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Abstract

For each finitely generated subgroup of a Coxeter group, we define a cell complex

called a completion. We show that these completions characterizes the index and normal-

ity of the subgroup. We construct a completion corresponding to the intersection of two

subgroups and use this construction to characterize malnormality of subgroups of right-

angled Coxeter groups. Finally, we show that if a completion of a subgroup is finite, then

the subgroup is quasiconvex. Using this, we show that certain reflection subgroups of a

Coxeter are quasiconvex.

iv



Chapter 1. Introduction

Coxeter groups are well studied in geometric group theory and have pleasant ge-

ometric representations. For example, any Coxeter group can be generated by a set of

combinatorial reflections of a certain cell complex called the Davis complex. Our goal is

to investigate finitely generated subgroups of these Coxeter groups and provide geometric

characterizations of algebraic and geometric properties of these subgroups. The technique

we will be using for this was first used in the study of free groups.

In [23], Stallings introduced a technique now known a Stallings fold, which is an

operation applied to graphs with labeled edges where two adjacent edges with the same

label and orientation are identified. Given a finite generating set of a subgroup of a free

group, Stallings used this operation to associate a directed labeled graph to the subgroup.

One key property that these labeled graphs have is that any reduced word w representing

an element of the corresponding subgroup is the label of a loop at some fixed base point

b. By applying Stallings’ fold operation, this loop is the unique loop labeled w based at

b. Stallings used these graphs to provide alternative proofs of various results about sub-

groups of free groups, such as if H and K are finitely generated subgroups of a free group,

then H ∩K is also finitely generated. In [15], Kapovich–Myasnikov used Stallings folds in

a more combinatorial way to provide algorithmic solutions to questions of the structure of

subgroups of free groups. These questions include finding a generating set for intersections

of subgroups, determining the rank and index of a subgroup, and determining whether a

given subgroup is normal. Arzhantseva and Ol’shanskii were the first to use Stallings folds

for non-free groups in [2]. Beeker and Lazarovich created an analogue of Stallings folds for

groups acting on CAT(0) cube complexes in [3]. A survey of applications of Stallings folds
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can be found in [9].

Dani–Levcovitz adapted Stallings folds to the setting of right-angled Coxeter

groups in [6]. Right-angled Coxeter groups are generated by involutions and the only

other relations are commuting relations between some generators. To each finitely gener-

ated subgroup of a right angled Coxeter group, they associated a cube complex called a

completion. They showed that these completions characterize several properties of these

subgroups, including the index, normality, and whether the subgroup has torsion. The ma-

jor difference between the right-angled Coxeter group case and the free group case is the

presence of relators. To deal with the generators being involutions, the 1-skeleton of the

cube complex is not directed. To take care of commuting relations, they attach squares

to the complex with boundary labeled by the relator. The result is a cube complex with

labeled edges which again has the property that for any reduced word w representing an

element in the corresponding subgroup, there exists a loop in the complex labeled by w.

Here, we extend the construction of completions in [6] to all Coxeter groups. Since

general Coxeter groups have relations other than the commuting relations of the right-

angled case, instead of only attaching squares to our complex, we will need to attach

larger polygons representing these relations. We will show that these complexes once again

satisfy the property that any reduced word representing an element of the corresponding

subgroup is the label of some loop at the base point. We show that some of the charac-

terizations of subgroups of right-angled Coxeter groups carry over to subgroups of general

Coxeter groups.

Theorem 1.1. For a subgroup H of a Coxeter group W , there exists characterizations of

the index of H and whether H is normal in terms of the properties of a completion of H.
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We use a construction of Kapovich–Myasnikov to produce completions for inter-

sections of subgroups of Coxeter groups. We refer a completion obtained by this method

as a pullback. Once we have a pullback, we can use it to create a generating set for the

intersection of the subgroups. In particular, if the original subgroups have finite comple-

tions, then their pullback is also finite. This gives us the following result for quasiconvex

subgroups of Coxeter groups.

Theorem 1.2. The pullback of completions for subgroups H and K of a Coxeter group is

a completion for H ∩ K. In particular, if H and K are quasiconvex there exists an algo-

rithm which computes a generating set for H ∩K.

We say a subgroup H of a group G is malnormal if for any g ∈ G \H we have that

H ∩ gHg−1 = {1}. Using our construction of a pullback, we are able to create completions

for H∩gHg−1. We are then able to characterize whether a subgroup is malnormal in right-

angled Coxeter groups.

Theorem 1.3. There exists a characterization of malnormality in terms of completions

for subgroups of right-angled Coxeter groups. In particular, for a quasiconvex subgroup H

of a right-angled Coxeter group, there exists an algorithm to determine whether H is mal-

normal.

More results on malnormal subgroups of right-angled Coxeter groups can be found

in [24], where Tran showed that any malnormal subgroup of a one-ended right-angled Cox-

eter group is quasiconvex.

Similar to the completions constructed for right-angled Coxeter groups, a notion

of a completion is defined for subgroup of fundamental groups of non-positively curved

cube complexes in [4]. They show that these completions give a solution to the member-
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ship problem for these subgroups, as well as characterize whether a subgroup is normal or

finite index. Applying the same construction of a pullback to this setting to create a com-

pletion for intersections of subgroups, we obtain the following theorem.

Theorem 1.4. For quasiconvex subgroups H and K of a fundamental group of a non-

positively curved cube complex, there exists an algorithm which computes a generating set

for H ∩K.

In [6], a completion of a subgroup of a right-angled Coxeter group W is shown to

be finite if and only if the subgroup is quasiconvex with respect to the standard generating

set of W . They proved that any subgroup generated by reflections of a right-angled Cox-

eter group has a finite completion, and is therefore quasiconvex. In general, a subgroup of

a Coxeter group generated by finitely many reflections was shown to be a Coxeter group

by Deodha in [10] and by Dyer in [11].

Theorem 1.5. If a completion of a subgroup H of a Coxeter group is finite, then H is

quasiconvex.

We use this to demonstrate that the following family of subgroups generated by

reflections of a Coxeter group is quasiconvex.

Theorem 1.6. Suppose H is a subgroup of a Coxeter group W generated by reflections

⟨w1r1w
−1
1 , . . . , wnrnw

−1
n ⟩ where each ri is a standard generator of W , such that for any i, j

no reduced expression for w−1
j wi ends in a letter s such that sri has finite order. Then H

is quasiconvex in W .

Coxeter groups have been an object of study in geometric group theory for a while.

In [22], Schupp used a technique similar to a completion, which he called a 2-completion,

to show that a large family of Coxeter groups are locally quasiconvex, meaning every
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finitely generated subgroup is quasiconvex. Niblo and Reeves showed that Coxeter groups

act properly discontinuously on CAT(0) cube complexes in [21] and Haglund and Wise

showed in [12] that Coxeter groups are virtually special. Davis and Shapiro showed that

all Coxeter groups are automatic in [8]. Many algorithmic problems regarding quasiconvex

subgroups of automatic groups were shown to have solutions in [17].

In [22], Schupp used a technique similar to a completion, which he called a 2-

completion, to show that a large family of Coxeter groups are locally quasiconvex, mean-

ing every finitely generated subgroup is quasiconvex. In this paper, Schupp asked whether

every Coxeter group of extra-large type was locally quasiconvex. While this question was

already shown to be false, the author would like to thank Kevin Schreve for suggesting

this counter example.

A stronger condition than local quasiconvexity is coherence. A group is coherent if

every finitely generated subgroup is also finitely presented. Any locally quasiconvex sub-

group is also coherent. It is known that for a group G of cohomological dimension 2, if

there exists a map G → Z with finitely presented kernel, then χ(G) = 0. If χ(G) > 0

and the map G → Z has finitely generated kernel, then the kernel is not finitely presented.

The following theorem is a result of Kielak.

Theorem 1.7 ([18]). Let G be an infinite finitely generated group which is residually fi-

nite and virtually solvable. Then G admits a finite-index subgroup mapping onto Z with a

finitely generated kernel, if and only if β
(2)
1 = 0.

