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Abstract

The goal of this thesis is to determine the unavoidable topological minors of large

and infinite 3-connected rooted graphs, where a rooted graph is a graph G together with

a specified subset X of V (G) or E(G). We have two results for finite graphs. First, every

3-connected finite graph G with a sufficiently large X ⊆ E(G) must contain a topological

minor K3,n,Wn, or Vn, using many edges of X, where Wn is a wheel with n spokes and Vn

is obtained from a ladder with n rungs by adding two grips and a handle. Second, every

3-connected finite graph G with a sufficiently large X ⊆ V (G) must contain a topological

minor K3,n, K
1
3,n, K

2
3,n, K

3
3,n,Wn, or Vn, using many vertices of X, where Ki

3,n (i = 1, 2, 3) is

obtained by gluing the leaves of i combs and 3− i stars in the natural way.

We also have two results for infinite graphs. First, every 3-connected graph G with an

infinite X ⊆ E(G) must contain a topological minor K3,∞, FF, FL, or LL, using infinitely

many edges of X, where FF, FL, and LL are obtained, respectively, by gluing i (i = 0, 1, 2)

infinite ladders and 2 − i infinite fans along their rails. Second, every 3-connected graph

G with an infinite X ⊆ V (G) must contain as a subgraph a subdivision of K3,∞, FF, FL,

or LL, containing infinitely many vertices of X. We also discuss similar results for lower

connectivities, which in fact are corollaries of results listed above.
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Chapter 1. Introduction

This thesis is about the structure of unavoidable topological minors of large and

infinite 3-connected rooted graphs. In this chapter, we provide some relevant background

and outline our main results. We first list some relevant research that has been done in this

area. Next, we present the statements of our results, whose proofs will be detailed in the

next three chapters. Finally, we define basic terminology and state standard theorems in

graph theory that are used in later chapters.

1.1. Background Survey

All graphs in this thesis are simple. In this section, we present some related results

to our main topic. For undefined terms used here, we refer the readers to the last section of

this chapter. There are two questions that we are interested in.

1. Given a large or infinite k-connected graph G, what are the unavoidable large or

infinite k-connected structures in G? This topic has been studied extensively, and

many results are now known for graphs of small connectivity.

2. Given a k-connected graph G together with a large or infinite subset X of V (G) or

E(G), what are the unavoidable large or infinite k-connected structures in G that

contain many elements of X? Not much has been known about this topic, which is

the focus of this thesis.

In the next few sections, we discuss the research that has been established for each
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question and then we describe our main results.

1.1.1. Connected Graphs

Let G be a complete graph. If G is a finite graph with n vertices, then we denote G

as Kn. Otherwise, G is an infinite graph, and we denote G as K∞. The complement of Kn

and K∞ are Kn and K∞ respectively.

We first state Ramsey Theorem for finite graphs.

Theorem 1.1.1 (Ramsey Theorem for Finite Graphs, Theorem 9.1.1 in [4]). For every

r ≥ 1, there exists a positive integer n such that every finite graph with at least n vertices

contains Kr or Kr as an induced subgraph.

A more general version of this result is Ramsey Theorem for infinite graphs. The

formulation we provided below is obtained from a more general version of Theorem 9.1.2 in

[4] by setting k = c = 2.

Theorem 1.1.2 (Ramsey Theorem for Infinite Graphs). Every infinite graph G contains

K∞ or K∞ as an induced subgraph.

If in addition, we know that G is also connected, then we can say a little more. The

following theorem gives us the unavoidable induced subgraphs for large connected graphs.

Theorem 1.1.3 (Theorem 9.4.1 in [4]). For every r ≥ 3, there exists a positive integer n

such that every finite connected graph with at least n vertices contains Kr, K1,r, or a path

of length r as an induced subgraph.

The unavoidable induced subgraphs of infinite connected graphs are determined in

2



the following theorem. Even though it is a well-known result, we could not find its original

proof (see Theorem 1.6 in [1] for a reference). We want to remark that the proof is very

similar to that of Theorem 9.4.1 in [4] and can be obtained by applying Theorem 1.1.2 above

and Lemma 8.1.2 in [4].

