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Abstract

In this work, we determine the wavefront set of certain eigendistributions of the Laplace-

Beltrami operator on the de Sitter space. Let G′ = O1,n(R) be the Lorentz group, and

let H ′ = O1,n−1(R) ⊂ G′ be its subset. The de Sitter space dSn is a one-sheeted hyper-

boloid in R1,n isomorphic to G′/H ′. A spherical distribution is an H ′-invariant eigendistri-

bution of the Laplace-Beltrami operator on dSn. The space of spherical distributions with

eigenvalue λ, denoted by D′
λ(dS

n), has dimension 2. We construct a basis for the space of

positive-definite spherical distributions as boundary value of sesquiholomorphic kernels on

the crown domains, which are open complex domains in dSn
C containing dSn on the bound-

ary. We characterize the analytic wavefront set for such distributions.
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Notations

• [z, w] = −z0w0 + z1w1 + ...+ znwn for z, w ∈ C1+n,

• R1,n = (R1+n, [ , ]),

• G′ = O1,n(R),

• H′ = O1,n−1(R),

• G = SO1,n(R)e,

• H = SO1,n−1(R)e ⊂ G,

• K = SOn(R) ⊂ G,

• GC = SO1+n(C),

• KC = SOn(C),

• dSn = {x ∈ R1+n | [x, x] = 1} ≃ G/H ≃ G′/H ′,

• dSn
C = {z ∈ C1+n | [z, z] = 1} = GC/KC ,

• Hn = {ix ∈ iR1+n | x0 > 0,−x20 + x2 = −1} ≃ G/K ⊂ dSn
C,

• Hn
= {ix ∈ iR1+n | x0 < 0,−x20 + x2 = −1} ≃ G/K ⊂ dSn

C ,

• Sn = {(ix0,x) | x20 + x2 = 1} ⊂ iRe0 + Rn,

• Sn
± = {(ix0,x) ∈ Sn | ±x0 > 0},

• Ξ = G.Sn
+,

• Ξ = G.Sn
−,

• Γ±(x) = {y ∈ dSn | forx ∈ dSn, [y − x, y − x] < 0,±y0 > x0},

• Γ(x) = Γ+ ∪ Γ−,

• Ln−1 = {v ∈ R1,n−1 | [v, v] = 0},

• Ω = {v ∈ R1,n | [v, v] < 0, v0 > 0},

• TΩ = R1+n + iΩ,

vi



• σ(v) = v

• ρ = (n− 1)/2 for n ≥ 2.
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Chapter 1. Introduction

For x ∈ R1+n, the Lorentzian bilinear form is given by [x, x] = −x20 + x21 + ... + x2n.

Let G′ = O1,n(R) be the group of isometries preserving the Lorentzian bilinear form and

H ′ = O1,n(R) be its subgroup that fixes the point en = (0, ..., 0, 1). The n-dimensional

de Sitter space dSn is a one-sheeted hyperboloid (see Fig. 1.1) and a Lorentzian manifold.

Mathematically, the de Sitter space is given by

dSn = {x ∈ R1+n | [x, x] = 1} ∼= G′ · en.

A distribution Θ on dSn is said to be spherical if it is an H ′-invariant eigendistribution of

the Laplace-Beltrami operator on dSn. The space of such distributions with eigenvalue λ ∈

C is denoted by DH′

λ (dSn). In [D08], Van Djik has proven that the dimension of this space

is 2. In this thesis (see also [ÓS23]) we will construct the basis of DH′

λ (dSn) for specific

λ as boundary values of some sesquiholomorphic kernels defined in some open complex

domains. We will study the singularities of the basis distributions and characterize them

based on their singularities.

The de Sitter space is simple model of universe in special relativity. There have been

several works done to understand the quantum field theories on dSn including the papers

[BM96, BM04, BV96, BV97] where the authors studied free fields and the related two

x

x0

Figure 1.1. dS2
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point functions Wλ(x1, x2). The theory of interacting quantum fields on the de Sitter

space is discussed in the paper [BJM13]. On the other hand, the authors in [NÓ22] study

some aspects of algebraic quantum field theory on casual symmetric spaces of which the

de Sitter space is an example. One of the tool used in [NÓ22] is an open complex domain

called the crown domains Ξ .

In [NÓ18], the authors showed that the de Sitter space lies on the boundary of the open

complex domains Ξ and its complex conjugate Ξ which are subsets of open complex unit

sphere. The crown Ξ is holomorphically equivalent to the Lorentzian tuboid T + in the

complexified de Sitter space dSn
C defined in [BM96, BM04, BV96, BV97]. Similarily, Ξ is

equivalent to the tuboid T − in dSn
C .

For ρ = (n − 1)/2 and λ ∈ i[0,∞) ∪ (0, ρ), the distribution Wλ(x1, x2) given in [BM96]

satisfies the Klein-Gordon equation ∆ + (ρ2 − λ2) = 0 in both the variable. Moreover, this

distribution is the boundary value of some analytic kernels in T + and T − called “periker-

nels”. In parallel to perikernels, the authors in [NÓ18, NÓ20] have introduced the kernel

Ψλ upto a constant and showed that Ψλ was represented as a hypergeometric function.

Analogous to Wλ, the boundary values of the kernels Ψλ and Ψ̃λ defined below are studied

in [ÓS23] where

Ψλ(z, w) = 2F1

(
ρ+ λ, ρ− λ;

n

2
;
1+[z,w̄]

2

)
z, w ∈ Ξ,

and

Ψ̃λ(z, w) = 2F1

(
ρ+ λ, ρ− λ;

n

2
;
1+[z,w̄]

2

)
z, w ∈ Ξ.

These kernels were obtained by reflection positivity on sphere. Reflection positivity is one

of the Osterwalder-Schrader axioms of constructive quantum field theory. It is a necessary

2



and sufficient condition for a Euclidean field theory that has Euclidean symmetries to an-

alytically continue to a relativistic field theory with Lorentzian symmetries. The initial at-

tempt was done by E. Nelson in the paper [N73]. The breakthrough was done in the paper

[OS73, OS75]. Reflection positivity implies that the kernels Ψλ and Ψ̃λ are well-defined

sesquiholomorphic, positive-definite, G-invariant kernels.

The “perikernels” are holomorphic in the cut domain of dSn × dSn of the form dSn × dSn \

Σ where, Σ is the set of tuples (x, y) with [x − y, x − y] ≤ 0. In the paper [ÓS23], we

showed that the boundary values which are defined as Ψλ
x = limz→x Ψλ(z, ·) in Ξ and Ψ̃λ

x =

limz→x Ψ̃λ(z, ·) in Ξ, are real analytic on the cut domain dSn×dSn \{(x, y) : [x−y, x−y] =

0} and have jump discontinuities along the cut. The cut is where the distributions have

singularities and studied these singularities in terms of analytic wavefront sets.

The wavefront set of a distribution was introduced by L. Hörmander in [H70] to study the

propagation of singularities of pseudo-differential operators. For a distribution Θ on a real

analytic manifold, the analytic wavefront set WFA(Θ) describes the set of points where Θ

is not given by a real-analytic function and the direction in which the singularity occurs

(see [H90]).

The wavefront set is a crucial concept in quantum field theory(QFT). One of the initial

papers using wavefront sets in QFT was [Di79]. Later the wavefront set was brought into

the context of Hadarmard distributions in [RM96]. It was shown that the Hadamard con-

dition of a two point distribution of a quasi-free quantum field is equivalent to a condition

its wavefront set. In algebraic quantum field theory, the condition on the wavefront set of

the states of quantum fields is related to Reeh-Schlieder property (see [SVW02, V99]). It

was also conceptualized in the context of unitary representations of Lie groups in [Ho81]

3



and studied for induced representations in [HHO16].

In this work we will show that for each x ∈ dSn, the boundary values Ψλ
x and Ψ̃λ

x define

distributions on dSn. These distributions are eigendistributions of the Laplace Beltrami

operator ∆. Moreover, Ψλ
en+Ψ̃λ

en and Ψλ
−en+Ψ̃λ

−en are H ′−invariant distributions and span

DH′

m2(dS
n), the space of H ′-invariant spherical distributions with eigenvalue m2 = ρ2 − λ2.

We will now state the main theorem.

Theorem 5.3.6. Let n ≥ 2, then

1. The distributions Ψλ
en + Ψ̃λ

en and Ψλ
−en + Ψ̃λ

−en are H ′- invariant spherical distribu-
tions and span DH′

m2(dS
n), where m2 = ρ2 − λ2 and, λ ∈ C \ ({ρ+ N} ∪ {−ρ− N}).

2. The distributions Ψλ
en + Ψ̃λ

en and Ψλ
−en + Ψ̃λ

−en are positive definite for λ ∈ i[0,∞) ∪
(0, ρ).

3. Moreover, the following holds for a non-zero spherical distribution Θ ∈ DH′

m2(dS
n):

(a) WFA(Θ) ⊂ WFA(Ψ
λ
en + Ψ̃λ

en) ⊔WFA(Ψ
λ
−en + Ψ̃λ

−en).

(b) If WFA(Θ) = WFA(Ψ
λ
en + Ψ̃λ

en) then there exists a nonzero constant c such

that Θ = c(Ψλ
en + Ψ̃λ

en).

(c) If WFA(Θ) = WFA(Ψ
λ
−en + Ψ̃λ

−en) then there is a non zero constant c such

that Θ = c(Ψλ
−en + Ψ̃λ

−en).

The flow of this thesis is as follows: we will give a geometric description in Chapter 2 of

the spaces: the hyperboloid, the crown and the de Sitter space. In Chapter 3, we will

briefly recall reflection positivity and introduce the kernels Ψλ and Ψ̃λ. We will also dis-

cuss the relation to representation theory. In Chapter 4 we discuss the boundary values.

The main theorem will be proven in Chapter 5 along with discussing the singularities of

the boundary values.
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Chapter 2. The De Sitter Space, The Hyperboloid and The
Crown

In this chapter we recall some basic geometric facts about the hyperboloids Hn, Hn
and

the de Sitter space dSn, the two main spaces that we will discuss in this article. The mate-

rial is well known. We are going to follow the geometrical setup which is also described in

the paper [ÓS23]. However, the setup in [NÓ20, BM96, ÓS23] are all equivalent.

We write elements in Cn+1 as z = (z0, z) with z0 ∈ C and z ∈ Cn. We write z · w =∑n
j=1 zjwj and z2 = z · z. The bilinear form [·, ·] on C1+n is given by

[z, w] = −z0w0 +
n∑

j=1

zjwj = −z0w0 + z ·w.

We denote by R1,n the space R1+n viewed as a Lorentzian space with Lorentzian form [·, ·].

We say that a vector v ∈ R1,n is time-like if [v, v] < 0 and space-like if [v, v] > 0.

2.1. The hyperboloids and the de Sitter space

The hyperbolic spaces Hn and Hn
are given as follows:

Hn = {x ∈ iR1+n | [x, x] = 1, x0 > 0} and Hn
= {x ∈ iR1+n | [x, x] = 1, x0 < 0}.

The de Sitter space dSn is described as

dSn = {x ∈ R1+n | [x, x] = 1}.

All the spaces defined above are closed submanifolds of the complex manifold

dSn
C = {z ∈ C1+n | [z, z] = 1}.

Let σ be the complex conjugation σ(z) = z. We also write V = iR1+n and σV = −σ, the

conjugation w.r.t. V . Then Hn
= σ(Hn).

This chapter has appeared in the article: G. Olafsson, I. Sitiraju. Analytic wavefront sets of spherical
distributions on the de Sitter space. arXiv:2309.10685
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We are mostly interested in the de Sitter space so we restrict our discussion to that case.

Let x ∈ dSn, then we denote the future (past) cone of x as Γ+(x)(Γ−(x)) where

Γ±(x) := {y ∈ dSn | [y − x, y − x] < 0,±(y − x)0 > 0}.

For x ∈ dSn, the set {y ∈ dSn | [y − x, y − x] = 0} is called the light cone of x in dSn.

Definition 2.1.1. Let G be a semisimple Lie group and τ be an involution on G, such

that τ 2 = id. Let Gσ be the fixed point group and H an open subgroup of Gσ such that

(Gσ)e ≤ H ≤ Gσ.

Then the space G/H is called a symmetric space.

Let G′ = O1,n(R) be the isometry group of [·, ·] and G = SO(1, n)e be the connected

component of identity of G′. Let τ : G′ → G′ be the involution given by τ(g) = JgJ ,

where J is the orthogonal reflection in the hyperplane xn = 0. The restriction τ |G is also

an involution on G which will be denoted by τ as well. Let

H ′ = {h ∈ G′ | h · en = en} =


h 0

0 1


∣∣∣∣∣∣∣∣ h ∈ O(1, n− 1)


= O(1, n− 1),

and

H = {h ∈ G | h · en = en} =


h 0

0 1


∣∣∣∣∣∣∣∣ h ∈ SO(1, n− 1)e


= SO(1, n− 1)e.

Then H = Gτ is the fixed point group of τ in G and H ′ = G′τ is the fixed point group in

6



G′ of tau. The de Sitter space dSn ≃ G/H ≃ G′/H ′ is a symmetric space with Lorentzian

metric on the the tangent space.

Furthermore, we have

g = h⊕ q,

where g is the Lie algebra of G and G′ with h = ker(τ − 1) and q = ker(τ + 1). It is easy

to see that h is the Lie algebra of H and H ′.

We now describe the following groups:

K = {k ∈ G | g · e0 = e0} =


1 0

0 a


∣∣∣∣∣∣∣∣ a ∈ SO(n)

 ,

K ′ = {k ∈ G′ | g · e0 = e0} =


1 0

0 a


∣∣∣∣∣∣∣∣ a ∈ O(n)

 ,

A =


at =


cosh t 0 sinh t

0 In−1 0

sinh t 0 cosh t

 : t ∈ R


and by

N =


nz =


1 + 1

2
||v||2 vt −1

2
||v||2

v In−1 −v

1
2
||v||2 vt 1− 1

2
||v||2

 : v ∈ Rn−1


.

The following lemma has been proved in [NÓ20, Lemma 6.3] and in [D08].

Lemma 2.1.2. We have the decomposition G = HAK = KAH and G′ = K ′AH ′ =

7



H ′AK ′. Moreover,

G/H = KA.en = dSn

G′/H ′ = K ′A.en = dSn.

There exists unique upto a constant a G-invariant and a G′- invariant measure on dSn (for

more discussions see [D08, p. 159]).