It is known that the extra-large type Coxeter group W with defining graph Kn,n

with edges labeled by 4 and n ≥ 7 satisfies the conditions of Kielak’s theorem and has

χ(W ) > 0. This means W is not coherent and therefore is not locally quasiconvex.
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Jankiewicz and Wise showed that many Coxeter groups are incoherent in [14]. Some more

results for coherence and quasiconvexity for Coxeter groups and related groups can be

found in [19], [13], [1], and [16].

Chapter 2 of this dissertation will cover background material on Coxeter groups

and relevant terms from geometric group theory. Chapter 3 will start by defining a com-

pletion for finitely generated subgroups of Coxeter groups and prove some basic properties

of these completions. Then we will cover the algebraic properties of these subgroups char-

acterized by the completion.
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Chapter 2. Background

We will first cover some basic tools used in geometric group theory. Let G be a

finitely generated group with generating set S. We denote by S−1 the set of inverses of

elements of S. A word w in S is a string s1 . . . sn, where each si is an element of S ∪ S−1.

We define the length of w = s1 . . . sn to be n and denote it by l(w). For an element g in G,

we define its length l(g) to be the shortest length of a word in S ∪ S−1 representing g in

G. If w is a word representing g in G such that l(w) = l(g), we say that w is reduced. We

define a metric dS called the word metric on G by dS(g, h) = l(gh−1). Note that the word

metric depends on the choice of S.

Example 2.1. First, consider the group Z with generating set S = {a}. Then dS is the

standard metric on Z, as dS(an, am) = an−m = |n−m|. Now choose another generating set

S ′ = Z. Then dS′(g, h) = 1 for any choice of g and h. In particular, we have that dS ̸= dS′ .

One way to visualize this metric is through the Cayley graph.

Definition 2.2. (Cayley Graph) The Cayley graph C(G,S) is the graph with vertex set G

and an edge (g, h) labeled s if g = hs for some s ∈ S.

Note that this graph also depends on the choice of generating set of G.

Example 2.3. We again consider the group Z. Let S = {a} and S ′ = {a2, a3} be two

generating sets of Z. Figure 2.1 shows the Cayley graph of Z with respect to each of these

generating sets. Note that each the black edges correspond to the generator a, the blue

edges are labeled by a2, and the red edges are labeled by a3.

If we consider each edge of the Cayley graph to have length 1, then the distance

between two vertices h and g is precisely dS(h, g). Also, note that there is a natural group

action of G on C(G,S) where g ∈ G sends h ∈ V (C(G,S)) to the vertex gh. In Exam-
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Figure 2.1. The top graph is C(Z, S) and the bottom graph is C(Z, S ′).

ple 2.3, an acts on C(Z, S) by translating n units to the right.

Definition 2.4. (Quasiconvex) Let U be a subspace of a geodesic metric space (M,d). If

for any two points x, y ∈ U and any geodesic segment γ between x and y, we have that γ

is contained in a k-neighborhood of U , we say that U is k-quasiconvex in M . We say that

U is quasiconvex in M if it is k-quasiconvex for some k ≥ 0. A subgroup H of a finitely

generated group (G,S) is quasiconvex with respect to S if H is quasiconvex in C(G,S).

Note that whether a subgroup is quasiconvex depends on the choice of generating

set. For example, consider the group Z2 with a standard generating set {a, b}. With this

generating set, the subgroup H = ⟨ab⟩ is not quasiconvex. However, H is quasiconvex with

respect to the generating set {a, ab}.

Definition 2.5. (Hyperbolic Group) Let (M,d) be a metric space. For δ > 0, we say that

(M,d) is δ-hyperbolic if for any geodesic triangle (γ1, γ2, γ3) we have that γi is contained

in a δ neighborhood of γj ∪ γk for i ̸= j ̸= k. We say that (M,d) is hyperbolic if it is δ-

hyperbolic for some δ. A group G is hyperbolic if its Cayley graph is hyperbolic for some

finite generating set of G.

It is known that if a subgroup H of a hyperbolic group G is quasiconvex with re-

spect to a generating set S, then H is quasiconvex in G with respect to any choice of gen-

erating set of G.
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2.1. Cube complexes and non-positive curvature

In this section we will define cube complexes and give a combinatorial description

of when a cube complex has non-positive curvature.

Definition 2.6. (Cube complex) We say that [0, 1]n is an n-cube. A face of an n-cube C

is a subset of C obtained by setting at least one coordinate of C to 0 or 1. A cube complex

X is a collection of n-cubes S together with a collection of isometries called gluings be-

tween faces of cubes in S. We give a cube complex X the metric induced by the Euclidean

metric on each n-cube.

We can determine whether a cube complex X is non-positively curved by looking

at links of vertices of X.

Definition 2.7. (Link of a vertex) For a vertex v of a cube complex X, let Sϵ(v) be an

ϵ sphere around v in X for some 0 < ϵ < 1. The link of v, denoted lk(v), is given by

X ∩ Sϵ(v).

Note that these links can be thought of as simplicial complexes.

Definition 2.8. (Non-positive curvature) A cube complex X is non-positively curved if

lk(v) is a flag complex for any vertex v of X. We say X is CAT(0) if X is non-positively

curved and simply connected.

Next we will look at maps between cube complexes.

Definition 2.9. (Local isometry) For cube complexes X and Y with basepoints bX and

BY , respectively. We say that f : (X, bX) → (Y, bY ) is a cubical map if f sends n-cubes

isometrically to n − cubes. We say that f is a local isometry if for any vertex v of X, the

image of the restriction of f to lk(v) is a full subcomplex of lk(f(v)).
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An important fact from [5], if f is a cubical map and a local isometry, then the in-

duced map f∗ : π1(X, bX) → π1(Y, bY ) is injective.

2.2. Coxeter groups

Now we will introduce Coxeter groups and cover some of their useful properties.

For a more comprehensive introduction to Coxeter groups, we refer the reader to [7].

Definition 2.10. (Coxeter group) A Coxeter group W is defined by the group presenta-

tion W = ⟨s1, . . . sn | (sisj)mi,j⟩ where mi,i = 1 and mi,j ∈ {2, 3, . . .} ∪ {∞} if i ̸= j. If

mi,j = ∞, then there are no relations between si and sj.

We often represent Coxeter groups with labeled simplicial graphs. For a simpli-

cial graph Γ with finitely many vertices V (Γ) and with edges E(Γ) labeled by elements of

{2, 3, . . .}, we define the Coxeter group WΓ by

WΓ = ⟨V (Γ) | s2 for s ∈ V (Γ), (sisj)
mi,j if (si, sj) ∈ E(Γ) is labeled by mi,j⟩.

Note that if there is no edge between vertices si and sj, then there is no relation between

si and sj. One type of Coxeter group we consider are right-angled Coxeter groups. These

are obtained from simplicial graphs whose edges are all labeled by 2. Note that if mi,j = 2,

then (sisj)
2 = 1 implies that sisj = sjsi, since si = s−1

i .

Several properties of a Coxeter group WΓ can be detected from its defining graph

Γ. For example, all finite Coxeter groups have been classified by their defining graph and

Moussong in [20] classified all hyperbolic Coxeter groups.

All Coxeter groups satisfy the exchange condition and the deletion condition. These

conditions are extremely helpful when reducing a word of a Coxeter group.

1. (Exchange condition) For a reduced expression s1 . . . sn of an element w of a Cox-

10



eter group W and a generator s of W , either l(sw) = n + 1 or sw = s1 . . . ŝi . . . sn

for some i, where ŝi denotes the absence of si.

2. (Deletion condition) If s1 . . . sn is an expression for a word w in W but is not re-

duced in W , then w = s1, . . . , ŝi, . . . , ŝj . . . sn for some i and j.

Note that the deletion and exchange conditions are equivalent conditions [7].

Another helpful tool for studying how words in a Coxeter group reduce comes

from Tits’ solution to the word problem. His solution states there are only two operations

needed to reduce a word w in a Coxeter group, namely deletions and slides.

1. (Deletion) A deletion removes a subword of the form ss from w.

2. (Slide) A slide replaces a subword of the form sisjsi . . . of length mi,j with the sub-

word sjsisj . . . of length mi,j.

We refer to this second operation as a slide because if we consider a word w as a

path γ in the Cayley graph of W , applying a slide to a subword sisjsi . . . corresponds to

“sliding” the corresponding subpath of γ across a 2mi,j-gon.