Theorem 1.1.4. Every infinite connected graph G contains K∞, K1,∞, or a one-way infinite

path as an induced subgraph.

1.1.2. 2-connected Graphs

In their papers, Allred, Ding, and Oporowski proved two results about the unavoidable

induced subgraphs of large and infinite 2-connected graphs (see [2] and [1]). We will not

describe all the graphs involved since they are not needed for our main results. For 2-

connectivity, we will instead consider the much weaker result on unavoidable minors and

topological minors.

A graph G′ is a subdivision of a graph G if G′ is obtained from G by replacing every

edge e of G with a path Pe between the two endpoints of e such that the internal vertices of

Pe do not contain any vertex of G and two distinct Pe, Pe′ are internally disjoint. We call Pe

a component path of G′. In G′, the original vertices of G are called branching vertices

and the new vertices are called subdividing vertices.

Let H be a subgraph of G such that H is a subdivision of a graph J . We say G

contains a subdivided J or J is a topological minor of G.

The following result is known for finite graphs.
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Theorem 1.1.5 (Theorem 9.4.2 in [4]). For every r ≥ 3, there exists a positive integer n

such that every finite 2-connected graph with at least n vertices contains K2,r or a cycle of

length r as a topological minor.

We want to point out that the result of Allred, Ding, and Oporowski in [2] implies

Theorem 1.1.5. However, their result is a lot stronger and the proof is a lot more complicated.

For infinite 2-connected graphs, we have the following result due to Ding and Chun.

Theorem 1.1.6 (Theorem 1.3 in [3]). Every infinite 2-connected graph contains a graph in

{K2,∞, F∞, L∞} as a topological minor.

Figure 1.1. Left: L∞, right: F∞

This implies that every infinite 2-connected graph contains K2,∞ or F∞ as a minor.

1.1.3. 3-connected Graphs

Currently, no theorem about the unavoidable induced subgraphs has been established

for graphs of connectivity 3 and higher. Thus, we will consider unavoidable minors and

topological minors. For finite 3-connected graphs, we have the following result, proven by

Oporowski, Oxley, and Thomas in 1993.

Theorem 1.1.7 (Theorem 1.3 in [6]). For every r ≥ 3, there exists a positive integer n such
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that every finite 3-connected graph with at least n vertices contains a graph in {Wr, Vr, K3,r}

as a topological minor.

Figure 1.2. Left: Wr, right: Vr

This implies that every sufficiently large 3-connected graph contains a large wheel or

a large K3,r as a minor. For infinite graphs, we have the following result due to Ding and

Chun.

Theorem 1.1.8 (Theorem 1.3 in [3]). Every infinite 3-connected graph contains a graph in

{K3,∞, FF, FL, LL} as a topological minor.

Figure 1.3. Left: FF , middle: FL, right: LL

This implies that every infinite 3-connected graph contains K3,∞ or FF as a minor.
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1.1.4. Graphs with Connectivity 4 and Higher

Currently, no result about unavoidable topological minors for k-connected (k ≥ 4)

finite graphs exists. In their paper, Oxley, Oporowski, and Thomas determined the unavoid-

able topological minors of sufficiently large quasi 4-connected graphs. A 3-connected graph

G = (V,E) with |V | ≥ 7 is quasi 4-connected if for every subset X of V where |X| = 3,

either G−X is connected or G−X has two components, one of which is a single vertex.

Theorem 1.1.9 (Theorem 1.4 in [6]). For every r ≥ 4, there exists a positive integer n

such that every finite quasi 4-connected graph with at least n vertices contains a graph in

{Ar, Or,Mr, K4,r, K
′
4,r} as a topological minor.

Figure 1.4. Top left: Ar, top right: Or, bottom left: Mr, bottom right: K ′
4,r

We remark that every graph in {Ar, Or,Mr, K4,r, K
′
4,r} is quasi 4-connected.

For k = 5, we have a result about the unavoidable minors of sufficiently large 5-

connected graphs due to Shantanam in [7]. We will not describe all the unavoidable minors

here since the list contains 30 graphs.
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For k ≥ 6, there is currently no known result for finite graphs. For infinite graphs,

Ding and Chun determined the unavoidable topological minors of infinite loosely k-connected

graphs, for all k ≥ 4, in [3]. An infinite graph G is loosely k-connected if there exists a

number d depending on G such that deleting fewer than k vertices from G leaves precisely

one infinite component and a graph containing at most d vertices. We will not go into details

their construction since the graphs involved are not needed in our main results.

1.1.5. Rooted Graphs

By a rooted graph we mean a graph G together with a subset X ⊆ V (G) or

X ⊆ E(G). Rooted graphs play a central role in this thesis. We first consider finite rooted

graphs.

Let n ≥ 3. Let P = x1x2 . . . xn and Q = y1y2 . . . yn be disjoint paths. A ladder Ln is

obtained by adding edges xiyi for i = 1, 2, . . . , n. We call P,Q the rails and each edge xiyi a

rung. For a subdivided Ln, we use the terms rail and rung to mean its subdivided rail and

subdivided rung respectively.

Let n ≥ 3 and let P = x1x2 . . . xn be a path. Let u be a vertex not on P . A fan Fn

is obtained by adding edges uxi for i = 1, 2, . . . , n. We call P the rail and each edge uxi a

spoke. For a subdivided Fn, we use the terms rail and spoke to mean its subdivided rail

and subdivided spoke respectively.
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Figure 1.5. Left: Ln, right: Fn

The following results, due to Wang, determine the unavoidable topological minors of

large 2-connected rooted graphs.

Theorem 1.1.10 (Vertex Version, Theorem 3.1.5 in [8]). There exists a function f1.1.10(t)

where t ≥ 3 with the following property. Let G be a finite 2-connected graph and let X ⊆ V (G)

with |X| ≥ f1.1.10(t). Then G contains one of the following subgraphs

1. a cycle containing at least t vertices of X,

2. a subdivided K2,t containing vertices of X in at least t component paths,

3. a subdivided Ft where each spoke contains at least one vertex of X in its interior,

4. a subdivided Lt where each rung contains at least one vertex of X in its interior.

Theorem 1.1.11 (Edge Version, Theorem 3.1.1 in [8]). There exists a function f1.1.11(t)

where t ≥ 3 with the following property. Let G be a finite 2-connected graph and let X ⊆ E(G)

with |X| ≥ f1.1.11(t). Then G contains one of the following subgraphs

1. a cycle containing at least t edges of X,

2. a subdivided K2,t containing edges of X in at least t component paths,

3. a subdivided Ft where each spoke contains at least one edge of X,

8



4. a subdivided Lt where each rung contains at least one edge of X.

The previous two theorems imply the corresponding results for large connected rooted

graphs.

Let n ≥ 3 and let u, x1, x2, . . . , xn be distinct vertices. A star K1,n is obtained by

adding an edge between u and xi for i = 1, 2, . . . , n. We call u the center of the star. For a

subdivided K1,n, we also use the term center to denote its degree-n vertex.

Let n ≥ 3 and let P = x1x2 . . . xn be a path. A comb Cn is obtained from P by

joining each xi with a pendent edge xivi. We call P the spine and each xivi an xivi-tooth

of Cn. By a leaf sequence of Cn we mean the sequence of its leaves, listed in the order as

they appear, that is v1, v2 . . . , vn. For a subdivided comb, we use the terms spine and tooth

to mean its subdivided spine and subdivided tooth respectively.

For connected graphs, we have the following results. The first one is explicitly stated

in [8], whereas the second one is not, but it has been implicitly obtained in [8].

Theorem 1.1.12 (Vertex Version, Theorem 2.1.4 in [8]). There exists a function f1.1.12(t)

where t ≥ 3 with the following property. Let G be a finite connected graph and let X ⊆ V (G)

with |X| ≥ f1.1.12(t). Then G contains one of the following subgraphs

1. a path containing at least t vertices of X,

2. a subdivided K1,t whose leaves belong to X,

3. a subdivided Ct whose leaves belong to X.

Theorem 1.1.13 (Edge Version). There exists a function f1.1.13(t) where t ≥ 3 with the

following property. Let G be a finite connected graph and let X ⊆ E(G) with |X| ≥ f1.1.13(t).

9



Then G contains one of the following subgraphs

1. a path containing at least t edges of X,

2. a subdivided K1,t where each component path contains at least one edge of X,

3. a subdivided Ct where each tooth contains at least one edge of X.

We want to point out that Theorem 1.1.13 can be obtained easily from Theorem

1.1.11. Let G be a finite connected graph and let X be a sufficiently large subset of E(G).

Let v be a vertex not in G and let G′ be obtained from G by adding edges from v to every

vertex in G. Then G′ is 2-connected and X ⊆ E(G′). Thus, G′ contains one of the subgraphs

listed in Theorem 1.1.11, call it H. Now H − v contains a desired subgraph in G.

Two main results of ours settle the k = 3 case. For k ≥ 4, there is no known result

at this point.

We now consider infinite rooted graphs.

A ray is an infinite graph R whose vertex set is {x1, x2, . . .} and whose edge set is

{xixi+1 | i = 1, 2, . . .}. We call x1 the endpoint and x2, x3, . . . the internal vertices.

We denote R by listing its vertices, in the order as they appear on R, so we will write

R = x1x2 . . . . A double ray is a graph obtained by identifying the two endpoints of two

disjoint rays.

Let {x1, x2, . . .} be an infinite set of vertices. A star K1,∞ is obtained by adding an

edge between x1 and xi for all i ≥ 2. For a K1,∞ or its subdivision, we use the term center

to denote its infinite degree vertex.

Let R = x1x2 . . . be a ray. A comb C∞ is obtained from R by joining each xi with a
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pendent edge xiyi. We call R the spine and each xiyi an xiyi-tooth. For a subdivided C∞, we

use the terms spine and tooth to mean subdivided spine and subdivided tooth, respectively.

There are some differences between our definition of a comb and the one used in [4]. A comb

in [4] may have only one leaf, in which case it is a ray, or finitely many leaves, or infinitely

many leaves. A comb under our definition always has infinitely many leaves. We prefer to

use our definition of a comb instead of the one in [4] since we want to distinguish between a

ray and a comb for the case analysis in later theorems.

The following theorem is a reformulation of Lemma 8.2.2 in [4].

Theorem 1.1.14 (Vertex Version). Let G be an infinite connected graph and let X be an

infinite subset of V (G). Then G contains one of the following subgraphs

1. a ray containing infinitely many vertices of X,

2. a subdivided K1,∞ whose leaves belong to X,

3. a subdivided C∞ whose leaves belong to X.

Four other main results of ours settle the k = 2, 3 cases. For k ≥ 4, there is no known

result at this point. In addition, as we will justify later on, our Theorem 1.2.4 implies the

following theorem.

Theorem 1.1.15 (Edge Version). Let G be an infinite connected graph and let X be an

infinite subset of E(G). Then G contains one of the following subgraphs

1. a ray containing infinitely many edges of X,

2. a subdivided K1,∞ where each component path contains at least one edge of X,
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3. a subdivided C∞ where each tooth contains at least one edge of X.

1.2. Main Results

We now state all of our main results, whose proofs are deferred to the next three

chapters.

1.2.1. Finite Graphs

Let G be a finite graph and let H ′ be a subgraph of G where H ′ is a subdivision of

a graph H. Suppose X ⊆ E(G). Then a component path of H ′ is heavy if it contains at

least one edge of X and is light otherwise. The edge-weight of H ′ is the number of heavy

component paths. On the other hand, suppose X ⊆ V (G). Let U be the set of branching

vertices of H ′. Then the vertex-weight of H ′ is the number of elements in U ∩X.

We want to emphasize that for a finite graph G together with X ⊆ V (G) or X ⊆

E(G), we are interested in unavoidable structures of G containing many elements of X in

many components paths. This is because a subgraph of G may contain many elements of

X, but those elements are in very few component paths. In this case, it is not good since we

want the elements of X to be spread out to fully capture the k-connectivity property. For

infinite graphs, this does not matter because if a subgraph contains infinitely many elements

of X, then infinitely many different component paths contain elements of X.

Theorem 1.2.1 (Edge Version). There exists a function f1.2.1(t) where t ≥ 3 with the

following property. Let G be a finite 3-connected graph and let X be a subset of E(G) with

12



|X| ≥ f1.2.1(t). Then G contains a subdivided H with edge-weight at least t for some H in

{K3,n,Wn, Vn | for some n ≥ t}.

Theorem 1.2.2 (Vertex Version). There exists a function f1.2.2(t) where t ≥ 3 with the

following property. Let G be a finite 3-connected graph and let X be a subset of V (G) with

|X| ≥ f1.2.2(t). Then G contains a subdivided H with vertex-weight at least t for some H in

{K3,n, K
1
3,n, K

2
3,n, K

3
3,n,Wn, Vn | for some n ≥ t}.

Figure 1.6. Left: K1
3,n, middle: K2

3,n, right: K
3
3,n

We want to point out that Theorem 1.2.1 and Theorem 1.2.2 extend the results

of Theorem 1.1.11 and Theorem 1.1.10 to 3-connectivity. For 2-connectivity, the list of

unavoidable graphs in Theorem 1.1.11 and Theorem 1.1.10 contains K2,n, Fn, and Ln. For

3-connectivity, K2,n becomes K3,n, Fn becomes Wn, and Ln becomes Vn.

1.2.2. Infinite Graphs

Let G be an infinite graph and let X be an infinite subset of V (G). Assume a

subgraph G′ of G is a subdivision of a graph H such that V (G′) ∩ X is infinite. Then we

call G′ an X-rich H. Note that the elements of X in G′ might not be branching vertices.

In the definition of vertex-weight, we are counting the number of branching vertices that are

13



in X whereas in the definition of X-rich, we are counting the number of vertices, branching

or subdividing, that are in X.

For 2-connectivity, we have the following results.

Theorem 1.2.3 (Vertex Version). Let G be an infinite 2-connected graph and let X be an

infinite subset of V (G). Then G contains an X-rich H for some H in {K2,∞, F∞, L∞}.

Theorem 1.2.4 (Edge Version). Let G be an infinite 2-connected graph and let X be an

infinite subset of E(G). Then G contains a subdivided H containing infinitely many edges

of X for some H in {K2,∞, F∞, L∞}.

As mentioned before, Theorem 1.2.4 implies Theorem 1.1.15. To see this, let G be

an infinite connected graph and let X be an infinite subset of E(G). Let v be a vertex not

in G and let G′ be obtained from G by adding edges from v to every vertex in G. Then G′

is 2-connected and X ⊆ E(G′). Thus, G′ contains one of the subgraphs listed in Theorem

1.2.4, call it H. Now H − v contains a desired subgraph in G.

For 3-connectivity, we have the following results.

Theorem 1.2.5 (Vertex Version). Let G be an infinite 3-connected graph and let X be an

infinite subset of V (G). Then G contains an X-rich H for some H in {K3,∞, FF, FL, LL}.

Theorem 1.2.6 (Edge Version). Let G be an infinite 3-connected graph and let X be an

infinite subset of E(G). Then G contains a subdivided H containing infinitely many edges

of X for some H in {K3,∞, FF, FL, LL}.

As we shall see in the next few chapters, we will prove a stronger result, which implies

Theorem 1.2.5 and Theorem 1.2.6 immediately. Note that by setting X = V (G), Theorem

14



1.2.3 and Theorem 1.2.5 imply Theorem 1.1.6 and Theorem 1.1.8 respectively.

1.3. Basic Definitions and Theorems

All definitions and theorems in this section are standard in graph theory and are

taken from [4]. All undefined terms will also follow [4].

1.3.1. Graphs

For a set X, we use |X| to denote the number of elements in X, which can be finite

or infinite. By convention, elements in a set are distinct. Let G be a graph. We write V (G)

to mean its vertex set and E(G) to mean its edge set. The order of G is the number of

vertices and is denoted as |G|, so |G| = |V (G)|. We say G is a finite graph if V (G) is finite

and is an infinite graph if V (G) is infinite. Graphs in this section can be either finite or

infinite. Two graphs are disjoint if their vertex sets are disjoint and are edge-disjoint if

their edge sets are disjoint.

Let e = uv be an edge. We call u, v the endpoints of e. Let v ∈ V (G). We denote

NG(v) (or simply N(v) when G is clear) to be the set of neighbors of v. We denote degG v

to be the degree of v in G, which can be finite or infinite. When the underlying graph

G is clear, we will simply write deg v. We define the minimum degree of G as δ(G) =

min {deg v | v ∈ V (G)} and themaximum degree of G as ∆(G) = max {deg v | v ∈ V (G)}.

Note that both δ(G) and ∆(G) can be finite or infinite. We say G is locally finite if all of

its vertices have finite degree.
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When we say a graph G contains another graph H, we mean H is a subgraph of G

and we write H ⊆ G. We denote G − H to be the graph obtained from G by deleting all

vertices of H. In addition, if e ∈ E(G), then we write G\e to mean deleting e from G.

A set of vertices is called a stable if its elements are pairwise non-adjacent and is

called a clique if its elements are pairwise adjacent.

Let n ≥ 1. A path is a graph whose vertex set is {x1, . . . , xn} and whose edge set

is {x1x2, x2x3, . . . , xn−1xn}. We call x1, xn the endpoints and x2, x3, . . . , xn−1 the internal

vertices. We denote P by listing its vertices, in the order as they appear on P , so we will

write P = x1x2 . . . xn. The length of a path is the number of its edges. If P has length

at least one, then
◦
P is obtained from P by removing its two endpoints and we call it the

interior of P . (If P has length one, then
◦
P is an empty graph.)

Let P be a path and let x, y be two vertices of P . We define the following terms

• P [xy] is the xy-subpath of P ,

• P (xy] = P [xy]− x,

• P [xy) = P [xy]− y,

• P (xy) = P [xy]− {x, y}.

Let H be a subgraph of G with at least two vertices. A path P in G is called an

H-path if E(P ∩H) = ∅ and V (P ∩H) consists of the two endpoints of P .

Let A,B ⊆ V (G). We say a path P = x0x1 . . . xk is an AB-path (and AB-edge if

P is an edge) if V (P ) ∩ A = x0 and V (P ) ∩ B = xk. When A = {a}, we use the notation

aB-path (and aB-edge) to mean an {a}B-path (and {a}B-edge). Sometimes, it is more

16



convenient to talk about an AB-path in the context of graphs. Let A,B be subgraphs of G.

By an AB-path (and AB-edge), we mean a V (A)V (B)-path (and V (A)V (B)-edge). When

A is a single vertex graph a, we again adopt the notation aB-path (and aB-edge) to mean

an {a}V (B)-path (and {a}V (B)-edge).

Two paths are internally disjoint if they do not share any common internal vertices.

Let a be a vertex and B ⊆ V (G)− a. Two aB-paths are weakly disjoint if they only have

a in common.

This paragraph defines the concept of a separator. We will make a distinction between

different types of separators, which we will clarify below. First, we define a separator of two

sets of vertices. Let A,B ⊆ V (G) and X ⊆ V (G). We say X separates A,B if every

AB-path in G contains a vertex of X. We call X a separator of A,B in this case. Next, we

define a separator of a vertex and a set of vertices. Let a be a vertex of G and B ⊆ V (G).

We say X separates a,B if it separates {a}, B and a /∈ X. We call X a separator of

a,B in this case. Finally, we define a separator of two vertices. Let a, b be two vertices.

We say X separates a, b if it separates {a}, {b} and a, b /∈ X. We call X a separator

of a, b. From the previous three definitions, we make a distinction between different types

of separators. For example, a separator of a,B is conceptually different from a separator

of {a}, B. Consider a K1,3 where each edge is subdivided exactly once. Let u be the cubic

vertex and let bi (i = 1, 2, 3) be the three leaves. Let ai be the internal vertex of the ubi-path.

Then X = {u} is a separator of {u} and B = {b1, b2, b3}, but X is not a separator of u and

B because u ∈ X. Now X = {a1, a2, a3} is a separator of u and B.
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1.3.2. Minors

Graphs in this section can be either finite or infinite.

Let G′ be a connected subgraph of G and let N be the set of vertices of G−G′ with

a neighbor in G′. The graph G/G′ is obtained from G − G′ by adding a vertex v not in

G and then adding edges from v to all vertices in N . We call G/G′ the graph obtained by

contracting G′. A minor of G is a graph obtained from a subgraph H of G by contracting

disjoint connected subgraphs of H.

Sometimes, it is more convenient to talk about minors without mentioning the con-

traction operation. We now introduce an alternative definition of minors. We say H is a

minor of G if there is a function π, called an embedding, with domain V (H) ∪ E(H)

satisfying the following

1. π(v) is a nonempty, connected subgraph of G for every v ∈ V (H),

2. π(u) and π(v) are disjoint for every distinct u, v ∈ V (H),

3. if e = uv ∈ E(H), then π(e) is an edge of G between π(u) and π(v).

The union of π(v) and π(e) for all v ∈ V (H) and all e ∈ E(H) is called an expansion of H

in G and is denoted as G|H. If H is a minor of G, then we also say G contains an H-minor.

It is easy to see that the two definitions of minors are equivalent. The difference

is that using the language of an embedding, we can refer directly the disjoint connected

subgraphs that are contracted. We want to remark that if H is a minor of G and G is a

minor of G′, then H is also a minor of G′. We will not justify this fact here since our proofs

do not rely on it.
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Let H be a minor of G and let v ∈ V (H). We say v is firm if there exists an

embedding π such that π(v) has only one vertex (that is, π(v) is a vertex of G).

1.3.3. Bridges

Let H be a subgraph of G. An H-bridge is a connected subgraph B of G\E(H)

satisfying one of the following

1. B has one edge and V (B) ⊆ V (H), which we call a trivial bridge,

2. there exists a connected component C of G−H such that E(B) consists of all edges

incident with at least one vertex of C.

For a bridge B, vertices that belong to B ∩H are called its feet. The following properties

of bridges are easy to verify. First, if x, y are two distinct feet of a bridge B, then B

contains an xy-path. Next, every edge e /∈ E(H) belongs to a unqiue bridge. Finally, if

x ∈ V (B1) ∩ V (B2) where B1, B2 are distinct bridges, then x ∈ V (H).

1.3.4. Crossing and Positions

Let S be a path, finite or infinite and let a, b, c, d be distinct vertices on S. We say

{a, b} crosses {c, d} with respect to S if one vertex in {c, d} belongs to S(ab) and the other

vertex in {c, d} does not belong to S[ab]. Let P,Q be disjoint S-paths where P has endpoints

{a, b} and Q has endpoints {c, d}. We say P crosses Q with respect to S if {a, b} crosses

{c, d} with respect to S. Let B1, B2 be distinct S-bridges of a graph G. We say B1 crosses

19



B2 with respect to S if there exist two feet a, b of B1 and two feet c, d of B2 such that {a, b}

crosses {c, d} with respect to S. It is easy to see that crossing is a symmetric relation.

Let S be a path, finite or infinite. We label all the vertices as they appear on S as a

sequence

. . . , x−2, x−1, x0, x1, x2, . . . .

If S has a finite end, then the sequence terminates at that end. Otherwise, the sequence

continues indefinitely on that end. When S is a ray, we assume its endpoint xi has smallest

index i. Let xa, xb be two distinct vertices of S. We say with respect to S, xa is on the

left of xb, or xb is on the right of xa, if a < b. Let P,Q be disjoint S-paths where P has

endpoints xa, xb with a < b and Q has endpoints xc, xd with c < d. We say with respect to

S, Q is on the right of P , or P is on the left of Q, if xb is on the left of xc with respect

to S.

1.3.5. Connectivity

Graphs in this section can be either finite or infinite.

Let k ≥ 1. A graph G is k-connected if |G| > k and G −X is connected for every

X ⊆ V (G) with |X| < k. Note that for graphs with at least two vertices, being 1-connected

is equivalent to being connected.

The best known theorem related to connectivity is Menger Theorem.

Theorem 1.3.1 (Menger Theorem, Theorem 8.4.1 in [4]). Let G be a graph and let k be

an integer. Let A,B ⊆ V (G) that cannot be separated by fewer than k vertices. Then G
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contains k disjoint AB-paths.

The following corollary to Menger Theorem is also very useful.

Corollary 1.3.2. Let a be a vertex of G and let B ⊆ V (G)− a. If a,B cannot be separated

by fewer than k vertices, then G contains k weakly disjoint aB-paths.

Proof. Let A be the set of neighbors of a in G.

Claim 1.3.2.1. In G− a, A and B cannot be separated by fewer than k vertices.

Suppose there exists a separator X of size less than k separating A and B in G− a.

We show that X is a separator of a and B in G. Let P be an aB-path in G. Then P − a is

a path in G− a with one endpoint in A and the other endpoint in B. Thus, P − a contains

a subpath P ′ that is an AB-path. This means that P ′ contains a vertex of X and so does

P . We have shown that every aB-path in G contains a vertex of X. In addition, a /∈ X

since X ⊆ V (G) − a. Hence, X is a separator of a and B in G. Since |X| < k, we get a

contradiction. This proves the claim.

By Theorem 1.3.1, G − a contains k disjoint AB-paths. Therefore, G contains k

weakly disjoint aB-paths.

Menger Theorem guarantees the existence of many disjoint paths between two set of

vertices if they cannot be separated by a small set. The next theorem shows that if we are

given a set of k weakly disjoint aB-paths in G and we know G contains a set of k+1 weakly

disjoint aB-paths, then we can obtain those k + 1 paths so that they contain the same set

of endpoints as the given k paths.
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Theorem 1.3.3. Let a be a vertex of G and B ⊆ V (G) − a. Let P be a set of k weakly

disjoint aB-paths. If G has more than k weakly disjoint aB-paths, then G has a set Q of

k + 1 weakly disjoint aB-paths such that every end of a path of P in B is an end of a path

of Q.

Proof. For every set Q of k + 1 weakly disjoint aB-paths, let H be the union of all paths in

P ,Q. Since H is a finite graph, we can choose Q so that |E(H)| is minimal. We prove that

this set Q satisfies the conclusion of the theorem. Suppose for contradiction that there exists

a path P ∈ P having an end x ∈ B that is not an end of any path in Q. Since a belongs to

every path in P ∪ Q, there exists a z ∈ P such that z ∈ Q for some Q ∈ Q, but no other

vertex of P [zx] belongs to any path in Q. First, suppose z = a. This means that P only

intersects every path in Q at a. Since |P| = k and |Q| = k + 1, H has an edge e incident

with a such that e does not belong to any path in P . Let Q be the path on Q containing e.

By replacing Q with P , we obtain a set Q′ of k+1 weakly disjoint aB-paths and the union of

all paths in P ,Q′ yields a graph H with smaller |E(H)| value, contradicting the minimality

of E(H). Hence, z ̸= a. Now z ∈ Q for some Q ∈ Q, but no other vertex of P [zx] belongs to

any path in Q. Let y be the endpoint of Q in B. Note that Q[zy] contains an edge e where

e /∈ E(P ). Let Q′ be the path obtained from Q by replacing Q[zy] with P [zx] and let Q′ be

obtained from Q by replacing Q with Q′. Now Q′ is a set of k + 1 weakly disjoint aB-paths

whose resulting graph H has smaller |E(H)| value, contradicting the minimality of E(H).

Therefore, Q satisfies the conclusion of the theorem.
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Chapter 2. Unavoidable Topological Minors of Large 3-connected
Rooted Graphs

Graphs in this chapter are finite.

2.1. Definitions and Lemmas

This section defines more terminology and states some theorems that are needed for

the proof of our main result. First, we examine the properties of 3-connected graphs. We

discuss how local operations affect 3-connectivity. The following theorem was proven by

Tutte.

Theorem 2.1.1 (Chapter 3, Exercise 10 in [4]). