit as x1 → 0+ and x1 → 0− we have the following jump relations for

the y1 and y2 derivatives of Gk
qp respectively

∂y1G
k
qp(0, x2, 0, 0)|+ − ∂y1G

k
qp(0, x2, 0, 0)|− = −1

d

∞∑
−∞

eiβmx2 (4.12)

∂y2G
k
qp(0, x2, 0, 0)|+ − ∂y2G

k
qp(0, x2, 0, 0)|− = 0 (4.13)

Therefore using the jump relations given by (4.12) and (4.13), we have the jump condition

at x1 = 0 for H
(1)
1 given by

H
(1)
1 |+ −H

(1)
1 |− = −1

d

∞∑
−∞

eiβmx2 (m11∂y1H0(0) +m12∂y1H0(0)) (4.14)
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Considering the jump condition for ∂x1H
(1)
1 we have

∂x1H
(1)
1 |+ − ∂x1H

(1)
1 |− = 0 (4.15)

Therefore we have that H
(1)
1 solves the following system,

∆H
(1)
1 + k2H

(1)
1 = 0 x1 < 0, x1 > 0

H
(1)
1 |+ −H

(1)
1 |− = −1

d

∑∞
−∞ eiβmx2∂y1H0(0) (m11 +m12) x1 = 0

∂x1H
(1)
1 |+ − ∂x1H

(1)
1 |− = 0 x1 = 0

H
(1)
1 satisfies outgoing radiation condition (2.3), (2.4)

(4.16)

We note that the term on the right hand side for the jump condition of H
(1)
1 at x1 = 0 is

a source term. Equivalently, we can use the curl equations (1.4) to again replace ∂y1H0(0)

with the electric field term. This formulation presents the source term as an impedance

boundary condition since it relates the magnetic field to the electric field.

∆H
(1)
1 + k2H

(1)
1 = 0 x1 < 0, x1 > 0

H
(1)
1 |+ −H

(1)
1 |− = 1

d

∑∞
−∞ eiβmx2

(
iω
c

)
E2

0 (m11 +m12) x1 = 0

∂x1H
(1)
1 |+ − ∂x1H

(1)
1 |− = 0 x1 = 0

H
(1)
1 satisfies outgoing radiation condition (2.3), (2.4)

(4.17)

Following the same process as above we can derive the system for H
(1)
2 . The jump

conditions for H
(1)
2 and ∂x1H

(1)
2 at x1 = 0 are

H
(1)
2 |+ −H

(1)
2 |− = 0 (4.18)

and

∂x1H
(1)
2 |+ − ∂x1H

(1)
2 |− = −1

d

∞∑
−∞

iβme
iβmx2 (m21∂y2H0(0) +m22∂y2H0(0)) (4.19)
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Therefore H
(1)
2 solves the following system,

∆H
(1)
2 + k2H

(1)
2 = 0 x1 < 0, x1 > 0

H
(1)
2 |+ −H

(1)
2 |− = 0 x1 = 0

∂x1H
(1)
2 |+ − ∂x1H

(1)
2 |− = −1

d

∑∞
−∞ iβme

iβmx2∂y2H0(0) (m21 +m22) x1 = 0

H
(1)
2 satisfies outgoing radiation condition(2.3), (2.4)

(4.20)

The term on the right hand side for the jump of ∂x1H
(1)
2 is a surface current term. Again

using the curl equations (1.4) we can write the surface current term in terms of the elec-

tric field E1
0 which gives us another impedance boundary condition.

∆H
(1)
2 + k2H

(1)
2 = 0 x1 < 0, x1 > 0

H
(1)
2 |+ −H

(1)
2 |− = 0 x1 = 0

∂x1H
(1)
2 |+ − ∂x1H

(1)
2 |− = 1

d

∑∞
−∞ βme

iβmx2
(
ω
c

)
E1

0 (m21 +m22) x1 = 0

H
(1)
2 satisfies outgoing radiation condition(2.3), (2.4)

(4.21)

Using the properties of the Green’s function to derive the various jump conditions and

with the asymptotic representation of the perturbed magnetic field, we have shown the

metasurface can be reformulated as an impedance boundary condition and surface current

in terms of the polarization tensor, M , at x1 = 0. Next, for normal incidence we derive the

reflection coefficient in terms of the polarization tensor.

4.2. Reflection and Transmission Obtained from Asymptotic Formula

Here we will derive the radiating reflected and transmitted waves up to order δ2

using the asymptotic formula and the correction term H(1). We note this represents scat-
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tering by an open waveguide. In this section we will assume the period is sub-wavelength.