Theorem 2.11. (Tits) If w is a reduced word in a Coxeter group W and w′ is a word

which represents the same element as w in W , then there exists a sequence of deletions

and slides which turns w′ into w. In particular, if both w and w′ are reduced, then there

exists a sequence of slides which turns w into w′.
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Chapter 3. Completions

In this section we define completions associated to subgroups of Coxeter groups.

These completions are cell complexes with edges labeled by generators of a Coxeter group.

We will start by defining the operations we will use to construct these completions.

Definition 3.1. (Labeled complex) For a finitely generated group (G,S), we define a

(G,S)-complex X to be a cell complex whose edges are each labeled by an element of S.

If S is clear, we will refer to X as a G-complex. For an edge e of X, we denote the label

of e by µ(e). A (G,S)-complex is said to be folded if any two adjacent edges have distinct

labels.

Let W be a Coxeter group and X be a W -complex. We use three operations on X

to construct a completion of X. The first of these operations is folding.

1. (Folding) If two distinct adjacent edges e1 and e2 of X share the same label, we

create a new W -complex by identifying e1 and e2.

Definition 3.2. (Reduced path) A path in a W -complex X is a sequence of vertices and

edges v0, e1, v1, . . . , vn−1, en, vn where ei and ei+1 are both adjacent to vi for all i. We say a

path is reduced if ei and ei+1 are distinct edges for all i.

Note that the label of a reduced path in a folded complex will have no subwords of

the form ss.

Our goal to construct a complex such that if w is the label of a path α in the com-

plex and w′ is a word obtained from w by applying a slide, then w′ is the label of a path

β which is fixed point homotopy equivalent to α. To do this, we will need to attach 2-cells

corresponding to relators of our Coxeter group.

Definition 3.3. (Relator disks and deficient paths) For a Coxeter group W , we say that a
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reduced path in an W -complex is an (a, b)-path if it is labeled by abab . . .. Similarly, if an

(a, b)-path forms a cycle, we say that it is an (a, b)-cycle.

An (a, b)-relator disk is a cycle of length 2ma,b which bounds a 2-cell and whose

edge labels alternate between a and b. If γ is an (a, b)-path of length at least ma,b which is

not part of an (a, b)-relator disk or if γ is an (a, b)-cycle which does not bound a 2-cell, we

say that γ is deficient.

Our last two completion operations involve attaching and identifying these relator

disks.

2. (Relator Attachment) If there is a deficient (a, b)-path γ in X then we attach an

(a, b)-relator disk C to X by identifying a vertex of C to a vertex of γ.

3. (Relator Identification) If two relator disks C1 and C2 of X have the same 1-

skeleton, then we identify C1 and C2.

Similar to folded graphs, we give a name to complexes which contain all necessary

2-cells.

Definition 3.4. (Cell-full complex) We say that a W -complex is cell-full if there are no

deficient paths and there are no possible relator attachments or relator identifications.

We consider a complex that is both folded and cell-full to be complete. This gives

us our next definition.

Definition 3.5. (Completion) If Ω is the direct limit of a possibly infinite sequence of

these three operations applied to X and Ω is folded and cell-full, then we say that Ω is a

completion of X.

Note that there is a natural image of X in Ω. We now show that such a completion

always exists.

13



Lemma 3.6. For any finite W -complex X, there exists a completion of X.

Proof. Let X be a finite W -complex. We will describe a process which will result in a

completion Ω of X. Since any fold operation reduces the number of edges in our complex,

only a finite number of folds are required to turn X into a folded complex. Similarly, rela-

tor identifications decrease the number of 2-cells of X. Let X = Ω0 → Ω1 → · · · → Ωi

be a sequence of folds and relator identifications where Ωi is folded and finite and no more

relator identifications are possible. Now for each deficient path in Ωi, we apply relator at-

tachment operations until each deficient path is incident to a corresponding relator disk.

This gives a sequence Ωi → Ωi+1 → · · · → Ωj. Then we repeat this procedure by applying

folds and relator identifications until we get a folded complex, and then applying relator

attachments until there are no more deficient paths.

Let Ω be the direct limit of this process. Suppose Ω is not folded. Suppose edges

e and e′ are adjacent and share the same label. Then there exists some i such that the

preimage of e and e′ in Ωi are adjacent and share the same label. However, by our con-

struction, there exists an n > i such that for all j > n we have that the image of e and e′

are identified in Ωj, which is a contradiction. Therefore Ω is folded.

Now suppose Ω is not cell-full. Let γ be a deficient path in Ω. Then there exists

an i such that the preimage of γ in Ωi is deficient. Again, by construction there exists an

n > i such that for every j > n we have that the preimage of γ in Ωj is incident to a

corresponding relator disk. Thus Ω is cell-full and therefore is a completion of X.

We refer to the completion created by this process as a standard completion of X.

In [6], completions were defined for right-angled Coxeter groups. They attach a square

14



to paths e1e2 where the labels of e1 and e2 commute, meaning wherever there is a path

labeled by half of a relator. We generalize this to all Coxeter groups by attaching larger

polygons to any path which contains at least half of a relator. In fact, if we restrict our

definition of a completion to right-angled Coxeter case, we obtain the 2-skeleton of the

completions from [6].

Now we define a complete complex for a subgroup of a Coxeter group.

Definition 3.7. (Completion of a subgroup) For a subgroup H of a Coxeter group W , we

say that a connected W -complex Ω with basepoint b is a completion of H if:

1. Ω is folded and cell-full.

2. The label of any loop in Ω based at b is an element of H.

3. For any element g of H, there exists an expression w of g such that w is the label

of a loop in Ω based at b.

We can construct a completion for each finitely generated subgroup H of a Coxeter

group W as follows. Let ⟨h1, . . . , hn⟩ be a generating set for H. Let X be a wedge of n

loops based at a vertex b. For each generator hi, we subdivide the ith loop into l(hi) edges

and label the edges by the letters of hi in order starting from an edge adjacent to b. We

say that the standard completion of X is a standard completion of H.

Example 3.8. Figure 3.1 shows the process of creating a standard completion for the sub-

group H = ⟨abca, bacab⟩ of the Coxeter group W with presentation

W = ⟨a, b, c | a2, b2, c2, (ab)3⟩.

The leftmost complex is X and the rightmost complex is the standard completion of H.

The first step is given by three folds. The second step attaches an (a, b)-relator disk to the
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Figure 3.1. The process of creating a completion of H for Example 3.8.
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Figure 3.2. Two completions of the subgroup K from Example 3.8.

deficient (a, b)-path. The final step folds the (a, b)-relator disk onto the deficient path.

Note that a completion of a subgroup is not unique. In fact, different choices of

generating sets of a subgroup result in different standard completions. For the Coxeter

group W given by

W = ⟨a, b | a2, b2, (ab)2⟩,

Figure 3.2 shows two completions of the subgroup K = ⟨a⟩.

Now we will define hyperplanes of a complex, which will be a useful tool for some

of our proofs.

Definition 3.9. (Parallel edges) For a relator disk of length n consisting of edges

e1, . . . , en in order, we say that the edges ei and ei+n are parallel for 1 ≤ i ≤ n. Let v be

a vertex of an (a, b)-cycle C ′ of a W -complex X which bounds a 2-cell and let C be an
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(a, b)-relator disk. We attach a copy of C to v, fold the edges of C onto the edges of C ′,

and identify their 2-cells. We use this process define a map f : C → C ′ by sending C to

its image folded onto C ′. If e and e′ are parallel in C, then we say that f(e) and f(e′) are

parallel in C ′.

We say that two edges e and e′ in X are parallel if there exists a sequence of edges

e = e1, e2, . . . , en = e′ such that ei and ei+1 are parallel in some relator disk in X for all i.

Note that the set of edges parallel to some edge e forms an equivalence class. We

will associate a hyperplane to each of these equivalence classes.

Definition 3.10. (Hyperplanes) For a relator disk C of a W -complex X, mid-line of C

is a line contained in C which bisects two parallel edges in C. A hyperplane H of X is a

maximal collection of mid-lines such that for any two mid-lines h and h′ there exists a se-

quence h = h1, h2, . . . , hn = h′ in H such that hi ∩ hi+1 is nonempty for all i.