Further, the Iwasawa decomposition (see [D08, Theorem 7.5.3 and Sec 9.2]) is given by

Lemma 2.1.3. G = KAN and G′ = K ′AN .

Remark 2.1.4. Let

Λ1 =

−1 0

0 Idn

 , Λ2 =


1 0 0

0 −1 0

0 0 Idn−1

 .

Then O1,n(R) = SO1,n(R)e ⊔ Λ1SO1,n(R)e ⊔ Λ2SO1,n(R)e ⊔ Λ1Λ2SO1,n(R)e .

The groups G′ acts transitively on dSn and G acts transitively on Hn, Hn
and dSn. We

have that

Hn = G · ie0 ≃ G/K ≃ Hn
= G · (−ie0).

From now on we will consider the connected group G until Section 5.3. Since K is a max-

imal compact subgroup of G, the hyperboloids Hn and Hn
are Riemannian symmetric

space. The metric at a point p ∈ Hn,Hn
is given as gp(v, v) = [v, v]. The tangent space

at the point p is given as

Tp(Hn) = {v ∈ R1,n| [p, v] = 0}.

That is, p0v0 = p1v1 + ...+ pnvn. By definition p0 ̸= 0 and we obtain v20 = 1/p20(p1v1 + ...+

8



pnvn)
2. By Cauchy- Schwarz inequality

v20 ≤ 1

p20
(p21 + ...p2n)(v

2
1 + ...+ v2n)

≤ p20 − 1

p20
(v21 + ...+ v2n)

≤ (v21 + ...+ v2n).

Thus, gp is positive definite. The same holds for Hn
.

The tangent space at x ∈ dSn is

Tx(dS
n) = {y ∈ R1+n | [x, y] = 0} ∼= R1,n−1.

In particular, we have

Ten(dS
n) = {y ∈ R1+n | yn = 0} ∼= q ∼= R1,n−1.

The tangent bundle is then given by

T(dSn) = {(x, v) ∈ R1+n × R1+n | x ∈ dSn and [x, v] = 0}.

We will write ℓg for the diffeomorphism ℓgx = gx. The group G acts on the tangent bun-

dle by

g · (x, v) = (dℓg)x(v) = (gx, gv),

where the action on the right is the natural linear action. It is well know that if

(x, v), (y, w) ∈ T (dSn) with [v, v] = [w,w] then there exists a g ∈ G such that

g · (x, v) = (y, w).

The exponential function can be written using analytic functions C, S : C → C defined by

C(z) :=
∞∑
k=0

(−1)k

(2k)!
zk and S(z) :=

∞∑
k=0

(−1)k

(2k + 1)!
zk.

9



Thus, C(z) = cos
√
z and S(z) = sin

√
z√

z
. Note that this is well defined as the functions

y 7→ cos(y), sin(y)/y are both even. With this notation we have [NÓ20, p. 15]

Lemma 2.1.5. The exponential function Expx : Tx(dS
n) → dSn is given by

Expx(v) = C([v, v])x+ S([v, v])v, v ∈ Tx(dS
n)

and satisfies

ℓg ◦ Expx = Expg·x ◦ (dℓg)x.

Let Uen = {v ∈ Ten(dS
n) | [v, v] < π/2} and note that if x = g · en then Ux = dℓg · Uen . Let

Vx = ExpxUx ⊂ dSn. Then the following holds

Lemma 2.1.6. Vx is open and Expx : Ux → Vx is an analytic diffeomorphism.

Proof. Clearly, the map is analytic. It is enough to prove this for x = en. Let the map α

be given by u = (u0,u) ∈ TendS
n → Xu ∈ q where,

α(u) := Xu :=


0 0 u0

0 0n−1 u

u0 −ut 0


The map α is an isomorphism. Consider the map from TendS

n into G given by

u 7→ exp(α(u)) =



C[u, u] 0

0 Idn−1

S[u, u]u

−S[u, u]uT C[u, u]


.

We claim that the restriction of this map to the set Uen is injective. Suppose, exp(Xu) =

Id1+n. It follows that C[u, u] = 1 and S[u, u]u = 0. This is true only if either u = 0 or
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[u, u] = 4m2π2, for m ∈ Z \ 0. Thus, the claim follows for the restriction to Uen . Observe

that

exp(Xu)en = Expen(u). (2.1.1)

Since u→ exp(Xu) is injective, the lemma is proved.

We will also use the following co-ordinates as some of the computations will be easier. Let

t ∈ R and u ∈ Sn, then

x = sinh(t)e0 + cosh(t)u (2.1.2)

are real analytic co-ordinates from Sn × R to dSn.

The metric g at the point x(t, u) on dSn is given by

g = −dt2 + cosh2(t)

(
n∑

i=1

du2i

)
. (2.1.3)

2.1.1. Invariant differential operator

Let L be a Lie group and assume that L acts on the manifold X by g · x = ℓg(x). Then

a differential operator D : C∞
c (X) → C∞

c (X) is invariant if for all f ∈ C∞
c (X) and all

g ∈ L, we have D(f ◦ ℓg) = (Df) ◦ ℓg. We denote by D(X) the algebra of invariant differ-

ential operators. It is known [F79] that D(dSn) = C[∆], the algebra of polynomials in the

Laplacian which we define in two equivalent ways.

First let

□n+1 = − ∂2

∂x20
+

n∑
j=1

∂2

∂x2j

in R1,n. Let φ ∈ C∞
c (R), φ = 1 in a neighborhood of 1 and, φ(t) = 0 for |t− 1| > 1/2. For

f ∈ C∞
c (dSn) define

f̃(x) = φ([x, x])f(x/|[x, x]|1/2), x ∈ R1,n.

11



Then f̃ ∈ C∞
c (R1,n) and we define

∆̃f := (□n+1f̃)|dSn .

It is a well defined G-invariant differential operator on dSn, see [D08, p. 110,160].

We can also define ∆ using the tangent space and the exponential map. Note that □n is a

well defined H = SO(1, n− 1)e-invariant differential operator on Ten(dS
n) ≃ R1,n−1. Define

(∆f) ◦ Expen := □en(f ◦ Expen), f ∈ C∞
c (dSn).

As ∆en is H-invariant we have a well defined G-invariant differential operator ∆ on dSn

given by

∆f(g · en) = ∆(f ◦ ℓg)(en).

As both ∆̃ and ∆ are second order invariant differential operators annihilating the con-

stants it follows that there exists a c > 0 such that ∆ = c∆̃.

In the co-ordinates given by Eq. (2.1.2) the Laplace-Beltrami operator is then a positive

constant multiple of the operator given by

∆′f = −∂
2f

∂t2
− (n− 1) tanh(t)

∂f

∂t
+

1

cosh2(t)
□Snf (2.1.4)

where □Sn is the Laplacian on the sphere Sn and f ∈ C∞
c (dSn).

Hence, from now on with abuse of notations we will use ∆ as the Laplace-Beltrami opera-

tor defined in all the three ways.

2.2. The Crown Ξ, Ξ̃

The complex crown Ξ of a Riemannian symmetric space G/K is a natural complex open

domain in the complexification GC/KC with the property that the eigenfunctions of the

12



algebra of G-invariant differential operators on G/K extends to Ξ. This domain was intro-

duced in [AG90]. It was studied by several authors but for us the articles [GK02a, GK02b,

KSt04] are of most importance in particular, the articles [GK02a, KSt04] finished the de-

scription of the crown. The article [GK02b] showed that a non-compactly causal symmet-

ric space [HÓ97], including the de Sitter space, can be realized as open orbit in the bound-

ary of the crown. The crown showed up in a natural way in [NÓ20] in relation to reflec-

tion positivity and we will collect those results here.

Let h = E0n + En0 ∈ so(1, n) be the operator

h(x0, x1, . . . , xn−1, xn) = (xn, 0, . . . , 0, x1).

Then adh has the eigenvalues 0, 1,−1. Thus, we have the eigenspace decomposition

g = g−1 ⊕ g0 ⊕ g+1

and the space g±1 are g0-invariant. The crown of Hn is defined to be:

Ξ = G exp(i(−π/2, π/2)h) · ie0 = G · {(i cos t, 0, . . . ,− sin t) | |t| < π/2}.

Similarly, for Hn
:

Ξ = G exp i(−π/2, π/2)h · −ie0 = σ(Ξ).

The crown domain Ξ ⊂ SOd+1(C)(ie0) ≃ GC/KC ≃ dSn
C and same follows for Ξ. We now

recall the description of Ξ and its properties, see [NÓ20]. The corresponding statements

for Ξ follows by taking the complex conjugation σ.

Remark 2.2.1. Recall that an element h ∈ g, h ̸= 0, is called an Euler element if adh has

eigenvalues 0, 1,−1. The crown domain depends on (g, k) where g, k are the Lie algebra of

G and K respectively. It does not depend the choice of Lie group G with Lie algebra g.
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Consider the open future light cone Ω given by

Ω = {x ∈ R1,n : [x, x] < 0, x0 > 0}.

The corresponding future tube is given by

TΩ = R1,n + iΩ.

Similarily, the past tube is

T−Ω = R1,n − iΩ.

We realize the unite sphere in iRe0 + Rn by Sn = {x ∈ iRe0 + Rn | [x, x] = 1}. Set

Sn
+ = {x ∈ Sn | x0 > 0} and Sn

− = {x ∈ Sn | x0 < 0} = σ(Sn
+).

Lemma 2.2.2 (NÓ 2020). The crowns can be described as

Ξ = G · Sn
+ = TΩ ∩ Sn

+,C = TΩ ∩ dSn
C

= {u+ iv : [u, u]− [v, v] = 1, [u, v] = 0, [v, v] < 0, v0 > 0};

Ξ = G · (Sn
−) = T−Ω ∩ Sn

−,C = T−Ω ∩ dSn
C

= {u− iv : [u, u]− [v, v] = 1, [u, v] = 0, [v, v] < 0, v0 > 0}.

Proof. The first part is [NÓ20, Lem. 3.1] and [NÓ20, Prop. 3.2]. The second part follows

by applying σ to Ξ.

The following proposition is the key for the kernels Ψλ and Ψ̃λ, which we will see in Chap-

ter 3, to be well defined on the crown domains Ξ and Ξ respectively.

Proposition 2.2.3. We have

{[z, σ(w)] | z, w ∈ Ξ} = C \ [1,∞) = {[z, σ(w)] | z, w ∈ Ξ}.
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Proof. The crown is invariant under the conjugation z 7→ −σ(z). The claim therefore

follows from [NÓ20, Lem. 3.5] using that the Lorentz form in [NÓ20] is the negative of the

form considered here. The claim for Ξ follows from the first part using that Ξ = σ(Ξ).

For U ⊂ Cn+1 denote by cl (U) the closure of U in Cn. The boundary ∂U is then ∂U =

cl (U) \ U .

Lemma 2.2.4. The boundary of Ξ, and respectively Ξ, in dSn
C is given by

∂ Ξ = {x+ iy : x, y ∈ R1,n, [x, x] = 1, [y, y] = 0, y0 ≥ 0, [x, y] = 0};

∂ Ξ = {x− iy : x, y ∈ R1,n, [x, x] = 1, [y, y] = 0, y0 ≥ 0, [x, y] = 0}

= σ(∂Ξ).

Proof. The first part is [NÓ20, Lem. 3.7] and the second claim then follows from Ξ =

σ(Ξ).

Corollary 2.2.5. dSn = ∂ Ξ ∩ ∂ Ξ.

Proof. The above description of the boundary implies that dSn ⊂ ∂ Ξ∩∂ Ξ. If z = x+iy ∈

∂ Ξ ∩ ∂ Ξ then y0 ≥ 0. Hence 0 = [y, y] = y2 which happens if and only if y = 0. Hence

y = 0 and, [x, x] = 1 implies that x ∈ dSn.

The next proposition shows that around each point x ∈ dSn, the crown can be represented

locally as a tuboid of the form U + iΩ′ where U is an open set and Ω is a pointed cone in

the tangent space of x.

Let Ux be the coordinate chart around x = g · en ∈ dSn. Let Ω′
en = {v ∈ Ten(dS

n) : [v, v] <

0, v0 > 0} be the open future H-invariant cone in R1,n−1. Write Ω′
x = dℓg · Ω′

en ⊂ Tx(dS
n).

Proposition 2.2.6. Let g = kath and, x = g · en ∈ dSn.
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1. The map κx : Ux + iΩ′
x → Ξ where,

κx : u+ iv 7→ (
√
1 + [v, v])Expx(u) + i exp(X(kat)

−1·u) · v (2.2.1)

is well-defined and biholomorphic onto its image.

2. The map κ̃x : Ux − iΩ′
x → Ξ where,

κ̃x : u− iv 7→ (
√
1 + [v, v])Expx(u)− i exp(X(kat)

−1·u) · v (2.2.2)

is well-defined and bi-antiholomorphic onto its image.

Proof. For u ∈ Uen , v ∈ Ω′
en , h ∈ H and, using the fact that exp(Xu) = exp(Xh·u), we

obtain

κx ◦ (dℓg)en(u+ iv) = g · κen(u+ iv);

κ̃x ◦ (dℓg)en(u− iv) = g · κ̃en(u− iv).

(2.2.3)

Thus, it is enough to prove for x = en. Note that if [v, v] < −1 for v ∈ Ω′, then ken(u +

iv) ∈ Hn. That is because ken(u + iv) = iexp(Xu) · (
√
−[v, v]− 1en + v) and the

group G preserves the direction of time-like vector with v0 ̸= 0. Following the proof of

Lemma 2.1.6 and Lemma 2.1.2, the maps κ and κ̃ are well defined and biholomorphic and

bi-antiholomorphic, respectively.

Corollary 2.2.7. We have that

Ξ = G · κen(Uen + iΩ′
en) =

⋃
x∈dSn

κx(Ux + iΩ′
x)

and,

Ξ = G · κ̃en(Uen − iΩ′
en) =

⋃
x∈dSn

κ̃x(Ux − iΩ′
x).