With this hypothesis we have only a single diffraction order so the far-field behavior of the

scattered field is given in terms of a reflected and transmitted wave i.e. in equations (2.3)

and (2.4) we only have m = 1. With this in mind denote the reflection and transmission

coefficient of the reflected and transmitted wave as r and t respectively. We also assume

that the incoming wave is normally incident upon the particle. We note for normal inci-

dence H
(1)
2 = 0 so we have H(1) = H

(1)
1 and H0 = e−ikx1 . Therefore, we can write

Hδ = e−ikx1 + δ2H
(1)
1 +O(δ3−η) (4.22)

Motivated by the outgoing radiation conditions for x1 > 0 we set H
(1)
1 |+ = Hre

ikx1 where

Hr = r and r is the reflection coefficient. For x1 < 0 choose H
(1)
1 |− = Hte

−ikx1 where

Ht = t and t is the transmission coefficient. Using the jump conditions for H
(1)
1 at the

x1 = 0 boundary we have

H
(1)
1 |+ −H

(1)
1 |− = −ik

d
(m11 +m12) = −ik

d
m11 (4.23)

since m12 = 0 for normal incidence. For the second jump condition we have,

∂x1H
(1)
1 |+ = ∂x1H

(1)
1 |−. (4.24)

Equation (4.23) gives

r =
ik

d
m11 + t. (4.25)

Equation (4.24) gives

r = −t. (4.26)
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Plugging this into (4.25) we obtain the formula for the reflection coefficient

r =
ik

2d
m11. (4.27)

Since we have the reflection and transmission coefficients we can rewrite the perturbed

field in the far field using (2.3) and (2.4) as
Hδ = e−ikx1 + ikδ2

2d
m11e

ikx1 + o(δ2) x1 < 0

Hδ = e−ikx1 − ikδ2

2d
m11e

−ikx1 + o(δ2) x1 > 0

(4.28)

Now we have the behavior of the scattered field in terms of of the reflection and transmis-

sion coefficients. So we just need to solve (2.19) numerically to obtain the polarization,

m11, for a given metasurface. Thus periodic arrays of particles can be approximated by a

metasurface up to error O(δ3−η). This provides a rigorous reduced order model for control

of light sidestepping the need for more computationally expensive methods. The reduced

order model allows one to efficiently explore the universe of particle geometries for devel-

opment of new materials. Additionally we can handle more complex geometries made with

multiple particles in a period cell, by computing just m11.

In future work we wish to show that the mathematical theory holds up for for ma-

terials with negative real permittivity so the model can handle noble metals which present

intriguing phenomenon such as plasmonic behavior for optical frequencies. Additionally

we would like to introduce geometries which include a substrate of a different material un-

derneath the particles or multiple layers. Once we can handle cases like these we can use

topology optimization techniques or the physics-guided machine learning techniques seen

in [24] to inform the design of novel optical metamaterials.
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Appendix. Proof of Proposition 3.1.1

A.1. Setup

We start the appendix by proving part (c) of Proposition (3.1.1). We extend the 

boundary data f on ∂ΩR onto the subdomain ΩR containing the inclusion B by the scalar 

field u δ which i s the soution of
∇ ·
(

1
εδ
∇uδ

)
+ k2uδ = 0 in ΩR

uδ = f on ∂ΩR

(A.1)

We then extend the boundary data f on ∂ΩR but in the absence of the inclusion B to ar-

rive at the background scalar field u0, i.e.,
∆u0 + k2u0 = 0 in ΩR

u0 = f on ∂ΩR

(A.2)

Recall Nδ(f) :=
∂uδ

∂n
and N0(f) :=

∂u0

∂n
and from Section 2.4 we have,

(Tδ − T0)(H0)|∂ΩR
) = S(N0 −Nδ)(H0|∂ΩR

). (A.3)

Hence to complete the proof of part (c) of Proposition (3.1.1) we establish the following

Theorem

Theorem A.1.1 (First term and error estimate). For x ∈ ∂ΩR and any boundary data

f ∈ H1/2(∂ΩR),

S (N0 −Nδ) (f) =

(
1− 1

εm

)
δ2∇yG

k
qp(x, 0) ·M(εm)∇u0(0) +O(δ3−η), (A.4)

where this expansion holds uniformly for x ∈ ∂ΩR.
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With Theorem (A.1.1) in hand we may conclude from (A.3) that for f = H0 on ∂ΩR that

Tδ((Hδ −H0)|∂ΩR
) = S(N0 −Nδ)(H0|∂ΩR

) =

=

(
1− 1

εm

)
δ2∇yG

k
qp(x, 0) ·M(εm)∇H0(0) +O(δ3−η), (A.5)

and part (c) of Proposition (3.1.1) is proved.

We now use part (c) of Proposition (3.1.1) to establish parts (a) and (b) of Propo-

sition (3.1.1). Part (a) follows immediately from part (c) and noting that H0 can be any

entire solution of the Helmholtz equation on R2
#. Part (b) follows immediately from part

(c) noting that the set of bounded invertible linear transforms over H1/2(∂ΩR) is an open

set and T0 is invertible.

The proof of Theorem (A.1.1) is carried out over the next two sections and is based

on an expansion of the difference uδ − u0 in δ; first near the inclusion B in Section A.2 and

then extended uniformly to an expansion in the domain ΩR \ 2B in Section A.3.

A.2. Asymptotic Behavior of uδ − u0 around the inclusion

We find find bounds for uδ − u0 in a neighborhood around the small inclusion. This

is done using representation formulas for uδ − u0 posed in terms of Green’s functions. The

field u0 belongs to C∞(ΩR) and uδ belong to C0,β for β > 0 from elliptic regularity theory.

We also have that uδ is C
∞ in each domain separately i.e, uδ ∈ C∞(B), and uδ ∈ C∞(ΩR \

B). Here, n represents the outward directed unit normal vector to boundaries ∂ΩR and

∂B. On the inclusion the normal derivative of uδ has the jump relation across ∂B

∂uδ
∂n

|+ =
1

εm

∂uδ
∂n

|−.
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We start by deriving integral representations for uδ and u0. In ΩR \ B we have

∆uδ(y) + k2uδ = 0, (A.6)

as an identity in L2(ΩR \B). Taking x ∈ ΩR \ B, multiplying this equation by Gk
0 integrat-

ing over ΩR \B, together with Greens second identity and the definition of Gk
qp gives

uδ(x) =

∫
∂ΩR

[
−uδ(y)

∂Gk
0(x, y)

∂n(y)
+
∂uδ(y)

∂n
Gk

0(x, y)

]
dsy+

+

∫
∂B

[
uδ(y)

∂Gk
0(x, y)

∂n(y)
− ∂uδ(y)

∂n
|+Gk

0(x, y)

]
dsy (A.7)

Observing that u0 satisfies

∆u0(y) + k2u0 = 0, (A.8)

in ΩR, taking x ∈ ΩR \ B, multiplying this equation by Gk
0 integrating over ΩR and pro-

ceeding as before gives

u0(x) =

∫
∂ΩR

[
−u0(y)

∂Gk
0(x, y)

∂n(y)
+
∂u0(y)

∂n
Gk

0(x, y)

]
dsy (A.9)

Noting that Gk
0(x, y) = 0 for y ∈ ∂ΩR the representation formulas become

uδ(x) = −
∫
∂ΩR

uδ(y)
∂Gk

0(x, y)

∂n(y)
+

+

∫
∂B

[
uδ(y)

∂Gk
0(x, y)

∂n(y)
− ∂uδ(y)

∂n
|+Gk

0(x, y)

]
dsy, (A.10)

and

u0(x) = −
∫
∂ΩR

u0(y)
∂Gk

0(x, y)

∂n(y)
. (A.11)

Taking the difference of equations (A.10) and (A.11) and noting uδ = u0 on ∂ΩR we have

the representation for uδ(x)− u0(x) for x ∈ ΩR \ B

uδ(x)− u0(x) =

∫
∂B

[
uδ(y)

∂Gk
0(x, y)

∂n(y)
− ∂uδ(y)

∂n
|+Gk

0(x, y)

]
dsy (A.12)
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We are now ready to prove the following the lemma

Lemma A.2.1. For x in the open set 2B \ B

uδ(x)− u0(x) =

(
1− 1

εm

)∫
∂B
uδ(y)

∂Gk
0(x, y)

∂n(y)
dsy +O(δ2|log δ|) (A.13)

The term O(δ2|log δ|) is bounded by Cδ2|log δ| uniformly in x. The constant C depends on

the shape of the particle B, the domain ΩR, the constant εm and the frequency ω.

Proof. Starting with the boundary integral representation for uδ(x) − u0(x) and using the

jump condition for uδ on ∂B we have,∫
∂B

∂uδ(y)

∂n
|+Gk

0(x, y)dsy =
1

εm

∫
∂B

∂uδ(y)

∂n
|−Gk

0(x, y)dsy

Now we use integration by parts to put the derivative back on Gk
0(x, y) in order to obtain

the double-layer potential for uδ(y) for y on ∂ΩR

1

εm

∫
∂B

∂uδ(y)

∂n
|−Gk

0(x, y)dsy =
1

εm

∫
∂B

∇uδ(y) · ∇Gk
0(x, y)dy +

∫
∂B

1

εm
∆uδ(y)G

k
0(x, y)dy

= −
∫
B

1

εm
∆Gk

0(x, y)uδ(y)dy +

∫
B

1

εm
∇ ·
(
∇Gk

0(x, y)uδ(y)
)
dy −

∫
B
k2muδ(y)G

k
0(x, y)dy

=
1

εm

∫
∂B
uδ(y)

∂Gk
0(x, y)

∂n(y)
dsy + (k2 − k2m)

1

εm

∫
B
uδ(y)G

k
0(x, y)dy (A.14)

Now we show the second term in (A.14) is O(δ2|log δ|) for x ∈ 2B \ B. First we have by

using the Cauchy-Schwartz inequality,

|
∫
B
uδ(y)G

k
0(x, y)dy| ≤ ∥uδ∥L2(B)

(∫
B
|Gk

0(x, y)
2|dy

) 1
2

From (2.14) and (2.15) and making the change of variables r = |x− y| we have,

∥uδ∥L2(B)