The support of a hyperplane H of X, denoted supp(H), is the set of all cells con-

taining H.

One useful property of hyperplanes is that the number of hyperplanes of a complex

never increases when completing a complex.

Lemma 3.11. If Ω is a completion of a W -complex X, then any hyperplane of Ω must

intersect the image of X in Ω.

Proof. Let X = Ω0 → Ω1 → . . . → Ω be the sequence of completion operations resulting

in Ω. Let Ωn1 ,Ωn2 , . . . be the possibly infinite subsequence of folded complexes. We will

prove the lemma by showing that for any n, there exists ni > n such that any hyperplane

of Ωni
intersects the image of X. If Ωn+1 is obtained from Ωn via a fold, then the image of

17



Ωn is surjective on Ωn+1, so any hyperplane in Ωn+1 must intersect the image of Ωn. Sim-

ilarly, the image of Ωn is surjective on Ωn+1 if Ωn+1 is the result of a relator identification,

so any hyperplane of Ωn+1 must intersect the image of Ωn.

Suppose Ωn+1 is the result of a relator attachment and C is the cycle attached to a

deficient Ωn. If C is attached to a deficient cycle C ′, then it is possible to fold every edge

of C onto an edge of C ′. Since Ω is folded, we can choose i such that ni > n. Since Ωni

is folded, the image of C must be contained in the image of C ′. Therefore any hyperplane

intersecting the image of C in Ωni
must also intersect the image of C ′, and therefore inter-

sects the image of Ωn.

If C is attached to a deficient path γ, then the length of γ must be at least half

the length of C. Again, we choose i such that ni > n. Since Ωni
is folded, at least half

of the edges of C in Ωni
are contained in the image of γ. Then any pair of parallel edges

in the image of C in Ωni
must have an edge in the image of γ. Therefore, any hyperplane

intersecting the image of C in Ωni
must also intersect the image of γ, and therefore must

intersect the image of Ωn.

Suppose H is a hyperplane of Ω which does not intersect the image of X. Then

there exists an n such that H contains the image of a hyperplane of Ωn and for any m > n

the image of H in Ωm does not intersect the image of X, which is a contradiction.

The reason we require completions to be folded and cell-full is for completions to

have the following property.

Lemma 3.12. Let Ω be a folded and cell-full W -complex for some Coxeter group W and

w be the label of a path γ in Ω. If w′ is a reduced word equivalent to w in W , then there is
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a fixed end point homotopy from γ to a path γ′ with label w′.

Proof. By Tits’ solution to the word problem for Coxeter groups in Theorem 2.11, a

word w is equal to a reduced word w′ in W if and only w′ can be obtained from w by a

sequence of deletions and slides. First, suppose a deletion is applied to w. This means

that w has an expression s1s2 · · · ss · · · sk. Since Ω is folded, this means that γ traverses

the same edge e twice in a row. By removing this edge from γ we obtain a new path with

label s1s2 · · · ŝŝ · · · sk.

Next, suppose a slide is applied to w. This means that w contains a sub-word of

the form (abab . . .) of length ma,b. Therefore γ contains an (a, b)-path of length ma,b. Since

Ω is cell-full, we can replace this sub-path with a (b, a)-path of equal length. Proceeding

this way, we obtain a path γ′ with label w′.

The key property of completions which follows directly from Lemma 3.12 is that

any reduced word in H is the label of a loop in the completion of H.

Corollary 3.13. Let (Ω, b) be a completion of a subgroup H of a Coxeter group W . If w

is a reduced word in H, then there exists a loop in Ω based at b with label w.

Proof. By the definition of a completion, for any element g of W there exists a loop in Ω

based at b whose label is equal to g. By Lemma 3.12, if w is a reduced word equal to g in

W , there must be a loop based at b with label w.

We now show that changing the basepoint of a completion of a subgroup H gives

us a completion for a conjugate of H.

Lemma 3.14. Let (Ω, b) be a completion of a subgroup H of a Coxeter group W . If v

is a vertex of Ω and g is the label of a path α from v to b, then (Ω, v) is a completion of

19



gHg−1.

Proof. First, note that part 1 and 2 of Definition 3.7 are satisfied as Ω is folded and cell-

full and the label of any loop based at v is equal to the label of a loop at b conjugated by

g. To prove that part 3 is satisfied, we will show that for any element w of gHg−1 there

is a loop based at v whose label is equal to w in W . First, we know that w = ghg−1 for

some reduced word h ∈ H. Since h is a reduced word in H and (Ω, b) is a completion of

H, there must be a loop γ based at b with label H. Then αγα−1 is a loop based at v with

label ghg−1, where α is labeled by g. Therefore (Ω, v) is a completion of gHg−1.

Similarly, if there is a loop in Ω whose label is contained in a finite special sub-

group, we show that a conjugate of that element lives in H.

Lemma 3.15. Let H be a subgroup of a Coxeter group W and let (Ω, b) be a completion

of H. If there exists a loop in Ω whose label is a nontrivial reduced word in a finite special

subgroup of W , then H has torsion.

Proof. Suppose there exists a loop labeled u based at some vertex v in Ω where u is an

element of a finite special subgroup. Let g be the label of a path from v to u. Then gug−1

is a nontrivial element of H with finite order.

3.1. Index of a subgroup

In this section, we will show that completions characterize the index of a subgroup.

To do so, we will look at the valence of the vertices in our completion.

Definition 3.16. (Full valence completion) A completion Ω of a subgroup of a Coxeter

group W is full valence if for every vertex v of Ω and every generator s of W , there exists

an edge labeled s incident to v.
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Figure 3.3. Two completions of H. Only the completion on the right is full-valence.

In the case of a free group, it sufficed to say that a subgroup had finite index if and

only if its Stallings graph was full-valence [15]. However, for Coxeter groups it is possible

to have a finite index subgroup with a completion that is not full-valence.

Example 3.17. Let W be the Coxeter group with presentation

W = ⟨a, b, c, d | a2, b2, c2, d2, (ab)4, (ac)4, (ad)2, (bd)2, (cd)2⟩.

The subgroup H = ⟨abc, bca, cab⟩ has index 8 in W . Figure 3.3 contains a full-valence

completion of H and a completion of H which is not full valence.

In general, we can take any Coxeter group W and consider a new Coxeter group

given by W ′ = Z2 × W. In this case, a completion of the subgroup W will not necessarily

contain an edge labeled by the generator of Z2.

Now we provide a condition for when a completion of a finite index subgroup is full

valence.

Theorem 3.18. Suppose H is a subgroup of an infinite Coxeter group W and (Ω, b) is a

finite completion of H such that if s ∈ Z(W ) is a generator of W , then s is the label of
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some edge in Ω, where Z(W ) is the center of W . Then H has finite index if and only if Ω

is full valence.

Proof. First suppose Ω is full valence. We will show that [W,H] = |V (Ω)|. For each vertex

v of Ω, choose a path αv from b to v and let gv be its label. For any g ∈ W , since Ω is

full valence, there exists a path from b labeled g. Let u be the endpoint of this path so

g−1
u labels a path based at b. Then we have that g−1

u g is the label of a loop in Ω based at b

and therefore is an element of H. Therefore, g ∈ guH and each vertex of Ω corresponds to

a coset of H.

Now suppose Ω does not have full valence. We can assume that there exists a gen-

erator s /∈ Z(W ) such that there is no edge incident to b with label s, as otherwise, we

can take a conjugate of H by Theorem 3.14. This means that no reduced word in H be-

gins with s. Since W is not finite, there exists generators s1, . . . , sk such that (ss1 · · · sk)n

is reduced and is therefore not an element of H for any n > 0. This means that each

coset (ss1 · · · sk)nH is distinct for each n. Otherwise, if (ss1 · · · sk)nH = (ss1 · · · sk)mH

for m ̸= n, then (ss1 · · · sk)n−m ∈ H, which is a contradiction. Therefore H has infinite

index in W .

Remark 3.19. Note that we can easily obtain a completion which satisfies the assump-

tions of Theorem 3.18 taking a completion Ω and attaching an edge to b labeled s for each

s ∈ Z(W ) and taking the completion of this new complex.

3.2. Normal Subgroups

In this section, we will define a subgraph, called the core, of a completion which

characterizes the normality of a subgroup. While a completion of a subgroup is not unique
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to the subgroup, the core of the subgroup is unique, as we will see in Lemma 3.22.

Definition 3.20. (Core Graph) For a W -complex (Ω, b), we define the core graph C(Ω, b)

at b to be the subset of the 1-skeleton consisting of all loops based at b whose labels are

reduced words in W . If (Ω, b) is a completion of a subgroup H, we say that C(Ω, b) is the

core of H.

The idea of a core graph is to remove nonessential edges and 2-cells from a comple-

tion. For example, aside from possibly the basepoint, the core will not contain any vertex

of degree 1, since any loop containing such a vertex can be reduced via a deletion. Exam-

ple 3.21 shows an example where taking the core of a complex removes half of a Coxeter

polytope.

Example 3.21. Figure 3.4 shows a completion Ω and the core graph of the subgroup H =

⟨bcda, cbea⟩ for the Coxeter group W given by the presentation

W = ⟨a, b, c, d, e | a2, b2, c2, d2, e2, (ab2), (ac2), (bc)4⟩.

Note any loop based at B in Ω which contains a blue edge has a homotopy to a

shorter loop containing only black edges.

We show that the core graph of a given subgroup is unique.

Lemma 3.22. For a subgroup H of W , if (Ω1, b1) and (Ω2, b2) are two completions of H,

then there is an isomorphism f : C(Ω1, b1) → C(Ω2, b2) such that f(b1) = b2.

Proof. Let w be a reduced word in H. By Corollary 3.13 there exists a loop γi in Ωi based

at bi with label w for i = 1, 2. Then, by definition of a core graph, γi is also contained in

C(Ωi, bi). We define f by setting f(γ1) = γ2. This map is well-defined since C(Ω1, b1) and

C(Ω2, b2) are both folded as they are subcomplexes of folded complexes. We define a map
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Figure 3.4. The left figure is a completion Ω of H as defined in Example 3.21 and the
right figure is the core graph C(Ω, B). Note that the 2-cells of Ω have been omitted for
simplicity. However, each (a, b)-square, (a, c)-square, and (b, c)-octogon bounds a disk, so
Ω is homeomorphic to S2 with two edges attached as handles.

g : C(Ω2, b2) → C(Ω1, b1) the same way we defined f .

We will show that g = f−1. Let e be an edge of C(Ω1, b1). By the definition of a

core graph, there exists a reduced word w in H such that a loop γ based at b1 contains e

and has label w. Then f(γ) is a loop in C(Ω2, b2) based at b2, so g(f(γ)) is a loop based

at b1 labeled w. However, such a loop is unique since C(Ω1, b1) is folded, so g(f(γ)) = γ.

In particular, we have that g(f(e)) = e. Similarly, for any edge e′ in C(Ω2, b2), we have

that f(g(e′)) = e′. Therefore g = f−1 and f is an isomorphism.

Intuitively, a subgroup should be normal if and only if its core is vertex transitive.

However, this is not always the case. For example, if W is a Coxeter group, we can con-

sider W as a subgroup of a new Coxeter group W ∗ Z2. Then W is not normal in W ∗ Z2,

but the completion of W consisting of a single vertex and a graph loop for each generator

of W is a core graph and is clearly vertex transitive. Therefore, we will need some more

conditions on our core graph to accurately detect normality.

Theorem 3.23. Let (Ω, b) be a completion of a subgroup H of a Coxeter group W with

24



standard generating set S. We define

∆ = {s ∈ S | s commutes with every element of H}

Then H is normal in W if and only if there is an edge incident to b in Ω labeled by s for

every s ∈ S \ ∆ and for every v ∈ Ω there exists a label preserving isomorphism from

C(Ω, b) to C(Ω, v) which takes b to v.

Proof. First, suppose H is normal. Let v be a vertex of Ω and g be the label of a path

from v to b. Then (Ω, v) is a completion of the subgroup gHg−1 = H. Therefore C(Ω, b)

is isomorphic to C(Ω, v) by Lemma 3.22. Now we will show that for every s ∈ S \∆ there

exists an edge incident to b labeled by s. Let w = s1 . . . sk be a reduced word represent-

ing an element of H which does not commute with s, which exists since s /∈ ∆. If w has a

reduced expression beginning or ending with s, then we are done, as there must be a loop

in Ω based at b with this expression as its label by Corollary 3.13. Suppose no reduced ex-

pression of w begins or ends with s. Then sws is an element of H, since H is normal. If

sws is not reduced, then by the deletion condition, at least one of sw and ws is not re-

duced, as otherwise sws = w, which is a contradiction. Without loss of generality, suppose

sw is not reduced. By the exchange condition, we have sw = s1 . . . ŝi . . . sn for some i.

Therefore ss1 . . . ŝi . . . sn is a reduced expression for w which starts with s, which is a con-

tradiction. Therefore sws is reduced and there must be a path based at b with label sws.

Now suppose there is an edge incident to b in Ω labeled by s for every s ∈ S \ ∆

and for every v ∈ Ω there exists an isomorphism from C(Ω, b) to C(Ω, v) which takes b to

v. Clearly if s ∈ ∆ we have sHs = H. If s ∈ S \ ∆, then there is an edge e incident to b

in with label s. Let u be the other endpoint of e. Then (Ω, u) is a completion for sHs and
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C(Ω, b) and C(Ω, u) are isomorphic by assumption. Let w be a reduced word representing

an element of H. Then w is the label of a loop in C(Ω, b) based at b, and therefore is also

the label of a loop in C(Ω, u) based at u. Therefore w represents an element of sHs and

H ⊂ sHs. Similarly, if w is a reduced word representing an element of sHs, then w is the

label of a loop in C(Ω, u) based at u, and therefore is the label of a loop in C(Ω, b) based

at b. Thus w represents an element of H, so H = sHs and H is normal in W .

3.3. Intersections of subgroups

In this section we will use completions to find a generating set of intersections of

finitely generated subgroups of Coxeter groups. To accomplish this, for completions ΩH

and ΩK of subgroups H and K, respectively, we will construct a completion ΩH ∗ ΩK for

H ∩K. We call this completion the pullback of ΩH and ΩK .

Definition 3.24. (Pullback) For completions Ω1 and Ω2, let M be the graph with vertex

set V (Ω1)× V (Ω2) and an edge from (v1, v2) to (u1, u2) labeled s if and only if there exists

edges labeled s from v1 to u1 and from v2 to u2 in Ω1 and Ω2, respectively. To add the

necessary 2-cells to M , we define the pullback Ω1 ∗ Ω2 to be the completion of M .

Note that completing M does not add any additional edges, as if there exists a de-

ficient (a, b)-path γ in M , then the corresponding (a, b)-paths in Ω1 and Ω2 must be con-

tained in relator disks, as otherwise Ω1 and Ω2 would not be cell-full. Therefore γ must be

contained in an (a, b)-cycle C in M . Let D be an (a, b)-relator disk attached to γ. Then

the image of the boundary of D in Ω1 ∗ Ω2 is contained in the image of C. Therefore, the

image of M is surjective onto Ω1 ∗ Ω2.

Example 3.25. The pullback is not necessarily connected. For example the Coxeter
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Figure 3.5. The top figures are the completions Ω1 and Ω2 from Example 3.25. The bot-
tom figure is the pullback Ω1 ∗ Ω2. We omit the 2-cells for clarity.

group W defined by

W = ⟨a, b, c, d, e | a2, b2, c2, d2, e2, (ab)2⟩

and subgroups H = ⟨abcab, de⟩ and K = ⟨a, bac⟩, Figure 3.5 shows a completion (Ω1, u1)

for H, a completion (Ω2, b1) for K, and the pullback Ω1 ∗ Ω2.

Now we show that a pullback of completions of two subgroups gives a completion

for the intersection of the subgroups.

Theorem 3.26. Let H1 and H2 be finitely generated subgroups of a Coxeter group W ,

and let (Ω1, b2) and (Ω2, b2) be their respective completions. Then (Ω1 ∗ Ω2, (b1, b2)) is a

completion for H1 ∩H2.

Proof. To show that (Ω1 ∗ Ω2, (b1, b2)) satisfies the definition of a completion, first note

that Ω1 ∗ Ω2 is folded and cell-full and therefore satisfies part 1 of Definition 3.7. To prove

part 2 of the definition is satisfied, we prove that any loop based at (b1, b2) in Ω1 ∗ Ω2 is
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labeled by a word w representing an element of H1 ∩ H2. If w is the label of a loop based

at (b1, b2), then by construction there must exist loops based at b1 in Ω1 and at b2 in Ω2

both labeled by w. Therefore, w is an expression of an element of H1 ∩H2.

Finally, we show that part 3 of the definition is satisfied by proving that any re-

duced word w in H1 ∩H2 is the label of a loop in (b1, b2) in Ω1 ∗ Ω2. By Corollary 3.13, for

any such w, there exists a loop based at b1 in Ω1 and a loop based at b2 in Ω2, both with

label w. By construction, there must be a loop based at (b1, b2) with label w in M and

therefore also in Ω1 ∗ Ω2.

Since changing basepoints corresponds to conjugating our subgroup, we can use a

pullback to produce completions for intersections of conjugates of subgroups.

Corollary 3.27. Let H1 and H2 be subgroups of a Coxeter group W . Let (Ω1, b1) be a

completion of H2 and (Ω2, b2) be a completion of H2. If there is path in (Ω1, b1) from some

vertex u to b1 labeled g1 and a path in (Ω2, b2) from some vertex v to b2 labeled g2, then

(Ω1 ∗ Ω2, (v, u)) is a completion for g1H1g
−1
1 ∩ g2H2g

−1
2 .

Proof. By Lemma 3.14, we know that (Ω1, u) is a completion for g1H1g
−1
1 and (Ω2, v) is a

completion for g2H2g
−1
2 . Therefore, by Theorem 3.26, we have that (Ω1 ∗ Ω2, (u, v)) is a

completion for g1H1g
−1
1 ∩ g2H2g

−1
2 .

Note that if we want to find a completion for g1H1g
−1
1 ∩ g2H2g

−1
2 for arbitrary

g1, g2 ∈ W which do not necessarily label paths in (Ωi, bi), we can take a path labeled

g−1
i and attach its origin to bi in Ωi and take the completion of this new complex to get a

new completion Ω′
i of Hi for i = 1, 2. Then g1 and g2 will be labels of paths in Ω′

1 ending

at b1 and in Ω2 ending at b2, respectively, which allows us to apply Corollary 3.27.
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3.3.1. Nonpositively curved cube complexes

We can use this construction of a pullback to find completions for intersections of

subgroups of fundamental groups of non-positively curved cube complexes, which are not

Coxeter groups. This adds to the results in [4]. We will first cover the definition of a com-

pletion for subgroups of fundamental groups of nonpositively curved cube complexes. This

construction comes from [4].

Let Y be a nonpositively curved cube complex and let G = π1(Y, bY ). Let H =

⟨h1, . . . , hk be a finitely generated subgroup of G. We can consider the generator hi as

loop a γi in the 1-skeleton of Y based at bY . Let X be the wedge of k circle and let bX be

the basepoint. We can define a map f : (X, bX) → (Y, bY ) and subdivide each loop in X so

that f is a cubical map. The goal is to turn X into a complex such that f becomes a local

isometry, as then f∗ is injective and π1(X, bX) can be viewed as a subgroup of π1(Y, bY ).

To do this, we use the following operations.

1. (Folding) If e and e′ are adjacent edges in X and f(e) = f(e′), then we identify

e and e′ to get a new complex X ′. Note that f factors through the quotient map

X → X ′ to give us a new cubical map f ′ : X ′ → Y .

2. (Cube Identification) If n-cubes C and C ′ of X share the same 1-skeleton, then we

identify C and C ′ to obtain a new cube complex X ′. Note that since Y is non-

positively curved and f(C) and f(C ′) share the same 1-skeleton, we know that

f(C) = f(C ′). Therefore f again factors through the quotient map to give a new

cubical map f ′ : X ′ → Y .

3. (Cube Attachment) For a vertex v of X, if f(lk(v)) is not a full subcomplex of
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lk(f(v)), then there exists vertices v1, . . . , vn of lk(v) that do not span a simplex

in lk(v), but f(v1), . . . , f(vn) does span a vertex in lk(f(v)). Let e1, . . . , en be the

edges adjacent to v such that e1 is the edge containing vi. We attach a vertex of

n cube to v and identify the n edges of the n-cube adjacent to v with the edges

e1, . . . , en to obtain X ′. Note f naturally extends to a map f ′ : X ′ → Y .

The direct limit of applying these operations to X is a cube complex (Ω, b′X) with a

local isometry f ′ : Ω → Y and π1(Ω, b
′
X) = H. We say that (Ω, b′X) is a cubical completion

of H. It was shown in [4] that Ω is finite if and only if H is quasiconvex.

Definition 3.28. (Cubical word [4]) Let T be a spanning tree of a cube complex y and let

S be the set of squares in Y . Then

π1(Y, b) = ⟨E(Y ) | {e | e ∈ T} ∪ {∂s | s ∈ S}⟩.

A word w in this presentation is a cubical word if it lifts to a path in the universal cover Ỹ

of Y . We say w is reduced if it lifts to a geodesic in Ỹ .

Now we will define a pullback for cube complexes.

Definition 3.29. (Pullback of cube complexes) Let Y be a non-positively curved cube

complex with oriented edges. Give each edge a distinct label. For cube complexes M1 and

M2 with locally isometric cubical maps f1 : M1 → Y and f2 : M2 → Y , label each edge

e ∈ Mi by the label of fi(e). We define a new cube complex M with vertices given by

V (M1) × V (M2) and an edge ((v1, u1), (v2, u2)) labeled a in M if there are edges labeled

a connecting v1 and v2 in M1 and connecting u1 and u2 in M2. We define f : M 7→ Y to

be the map which sends each edge labeled x to the edge labeled x in Y and the pullback

M1 ∗M2 to be the completion of M .
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Now we show that a pullback of cubical completions behaves like the pullback of

completions of subgroups of Coxeter groups.

Theorem 3.30. For a non-positively curved cube complex Y , G = π1(Y, bY ), and sub-

groups H,K ⩽ G, let (M1, p1) and (M2, p2) be cubical completions associated with H and

K, respectively. Then M1 ∗M2 is a completion of H ∩K.

Proof. We claim that π1(M1 ∗M2, (p1, p2)) ∼= H ∩K. For g ∈ H ∩K, we can express g as a

reduced cubical word w based at q. Since M1 and M2 are completions, there exists a loop

in M1 based at p1 and a loop in M2 based at p2, both having the label w. By construction,

there must exist a loop in M1 ∗M2 with the label w.

Conversely, given a loop in M1∗M2 labeled w based at p1×p2, there must be a loop

in M1 based at p1 and a loop M1 based at p1 both with the label w. Therefore, w ∈ H∩K.

So f∗(π1[M1 ∗M2, p1 × p2]) = H ∩K. Since M1 ∗M2 is a cubical completion, f∗ is injective,

thus proving our claim.

Since cubical completions are finite for quasiconvex subgroups, we get the following

algorithm.

Corollary 3.31. Let H and K be quasiconvex subgroups of the fundamental group of a

nonpositively curved cube complex Y . There exists an algorithm which computes the gener-

ating set of H ∩K.

Proof. By Theorem 5.1 of [4], the cubical completions M1 and M2 of H and K, respec-

tively are both finite since H and K are quasiconvex, so M1 ∗ M2 is finite. Therefore

M1 ∗M2 can be constructed in a finite number of steps.
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3.3.2. Malnormal subgroups

Given a completion (Ω, b) of a subgroup H of a right-angled Coxeter group W , we

can use the pullback Ω∗Ω to characterize whether H is malnormal. Note that the diagonal

of Ω ∗ Ω is precisely Ω and is a connected component of the pullback. Furthermore, a path

labeled w in Ω ∗ Ω not contained in the diagonal exists if and only if there are two distinct

paths in Ω with label w.

Definition 3.32. A nontrivial subgroup H of a group G is malnormal if for any element

g ∈ G \H we have H ∩ gHg−1 = ∅.

Now we will start finding conditions on a completion for when a subgroup is mal-

normal.