Proof. Because of Eq. (2.2.3), it is enough to prove the first equality. From the above

proposition we clearly have that G · κen(Uen + iΩ′) ⊆ Ξ. Now, let z ∈ Ξ. As Ξ = G · Sn
+ it

follows that z = g · (i cos(t)e0+sin(t)en) for t ∈ (−π/2, π/2). Clearly, i cos(t)e0+sin(t)en =

κen(i cos(t)e0). Thus, the first equality holds. We follow the same arguments for Ξ.
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Chapter 3. Reflection positivity, Kernels Ψλ and Ψ̃λ

We will now recall reflection positivity on the sphere [NÓ20], see also [NÓ22], which

lead to a positive definite kernel Ψλ ( with a different normalization in [NÓ20]) for

λ ∈ i[0,∞) ∪ [0, n−1
2
) and ρ = (n− 1)/2 by

Ψλ(z, w) = 2F1

(
ρ+ λ, ρ− λ;

n

2
;
1 + [z, w]

2

)
, z, w ∈ Ξ. (3.0.1)

We will also consider the following kernel

Ψ̃λ(z, w) = 2F1

(
ρ+ λ, ρ− λ;

n

2
;
1 + [z, w]

2

)
, z, w ∈ Ξ. (3.0.2)

As both n and λ are fixed most of the time we simplify our notation and write

2F1(z) = 2F1

(
ρ+ λ, ρ− λ;

n

2
; z
)
.

Here 2F1(a, b; c; z) denotes the Gauss hypergeometric function

2F1(a, b; c; z) =
∞∑
n=0

(a)n(b)n
(c)n

zn

n!

where (d)n = d(d + 1) · · · (d + n − 1), c ̸∈ −N0 and |z| < 1. The hypergeometric function

2F1 extends to a holomorphic function on C \ [1,∞) (see [LS66]).

3.1. Reflection Positivity

Reflection positivity is a property which is used to construct relativistic quantum fields

that satisfy Wightmann’s axioms from Euclidean fields with Euclidean symmetries. We

will now understand reflection positivity in the context of [N73, Di18, JR08].

Let E be a Hilbert space with E+ its closed subspace and a unitary involution θ.

This chapter has appeared in the article: G. Olafsson, I. Sitiraju. Analytic wavefront sets of spherical
distributions on the de Sitter space. arXiv:2309.10685
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Definition 3.1.1. The triple (E , E+, θ) is called reflection positive Hilbert space if

⟨v, θv⟩ ≥ 0 for all v ∈ E+.

Consider the unit sphere Sn realized in iRe0 + Rn. Let σ : Sn → Sn be the reflection

σ(ix0,x) = (−ix0,x). Let us denote □ as the laplacian on Sn. Then, (−□+ (ρ2 − λ2))−1 is

a bounded positive operator on L2(Sn) for λ ∈ i[0,∞) ∪ (0, ρ).

Let H−1 be the completion of C∞
c (Sn) with respect to the inner product

⟨ϕ, (−□+ (ρ2 − λ2))−1ψ⟩.

This space does not depend on λ. Let H−1
+ = {ϕ ∈ H−1 : suppϕ ⊂ Sn

+} and θ(ϕ) = ϕ ◦ τ .

Then we obtain the following which can be found in [NÓ18, Di18].

Theorem 3.1.2. The triple (H−1,H−1
+ , θ) is a reflection positive Hilbert space.

We will now consider a distribution Φλ on Sn × Sn as follows:

Φλ(ϕ⊗ ψ) =

∫
Sn
ϕ(x)(−□+ (ρ2 − λ2))−1ψ(x)dµ(x) for ϕ, ψ ∈ C∞

c (Sn).

The following corollary follows from Theorem 3.1.2(proven in [NÓ20, Sec 2]).

Corollary 3.1.3. The distribution Φλ is reflection positive with respect to (Sn,Sn
+, σ).

That is, the distribution Φσ
λ = Φλ ◦ (id, σ) is positive definite on Sn

+ × Sn
+.

It was proven in [NÓ20] that the distribution Φσ
λ is given by the kernel Ψλ(x, y) for x, y ∈

Sn
+. This kernel has a natural extension on Ξ × Ξ. Part (1) of the following is in [NÓ20,

NÓ22] and part (3) follows by part (2) :

Theorem 3.1.4. Let ρ = n−1
2
. For λ ∈ i[0,∞) ∪ (0, ρ)

(1) The kernel Ψλ(z, w) is a positive definite G invariant kernel on Ξ×Ξ which is holo-
morphic in first variable and anti-holomorphic in the second variable. It is given
by

Ψλ(z, w) = 2F1

(
ρ+ λ, ρ− λ;

n

2
;
1+[z,σ(w)]

2

)
, z, w ∈ Ξ.
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(2) Let z, w ∈ Ξ. Then
Ψλ(z, w) = Ψλ(σ(z), σ(w)).

(3) The kernel Ψ̃λ(z, w) is a G-invariant positive definite kernel on Ξ × Ξ holomorphic
in the first variable and anti-holomorphic in the second variable given by:

Ψ̃λ(z, w) = 2F1

(
ρ+ λ, ρ− λ;

n

2
;
1+[z,σ(w)]

2

)
z, w ∈ Ξ.

We also have that Ψλ(z, w) = Ψ̃λ(z̄, w̄) = Ψ̃λ(w̄, z̄).

Proof. We use the simplified notation 2F1(u) = 2F1(ρ + λ, ρ − λ;n/2;u). (1) is [NÓ20,

Thm. 4.12] and (2) follows from (1) and the fact that for λ ∈ iR ∪ R we have for z ∈

C \ [1,∞):

2F1(z) = 2F1(z̄)

as 2F1(a, b; c; z) = 2F1(b, a; c; z).

For (3) let ϕ̃λ(z) = Ψ̃λ(z,−ie0), z ∈ Hn
, be the spherical function on Hn

. Then, using that

exp(th)x0 = −i(cosh(t)e0 + sinh(t)en), we get

ϕ̃(exp thx0) = 2F1

(
1 + cosh t

2

)
= 2F1

(
1 + [exp(th)x0, σ(x0)]

2

)
.

From this it follows that for all z ∈ Hn
we have

ϕ̃(z) = 2F1

(
1 + [z, σ(x0)]

2

)

because Hn
= K expRh · (−ie0) and K fixes ±ie0. As Ψ̃(·, x0) is holomorphic on Ξ it

follows that

Ψ̃(z, x0) = 2F1

(
1 + [z, σ(x0)]

2

)
, z ∈ Ξ.
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Using that Ψ̃ is G-invariant it follows that

Ψ̃(·, w) = 2F1

(
1 + [z, σ(w)]

2

)
, for all z ∈ Ξ and w ∈ Hn

.

The claim now follows using that w 7→ Ψ̃λ(z, w) is antiholomorphic and hence determined

by the restriction to Hn
. The last claim follows by Ξ = σ(Ξ) and Ψλ(z, w) = Ψ̃(w, z).

The following lemma has been proved in [NÓ20, Lem. 6.4].

Lemma 3.1.5. We have

[dSn,Ξ] ∩ R = [dSn,Ξ] ∩ R = (−1, 1).

From this and the properties of the hypergeometric function we get:

Proposition 3.1.6. The kernel Ψλ can be extended continuously to Ξ× (dSn ∪ Ξ) and the

kernel Ψ̃λ can be extended continuously to Ξ× (dSn ∪ Ξ).

For y ∈ dSn and z = en, we have that (1 + [z, y])/2 /∈ [1,∞) iff yn < 1. In particular, for

y ∈ dSn we have that y 7→ Ψλ(y, en),Ψλ(en, y), Ψ̃λ(y, en), Ψ̃(en, y) is analytic on {y ∈ dSn :

yn < 1}. We will discuss these singularities in Section 4.2 and Section 5.2.

3.2. Representation Theory Perspective

We will now discuss how the kernel Ψλ obtained by reflection positivity is related to repre-

sentations.

Definition 3.2.1. An irreducible unitary representation (π,H) is said to spherical if the

K-fixed vectors HK is a non-empty set. Then the dimension of HK turns out to be 1. Let

eπ be a unit vector in HK then the function ϕπ(g) = ⟨π(g)eπ, eπ⟩ is called a spherical func-

tion.

It is K- biinvariant and can be defined on G/K. This definition of spherical function is

equivalent to the definition that a smooth function ϕ on G/K with ϕ(eK) = 1 is called
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spherical if ϕ is K-biinvariant and is an eigenfunction for the algebra of G-invariant differ-

ential operators D(G/K) on G/K. For reference see [He62, Chap. X].

We will now review the spherical representations on Hn = G/K. The material is

well known (see [D08]). We have the Iwasawa decomposition G = KAN . We write

g = k(g)a(g)n(g) and G acts on Sn−1 by g · v = k(g)v. The principal series representation

πλ with spectral parameter λ ∈ i[0,∞) acting on the Hilbert space Hλ = L2(Sn−1) is given

by

πλ(g)f(v) = a(g−1k)−λ−ρf(g−1 · v)

where v ∈ Sn−1, g ∈ G and f ∈ L2(Sn−1). That is, for g = katnz

πλ(g)f(v) = e(λ−ρ)tf(g−1 · v).

These representations are unitary and irreducible for λ ∈ iR and are called principal series

representations ([D08]).

The constant function eλ(v) = 1 is K-invariant with norm 1 and the associated spherical

function is

ϕλ(g) = ⟨πλ(g)eλ, eλ⟩ =
∫
Sn
a(g−1v)−λ−ρdv.

We note that g 7→ πλ(g)eλ is right K-invariant, hence πλ(z)eλ is well defined for z and w

in Hn and the kernel Ψλ is given by

Ψλ(z, w) = ⟨πλ(z)eλ, πλ(w)eλ⟩.

Therefore, it follows from [NÓ20, Theorem 5.10] that

ϕλ(x) = Ψλ(x, ie0) = 2F1

(
ρ+ λ, ρ− λ;

n

2
;
1 + ix0

2

)
, ix ∈ Hn,
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is an eigenfunction of algebra of G-invariant differential operators on Hn.

Let (πλ,Hλ) be defined as above. Denote by H∞
λ , the space of smooth vectors and by

H−∞ the space of continuous conjugate linear maps H∞
λ → C, the space of distribution

vectors. The group G leaves H∞ invariant and then defines a representation π−∞ by dual-

ity. For η ∈ H−∞ and ϕ ∈ C∞
c (G) it is well known that π−∞(ϕ)η =

∫
G
ϕ(x)π−∞(x)ηdx is

in H∞. Hence,

Φη(ϕ) = η(π−∞(ϕ)η) = ⟨η, π−∞(ϕ)η⟩ (3.2.1)

is well defined positive-definite distribution on G. If η is H-invariant then Φη defines a

distribution on G/H (see [NÓ18] for more discussion). If π is irreducible then, Φη is an

eigendistribution for the algebra of differential operators coming from the center of U(g).

The above setup leads to the element s = exp( iπ
2
h) ∈ GC , where h is the Euler ele-

ment(Remark 2.2.1), such that sKCs
−1 = HC and G/H = G · sKC is on the boundary

of the crown and exp(ith)KC belongs to Ξ for |t| < π/2. Hence, π(exp(itX))v is well de-

fined for |t| < π/2.

For g ∈ G we have gexp(−ith)en ∈ Ξ and, the orbit map

(−π/2, π/2) 7→ πλ(g exp(−ith))eλ

is analytic and

eHλ = lim
t→π/2

πλ(exp(−ith))eλ (3.2.2)

exists in H−∞
λ and defines a H-invariant distribution vector [FNÓ23, Sec. 5]. Furthermore

π−∞
λ (φ)eHλ ∈ H∞

λ for φ ∈ C∞
c (G/H), see [NÓ18, Chap. 7]. Hence,

Θλ(φ) = ⟨eλ, π−∞
λ (φ)eHλ ⟩
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defines an H-invariant distribution. Furthermore,

∆Θλ = (ρ2 − λ2)Θλ.

This can be reformulated in terms of the kernel Ψλ. For that let z ∈ Ξ and g ∈ G. Then

t 7→ Ψλ(z, g exp(−ith)en) = Ψλ(z, g(i cos te0 + sin ten))

is analytic on an open interval containing (−π/2, π/2) with limit

2F1

(
ρ+ λ, ρ− λ;

n

2
;
1 + [z, gen]

2

)
= Ψλ(z, gen).

is analytic and extend to a continuous map to an open interval containing π/2, see more

detailed discussion in a moment. We then get a distribution on dSn by

Θλ(z;φ) =

∫
dSn

φ(y)Ψλ(z, y)dµdSn(y) = ⟨π(z)eλ, π−∞
λ (φ)eHλ ⟩

where µdSn is a G-invariant measure on dSn. Taking the limit z → en leads then to the

eigendistribution Θλ:

Θλ(φ) = lim
t→π/2−

∫
dSn

φ(y)Ψλ(exp(−ith)en, y)dµdSn(y) (3.2.3)

or

Θλ = lim
t→π/2−

Ψλ(exp(−ith)en, ·).

Furthermore, we also obtain that

∆Θλ = (ρ2 − λ2)Θλ. (3.2.4)

Similar discussion holds for Ξ, Hn
and Ψ̃λ.
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It was proved in [GKÓ04] that limπ/2>t→π/2Ψλ(exp(−ith) · en, y) exists as a distribution on

dSn. It was proved for all ncc symmetric spaces using the Automatic Continuation Theo-

rem of van den Ban, Brylinski and Delorme, see [vdBD88, Thm. 2.1] and [BD92, Thm. 1]

and Hardy space approximation and restated in [NÓ18] for the specific case of dSn. A dif-

ferent and less abstract proof was given in [FNÓ23]. A third proof of this fact was proved

in [ÓS23] independent of representation theory and without using the existence of the H-

invariant distribution vector eHλ which we will see in next chapter.
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Chapter 4. Distributions as boundary values of holomorphic
functions

In Proposition 3.1.6 we saw that the kernels Ψλ(z, y) and Ψ̃λ(z, y) are analytic for z in

their respective crown domains and y ∈ dSn. In this chapter we prove that the boundary

value of the kernels Ψλ(z, .) and Ψ̃λ(z̄, .) are distributions as z and z̄ tends to an element

in dSn. As a motivation we start with simpler kernel Φλ and Φ̃λ. We use the usual nota-

tion D(dSn) = C∞
c (dSn), E(dSn) = C∞(dSn) with the standard topology, E ′(dSn) the

space of distributions with compact support and, D′(dSn) the space of distributions on

the de Sitter space. From this section onwards we will denote the elements in Ξ as z̄, since

σ(z̄) = z lies in Ξ.