(∫
B
|Gk

0(x, y)
2|dy

) 1
2

≤ C∥uδ∥L2(B

(∫ Cδ

0

r(log r)2dr

)1/2

≤ C∥uδ∥L2(B)δ|log δ| for x ∈ 2B \ B
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Now we give a bound for ∥uδ∥L2(B). Adding and subtracting u0 and using the triangle in-

equality gives

∥uδ∥L2(B) ≤ ∥uδ − u0∥L2(B) + ∥u0∥L2(B)

≤ ∥uδ − u0∥L2(Ω) + Cδ

≤ Cδ

To estimate ∥u0∥L2(B) we use have used standard interior elliptic regularity first noting

that ∥u0∥L2(B) ≤ Cδ∥u0∥C∞(B) ≤ Cδ∥u0∥H1(ΩR) ≤ Cδ∥uδ∥H1(∂ΩR). The scattering problem

can be viewed as a transmission problem on ∂ΩR and one has

∥uδ∥H1/2(∂ΩR) ≤ C∥uinc∥H1/2(∂ΩR), (A.15)

which is bounded and independent of δ. Following the arguments of Propositions 1 and

2 of [27] but using our hypotheses on inclusion geometry allow us to appeal directly to

Proposition 2.3.1 and Corollary 2.3.1 and write

∥uδ − u0∥H1(ωR) ≤ Cδ∥uδ∥H(1+η)/2(∂ΩR) ≤ Cδ∥uinc∥H1/2(∂ΩR), (A.16)

and the Lemma follows.

Now we would like to replace Gk
0 with the simpler Green’s Function for the Lapla-

cian, G0(x, y), see (2.15). For this we have the following Lemma

Lemma A.2.2. For x in the open set 2B \ B

uδ(x)− u0(x) =

(
1− 1

εm

)∫
∂B
uδ(y)

∂G0(x, y)

∂n(y)
dsy +O(δ2| log δ|) (A.17)

The term O(δ2| log δ|) is bounded by Cδ2| log δ| uniformly in x. The constant C depends on

the shape of the particle B, the domain ΩR, the constant εm and the frequency ω.
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Proof. Let K be a compact subset of ΩR such that 2B \ B ⊂ K. First we recall the relation

(2.14), and bound on the L∞ norm of K2 and ∇K2. We also have formula (2.16) which

simplifies to,

∆K2(x, ·) = −k2Gk
0(x, ·) in ΩR (A.18)

Therefore, using the Divergence Theorem we have∫
∂B

∂K2(x, y)

∂n(y)
dsy =

∫
B
∆yK2(x, y)dy

= −k2
∫
B
Gk

0(x, y)dy

= O(δ2| log δ|) for x ∈ 2B \ B

(A.19)

Using (A.19), and by well-posedness of u0 and (A.15) we have the bound, ∥u0∥L∞(2B) ≤

C∥u0∥H1/2(∂ΩR) ≤ C∥uinc∥
H

1
2 (∂ΩR)

and for x ∈ 2B \ B we have,

∫
∂B
uδ(y)

∂K2(x, y)

∂n(y)
dsy =

∫
∂B

(uδ(y)− u0(x))
∂K2(x, y)

∂n(y)
dsy +O

(
δ2|log δ|

)
=

∫
∂B

(uδ(y)− u0(y))
∂K2(x, y)

∂n(y)
dsy

+

∫
∂B

(u0(y)− u0(x))
∂K2(x, y)

∂n(y)
dsy +O

(
δ2|log δ|

)
(A.20)
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The first term is bounded by,

|
∫
∂B

(uδ(y)− u0(y))
∂K2(x, y)

∂n(y)
dsy| ≤ |−k2

∫
B
(uδ(y)− u0(y))G

k
0(x, y)dy|

+ |
∫
B
∇ (uδ(y)− u0(y))∇yK2(x, y)dy|

≤ C∥uδ − u0∥L2(B)

(∫
B
|Gk

0(x, y)
2|dy

) 1
2

+ ∥∇ (uδ − u0)∥L2(B)

(∫
B
|∇yK2(x, y)|2dy

) 1
2

≤ Cδ2|log δ|+ Cδ2

≤ Cδ2| log δ|

(A.21)

Here we used the energy estimates from Proposition 3.1.2 as well as the formulas for Gk
0

and K2. Now we can bound the second term by

|
∫
∂B

(u0(y)− u0(x))
∂K2(x, y)

∂n(y)
dsy| ≤ Cδ∥u0(·)− u0(x)∥L∞(∂B) ≤ Cδ2 (A.22)

We can now insert (A.21) and (A.22) into (A.20) to get∫
∂B
uδ(y)

∂K2(x, y)

∂n(y)
dsy = O

(
δ2| log δ|

)
, for x ∈ 2B \ B

With this estimate, we plug the relation (2.14) into the result from Lemma (2.1) to obtain

our result

uδ(x)− u0(x) =

(
1− 1

εm

)∫
∂B
uδ(y)

∂Gk
0(x, y)

∂n(y)
dsy +O(δ2|log δ|)

=

(
1− 1

εm

)∫
∂B

[
uδ(y)

∂G0(x, y)

∂n(y)
+ uδ(y)

∂K2(x, y)

∂n(y)

]
dsy +O(δ2|log δ|)

=

(
1− 1

εm

)∫
∂B
uδ(y)

∂G0(x, y)

∂n(y)
dsy +O(δ2|log δ|)

Now we consider the behavior of uδ − u0 as x ∈ 2B \ B tends to the boundary ∂B.

Here we take limx→∂B and use the jump condition for the double layer potential
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lim
x→∂B

(
1− 1

εm

)∫
∂B
uδ(y)

∂G0(x, y)

∂n(y)
dsy

=

(
1− 1

εm

)∫
∂B
uδ(y)

∂G0(x, y)

∂n(y)
dsy +

1

2

(
1− 1

εm

)
uδ(x) for x on ∂B

Therefore for x on ∂B

1

2

(
1 +

1

εm

)
uδ(x)− u0(x) =

(
1− 1

εm

)∫
∂B
uδ(y)

∂G0(x, y)

∂n(y)
dsy +O(δ2|log δ|) (A.23)

We note here that ∫
∂B

∂G0(x, y)

∂n(y)
dsy = −1

2

So by adding and subtracting by
∫
∂B u0(x)

∂G0(x,y)
∂n(y)

dsy we can rewrite (A.23) as

1

2

(
1 +

1

εm

)
(uδ(x)− u0(x)) =

=

(
1− 1

εm

)∫
∂B

(uδ(y)− u0(x))
∂G0(x, y)

∂n(y)
dsy +O(δ2|log δ|), x ∈ ∂B (A.24)

Here we recall the vector valued function ϕ which corresponds with the polariza-

tion tensor. First rescale z = x/δ so that B∗ = δ−1B and R2∗
# is the strip −1/2 < z1 <

1/2, −∞ < z2 <∞. We have

∆ϕ = 0 in B∗ and R2∗
# \ B∗

ϕ+ = ϕ− on ∂B∗

∂ϕ
∂n
|+ − 1

εm

∂ϕ
∂n
|− = − 1

εm
n on ∂B∗

lim|z2|→∞ ϕ = 0

(A.25)

Using ϕ we can show the asymptotic behavior of uδ − u0 on the boundary of the

particle
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Proposition A.2.1. For z on ∂B

uδ(δz)− u0(δz) = δ (εm − 1)ϕ(z) · ∇u0(0) +O(δ2|log δ|)

The term O(δ2|log δ|)) is bounded uniformly in z by Cδ2|log δ|. The constant C depends on

the shape of the particle B and the domain ΩR, the constant εδ, and the frequency ω.

Proof. Using the explicit formula for G0(x, y) we know,

∂G0(x, y)

∂n(y)
= − 1

2π

y − x

|y − x|2
· n(y)

Rewriting uδ(y) − u0(x) as (uδ(y) − u0(y)) + (u0(y) − u0(x)) and using the above two

equations in (A.24) we have

1

2

(
1 +

1

εm

)
(uδ(x)− u0(x)) =− 1

2π

(
1− 1

εm

)∫
∂B
(uδ(y)− u0(y))

(y − x) · n(y)
|y − x|2

dsy

− 1

2π

(
1− 1

εm

)∫
∂B
(u0(y)− u0(x))

(y − x) · n(y)
|y − x|2

dsy

+O(δ2|log δ|) for x ∈ ∂B

(A.26)

We now introduce the re-scaling z = x
δ
, ỹ = y

δ
and B∗ = 1

δ
B. From (A.26) we immediately

have,

1

2

(
1 +

1

εm

)
(uδ(δz)− u0(δz)) =− 1

2π

(
1− 1

εm

)∫
∂B∗

(uδ(δỹ)− u0(δỹ))
(ỹ − z) · n(ỹ)

|ỹ − z|2
dsỹ

− 1

2π

(
1− 1

εm

)∫
∂B∗

(u0(δỹ)− u0(δz))
(ỹ − z) · n(ỹ)

|ỹ − z|2
dsỹ

+O(δ2|log δ|) for z ∈ ∂B∗

(A.27)

From the regularity of u0 we know u0 is C2 in a neighborhood of B with norm

bounded by C∥f∥H1/2(ΩR). Taylor Series expansion for (u0(δỹ)− u0(δz)) gives

|u0(δỹ − u0(δz)− δ∇u0(0) · (ỹ − z)| ≤ C
(
δ2|ỹ − z|2 + δ2|z||ỹ − z|

)
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Inserting the Taylor Series expansion into the second term from (A.27), we have

1

2

(
1 +

1

εm

)
(uδ(δz)− u0(δz)) =− 1

2π

(
1− 1

εm

)∫
∂B∗

(uδ(δỹ)− u0(δỹ))
(ỹ − z) · n(ỹ)

|ỹ − z|2
dsỹ

− δ

2π

(
1− 1

εm

)
∇u0(0) ·

∫
∂B∗

(ỹ − z)
(ỹ − z) · n(ỹ)

|ỹ − z|2
dsỹ

+O(δ2|log δ|), for z ∈ ∂B∗

(A.28)

Examining the second term we have,

− 1

2π

∫
∂B∗

(ỹ − z)
(ỹ − z) · n(ỹ)

|ỹ − z|2
dsỹ =

∫
∂B∗

(ỹ − z)
∂G0(z, ỹ)

∂n(ỹ)
dsỹ

=

∫
B∗

∇ỹ(ỹ − z) · ∇ỹG
0(z, ỹ)dỹ

=

∫
∂B∗

n(ỹ)G0(z, ỹ)dsỹ

= − 1

2π

∫
∂B∗

n(ỹ) log|z − ỹ|dsỹ

so we can rewrite (A.28) as

1

2

(
1 +

1

εm

)
(uδ(δz)− u0(δz)) = − 1

2π

(
1− 1

εm

)∫
∂B∗

(uδ(δỹ)− u0(δỹ))
(ỹ − z) · n(ỹ)

|ỹ − z|2
dsỹ

− δ

2π

(
1− 1

εm

)
∇u0(0) ·

∫
∂B∗

n(ỹ) log|z − ỹ|dsỹ

+O(δ2|log δ|), for z ∈ ∂B∗

(A.29)

We have for the ϕ solution of (A.25) on ∂B∗

1

2

(
1 +

1

εm

)
ϕ(z) = − 1

2π

(
1− 1

εm

)∫
∂B∗

ϕ(ỹ)
(ỹ − z) · n(ỹ)

|ỹ − z|2
dsỹ

− 1

2π

1

εm

∫
∂B∗

n(ỹ) log|z − ỹ|dsỹ for z ∈ ∂B∗

(A.30)

We know that ϕ is the unique solution to (A.25), therefore ϕ|∂B∗ ∈ C0(∂B∗) is the unique

solution to the above integral equation. The Fedholm Theory ([12] Chapter 3) now implies
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that the bounded linear operator ψ ∋ C0(∂B∗) → (c+ L)ψ ∈ C0(∂B∗), given by

(c+ L)(ψ)(z) =
1

2

(
1 +

1

εm

)
ψ(z) +

1

2π

(
1− 1

εm

)∫
∂B∗

ψ(ỹ)
(ỹ − z) · n(ỹ)

|ỹ − z|2
dsỹ

maps C0(∂B∗) onto C0(∂B∗) so has a bounded inverse. Now multiplying (A.30) by

δεm

(
1− 1

εm

)
∇u0(0) and subtracting this from (A.29) gives the following equation for

ψ∗(z) = uδ(δz)− u0(δz)− δεm

(
1− 1

εm

)
∇u0(0) · ϕ(z),

(c+ L)(ψ∗)(z) =
1

2

(
1 +

1

εm

)
ψ∗(z) +

1

2π

(
1− 1

εm

)∫
∂B∗

ψ∗(ỹ)
(ỹ − z) · n(ỹ)

|ỹ − z|2
dsỹ

= O(δ2|log δ|)

Since c+L is a bounded linear operator which is onto, we have a bounded inverse for c+L,

thus

∥uδ(δ·)− u0(δ·)− δεm

(
1− 1

εm

)
∇u0(0) · ϕ(·)∥C0(∂B∗) = ∥ψ∗∥C0(∂B∗)

= ∥(c+ L)−1O(δ1+η)∥C0(∂B∗)

≤ O(δ2|log δ|)

This inequality gives us the result of the lemma.

A.3. Uniform asymptotic behavior of uδ − u0 in ΩR \ 2B

Here we derive the asymptotic behavior of uδ − u0 ”sufficiently” far from the parti-

cle using the Linton Green’s function, Gk
qp(x, y). Using the same methods as the previous

section we can derive the integral representations for uδ and u0 for any x ∈ ΩR \ B

uδ(x) =

∫
∂ΩR

[
∂uδ(y)

∂n
Gk

qp(x, y)− uδ(y)
∂Gk

qp(x, y)

∂n(y)

]
dsy

+

∫
∂B

[
uδ(y)

∂Gk
qp(x, y)

∂n(y)
− ∂uδ(y)

∂n
|+Gk

qp(x, y)

]
dsy

(A.31)

u0(x) =

∫
∂ΩR

[
∂u0(y)

∂n
Gk

qp(x, y)− u0(y)
∂Gk

qp(x, y)

∂n(y)

]
dsy (A.32)
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Subtracting (A.32) from (A.31), we have

uδ(x)− u0(x) =

∫
∂ΩR

(
uδ(y)

∂n
− ∂u0(y)

∂n

)
Gk

qp(x, y)dsy

+

∫
∂B

[
uδ(y)

∂Gk
qp(x, y)

∂n(y)
− ∂uδ(y)

∂n
|+Gk

qp(x, y)

]
dsy

(A.33)

Here we note the boundary integrals on ∂Ω involving Gk
qp(x, y) do not vanish as

in the previous section since Gk
qp(x, y) does not satisfy the zero Dirichlet boundary condi-

tion Gk
0(x, y) satisfies. As before, we rewrite the last term involving the boundary integral

on ∂B in terms of the double layer potential for uδ. Using the jump condition ∂uδ(y)
∂n

|+ =

1
εm

∂uδ(y)
∂n

|− for y ∈ ∂B and integration by parts we have,∫
∂B

∂uδ(y)