Lemma 3.33. For a subgroup H of a right-angled Coxeter group W , let (Ω, b) be a com-

pletion of H. For an element g ∈ W \H such that H ∩ gHg−1 ̸= 1, if g is the label a path

in Ω based at b, then there exists a component of Ω ∗ Ω which has a nontrivial fundamental

group and does not contain b× b.

Proof. Suppose w is a reduced nontrivial word representing an element of H ∩ gHg−1 and

g is the label of a path in Ω with endpoints b and v. Then there exists a loop in Ω based

at b and a loop based at v both with label w. Therefore, there exists a loop γ labeled w

based at b× v in Ω ∗ Ω. Note that γ is not null-homotopic, as otherwise w would represent

the identity in W , which is a contradiction. Therefore, the component of Ω ∗ Ω containing

b× v is not simply connected.

We now need to show that such a path g must exist in our completion. To do this,

we will need the following lemma.
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Lemma 3.34. For a cyclically reduced word w ∈ H ∩ gHg−1, if there exists reduced words

w′, g1, g2, g3, and g4 such that g1g2 and g3g4 are both reduced expressions for g, g−1
2 w′g4 is

a reduced word in g−1Hg, and g1w
′g−1

3 is a reduced expression for w, then g is the label of

a path in Ω based at b.

Proof. First note that g1w
′g−1

3 is the label of a loop in Ω based at b, since it is a reduced

word in H. Let v be the vertex at the end of the path labeled g1. Then (Ω, v) is a comple-

tion for g−1
1 Hg1. Since w is cyclically reduced, w′g−1

3 g1 is a reduced word in g−1
1 Hg1. Since

w′g−1
3 g1 = w′g4g

−1
2 , there exists a loop labeled w′g4g

−1
2 based at v. Therefore, there is a

path labeled g2 from v, so there is a path labeled g from b.

We use these lemmas to show that malnormality can be characterized by a comple-

tion.

Theorem 3.35. Suppose (Ω, b) is a completion of a subgroup H of a right-angled Coxeter

group W . For each generator s of W , attach an edge labeled s to each vertex of Ω. Let

Ω′ be a completion of this new complex. Then H is malnormal if and only if Ω′ ∗ Ω′ has

exactly one component with trivial fundamental group.

Proof. First, suppose Ω′ ∗ Ω′ has multiple components with nontrivial fundamental group.

Let v× u be a vertex in one such component which does not contain b× b. Let γ be a loop

based at u × v with label w. Then there exists a loop in Ω′ based at u with label w and

a loop based at v with label w which is not null-homotopic. Let gu be the label of a path

from b to u and gv be the label of a path from b to v. Then w is a non-trivial element of

g−1
u Hgu and g−1

v Hgv. Therefore gvg
−1
u Hgug

−1
v ∩H ̸= 1, so H is not malnormal.

Now suppose H is not malnormal. Let g /∈ H such that H ∩ gHg−1 ̸= 1 and w
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be a reduced word representing an element of H ∩ gHg−1. We can assume without loss

of generality that w is also cyclically reduced, as otherwise we can pass to a conjugate of

H ∩ gHg−1. There is w′ ∈ H such that gw′g−1 = w. Suppose s is a generator which

commutes with w′ and s /∈ H. By construction, b is incident to an edge labeled s in Ω′.

Let v be the other endpoint of this edge. If v = b, then s is an element of H, which is a

contradiction. Therefore, assume v ̸= b.

Since w′ is reduced, there exists a loop based at b and a loop based at v both with

label w′. Therefore there exists a nontrivial loop labeled w′ based at b × v in Ω′ × Ω′. If

b× v is in the same component as b× b, then there exists a path α1 from b to b and a path

α2 from b to v with the same label. Since Ω′ is folded, this implies that α1 = α2 and v = b,

which is a contradiction. Therefore, b×v is not in the component containing b× b, so there

are multiple components of Ω′ × Ω′ with nontrivial fundamental group.

Now suppose no such s exists. Since W satisfies the deletion and exchange condi-

tions, we can write gw′ as the reduced word g1w1 where g = g1g2 and w′ = g−1
2 w1. Sim-

ilarly, w1g
−1 can be written as the reduced word w2g

−1
3 with g = g3g4 and w1 = w2g4. If

g1w2g
−1
4 is not reduced, then a letter of g1 must cancel with some letter of g−1

4 , which is

a contradiction. Therefore g and w satisfy the conditions of Lemma 3.34, so Ω′ ∗ Ω′ has

multiple components with nontrivial fundamental group by Lemma 3.33.

This allows us to construct an algorithm for determining when a quasiconvex sub-

group of a right-angled Coxeter group is malnormal.

Corollary 3.36. For a quasiconvex subgroup H of a right-angled Coxeter group W , there

exists an algorithm which determines whether H is malnormal.
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Proof. By Theorem A of [6], we know that there exists a finite completion Ω of H, since

H is quasiconvex. Therefore Ω′ is a standard completion of H, so Ω′ is also finite by [6].

Therefore Ω′ ∗ Ω′ is finite and its construction requires a finite number of operations.

Example 3.37. Let W be the Coxeter group given by the presentation

W = ⟨a, b, c | a2, b2, c2, (ab)2⟩.

Then the subgroup H = ⟨abcab⟩ is malnormal in W . Figure 3.6 shows a completion ΩH of

H and the pullback ΩH ∗ΩH where ΩH = Ω′
H , where Ω′ is constructed as in Theorem 3.35.

In the figure, edges labeled a are colored red, edges labeled b are colored green, and edges

labeled c are colored blue. The bottom of the figure shows the pullback “untangled.” Note

that all components aside from the diagonal are simply connected.

Now, let K = ⟨a, bac⟩ be a subgroup of W . Figure 3.7 shows a completion ΩK of

K, where ΩK = Ω′
K , and the pullback ΩK ∗ ΩK . Note that K is not malnormal as ΩK =

Ω′
K has two components which are not simply connected.

3.4. Quasiconvexity

In [6] and [4], completions are shown to be finite if and only if the corresponding

subgroup is quasiconvex in the cases of subgroups of right-angled Coxeter groups and of

subgroups of fundamental groups of non-positively curved cube complexes. We will prove

that if a completion of a subgroup of a general Coxeter group is finite, then the corre-

sponding subgroup is quasiconvex. Then we will apply this to show that a family of re-

flection subgroups are quasiconvex.

Definition 3.38. For a geodesic metric space (M,d), a subset U is said to be k-

quasiconvex for k > 0 if for any two points x, y ∈ U and any geodesic γ from x to y,
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Figure 3.6. The top left figure is ΩH from Example 3.37. The top right figure is ΩH ∗ ΩH .
The bottom three figures are a rearrangement of ΩH ∗ ΩH . Note that each square bounds
a 2-cell, so the pullback has exactly one component with nontrivial fundamental group, so
H is malnormal.

v1 v2

b

c

a a

b

c

a a

b

c

a a

(v1, v1)

(v1, v2)

(v2, v2)

(v2, v1)

ΩK

ΩK ∗ ΩK

Figure 3.7. The left figure is the completion ΩK from Example 3.37. The right figure is
the pullback ΩK ∗ ΩK . Both components of the pullback are not simply connected, so K is
not malnormal.
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we have that γ is contained in a k-neighborhood of U . A subset U is said to be quasicon-

vex if it is k-quasiconvex for some k.

We say that a subgroup H of a group G with generating set S is quasiconvex in G

if H is quasiconvex in Cay(G,S).

To relate quasiconvexity with completions of a subgroup, we first need to relate

distances in a completion with the word metric of our group.

Theorem 3.39. Let (Ω, b) be a completion of a subgroup H of a Coxeter group W . We

will denote the metric on Ω by dΩ. Let Cay(W ) be the Cayley graph of W with respect to

its standard generating set with metric dC. Then for some path from b to some vertex v in

Ω labeled g, we have that dΩ(v, b) = dC(g,H).

Proof. Let α be a geodesic from v to b in Ω labeled w. Then w is a reduced word in W

with length dΩ(v, b). Since γα is a loop in Ω based at b, we have that ga is a word in H.

Therefore, the path in Cay(W ) from g labeled by w is a geodesic to a vertex of H, so

dΩ(v, b) ≥ dC(g,H).