Let us define the limit in Ξ, where it is understood following Proposition 2.2.6 and Corol-

lary 2.2.7. Let Ω′
en = {v ∈ Ten(dS

n) : [v, v] < 0, v0 > 0} and κ = κen be the map defined in

Eq. (2.2.1). Then define the limit z =
√

1− [v, v]en + iv → en as v → 0 in Ω′
en as follows

Ψλ
en(y) = lim

z→en
Ψλ

z (y) = lim
z→en

Ψλ(z, y)

= lim
v→0

Ψλ(κ(en + iv), y)

= lim
v→0

Ψλ(
√

1− [v, v]en + iv, y).

Similarly for z̄ ∈ Ξ, using the definition of κ̃ = κ̃en as in Eq. (2.2.2) then define

Ψ̃λ
en(y) = lim

z̄→en
Ψ̃λ

z̄ (y) = lim
z̄→en

Ψ̃λ(z̄, y) = lim
v→0

Ψ̃λ(κ̃(en − iv), y).

However, we will consider the limit in Eq. (3.2.3), which is weaker than the above limit as

exp(−ith)en = i cos(t)e0 + sin(t)en ∈ Ω′
en .

This chapter has appeared in the article: G. Olafsson, I. Sitiraju. Analytic wavefront sets of spherical
distributions on the de Sitter space. arXiv:2309.10685
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By the discussions so far we will calculate the boundary value for z = zt = i cos(t)e0 +

sin(t)en = exp(−ith) and z̄ = z̄t = −i cos(t)e0 + sin(t)en = exp(ith) as t→ π
2
−.

4.1. The kernels Φλ and Φ̃λ

For λ ∈ C and z, w ∈ Cn+1 with [z, w] ̸∈ [1,∞) let

Φ(z, w) =
1− [z, w̄]

2

and for λ ∈ C

Φλ(z, w) =

(
1− [z, w̄]

2

)λ

where ever defined. Note that Φλ is well defined for z, w ∈ Ξ and z, w ∈ Ξ or if one of the

points z or w is in Ξ, respectively Ξ and the other is from dSn. In the case of Ξ we some-

times write Φ̃ to indicate the domain that we are looking at. We note that the kernels

Ψλ and Ψ̃λ behave approximately as a constant multiple Φ 2−n
2

and Φ̃ 2−n
2

respectively near

[z, w̄] = 1 = [z̄, w], where the constant depends on λ and n. Fix z ∈ Ξ and z ∈ Ξ. Then

the the functions Φλ(z, ·) and Φ̃λ(z̄, ·) extends to analytic functions on dSn and hence de-

fines distributions Φλ
z and Φ̃λ

z̄ on dSn.

For y ∈ dSn, we want to prove that lim
z→x

Φλ(z, y) is a distribution for any x ∈ dSn. For

simplicity we start by taking x = en.

If z ∈ Ξ then, as mentioned earlier, there exists t ∈ (−π/2, π/2) and g ∈ G such that

z(g, t) = g.zt = g exp(−ith)x0 and we have z(g, t) → gen ∈ dSn as t → π/2. Similary

for z̄ ∈ Ξ, there exists a t ∈ (−π/2, π/2) such that z̄(g, t) = g.z̄t. In particular, if we take

g = Id then z(Id, t) = zt → en.

For Re(λ) > 0, the limit is well defined in distributions. We will use analytic continuation

to extend the definition to Re(λ) < 0. Using the local co-ordinates and after some calcula-
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tions we arrive at the following:

Lemma 4.1.1. Let Lλ = ∆ + λ(λ − 1 + n), where ∆ is the Laplace-Beltrami operator on

dSn. Then the distributions Φλ
z and Φ̃λ

z̄ satisfy

Lλ+1Φ
λ+1
z = (λ+ 1)

(
λ+

n

2

)
Φλ

z

and

Lλ+1Φ̃
λ+1
z̄ = (λ+ 1)

(
λ+

n

2

)
Φ̃λ

z̄ .

Proof. As ∆ is a G-invariant operator on dSn and G acts transitively on Ξ and Ξ , it is

enough to calculate it for zt = i cos(t)e0 + sin(t)en. Then for y = sinh(s)e0 + cosh(s)u,

s ∈ R and u = sin(θ)ũ+ cos(θ)en where ũ ∈ Sn−1 we obtain that

Φλ
zt(y) =

(
1 + i cos(t) sinh(s)− sin(t) cosh(s) cos(θ)

2

)λ

.

As the function is K = SO(n) invariant then ∆Φλ
zt(y) reduces to the following

∆Φλ
zt(s, θ) =

[
− ∂2

∂s2
− (n− 1) tanh(s)

∂

∂s
+

1

cosh2(s)

(
∂2

∂θ2
+ (n− 2) cot(θ)

∂

∂θ

)]
Φλ

zt(s, θ).

Calculating each term we obtain the lemma. We follow the same steps for Φ̃λ
z̄ .

It follows from the above lemma that

Φλ
z = Lλ+1 . . . Lλ+k Φ

λ+k
z

Φ̃λ
z̄ = Lλ+1 . . . Lλ+k Φ̃

λ+k
z̄ .

(4.1.1)

For λ ̸= −1,−2, ...,−n/2,−n/2 − 1, ..., we can thus define the analytic continuation of Φλ
z

and Φ̃λ
z̄ . For the residue at the singular points we refer to [GS64, Sec III.2]. Therefore, we

obtain that the limits

lim
z→x

Φλ
z , lim

z̄→x
Φ̃λ

z̄
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are distributions on dSn for λ ∈ C.

Corollary 4.1.2. For λ = (2 − n)/2 the distributions Φλ
z and Φ̃λ

z̄ and their limits Φλ
x, Φ̃

λ
x

are eigendistributions of the Laplace-Beltrami operator ∆ with eigenvalue n
2
(n−2

2
).

Proof. For λ = 1− n/2, it follows from Lemma 4.1.1 that,

∆Φ
2−n
2

z =
n

2

(n− 2

2

)
Φ

2−n
2

z .

and same for Φ̃
2−n
2

z . Since differentiation is continuous on the space of distributions and ∆

is invariant under the group G we have that

∆Φ
2−n
2

x =
n

2

(n− 2

2

)
Φ

2−n
2

x , ∆Φ̃
2−n
2

x =
n

2

(n− 2

2

)
Φ̃

2−n
2

x . (4.1.2)

We start with the special case g = Id and write y′ = (1 − yn)/2. From now on we denote

Φx = Φ
2−n
2

x and Φ̃x = Φ̃
2−n
2

x . From Appendix B we obtain that

Φen(y) = lim
t→π

2
−
Φzt = (y′ ± i0)

2−n
2 for ± y0 > 0,

and

Φ̃en(y) = lim
t→π

2
−
Φ̃z̄t = (y′ ∓ i0)

2−n
2 for ± y0 > 0,

because

1− [zt, y]

2
=

1− sin(t)yn
2

+ i
cos(t)y0

2
.

For n even we have by (B.0.8):

Φen(y) = (y′)
2−n
2

+ + (−1)
n−2
2 (y′)

2−n
2

− − (−1)
n−2
2 sgn(y0)

iπ
(n/2−2)!δ

n−2
2 (y′),
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and if n is odd then (B.0.6) leads to

Φen(y) = (y′)
2−n
2

+ + (−i sgn(y0))n−2(y′)
2−n
2

− .

Correspondingly, when n is even we have

Φ̃en(y) = (y′ ∓ sgn(y0) i0)
2−n
2

= (y′)
2−n
2

+ + (−1)
n−2
2 (y′)

2−n
2

− + (−1)
n−2
2 sgn(y0)

iπ
(n/2−2)!δ

n−2
2 (y′),

and when n is odd

Φ̃en(y) = (y′ ∓ sgn(y0) i0)
2−n
2 = (y′)

2−n
2

+ + (i sgn(y0))
n−2(y′)

2−n
2

− ,

where sgn is the signature function. Observe that Φ̃x = Φx.

Thus, we obtain the following theorem:

Theorem 4.1.3. The limits

lim
t→π/2−

Φ(g.zt, ·) = Φx and lim
t→π/2−

Φ̃(g.z̄t, ·) = Φ̃x, x = gen

exist in D′(dSn). The distributions Φx and Φ̃x satisfy Eq. (4.1.2). Finally we have

Φx(y) =



(
1−[x,y]

2

) 2−n
2

+
+ (−1)

n−2
2

(
1−[x,y]

2

) 2−n
2

−
−

(−1)
n−2
2 sgn((y − x)0)

iπ
(n/2−2)!δ

n−2
2

(
1−[x,y]

2

)
if n even;(

1−[x,y]
2

) 2−n
2

+
+ (−i sgn((y − x)0))

n−2
(
1−[x,y]

2

) 2−n
2

−
if n is odd.

(4.1.3)

and,

Φ̃x(y) =



(
1−[x,y]

2

) 2−n
2

+
+ (−1)

n−2
2

(
1−[x,y]

2

) 2−n
2

−
+

(−1)
n−2
2 sgn((y − x)0)

iπ
(n/2−2)!δ

n−2
2

(
1−[x,y]

2

)
if n even;(

1−[x,y]
2

) 2−n
2

+
+ (i sgn((y − x)0))

n−2
(
1−[x,y]

2

) 2−n
2

−
if n is odd.

(4.1.4)
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Proof. Clearly, the limits are well-defined . The rest follows from the above discussion

and the fact that Φ 2−n
2
(g.zt, y) = Φ 2−n

2
(zt, g

−1.y) and, Φ̃ 2−n
2
(g.z̄t, y) = Φ̃ 2−n

2
(z̄t, g

−1.y).

Immediately, we obtain the following corollary:

Corollary 4.1.4. The distributions Φen and, Φ̃en are H-invariant distributions.

4.2. The kernels Ψλ and Ψ̃λ

In this section we will consider the kernels Ψλ and Ψ̃λ for λ ∈ C \ ({ρ + N} ∪ {−ρ − N}).

As usual a = ρ+ λ, b = ρ− λ and, c = n/2 we will denote 2F1(z) = 2F1(a, b; c; z).

Remark 4.2.1. If λ ∈ {ρ+N}∪{−ρ−N}, we have that either a or b is a negative integers

for which 2F1(z) reduces to a polynomial. In this case we obtain that

lim
z→x

Ψλ(z, y) = lim
z̄→x

Ψ̃λ(z̄, y), if λ ∈ {ρ+ N} ∪ {−ρ− N}.

From the Eq. (2.2.1), Eq. (2.2.2) and following previous section it is enough to prove that

the limits

lim
t→π/2−

Ψλ(g.zt, y) and lim
t→π/2−

Ψ̃λ(g.z̄t, y)

are distributions.

We drop the dependence on λ for the limit distributions as it will be clear from the con-

text.

30



From Theorem A.0.1 the point-wise limit is the following:

Ψλ
en(y) = lim

t→π/2−
2F1

(
1 + [zt, y]

2

)
= lim

t→π/2−
2F1

(1 + sin(t)yn − i cos(t)y0
2

)

=



2F1

(
1+yn
2

)
if yn < 1,

2F1

(
1+yn
2

− i0
)

if yn > 1, y0 > 0,

2F1

(
1+yn
2

+ i0
)

if yn > 1, y0 < 0;

where 2F1(x± i0) has been calculated for x > 1 in Appendix A.

For the other kernel we get

Ψ̃λ
en(y) = lim

t→π/2−
2F1

(1 + sin(t)yn + i cos(t)y0
2

)

=



2F1

(
1+yn
2

)
if yn < 1,

2F1

(
1+yn
2

+ i0
)

if yn > 1, y0 > 0,

2F1

(
1+yn
2

− i0
)

if yn > 1, y0 < 0.

From the Theorem A.0.1 we have that in each of the disjoint region the limit is uniform on

compact sets. Next step is to prove that the limit actually converges to a distribution.

Let n ≥ 2 and φ be such that supp(φ) ∩ {yn = 1} = ∅. Since Ψλ(zt, y) and Ψ̃λ(z̄t, y)

converges to Ψλ
en(y) and Ψ̃λ

en(y) uniformly on compact sets in the region dSn \ {yn = 1}, we

have that

lim
t→π/2−

∫
dSn

Ψλ(zt, y)φ(y)dy −→
∫
dSn

Ψλ
en(y)φ(y)dy

and

lim
t→π/2−

∫
dSn

Ψ̃λ(z̄t, y)φ(y)dy −→
∫
dSn

Ψ̃λ
en(y)φ(y)dy.
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Case: dimension 2

On the other hand if supp(φ)∩{y2 = 1} ≠ {∅} for φ ∈ D(X), without loss of generality we

can take φ such that in local co-ordinates, max [d(y, {y2 = 1})] < ϵ, for y ∈ supp(φ) and

very small ϵ > 0. We know that close to the set {y2 = 1},

Ψλ(zt, y) ≈ − Γ(1)

Γ( 12+λ)Γ(
1
2−λ)

ln

(
1− [zt, y]

2

)

and

Ψ̃λ(z̄t, y) ≈ − Γ(1)

Γ( 12+λ)Γ(
1
2−λ)

ln

(
1− [z̄t, y]

2

)
.

Since logarithm is locally integrable function and by appendix B and [GS64, Sec 2.4, Ex-

ample 4] we see that the limit convergences in distribution.

Case: n ≥ 3

For n ≥ 3, we have that Re(c − a − b) = (2− n)/2 < 0. Without loss of generality, we

choose φ as we did in the 2-dimensional case. Close to yn = 1, the kernels behave as:

Ψλ(zt, y) ≈
Γ(n/2)Γ((n−2)/2)
Γ(ρ+λ)Γ(ρ−λ)

(
1−[zt,y]

2

) 2−n
2

;

Ψ̃λ(z̄t, y) ≈
Γ(n/2)Γ((n−2)/2)
Γ(ρ+λ)Γ(ρ−λ)

(
1−[z̄t,y]

2

) 2−n
2

.

Therefore by Theorem 4.1.3, appendix B and [GS64, Sec 3.6], as we take t → π/2− the

kernels Ψλ(zt, y) and Ψ̃λ(z̄t, y) converge to corresponding distributions Ψλ
en and Ψ̃λ

en .

These limits are well defined as Ψλ
en and Ψ̃λ

en are H-invariant. To see that let h ∈ H for

which h · en = en. Let φ ∈ D(dSn). If supp(φ) ∩ {yn = 1} = ∅ then clearly

lim
t→π/2−

∫
dSn

Ψλ(h · zt, y)φ(y)dy = lim
t→π/2−

∫
dSn

Ψλ(zt, y)φ(y)dy

32



and

lim
t→π/2−

∫
dSn

Ψ̃λ(h · z̄t, y)φ(y)dy = lim
t→π/2−

∫
dSn

Ψ̃λ(z̄t, y)φ(y)dy.

If supp(φ) ∩ {yn = 1} ≠ ∅ as in previous steps. For n ≥ 3 and, some constant c, we obtain

that

|⟨ lim
t→π/2−

(Ψλ(h.zt, .)−Ψλ(zt, .)), φ⟩| ≤ const. lim
t→π/2−

|⟨Φ 2−n
2
(h.zt, .)− Φ 2−n

2
(zt, .), φ⟩|

= 0.

The last equality is due to Corollary 4.1.4. The same steps can be followed for n = 2 and

also for Ψ̃λ
en . Thus proving that the limits are well-defined.

For g ∈ G and x = g · en

Ψλ
x(y) = lim

t→π/2−
Ψλ(g.zt, y) = lim

t→π/2−
Ψλ(zt, g

−1.y)

and

Ψ̃λ
x(y) = lim

t→π/2−
Ψ̃λ(g.z̄t, y) = lim

t→π/2−
Ψ̃λ(z̄t, g

−1.y)

are also distributions.

Now, we claim that (∆ −m2)Ψλ
en = 0 where m2 = ρ2 − λ2. Using fact that differentiation

is a continuous linear map on space of distributions, we obtain

lim
t→π/2−

(∆−m2)Ψλ(zt, y) = (∆−m2)Ψλ
en .

Now, let a = ρ+ λ, b = ρ− λ, c = n/2 and wt =
1+[zt,y]

2
.
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Following the same steps as in proof of Lemma 4.1.1, we arrive at

(∆−m2)Ψλ(zt, y) =
ab
c

[
wt(1− wt)

(a+ 1)(b+ 1)

(c+ 1)
2F1(a+ 2, b+ 2, c+ 2, wt)

+
(n
2
− nwt

)
2F1(a+ 1, b+ 1, c+ 1, wt)− c 2F1(a, b, c, wt)

]
= 0.

using the properties of hypergeometric function. We obtain that as distributions (∆ −

m2)Ψλ
en = 0. Following the same steps we obtain (∆ − m2)Ψ̃λ

en = 0. As (∆ − m2) is a G

invariant operator, we have that (∆−m2)Ψλ
x = 0 = (∆−m2)Ψ̃λ

x.

Therefore, we have proved that :

Theorem 4.2.2. For n ≥ 2 and λ /∈ {ρ+ N} ∪ {−ρ− N} we have:

1. The limits lim
t→π/2−

Ψλ(g.zt, y) and lim
t→π/2−

Ψ̃λ(g.z̄t, y) converge to distributions Ψλ
x and

Ψ̃λ
x respectively, on dSn with x = g · en.

2. The limits satisfy (∆−m2)Ψλ
x = 0 = (∆−m2)Ψ̃λ

x.

3. Moreover, Also, Ψλ
x and Ψ̃λ

x can be represented as analytic functions in the following
regions:

Ψλ
x(y) =


2F1

(
1+[x,y]

2

)
if y /∈ Γ(x),

2F1

(
1+[x,y]

2
− i0

)
if y ∈ Γ+(x),

2F1

(
1+[x,y]

2
+ i0

)
if y ∈ Γ−(x);

Ψ̃λ
x(y) =


2F1

(
1+[x,y]

2

)
if y /∈ Γ(x),

2F1

(
1+[x,y]

2
+ i0

)
if y ∈ Γ+(x),

2F1

(
1+[x,y]

2
− i0

)
if y ∈ Γ−(x).

As a conclusion it implies that Ψλ
x = Ψ̃λ

x.

In particular, the singular support of Ψλ
x and Ψ̃λ

x are exactly the points {y ∈ dSn | [y −

x, y − x] = 0}. Fig. 4.1 shows the singular support on dS2 of these distributions when
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e2

Figure 4.1. Singularities on dS2

x = e2 in blue lines.
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Chapter 5. Wavefront Sets of Spherical Distributions

The wavefront set of a distribution was introduced by L. Hörmander in 1970. It gives

more information about singularities. In particular, it gives the singular support of a dis-

tribution and the direction where the distribution is not smooth or analytic. We apply

this notion to the distributions Ψλ
x and Ψ̃λ

x. As we have seen in previous section, the dis-

tributions Ψλ
x and Ψ̃λ

x can be written as analytic functions everywhere on the de Sitter ex-

cept at the boundary of the light cone of x. That is where the distributions are singular.

We will now recall the wavefront set of distributions.

5.1. Wavefront Sets

Let X ⊂ R1,n be an open subset. Suppose, Θ ∈ E ′(X) is a distribution with compact

support then we can define Fourier transform of Θ at ξ ∈ (R1,n \ 0) as follows:

Θ̂(ξ) = Θ(e−2πi[x,ξ]).

where [x, ξ] = −x0ξ0 + x1ξ1...+ xnξn.

Definition 5.1.1. Let Θ in D′(X) be a distribution. We say (x0, ξ0) ∈ T∗(X) \ {0} is a

regular directed point if there exist an open neighbourhood U of x0, a conical neighbour-

hood V of ξ0 and φ ∈ C∞
c (U) with φ(x0) ̸= 0 such that for all N ∈ N:

|φ̂Θ(τξ)| ≤ CN,φ(1 + |τ |)−N , ∀ξ ∈ V. (5.1.1)

The wavefront set WF (Θ) ∈ T∗(X) \ {0} is the complement of the regular directed set.

Definition 5.1.2. Let Θ ∈ D′(X). The singular support of Θ is set of all points x such

that there is no neighbourhood of x to which the restriction of Θ is a C∞ function .

This chapter has appeared in the article: G. Olafsson, I. Sitiraju. Analytic wavefront sets of spherical
distributions on the de Sitter space. arXiv:2309.10685
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Lemma 5.1.3. If Θ ∈ D′(X), then the projection of WF (Θ) onto X is the singular sup-

port of Θ.

Remark 5.1.4. The WF (Θ) is a conic set, that is if (x, ξ) ∈ WF (Θ), then for τ > 0,

(x, τξ) ∈ WF (Θ).

Here are some examples.

Example 5.1.5. We will consider the Dirac-delta distribution in R1,n. Then the

supp(δ0) = {0}. Let φ ∈ C∞
c (R1,n) with φ(0) = c ̸= 0. Now, choose any ξ ∈ (R1,n \ 0), we

see that because

φ̂δ0(ξ) = δ0(φ(x)e
−2πi[x,ξ]) = φ(0) ̸= 0,

the Fourier transform is not rapidly decreasing in ξ for any ξ ∈ (R1,n \ 0). Hence

WF(δ0) = {(0, ξ) : ξ ∈ R1,n \ 0}.

Example 5.1.6. Consider the Heaviside function as distribution. That is,

H(x) =


1 x > 0

0 x ≤ 0.

Clearly it is smooth function away from zero. Let φ ∈ C∞
c (R) with φ(0) ̸= 0. Then using

integration by parts we obtain:

φ̂H(ξ) =

∫ ∞

0

φ(x)e−2πixξdx.

=
φ(0)

2πiξ
+

∫ ∞

0

φ′(x)e−2πixξdx

=
φ(0)

2πiξ
+

φ′(0)

(2πiξ)2
+

1

(2πiξ)2

∫ ∞

0

φ′′(x)e−2πixξdx.
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The first term is of order 1 and the rest are atleast of order 2. Thus, the Fourier transform

does not decay rapidly enough for any ξ ̸= 0 in R. Hence,

WF (H) = {0} × (R \ 0).

We will now introduce analytic wavefront sets. We follow the definition from [H90, def.

8.4.3]. Since, multiplying the distribution with smooth function will only increase the an-

alytic wavefront set and there is no non-zero real analytic function with compact support.

To circumvent this problem the following proposition (see [H90, Proposition 8.4.2]) is the

basis for the definition of analytic wavefront set.

Proposition 5.1.7. Let X be an open subset of R1,n and Θ ∈ D′(X). Then Θ is real

analytic in a neighbourhood U of x0 if and only if there is a bounded sequence ΘN of dis-

tributions with compact support which is equal to Θ in U satisfying,

|Θ̂N(ξ)| ≤ CN+1(N/|ξ|)N , N = 1, 2, ...

for C > 0.

Definition 5.1.8. If X is an open subset of R1,n and Θ ∈ D′(X), we denote WFA(Θ) to

be the complement in X×(R1,n\0) of the set (x0, ξ0) such that there is an open neighbour-

hood U ⊂ X of x0, a conic neighbourhood Γ of ξ0 and a bounded sequence of ΘN ∈ E ′(X)

which is equal to Θ in U and satisfies

|Θ̂N(ξ)| ≤ CN+1(N/|ξ|)N N = 1, 2, ...

when ξ ∈ Γ and for some C > 0.

The following lemma shows that ΘN can always be chosen as a product of Θ with some

suitable functions.
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Lemma 5.1.9. Let Θ ∈ D′(X). Let Γ and U be as in the definition above. We have that

(x0, ξ0) /∈ WFA(Θ) if and only if for K a compact neighbourhood of x0 in U, Θ a closed

conic neighbourhood of ξ0 in Γ, there exists functions χN ∈ C∞
c (U) such that χN = 1 on K

with

|Dt+βχN | ≤ CN+1
t N |β|, |β| ≤ N,

then, it follows that the sequence χNΘ is bounded in E ′ and satisfies the following:

|χ̂NΘ(ξ)| ≤ C(C(N + 1)/|ξ|)N . (5.1.2)

The proof of the above lemma can be found in [H90, Chap 8].

Example 5.1.10. Let u = δ0 in R1,n. We can see that WFA(δ0) ⊂ {0}× (R1,n \ 0). Let χN

be a sequence of functions as in the above lemma. Then for ξ ̸= 0

χ̂Nδ0(ξ) = χN(0) = 1,

which does not decay at infinity. Therefore, WFA(δ0) = {0} × (R1,n \ 0).

The following lemma tells us the relation between wavefront sets and analytic wavefront

set.

Lemma 5.1.11. Let Θ ∈ D′(X), we have that WF (Θ) ⊂ WFA(Θ).

Proof. Suppose (x0, ξ0) /∈ WFA(Θ) then there exist an open neighbourhood U ∋ x0, an

open cone Γ ∋ ξ0 and a bounded sequence of ΘN with compact support such that ΘN = Θ

in U and

|Θ̂N(ξ)| ≤ CN+1(N/|ξ|)N , ξ ∈ Γ.

Then for x ∈ U ,

DαΘ(x) = DαΘN(x) =

∫
ξαΘ̂N(ξ)e

2πi[x,ξ]dξ.
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It follows since ξαΘ̂N(ξ) is integrable for N = |α| + n + 1, as 1/|ξ|1+n is integrable outside

unit ball and |Θ̂N(ξ)| ≤ C(1 + |ξ|)M . Hence Θ is smooth in U.

We will now show an examples of a distribution whose analytic wavefront set is strictly

bigger than the smooth wavefront set. Before that, let us look at a characterization of real

analytic function. A smooth function Θ is real analytic if and only if for every compact set

K ⊂ R there is a constant CK with

|DNΘ(x)| ≤ CN+1
K (N)N , x ∈ K,

for all N ≥ 0. Indeed, by Taylor’s theorem

Θ(x) =
n∑

i=0

Θ(i)(x0)
(x−x0)i

i! +
1

n!

∫ x

x0

Θ(n+1)(t)(x− t)ndt.

We have that, for |x− x0| < δ < 1/(3CK) and N
N ≤ 3NN !,

∣∣∣ 1
n!

∫ x

x0

Θ(n+1)(t)(x− t)ndt
∣∣∣ ≤ CN+1

K (N)N

N !
|
∫ x

x0

(x− t)Ndt|

=
CN+1

K (N)N

(N + 1)!
|x− x0|N+1

≤ (3CKδ)
N+1 → 0, as N → ∞.

Hence Θ is real analytic function. On the other hand, we get that Θ satisfies the above

conditions if it is real analytic by Cauchy’s inequalities.

Example 5.1.12. We know that the function

Θ(x) =


e−1/x if x > 0

0 if x ≤ 0

is smooth everywhere but not real analytic at origin. It is obvious that Θ is a distribu-

tion. Let φ be a smooth function with compact support in a small neighbourhood of 0
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with φ(0) = 1. Then,

|ξN φ̂Θ(ξ)| = |
∫ ∞

0

DN(φe−1/x)e−2πixξdx|

≤
∫ ∞

0

|DN(φe−1/x)|dx

≤ CN ,

where the last inequality is because all the derivatives of e−1/x are bounded and φ is

smooth with compact support. Therefore, DN(φΘ) is integrable for all N . Hence,

WF (Θ) = ∅.

Now, let K = [−ϵ, ϵ], for ϵ very small. We have that

DN(e−1/x) =
e−1/xpN (x)

x2N ,

where pN(x) is a polynomial of degree N with constant coefficient 1. Thus for x in K,

DN(e−1/x) ≈ e−1/x

x2N . Hence the maximum is approximately at x = 1/2N and the maxi-

mum value is e−2N(2N)2N . For sufficiently large N,

max
x∈K

|DN(e−1/x)| ≈ e−2N(2N)2N > NN .

We see that the derivatives of Θ do not have the desired growth near zero. Hence Θ is not

real analytic at 0 and ∅ ≠ WFA(Θ) ⊂ {0}× (R \ 0). From Theorem 5.2.2, we obtain that if

WFA(Θ) ∩ −WFA(Θ) = ∅, then Θ can not vanish on any open set of R. This implies that

WFA(Θ) = {0} × (R \ 0).

We will also be needing the following theorem which again can be found in [H90].

Theorem 5.1.13. 1. Let a be a real analytic function. Then WFA(aΘ) ⊂ WFA(Θ).
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2. WFA(Θ1 ±Θ2) ⊂ WFA(Θ1) ∪WFA(Θ2)

Generally, the pull back of a distribution under a map is not continuous. For example,

consider the map ι : R → R2 by ι(x) = (x, 0). Then the pull back must be defined such

that ι∗(Θ) = Θ ◦ ι for Θ a smooth map.

For Θ ≥ 0, smooth with supp(Θ) ⊆ B(0, 1), fk = k2f(kx), we have fk → δ(0,0). Let

φ ∈ C∞
c (R) and φ ≥ 0,

< ι∗(fk), φ > =

∫
R
(fk ◦ ι)(x)φ(x)dx

= k

∫ 1

−1

Θ(x, 0)φ(x)dx→ ∞ as k → ∞.