∂n
|+Gk

qp(x, y)dsy =
1

εm

∫
∂B

∂uδ(y)

∂n
|−Gk

qp(x, y)dsy

+
1

εm

∫
∂B
uδ(y)

∂Gk
qp(x, y)

∂n(y)
dsy + (k2 − k2m)

1

εm

∫
B
uδ(y)G

k
qp(x, y)dy

As before k2m = εmω
2. Substituting the above expression into (A.33), for x ∈ ΩR \ B

uδ(x)− u0(x) =

∫
∂ΩR

(
uδ(y)

∂n
− ∂u0(y)

∂n

)
Gk

qp(x, y)dsy

+

(
1− 1

εm

)∫
∂B
uδ(y)

∂Gk
qp(x, y)

∂n(y)
dsy

− (k2 − k2m)
1

εm

∫
B
uδ(y)G

k
qp(x, y)dy

(A.34)

Now we can use Proposition 2.1 to derive the asymptotic behavior of the integral on the

boundary of B and the integral in the volume of B.

Lemma A.3.1. For any fixed x ∈ ΩR \ 2B, with 0 < η < 1,

∫
B
uδ(y)G

k
qp(x, y)dy = δ2Gk

qp(x, 0)|B∗|u0(0) +O(δ3−η)
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and ∫
∂B
uδ(y)

∂Gk
qp(x, y)

∂n(y)
dsy = δ2∇yG

k
qp(x, 0) ·M(εm)∇u0(0)

− δ2k2Gk
qp(x, 0)|B∗|u0(0) +O(δ3−η)

Recall the impedance tensor (or equivalently the polarization) tensor is defined as,

M(εm) = |B∗|I + (εm − 1)

∫
∂B∗

n(y)(ϕ(y))Tdsy.

There exits a constant C such that the remainder terms and their derivatives are bounded

by Cδ3−η uniformly with respect to x ∈ ΩR \ 2B. The constant depends the shape of the

particle, the dielectric constant εm, the frequency ω, d, and uinc.

Proof. Since ΩR is a bounded, Lipshitz domain in R2 it follows from Sobolev’s Imbedding

Theorem [11], [13] that

∥uδ − u0∥Lp(ΩR) ≤ C∥uδ − u0∥H1(ΩR) for all 1 ≤ p <∞

Using the energy estimate for uδ − u0 gives,

∥uδ − u0∥Lp(ΩR) ≤ Cδ

Using the Holder inequality we now have for any x ∈ R2
# \ B

|
∫
B
(uδ(y)− u0(y))G

k
qp(x, y)dy| ≤ C∥uδ − u0∥Lp(ΩR)

(∫
B
|Gk

qp(x, y)|p
′
dy

) 1
p′

≤ C∥uδ − u0∥Lp(ΩR)(δ
2)

1
p′

≤ Cδ(δ2)
1
p′

By Sobolev’s Imbedding Theorem we are free to choose any p < ∞, so for 0 < η < 1 we

choose p = 1
η
, which gives 1

p′
= 1− η

2
. Therefore we have the estimate,

|
∫
B
(uδ(y)− u0(y))G

k
qp(x, y)dy| ≤ Cδ3−η (A.35)

45



Using the fact that u0(·) is and Gk
qp(x, ·) is smooth in ΩR for x outside of B we expand in

Taylor Series expansion for u0 and Gk
qp about the point y = 0 to get

∫
B
u0(y)G

k
qp(x, y)dy = δ2|B∗|u0(0)Gk

qp(x, 0) +O(δ3) (A.36)

Using (A.35) and (A.36) together with the triangle inequality we obtain the first result of

the lemma ∫
B
uδ(y)G

k
qp(x, y)dy = δ2|B∗|u0(0)G̃k

per(x, 0) +O(δ3−δ)

For x ∈ ΩR \ B the divergence theorem gives∫
∂B
u0(y)

∂Gk
qp(x, y)

∂n(y)
dsy =

∫
B
∇ · (∇Gk

qp(x, y)u0(y))dy

=

∫
B
∇u0(y) · ∇yG

k
qp(x, y)dsy +

∫
B
u0(y)∆G

k
qp(x, y)dy

=

∫
B
∇u0(y) · ∇yG

k
qp(x, y)dsy − k2

∫
B
u0(y)G

k
qp(x, y)dy

Since x is outside the particle u0 and Gk
qp are C2 in y for a neighborhood of B, we use Tay-

lor Series expansion about the point y = 0 to obtain,

∫
∂B
u0(y)

∂Gk
qp

∂n(y)
= δ2|B∗|∇yG

k
qp(x, 0) · ∇u0(0)− δ2|B∗|k2Gk

qp(x, 0)u0(0) +O(δ3)

Now we can give a bound for
∫
∂B uδ(y)

∂Gk
qp(x,y)

∂n(y)
dsy by adding and subtracting

∫
∂B u0(y)

∂Gk
qp(x,y)

∂n(y)
dsy∫

∂B
uδ(y)

∂Gk
qp(x, y)

∂n(y)
dsy =

∫
∂B
(uδ(y)− u0(y))

∂Gk
qp(x, y)

∂n(y)
dsy +

∫
∂B
u0(y)

∂Gk
qp(x, y)

∂n(y)
dsy

=

∫
∂B
(uδ(y)− u0(y))

∂Gk
qp(x, y)

∂n(y)
dsy + δ2∇yG

k
qp(x, 0) · |B∗|∇u0(0)

− δ2|B∗|k2Gk
qp(x, 0)u0(0) +O(δ3)

(A.37)
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By Proposition 2.1 and re-scaling, for any x ∈ ΩR \ 2B∫
∂B
(uδ(y)− u0(y))

∂Gk
qp(x, y)

∂n(y)
dsy = δ

∫
∂B∗

(uδ(δỹ)− u0(δỹ))∇yG
k
qp(x, δỹ) · n(ỹ)dsỹ

= δ2
∫
∂B∗

(εm − 1)ϕ(ỹ) · ∇u0(0)∇yG
k
qp(x, δỹ) · n(ỹ)dsỹ

+ δ

∫
B∗
O(δ2|log δ|)∇yG

k
qp(x, δỹ) · n(ỹ)dsỹ

= δ2
∫
∂B∗

(εm − 1)ϕ(ỹ) · ∇u0(0)∇yG
k
qp(x, δỹ) · n(ỹ)dsỹ

+O(δ3|log δ|)

(A.38)

Using a Taylor Expansion for Gk
qp about zero, for x ∈ ΩR \ 2B we also have

∇yG
k
qp(x, δỹ) = ∇yG

k
qp(x, 0) +O(δ) for ỹ ∈ ∂B∗

Using this expression with (A.38) gives

∫
∂B
(uδ(y)−u0(y))

∂Gk
qp(x, y)

∂n(y)
dsy = δ2 (εm − 1)∇yG

k
qp(x, 0)·

[∫
∂B∗

n(y)(ϕ(y))Tdsy

]
∇u0(0)+O(δ3−η)

Applying the definition of the Polarization Tensor M in (A.37) gives∫
∂B
uδ(y)

∂Gk
qp(x, y)

∂n(y)
dsy = δ2 (εm − 1)∇yG

k
qp(x, 0) ·

[∫
∂B∗

n(y)(ϕ(y))Tdsy

]
∇u0(0)

+ δ2∇yG
k
qp(x, 0) · |B∗|∇u0(0)− δk2Gk

qp(x, 0)|B∗|u0(0) +O(δ3−η)

= δ2∇yG
k
qp(x, 0) ·

[
|B∗|I + (εm − 1)

∫
∂B∗

n(y)(ϕ(y))Tdsy

]
∇u0(0)

− δ2k2Gk
qp(x, 0)|B∗|u0(0) +O(δ3−η)

= δ2∇yG
k
qp(x, 0) ·M(εm)∇u0(0)− δ2k2G̃k

per(x, 0)|B∗|u0(0) +O(δ3−η)

which gives the second result of the the lemma.

Using the result of Lemma 3.1 in equation (A.34) we arrive at the desired result,
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giving the field uδ in terms of the polarization tensor and the double layer potential ap-

plied to uδ − u0.

uδ(x)− u0(x) =

∫
∂ΩR

(
uδ(y)

∂n
− ∂u0(y)

∂n

)
Gk

qp(x, y)dsy

+

(
1− 1

εm

)
[δ2∇yG

k
qp(x, 0) ·M(εm)∇u0(0)− δ2k2Gk

qp(x, 0)|B∗|u0(0)] +O(δ3−η)

− 1

εm
(k2 − k2m)δ

2Gk
qp(x, 0)|B∗|u0(0) +O(δ3−η)

Combining like terms we have

uδ(x)− u0(x) =

∫
∂ΩR

(
uδ(y)

∂n
− ∂u0(y)

∂n

)
Gk

qp(x, y)dsy

+

(
1− 1

εm

)
δ2∇yG̃

k
per(x, 0) ·M(εm)∇u0(0) +O(δ3−η)

(A.39)

We can now recast equation (A.39) in terms of the boundary integral operators and the

Dirichlet to Neumann map. Since uδ = u0 = f on ∂ΩR taking the limit as x→ ∂ΩR gives

0 =

∫
∂ΩR

(
uδ(y)

∂n
− ∂u0(y)

∂n

)
Gk

qp(x, y)dsy+ (A.40)

+

(
1− 1

εm

)
δ2∇yG

k
qp(x, 0) ·M(εm)∇u0(0) +O(δ3−η), (A.41)

and we arrive at the desired formula,

S (N0 −Nδ) (f) =

(
1− 1

εm

)
δ2∇yG

k
qp(x, 0) ·M(εm)∇u0(0) +O(δ3−η) (A.42)

and this proves Theorem (A.1.1).
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