Now let w be the label of a geodesic from g to H in Cay(W ) which realizes

dC(g,H). Then gw is an element of H, so there exists a loop in Ω whose label is equal to

gw in Ω. Therefore, there is a path from v to b in Ω whose label is equal to w in W . By

Lemma 3.12, since w is reduced, there exists a path from v to b labeled by w. Therefore,

dΩ(v, b) ≤ dC(g,H).

Using this equivalence between distances in the completion and in the Cayley

graph, we can relate quasiconvexity with the completion of a subgroup.

Corollary 3.40. If H is a subgroup of a Coxeter group W and (Ω, b) is a finite comple-
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tion of H, then H is quasiconvex in W .

Proof. Let D = max{d(b, v) | v ∈ Ω} and let γ be a geodesic in Cay(W ) between vertices

in H. By Lemma 3.39, we know γ is contained within a D-neighborhood of H. Therefore,

H is quasiconvex in W .

Another application of Theorem 3.39 is that the core of a quasiconvex subgroup

must be finite.

Corollary 3.41. Let H be an M-quasiconvex subgroup of a Coxeter group W with comple-

tion (Ω, b). Then C(Ω, b) has diameter at most 2M + 1.

Proof. Suppose C(Ω, b) has diameter greater than 2M + 1. Then there exists an edge e

such that d(e, b) > M . Since e is an edge in C(Ω, b), there exists a loop γ based at b con-

taining e whose label is a reduced word w. Then the path from 1 in Cay(W ) contains an

edge which is a distance more than m away from b. This is a contradiction, as H is M -

quasiconvex.

We will use Corollary 3.41 to construct an algorithm to find a generating set for

the intersection of quasiconvex subgroups of a Coxeter group.

Theorem 3.42. For two quasiconvex subgroups, H and K, of a Coxeter group There ex-

ists an algorithm which computes the generating set H ∩K.

Proof. Let M be a positive number such that both H and K are M -quasiconvex. Let S =

{s1, . . . , sn} be a standard generating set for W . Let T0 = Cay(Fn, S) and b be the vertex

corresponding to 1 in T0. We now focus only on edges of T0 that are distance at most M

away from b, so let T = T0 ∩ BM(b). Our goal is to use T to construct finite complexes for
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H and K which contain their respective core graphs.

We will go through this construction for H. Let {h1, . . . , hm} a generating set of H

such that each hi is reduced. Let X be the standard wedge of m loops, with the ith loop

subdivided and labeled by hi. We define Ω0 to be the graph obtained by identifying the

wedge vertex of X with b in T . We call the image of b in Ω0 to be bH . We now attach the

appropriate relator disks to every deficient path in Ω0 to obtain Ω1. Then we fold Ω1 until

we obtain a folded complex ΩH . Note that C(ΩH , bH) is the core graph for H. We repeat

this same process to obtain C(ΩK , bK) for K.

The pullback (C(ΩH , bH) ∗ C(ΩK , bK), (bH , bK)) contains the core graph for H ∩K,

as any reduced word in H ∩ K must be the label of a loop in (C(ΩH , bH) ∗ C(ΩK , bK)

based at (bH , bK) by construction. Now we can find a generating set for H ∩K by taking a

spanning tree of (C(ΩH , bH) ∗ C(ΩK , bK) and looking at the edges in its complement.

3.4.1. Reflection subgroups

We will show that a class of reflection subgroups of Coxeter groups are quasiconvex

subgroups.

Definition 3.43. (Reflection Subgroup) A conjugate of a standard generator of a Coxeter

group W is called a reflection. A subgroup of W generated by reflections is a reflection

subgroup.

We will use Corollary 3.40 to show that the following reflection subgroups are qua-

siconvex.

Theorem 3.44. Suppose H is a subgroup of a Coxeter group W generated by reflections

⟨w1r1w
−1
1 , . . . , wnrnw

−1
n ⟩ such that for any i, j there is no reduced expression for w−1

j wi
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ending in a letter s such that ms,ri < ∞, where ri is a generator of W . Then H is quasi-

convex in W .

Proof. We will prove this by constructing a finite completion for H. First, let X be a

wedge of n loops where the ith loop is subdivided and labeled by the letters of wiriw
−1
i

for 1 ≤ i ≤ n. Let Ω0 be the result of applying all possible folds to X. Then Ω0 is a tree T

with graph-loops attached.

Let T = T0 → T1 → . . . → T ′ be a sequence of completion operations which results

in a completion T ′. We will prove that any hyperplane of T ′ must separate T ′ into two

components. This is clearly true for T , as it is a tree. Suppose any hyperplane of Ti sepa-

rates Ti into two components. First we consider the case where Ti+1 is obtained by folding

edges e1 and e2. Any hyperplane of Ti+1 is the image of a hyperplane of Ti. Let h be a hy-

perplane of Ti and let ĥ be its image in Ti+1. If h does not intersect e1 or e2, then Ti+1 \ ĥ

is the same complex as Ti \ h with e1 and e2 identified. Since e1 and e2 are contained in

the same component of Ti \ h, we have that Ti+1 \ ĥ is also two components.

Now suppose h1 is the hyperplane dual to e1 and h2 be the hyperplane dual to e2.

Let v be the vertex incident to e1 and e2. Let ei,1 be the component of ei \ hi containing v

and let ei,2 be the other component of ei\hi for i = 1, 2. Then Ti+1\ĥ1 is the same complex

as Ti \ h1 ∪ h2 with e1,1 identified with e2,1 and e1,2 identified with e2,2. Since Ti \ h1 ∪ h2

has three components, the component containing v, the component containing e1,2, and

the component containing e2,2, we have that Ti+1 \ ĥ1 has exactly two components.

Suppose that Ti+1 is obtained from Ti by attaching a relator disk C to a vertex v

of a deficient path γ. A hyperplane h of ti+1 is either contained in C or contained in the
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image of Ti. If a hyperplane is contained in C, then let C1 and C2 be the two components

of C \ h. Assume that v is contained in C1. Then Ti+1 has two components. The first com-

ponent is the image of Ti with C1 attached to v and the second is C2. If h is contained in

the image of Ti, then Ti \ h has two components, U1 and U2. Assume that v is contained in

U1. Then Ti+1 \ h has two components, namely U1 with C attached to v and U2.

Now we will show that T ′ is finite by showing that any geodesic intersects a given

hyperplane of T ′ at most once. Suppose that γ is a geodesic which intersects the hyper-

plane h twice. Let the starting vertex of γ be u and the ending vertex be u. Let e and e′

be the edges of γ dual to h. Without loss of generality, suppose that e is the edge clos-

est to the start of γ. Let γ1 be the subpath of γ from u to the start of e and let γ2 be the

subpath from the end of e′ to v. Let α be the geodesic from the start of e to the end of e′

contained in supp(h) \ h. This path exists since h separates T ′ into two components. The

path γ1αγ2 is a path from u to v which is shorter than γ, which contradicts the fact that γ

is a geodesic. By Lemma 3.11, T ′ contains at most |E(T )| hyperplanes. Since any geodesic

of T ′ intersects a given hyperplane at most once, the diameter of T ′ is at most |E(T )|, and

therefore T ′ is finite.

Now suppose that l is a graph loop in Ω0 labeled s incident to a vertex v. Let v̂

be the image of v in T ′. We will show that no edge incident to v̂ in T ′ is labeled by a

generator with a relation to s. For the sake of contradiction, suppose this is not the case

and there is an edge e incident to v̂ labeled by x with mx,s < ∞. Let h be the hyper-

plane dual to e and e′ be the closest edge to v̂ in T which is dual to h. Let u be the ver-

tex of e′ which is farthest from v, α be geodesic in T from u to v̂, and β be the geodesic

in supp(h) \ h from u to e. Let a be the label of α and b be the label of β. Then βe is a
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geodesic in T ′. Since T ′ is simply connected, we know that bx is a reduced expression for

a. This contradicts the assumption of our theorem, as a is a suffix of some w−1
j wi.

Therefore, attaching l to T ′ is still folded and does not create any deficient paths,

so attaching all such graph loops from Ω0 to T ′ creates a finite completion of H. Therefore

H is quasiconvex by Corollary 3.40.
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