Therefore the pull back is not continuous. Define the normal set of the map ι by

Nι = {(ι(x), ξ) ∈ R2 × R2 : tdιx(ξ) = 0};

= {((x, 0); (0, ξ2)) : x, ξ2 ∈ R}.

where tdιx = [1, 0].

We have that WFA(δ(0,0)) = {((0, 0); (ξ1, ξ2)}.

Observe that WFA(δ(0,0)) ∩ Nι ̸= ∅. We will now see the relation between the set of nor-

mals, wavefront set and pullback of distribution.

The following theorem says under what condition we can define a pull back of a distribu-

tion. The proof can be found in [H90, Theorem 8.2.4, Theorem 8.5.1].

Theorem 5.1.14. Let X and Y be open subsets of Rn and Rm respectively and let ι :

X → Y be a real analytic map. Denote the normal set of the map by

Nι = {(ι(x), ξ) ∈ Y × Rn : tdιx(ξ) = 0}.

42



Then the pull back ι∗Θ can be defined in one and only one way for all Θ ∈ D′(Y ) with

Nι ∩WFA(Θ) = ∅

so that ι∗(Θ) = Θ ◦ ι when Θ ∈ C∞ and for any closed conic subset Γ of Y × (Rn \ 0) with

Γ ∩Nι = ∅ we have

ι∗(Γ) = {(x, tdιx(ξ)) : (ι(x), ξ) ∈ Γ}.

In particular, if Θ ∈ D′(Y ) with Nι ∩WFA(Θ) = ∅ then

WFA(ι
∗Θ) ⊂ ι∗WFA(Θ).

The above theorem lets us define the analytic wavefront set if X is a real analytic mani-

fold.

Definition 5.1.15. If X is a real analytic manifold, and (Uk, k) be the analytic local co-

ordinates on X. We define WFA(Θ) ⊂ T ∗(X) \ 0 to be the set

k∗WF ((k−1)∗Θ) := {(x, tdk−1
x (η)); (k−1(x), η) ∈ WF ((k−1)∗Θ),

where (k−1)∗Θ(φ) = Θ(φ ◦ k−1) for φ ∈ C∞
c (Uk).

The Theorem 5.1.14 tells us that the above definition is invariant under co-ordinate

change.

The next theorem describes the analytic wavefront sets of distributions which are bound-

ary value of analytic functions. Let Γ be an open convex cone, then the dual cone Γ◦ is

defined as

Γ◦ = {η ∈ R1+n : η0ξ0 + ...+ ηnξn ≥ 0, ∀ξ ∈ Γ}.
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Theorem 5.1.16. Let X ⊂ R1,n be an open set and Γ an open convex cone in R1,n and

for some γ > 0,

Z = {z ∈ C1+n : Re z ∈ X, Im z ∈ Γ, |Imz| < γ}.

If Θ is an analytic function in Z such that

|Θ(z)| ≤ C|Im z|−N

for some N and some constant C > 0, the lim
y↘0

Θ(.+ iy) = Θ0 exists in terms of distribution

and is of order N . We also have that

WFA(Θ0) ⊂ X × (Γ◦ \ 0).

Proof. See theorem 3.1.15 and theorem 8.4.8 in [H90].

Example 5.1.17. Consider the distribution Θ = (x + i0)
2−n
2 on R. It is the limit of the

analytic function (x + iy)
2−n
2 for x ∈ R and y ∈ Γ = R+. Then its dual cone is Γ◦ = R≥0.

By Theorem 5.1.16, WFA(Θ) ⊂ R×R+. It is obvious that the distribution has singularities

only at x = 0. Therefore,

WFA((x+ i0)
2−n
2 ) = {(0, τ) : τ > 0}.

Similarily,

WFA((x− i0)
2−n
2 ) = {(0, τ) : τ < 0}.

Example 5.1.18. Let Θ = ln(x+ i0) which is a boundary value of holomorphic function

ln(x+ iy) for y > 0. Since logarithm grows slower than any negative power of |y|, the limit

y → 0 is a distribution on R. It follows from Theorem 5.1.16 that

WFA(ln(x+ i0)) = {(0, τ) : τ > 0}.
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Likewise we have that,

WFA(ln(x− i0)) = {(0, τ) : τ < 0}.

Example 5.1.19. Let Θ = 2F1(x + i0), the boundary value of the holomorphic function

2F1(x + iy) for y > 0 . We have proved in Appendix A that it is a distribution which has

analytic singularity at x = 1. As a result of Theorem 5.1.16, the analytic wavefront set is

WFA(2F1(x+ i0)) = {(1, τ) : τ > 0},

and it also follows that

WFA(2F1(x− i0)) = {(1, τ) : τ < 0}.

Let P (x,D) = Σ
|t|≤m

at(x)D
α be a differential operator on X with analytic coefficients.

Then we have that

WFA(P (x,D)Θ) ⊂ WFA(Θ).

The following theorem is a converse to the above statement which can be found in [H90].

Theorem 5.1.20. If P(x,D) is a differential operator of order m with real analytic coeffi-

cients in X, then

WFA(Θ) ⊂ WFA(Pf) ∪ Char(P ),

where the characteristic set of P is defined by

CharP = {(x, ξ) ∈ T ∗(X) \ 0 : Ps(x, ξ) := Σ
|α|=s

aαξ
α = 0}.

Consider the differential operator P (x,D) in a manifold X with real analytic co-eficients,.

In local coordinates, the principle symbol is Ps = Σ
|α|=s

aαξ
t. We say that the curve
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(x(t), ξ(t)) in T ∗(dSn) is a bicharacteristic strip if Ps(x(t), ξ(t)) = 0 for all with initial data

(x0, ξ0) ∈ CharPs and satisfies Hamiltonian equations defined as:

dx

dt
=
∂Ps(x, ξ)

∂ξ
,

dξ

dt
= −∂Ps(x, ξ)

∂x
.

Let S be a closed conic set in T ∗(X). We say that it is invariant under the Hamiltonian

vector field of Ps if S ⊆ CharPs and for a bicharacteristic strip (x(t), ξ(t)) passing through

(x0, ξ0) ∈ S, then (x(t), ξ(t)) must lie in S for all t.

The following result can be found in [H71].

Theorem 5.1.21 (Propagation of Singularities). Let P be a differential operator with an-

alytic coefficients and Ps be its real principle symbol. If Θ ∈ D′(X) and PΘ = f , it fol-

lows that WFA(Θ) \ WFA(f) is invariant under the Hamiltonian vector field of Ps when

∂Ps(x, ξ)/∂ξ ̸= 0.

We say that a curve (x(t), ξ(t)) is a null geodesic strip if [ ˙x(t), ˙x(t)] = 0 and ξ(t) is the

dual of ẋ(t). The following proposition is a well known fact. The projection on dSn of the

curve (x(t), ξ(t)) is a bicharacteristics curve for P if it is given by Ps = 0 and satisfies the

Hamiltonian equations.

Proposition 5.1.22. On dSn, the bicharacteristics curve for ∆ −m2 are exactly the null

geodesic strip for dSn.

Proof. In the coordinates given by Eq. (2.1.2) the principle symbol for ∆−m2 is given as

P (x, ξ) = −ξ20 +
1

cosh2(x0)
(ξ21 + ...+ ξ2n).
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Let (x(τ), ξ(t)) be a bicharacteristic curve. Then

∂x0(τ)

∂τ
= −2ξ0,

∂ξ0(τ)

∂τ
= 2

sinh(x0)

cosh3(x0)
(ξ21 + ...+ ξ2n),

∂xi(τ)

∂τ
=

1

cosh2(x0(τ))
2ξi,

∂ξi(τ)

∂τ
= 0.

The condition that P (x(τ), ξ(τ)) = 0 implies that ξ21 + ...+ ξ2n = cosh2(x0)ξ
2
0 . Using this we

obtain that

gx(τ)(ẋ(t), ẋ(t)) = −4ξ20 + 4(ξ21 + ...+ ξ2n) = 0.

Hence, (x(τ), ξ(τ)) is a null strip. Again from the Hamiltonian equations we obtain that

the curve (x(τ), ξ(τ)) satisfies the geodesic equation given in these coordinates as follows:

ẍ0 +
n∑

i=1

ẍi + cosh(x0) sinh(x0)ẋiẋi +
4 sinh(x0)

cosh3(x0)
ẋ0ẋi = 0.

Thus, x(t) is a null geodesic proving the proposition.

5.2. Wavefront set of Ψλ
x and Ψ̃λ

x

In this section we will state one of the main theorem and its implications.

Theorem 5.2.1. Let Ψλ
x = lim

t→π/2−
Ψλ(g.zt, y) and Ψ̃λ

x = lim
t→π/2−

Ψλ(g.z̄t, y), where x = g · en

and λ ∈ C \ ({ρ + N} ∪ {−ρ− N}). Then the analytic wavefront sets of these distributions

are given by

WFA(Ψ
λ
x) = {(x+ v, τ(−v0, v1, ..., vn−1), v0 > 0}∪

{(x+ v, τ(v0,−v1, ...,−vn−1)), v0 < 0} ∪ {(x, v) : v0 < 0};

WFA(Ψ̃
λ
x) = {(x+ v, τ(v0,−v1, ...,−vn−1), v0 > 0}∪

{(x+ v, τ(−v0, v1, ..., vn−1)), v0 < 0} ∪ {(x, v) : v0 > 0},
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for v ∈ {Tx(dSn) | [v − x, v − x] = 0}.

In Fig. 5.1 we can see the analytic wavefront set in TxdS
n.

v

v0

(a) Analytic wavefront set of Ψ̃λ
x.

v

v0

(b) Analytic wavefront set of Ψλ
x .

Figure 5.1. In this figure, the tangent space at a point x has been identified with its cotan-
gent space at x. The blue region is the light cone of 0 and, the red arrows and red region
are in the cotangent space at that point. The light cone together with red arrows and red
region is the analytic wavefront set.

Proof. First step is to find the analytic wavefront sets of Ψλ
en and Ψ̃λ

en . Since the distribu-

tions are solutions of P = ∆y −m2, therefore, we have that

WFA(Ψ
λ
x),WFA(Ψ̃

λ
x) ⊂ CharP

where

CharP = {(x, ξ) ∈ T ∗(X) \ 0, Pn(x, ξ) = 0},
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and Pn is the principle symbol of the differential operator P .

(1) Let U = Uen be the local chart around en and the co-ordinate map be the exponential

map:

y = Expen(v) = C([v, v])en + S([v, v])v.

As we know that the singularities of Ψλ
en and Ψ̃λ

en lie on the boundary of the light cone of

en, it is enough to calculate the wavefront set in U .

Now consider the map f : U → R defined by

f(v) =
1+C[v,v]

2 .

The distribution Ψλ
en is the distribution 2F1(f(v) − i0) in the open set U |v0>0 and is

2F1(f(v) + i0) in U |v0<0.

The differential operator P in U is given by

∆−m2 = − ∂2

∂v20
+

n−1∑
i=1

∂2

∂v2i
−m2.

Moreover, the principle symbol of the differential operator P is Pn = ξ20 −
∑n−1

i=1 ξ
2
i . There-

fore the analytic wavefront set lies in the set {(v, ξ) : v ∈ Ln−1, ξ ∈ L∗
n−1}, where Ln−1 is

the light cone in U ⊂ R1,n−1 and L∗
n−1 is the dual of the light cone.

(2) The tangent map of f is

dfv =
−S[v, v]

4

[
−2v0 2v1 ... 2vn

]
, v ∈ U.

For η ∈ R,v ∈ U , if tdfv(η) = 0 then either η = 0 or S[v, v] = 0. Now, using the relation

that S(z2) = sin z/z when z ̸= 0, we obtain that S[v, v] = 0 when [v, v] = m2π2 for

m ∈ Z \ 0. Such a v does not belong to the set U . Thus the set of normals of f is Nf =

{(f(v), 0) : v ∈ U}.
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(3) In this step we will calculate the singularities when v ̸= 0. We will write v = (v0,v).

Consider the distributions 2F1(x+i0) and 2F1(x−i0). Then from Example 5.1.19, it follows

Nf ∩WFA(2F1(x− i0)) = ∅ and Nf ∩WFA(2F1(x+ i0)) = ∅. As a result of Theorem 5.1.14,

the distribution Ψλ
en is the pullback of the distributions 2F1(x − i0) and 2F1(x + i0) under

the restriction of f at U |v0>0 and U |v0<0, respectively. Consequently, in Uv0>0

WFA(2F1(f(v)− i0)) ⊆ {(v, tdfv(Φ)) : v0 > 0, (f(v),Φ) ∈ WFA(2F1(x− i0)));

and in U |v0 < 0,

WFA(2F1(f(v) + i0)) ⊆ {(v, tdfv(Φ)) : v0 < 0, (f(v),Φ) ∈ WFA(2F1(x+ i0))}.

That is ,

WFA(2F1(f(v)− i0)) = {(v, ξ) : [v, v] = 0, ξ = τ(−v0,v), τ > 0, v0 > 0},

and

WFA(2F1(f(v) + i0)) = {(v, ξ) : [v, v] = 0, ξ = τ(v0,−v), τ > 0, v0 < 0}.

We get the equality since the analytic wavefront set cannot be empty as the points [v, v] =

0 lies in analytic singular support of 2F1(f(v) − i0) and 2F1(f(v) + i0) in their respective

domains.

(4) Now that we have calculated wavefront set of Ψλ
en when v ̸= 0. The next step is to

calculate at v = 0. For that we will use Propagation of Singularity theorem, which says

that analytic wavefront set is invariant under Hamiltonian Pn when ∂Pn

∂ξ
̸= 0. We have

that ∂Pn

∂ξ
= 0 only if ξ = 0. Hence, we can apply Theorem 5.1.21. Now the Hamiltonian

equations in the local coordinates are

∂v

∂t
=
∂Pn

∂ξ
,

∂ξ

∂t
= −∂Pn

∂v
.
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That is, for ξ ∈ L∗
n−1

v̇0 = 2ξ0, ξ̇0 = 0

v̇i = −2ξi, ξ̇i = 0, for i = 1, ..., n.

which gives us,

v0(t) = 2ξ0t, vi(t) = −2ξit; ξ(t) = const.

with v(0) = 0. That is, v(t) lies on the light cone of 0. From what we have calculated in

step (3), choose τ = 1 then ξ0 = −v0 < 0, ξi = vi when v0 > 0 and ξ0 = v0 < 0,

ξi = −vi when v0 < 0. This says that ξ0 < 0 and thus the null geodesic v(t) is the past

directed curve. At t = 0, (0, (v̇0,−v̇)) must be in the wavefront set for all null geodesics

v(t) satisfying the Hamiltonian equations and fitting in what we have calculated in step

(3). Thus so far what we have calculated is

WFA((Exp
−1
en )

∗Ψλ
en) =WFA

(
lim

t→π/2
2F1

(
1 + [zt,Expen(v)]

2

))

= {(0, τv) : v0 < 0} ∪ {(v, τ(−v0,v), v0 > 0}) ∪ {(v, τ(v0,−v), v0 < 0};

for v ∈ Ln−1 and τ > 0.

(5) Now that the wavefront set has been calculated in local coordinates, we pull the wave-

front set back to the de Sitter space. If v ∈ Ln−1, then y = C[v, v]en + S[v, v]v = en + v

and [y − en, y − en] = 0 which implies that y lies on the light cone of en. We now conclude

that the wavefront of Ψλ
en is given by

WFA(Ψ
λ
en) = (Expen)

∗WFA((Expen
−1)∗Ψλ

en).
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That is, for all v ∈ Ln−1 and τ > 0,

WFA(Ψ
λ
en) = {(en, v) : v0 > 0} ∪ {(en + v, τ(−v0, v1, ..., vn−1), v0 > 0}∪

{(en + v, τ(v0,−v1, ...,−vn−1)), v0 < 0}.

(6) Lastly, consider Ψλ
x = lim

t→π/2−
Ψλ(g · zt, y). For x = g · en, define a map lg : dS

n → dSn by

lg(y) = g−1 · y. Since lg is an analytic diffeomorphism, we have that dlg is an isomorphism

of tangent spaces. Therefore, Nlg = {(y, 0) : y ∈ dSn} and the pull back of the distribution

Ψλ
en under the map lg is Ψλ

x. Thus, WFA(Ψ
λ
x) = l∗gWFA(Ψ

λ
en). That is, (y, ξ) ∈ WFA(Ψ

λ
x)

if (lg(y),
tdlg−1ξ) ∈ WFA(Ψ

λ
en). This implies that y = x + v for v ∈ Ln−1 as the G acts

transitively on light cone and (tdlg−1ξ) = g · ξ is also on the dual light cone, as a result we

obtain:

WFA(Ψ
λ
x) = {(x, v) : v0 < 0} ∪ {(x+ v, τ(−v0, v1, ..., vn−1), v0 > 0}∪

{(x+ v, τ(v0,−v1, ...,−vn−1)), v0 < 0}.

for v ∈ Ln−1.

(7) Finally, in local coordinates Ψ̃λ
en is the distribution 2F1(f(v)+i0) in the open set U |v0>0

and as 2F1(f(v)− i0) in U |v0<0. Following all the steps above we obtain for v ∈ Ln−1,

WFA(Ψ̃
λ
en) = {(en, v) : v0 > 0} ∪ {(en + v, τ(v0,−v1, ...,−vn−1), v0 > 0}∪

{(en + v, τ(−v0, v1, ..., vn−1)), v0 < 0},

and

WFA(Ψ̃
λ
x) = {(x, v) : v0 > 0} ∪ {(x+ v, τ(v0,−v1, ...,−vn−1), v0 > 0}∪

{(x+ v, τ(−v0, v1, ..., vn−1)), v0 < 0}.
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Thus, we have proved the theorem.

Using the analytic wavefront sets, we can prove that the distributions can not vanish on

any non-empty open set O of dSn.

The following theorem is due to Strohmaier, Verch and, Wollenberg, see [SVW02, Proposi-

tion 5.3].

Theorem 5.2.2. Let X be a real analytic manifold and Θ ∈ D′(X). If WFA(Θ) ∩

−WFA(Θ) = ∅ then for an open region O in X

Θ|O ⇒ Θ = 0,

where −WFA(Θ) = {(x, ξ) : (x,−ξ) ∈ WFA(Θ)}.

This theorem is not true in the case of smooth wavefront set. Consider the distribution

Θ from Example 5.1.12. The wavefront set of Θ satisfies the condition that WF (Θ) ∩

−WF (Θ) = ∅. Obviously, Θ is not a zero distribution however, it is zero in the open re-

gion (−∞, 0).

Since the wavefront sets of the distributions Ψλ
x is such that WFA(Ψ

λ
x) ∩ −WFA(Ψ

λ
x) = ∅

for all x, which is same for Ψ̃λ
x, immediately as a corollary we obtain that,

Corollary 5.2.3. The distributions Ψλ
x, Ψ̃

λ
x can not vanish on any open regions of dSn.

The following theorem will be key when studying the spherical distributions which distin-

guishes them.

Theorem 5.2.4. The wavefront set of the sum Ψλ
x + Ψ̃λ

x (see Fig. 5.2) is given as follows:

WFA(Ψ
λ
x + Ψ̃λ

x) = WFA(Ψ
λ
x) ∪WFA(Ψ̃

λ
x).

Proof. As we have Ψλ
x + Ψ̃λ

x = Ψλ
x + Ψ̃λ

x, the proof of the theorem follows immediately

from the below lemma.
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Lemma 5.2.5. Let Θ be a distribution. Then

(x, ξ) ∈ WFA(Θ) ⇐⇒ (x,−ξ) ∈ WFA(Θ).

Proof. Let (x0, ξ0) /∈ WFA(Θ). Then there exists a neighbourhood U around x0 and a

conic neighbourhood around ξ0 and a sequence χN ∈ C∞
C (U) from Lemma 5.1.9 such that

|(̂χNΘ)(ξ)| ≤ CN+1((N + 1)/|ξ|)N , ξ ∈ Γ.

But (̂χNΘ)(ξ) = Θ(χNe
2πi[x,ξ]) = Θ(χNe

−2πi[x,ξ]). Hence, we have the decay

|(̂χNΘ)(−ξ)| ≤ CN+1((N + 1)/|ξ|)N − ξ ∈ −Γ,

and vice-versa proving the lemma.

From Theorem 4.2.2 we obtain the following:

Corollary 5.2.6. The wavefront set of the distribution Ψλ
x − Ψ̃λ

x (see Fig. 5.2) is

WFA(Ψ
λ
x − Ψ̃λ

x) = WFA(Ψ
λ
x) ∪WFA(Ψ̃

λ
x).

Moreover,

1. For odd n and c1 = (−1)
n+1
2

2iΓ(n/2)Γ((n−2)/2)
Γ(ρ+λ)Γ(ρ−λ)

, the distribution is given by: (Ψλ
x −

Ψ̃λ
x)(y) =

c1


0 if y /∈ Γ(x)(
[x,y]−1

2

) 2−n
2

2F1(1/2− λ, 1/2 + λ; 4−n
2 ; 1−[x,y]

2 ) if y ∈ Γ+(x)

−
(
[x,y]−1

2

) 2−n
2

2F1(1/2− λ, 1/2 + λ; 4−n
2 ; 1−[x,y]

2 ) if y ∈ Γ−(x).

2. For even n and c2 = (−1)
n
2

2πi
Γ(1/2+λ)Γ(1/2−λ)

, the distribution is given by: (Ψλ
x −

Ψ̃λ
x)(y) =

c2


0 if y /∈ Γ(x)

2F1(ρ+ λ, ρ− λ;n/2; 1−[x,y]
2

) if y ∈ Γ+(x)

−2F1(ρ+ λ, ρ− λ;n/2; 1−[x,y]
2

) if y ∈ Γ−(x).
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v

v0

Figure 5.2. Analytic wavefront set of Ψλ
x + Ψ̃λ

x and Ψλ
x − Ψ̃λ

x as they coincide on Tx(dS
n).

Proof. We have that WFA(Ψ
λ
x − Ψ̃λ

x) ⊂ WFA(Ψ
λ
x) ∪WFA(Ψ̃

λ
x) and is a not empty set as

Ψλ
x − Ψ̃λ

x has singularities on the boundary of Γ(x). Observe that Ψλ
x − Ψ̃λ

x = −(Ψλ
x − Ψ̃λ

x).

Therefore, it is enough to prove that if (y, ξ) ∈ WFA(Θ) ⇐⇒ (y, ξ) ∈ WFA(−Θ). Let

(y0, ξ0) /∈ WFA(Θ). Let U,Γ, {χN} be as in Lemma 5.1.9. Then

| ̂χN(−Θ)(ξ)| = |(̂χNΘ)(ξ)| ≤ CN+1((N + 1)/|ξ|)N , ξ ∈ Γ.

Therefore, combining this with Lemma 5.2.6 we obtain the corollary.

5.3. Spherical Distributions

Let (G0, H0) be a symmetric space and Θ be a distribution on G0/H0. Then G0 acts on Θ

by

π−∞(g)Θ(φ) = Θ(π∞(g−1)φ), φ ∈ D(G0/H0),

where π∞(g)φ(x) = φ(g−1 · x).

Definition 5.3.1. We say that a distribution Θ is H0-invariant if π−∞(h)Θ = Θ for all

h ∈ H0.

Definition 5.3.2. A distribution Θ is said to be a spherical distribution if it is H0-

invariant eigendistribution of the Laplace-Beltrami operator ∆ on G0/H0. This space is
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denoted by DH0
λ (dSn).

Let G′ = O1,n(R) and H ′ = O1,n−1(R) is the closed subgroup of G′. Let DH′

λ (dSn) be the

space of spherical distributions on the de Sitter space with ∆(Θ) = λΘ. Then according to

[D08, Theorem 9.2.5]

Theorem 5.3.3. The dimension of DH′

λ (dSn) is 2.

Remark 5.3.4. From Remark 2.1.4 we obtain that π−∞(Λ1)(Ψ
λ
en) = Ψ̃λ

en , (Λ1)(Ψ
λ
−en) =

Ψ̃λ
−en and vice-versa. Also, π−∞(Λ1Λ2)(Ψ

λ
en) = Ψ̃λ

en , π−∞(Λ1Λ2)(Ψ
λ
−en) = Ψ̃λ

−en and vice-

versa. So, they are not H ′ invariant. However, the sums Ψλ
en + Ψ̃λ

en and Ψλ
−en + Ψ̃λ

−en are

H ′-invariant.

We will now restate the main theorem.

Theorem 5.3.5. Let n ≥ 2, then

1. The distributions Ψλ
en + Ψ̃λ

en and Ψλ
−en + Ψ̃λ

−en are H ′- invariant spherical distribu-
tions and span DH′

m2(dS
n), where m2 = ρ2 − λ2 and, λ ∈ C \ ({ρ+ N} ∪ {−ρ− N}).

2. The distributions Ψλ
en + Ψ̃λ

en and Ψλ
−en + Ψ̃λ

−en are positive definite for λ ∈ i[0,∞) ∪
(0, ρ).

3. Moreover, the following holds for a non-zero spherical distribution Θ ∈ DH′

m2(dS
n):

(a) WFA(Θ) ⊂ WFA(Ψ
λ
en + Ψ̃λ

en) ⊔WFA(Ψ
λ
−en + Ψ̃λ

−en).

(b) If WFA(Θ) = WFA(Ψ
λ
en + Ψ̃λ

en) then there exists a nonzero constant c such

that Θ = c(Ψλ
en + Ψ̃λ

en).

(c) If WFA(Θ) = WFA(Ψ
λ
−en + Ψ̃λ

−en) then there is a non zero constant c such

that Θ = c(Ψλ
−en + Ψ̃λ

−en).

Proof.

(1) Clearly, it follows from Theorem 4.2.2 that Ψλ
en + Ψ̃λ

en and Ψλ
−en + Ψ̃λ

−en are linearly

independent distribution with eigenvalue ρ2 − λ2 for the operator ∆. It follows from the
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remark above that they are H ′-invariant. Hence, they form a basis for DH′

m2(dS
n)

(2) When λ ∈ i[0,∞) ∪ (0, ρ) the kernels Ψλ and Ψ̃λ are positive definite from Theo-

rem 3.1.4 and thus the limits are also positive definite and the sums are also positive defi-

nite.

(3) The analytic wavefront sets of Ψλ
en + Ψ̃λ

en and Ψλ
−en + Ψ̃λ

−en are disjoint as Ψλ
en + Ψ̃λ

en has

singularities at yn = 1 and Ψλ
−en + Ψ̃λ

−en has singularities at yn = −1. The rest of the proof

follows similar to that of part (3) of Theorem 5.3.3.

We will now study the case when G = SO1,n(R)e and H = SO1,n−1(R) is its closed

subgroup. Then according to Oshima and Sekiguchi [OSe80], the dimension of the H-

invariant eigenspaces of Laplace-Beltrami operator ∆ with eigenvalue λ ∈ C (which is

denoted by DH
λ (dS

n)) turns out to be 4. Therefore, we obtain the following theorem:

Theorem 5.3.6. Let n ≥ 2, then

1. The distributions Ψλ
en, Ψ̃

λ
en, Ψ

λ
−en and Ψ̃λ

−en are spherical distributions. They span
DH

m2(dS
n) where, m2 = ρ2 − λ2 and λ ∈ C \ {(ρ+ N) ∪ (−ρ− N)}.

2. The distributions Ψλ
en, Ψ̃

λ
en, Ψ

λ
−en and Ψ̃λ

−en are positive definite for λ ∈ iR∪(−ρ, ρ).

3. Moreover, the following holds for a non-zero spherical distribution Θ ∈ DH
m2(dS

n):

(a) WFA(Θ) ⊂ WFA(Ψ
λ
en) ⊔WFA(Ψ̃

λ
en) ⊔WFA(Ψ

λ
−en) ⊔WFA(Ψ̃

λ
−en).

(b) If WFA(Θ) coincides with any of the analytic wavefront set of the distribu-

tion Ψλ
en, Ψ̃

λ
en, Ψ

λ
−en and Ψ̃λ

−en, then it has to be a constant multiple of that
distribution.

Proof.

(1) We obtain from Theorem 4.2.2 that all of them are eigen-distribution of ∆. It was

proven in the discussion before Theorem 4.2.2 that Ψλ
en and Ψ̃λ

en are H-invariant. As H
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also fixes −en, we can follow the same arguments by allowing zt = i cos(t)e0 − sin(t)en

and then taking limit as t goes to π/2. Clearly, all the four distributions are linearly

independent. Thus, they span DH
m2(dS

n).

(2) Notice that Ψλ = Ψ−λ and Ψ̃λ = Ψ̃−λ.So, when λ ∈ i[0,∞ ∪ (0, ρ) the kernels Ψλ and

Ψ̃λ are positive definite from Theorem 3.1.4 and thus the limits are also positive definite.

(3) The first part follows from Theorem 5.1.13. From Theorem 5.2.1 we obtain that all the

four distributions have disjoint wavefront sets. Suppose that WFA(Θ) = WFA(Ψ
λ
en). Let

Θ = aΨλ
en+bΨ̃

λ
en+cΨ

λ
−en+dΨ̃

λ
en and without loss of generality let b ̸= 0. Then Ψ̃λ

en = 1
b
(Θ−

aΨλ
en + cΨλ

−en + dΨ̃λ
en) and from Theorem 5.1.13 we obtain that WFA(Ψ̃

λ
en) ⊂ WFA(Ψ

λ
en) ⊔

WFA(Ψ
λ
−en) ⊔ WFA(Ψ̃

λ
en). Then we arrive at a contradiction and b = 0. Similarly, we

obtain that c = d = 0. We can then repeat the same argument for rest of the distributions

and have established the last claim.

Thus, in the case of H ′-invariant spherical distributions, we were able to distinguish be-

tween the basis elements by looking at their singular support. However, Ψλ
en and Ψ̃λ

en have

the same singular support and the same is true for Ψλ
−en and Ψ̃λ

−en . In this case, we look

at their wavefront sets to distinguish between them.
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Chapter 6. Future Work

Let G be a Lie group and H a closed subgroup. Let (π,Hπ) be a unitary representation

of G. Denote by H∞
π , the space of smooth vectors and by H−∞ the space of continuous

conjugate linear maps H∞ → C, the space of distribution vectors. The group G leaves H∞

invariant and then defines a representation π−∞ by duality. For η ∈ H−∞ and ϕ ∈ C∞
c (G)

it is well known that π−∞(ϕ)η =
∫
G
ϕ(x)π−∞(x)ηdx is in H∞. Hence,

Φη(ϕ) = η(π−∞(ϕ)η) = ⟨η, π−∞(ϕ)η⟩ (6.0.1)

is well defined positive-definite distribution on G. If η is H-invariant then Φη defines a

distribution on G/H (see [NÓ18] for more discussion). If π is irreducible then, Φη is an

eigen-distribution for the algebra of differential operators coming from the center of U(g).

It is a natural question to study the wavefront set of those distributions.

We will now assume that G is connected, semisimple and linear. Let K be the maximal

compact subgroup and assume H is symmetric. Let θ be the corresponding Cartan invo-

lution and τ the involution corresponding to H. We assume that θ and τ commute. Our

assumption is that G/H is casual (see [HÓ97]). This is the setup in the research project

by Neeb-Ólafsson and their collaborators. We assume that v ∈ Hπ is K−finite. Then

g → π(g)v extends as a holomorphic function to the crown Ξ (see [FNÓ23]), where Ξ is an

open complex domain in the complexification GC/KC .

The above setup leads to an element s = exp( iπ
2
X) ∈ GC such that sKCs

−1 = HC and

G/H = G.sKC is on the boundary of the crown and exp(itX)KC belongs to Ξ for |t| <

π/2. Hence, π(exp(itX))v is well defined for |t| < π/2. The following has been answered

for several cases [FNÓ23].
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Question 1. Does

lim
t→π/2

π(exp(itX))v = η

exists in H−∞.

So far it has been proven for principle series representations of G when v is K-fixed vector

(see [GKÓ04]). In this case η is H-invariant distribution vector. Hence, the next question.

Question 2. What can be said about the wavefront set of Φη defined in Eq. (A.0.5), if

the limit exists?

If Hπ ⊂ L2(G/H) (discrete series for G/H) and prπ : L2 → Hπ is the orthogonal projec-

tion then prπ(C
∞
c (G/H)) ⊂ H∞

π and f → prπ(f)(eH) is a H-invariant distribution η and

hence Φη is well defined.

Note that in the case G × G/diag(G) ∼= G then Φη is up to a constant the character of

π, f → Trπ(f). So, the above questions reduces to the wave front set of π as defined by

Howe [Ho81].

Question 3. What can be said if G/H has holomorphic discrete series representations?

In the case of dS2, the authors in [BM04] constructed complex domains in dSn
C where the

kernels related to discrete series live. We can consider the domains G · ht and G · h̄t where

ht = i sinh(t)e1 + cosh(t)en and t > 0. We obtain that ht → en as t → 0. So, we can

proceed with the same kind of questions as we did in case of principle series spherical dis-

tributions.

Question 4. What is the wavefront set of the distribution Ψη?

Question 5. In the case of anti-de Sitter space AdSn, where

AdSn = SO(2, n)/SO(1, n),
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is a compactly casual symmetric space (see [FNÓ23]), are the above questions valid?

Let us define the operator T for f ∈ C∞
c (dSn) as follows:

Tf(x) = lim
z→x

∫
dSn

Ψλ(z, y)f(y)dy,

where Ψλ is given Chapter 1. We have that |Tf(x)| < ∞ because the limit exists in distri-

bution.

Question 6. What can be said about the Lp estimates? What can be its implications?
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Appendix A. Boundary value of Hypergeometric function

For simplicity we will write 2F1(a, b; c, z) = 2F1(z). In this section we will show that

2F1(x + i0) := lim
y→0

2F1(x + iy) for y > 0 and 2F1(x − i0) := lim
y→0

2F1(x − iy) for y > 0,

are distributions for a = ρ+ λ, b = ρ− λ and c = n/2. It is a fact that 2F1(z) has a branch

cut on [1,∞). Hence, the convergence for x < 1 is uniform on compact sets. The case

when x > 1 and the growth near z = 1 will determine whether it will be a distribution or

not.

Theorem A.0.1. The limit lim
y→0

2F1(ρ + λ, ρ− λ, n/2, x± iy) for y > 0 exists in the sense

of distributions where for Re(z) > 1 the limit converges uniformly on compact sets. For

1 < x < 2, if n is odd

2F1(x± i0) =
Γ(n/2)Γ((2− n)/2)

Γ(1/2 + λ)Γ(1/2− λ)
2F1(ρ+ λ, ρ− λ;

n

2
; 1− x)

+ e∓iπ( 2−n
2

)(x− 1)
2−n
2

Γ(n/2)Γ((n−2)/2)
Γ(ρ+λ)Γ(ρ−λ) 2F1(1/2− λ, 1/2 + λ;

4− n

2
; 1− x).

(A.0.1)

and if n is even

2F1(x± i0) =
Γ(n/2)

Γ(ρ+λ)Γ(ρ−λ)

n/2−2∑
k=0

(−1)k(n/2−k−2)!(1/2+λ)k(1/2−λ)k
k! (1− x)k+1−n

2

+
(−1)

n−2
2 Γ(n/2)

Γ(1/2+λ)Γ(1/2−λ)

∞∑
k=0

(ρ+λ)k(ρ−λ)k
k!(n/2−1+k)! [ψ(k + 1) + ψ(n/2 + k)

− ψ(ρ+ λ+ k)− ψ(ρ− λ+ k)− ln(x− 1)± iπ](1− x)k,

(A.0.2)

where ψ(z) = Γ′(z)/Γ(z) Furthermore, the behaviour of the hypergeometric function near

z = 1 as distributions is given as follows: for n = 2,

2F1(z) ≈ 1
Γ(ρ+λ)Γ(ρ−λ)(− ln (1− z)) (A.0.3)

This appendix has appeared in the article: G. Olafsson, I. Sitiraju. Analytic wavefront sets of spheri-
cal distributions on the de Sitter space. arXiv:2309.10685
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and for n ≥ 3,

2F1(z) ≈
Γ(n/2)Γ((n− 2)/2)

Γ(ρ+ λ)Γ(ρ− λ)
(1− z)

2−n
2 . (A.0.4)

Proof. Let n ≥ 2. Suppose that n is odd. Then c − a − b = 2−n
2

is not an integer. There-

fore, for |z − 1| < 1 and |arg(1− z)| < π we can use the following transformation

2F1(z) =
Γ(n/2)Γ((2−n)/2)
Γ(1/2+λ)Γ(1/2−λ)2F1(ρ+ λ, ρ− λ;

n

2
; 1− z)

+ (1− z)
2−n
2

Γ(n/2)Γ((n−2)/2)
Γ(ρ+λ)Γ(ρ−λ) 2F1(1/2− λ, 1/2 + λ;

4− n

2
; 1− z).

(A.0.5)

Suppose that 1 < x < 2 then,

2F1(x± i0) =
Γ(n/2)Γ((2−n)/2)
Γ(1/2+λ)Γ(1/2−λ)2F1(ρ+ λ, ρ− λ;

n

2
; 1− x)

+ e∓iπ( 2−n
2

)(x− 1)
2−n
2

Γ(n/2)Γ((n−2)/2)
Γ(ρ+λ)Γ(ρ−λ) 2F1(1/2− λ, 1/2 + λ;

4− n

2
; 1− x).

(A.0.6)

For x ≥ 2 we can use linear transformations of hypergeometric functions to extend 2F1(x±

i0) analytically.

If n is even, we obtain Eq. (A.0.2) for 1 < x < 2 from [GS64, Eq 9.7.5, 9.7.6].

Similarly, we can extend 2F1(x± i0) for x > 2 using the formulae from [GS64, Sec 9.7]

Now let us calculate the behaviour of the hypergeometric function near x = 1. Let n ≥ 3.

We have that for Re(c− a− b) = 1− n/2 < 0 and x < 1,

lim
x→1−

2F1(x)

(1− x)
2−n
2

=
Γ(n/2)Γ((n− 2)/2)

Γ(ρ+ λ)Γ(ρ− λ)
. (A.0.7)

From Eq. (A.0.6) and Eq. (A.0.2) we obtain that

lim
x→1+

2F1(x± i0)

(x− 1)c−a−b
= e∓iπ( 2−n

2
)Γ(n/2)Γ((n− 2)/2)

Γ(ρ+ λ)Γ(ρ− λ)
. (A.0.8)
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From this we can say that around 1 (see Appendix B),

2F1(z) ≈
Γ(n/2)Γ((n− 2)/2)

Γ(ρ+ λ)Γ(ρ− λ)
(1− z)

2−n
2 . (A.0.9)

The growth of 2F1(z) near z = 1 is

|2F1(z)| ≈
∣∣∣Γ(n/2)Γ((n−2)/2)

Γ(ρ+λ)Γ(ρ−λ)

∣∣∣(|1− z|
2−n
2 ) ≤ const. |y|

2−n
2 .

Hence, it follows from [H90, Theorem 3.1.11] that the limit converges to a distribution.

If n = 2, then c = a+ b and

lim
x→1−

2F1(x)

− ln(1− x)
=

1

Γ(ρ+ λ)Γ(ρ− λ)
. (A.0.10)

For n = 2, the first summation in Eq. (A.0.2) does not appear. Thus, we obtain that

lim
x→1−

2F1(x± i0)

− ln(x− 1)± iπ
=

1

Γ(ρ+ λ)Γ(ρ− λ)
. (A.0.11)

Therefore, around z = 1

2F1(z) ≈
1

Γ(ρ+ λ)Γ(ρ− λ)
(− ln(1− z)). (A.0.12)

Since logarithm is an integrable function on compact sets we have that for n = 2, 2F1(z) is

a distribution.
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Appendix B. Distributions: (x+ i0)
2−n
2 and log(x+ i0)

Here, we will recall the distributions (x ± i0)
2−n
2 and ln(x ± i0) (see [GS64]). First for n

an odd number, we look at the distributions x
2−n
2

+ and x
2−n
2

− . Let φ ∈ C∞
c (R). We will look

at the case when n is odd dimension. For n = 3

(x
− 1

2
+ , φ) =

∫ ∞

0

x−
1
2φ(x)dx, (B.0.1)

is the regular distribution. However, for n ≥ 5, m = (n− 5)/2 we have

(x
2−n
2

+ , φ) =

∫ ∞

0

x
2−n
2

[
φ(x)− φ(0)− xφ′(0)− ...− xm

(m)!φ
m(0)

]
dx. (B.0.2)

The distribution x
2−n
2

− is defined as follows:

(x
2−n
2

− , φ(x)) = (x
2−n
2

+ , φ(−x)). (B.0.3)

Now we will look at the case when n is even dimension:

For k = (n− 2)/2 and k is even,

(x−k, φ) =

∫ ∞

0

x−k
(
φ(x) + φ(−x)

−2
[
φ(0) +

x2

2!
φ′′(0) + ...+

xk−2

(k − 2)!
φk−2(0)

])
dx.

(B.0.4)

For k = (n− 2)/2 and k an odd number:

(x−k, φ) =

∫ ∞

0

x−k
(
φ(x)− φ(−x)

−2
[
xφ′(0) +

x3

3!
φ′′′(0) + ...+

xk−2

(k − 2)!
φk−2(0)

])
dx.

(B.0.5)

Let us consider the distributions given as follows:

This appendix has appeared in the article: G. Olafsson, I. Sitiraju. Analytic wavefront sets of spheri-
cal distributions on the de Sitter space. arXiv:2309.10685
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(x± i0)
2−n
2 = lim

y→0+
(x± iy)

2−n
2 .

When n is odd,

(x+ i0)
2−n
2 = x

2−n
2

+ + eiπ
2−n
2 x

2−n
2

− , (B.0.6)

(x− i0)
2−n
2 = x

2−n
2

+ + e−iπ 2−n
2 x

2−n
2

− . (B.0.7)

When n is even, k = (n− 2)/2 we have

(x+ i0)−k = x−k − iπ(−1)k−1

(k−1)! δk−1(x), (B.0.8)

(x− i0)−k = x−k +
iπ(−1)k−1

(k−1)! δk−1(x). (B.0.9)

Finally, we have the distribution

ln(x± i0) = lim
y→0

ln(x± iy), (B.0.10)

where

ln(x± i0) =


ln |x| ± iπ for x < 0,

lnx for x > 0.

(B.0.11)
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Appendix C. Copyright information

Copyright information for Gestur Ólafsson and Iswarya Sitiraju. “Ana-

lytic Wavefront Sets of Spherical Distributions on the De Sitter Space”.

arXiv:2309.10685 used in Chapters 1-5.
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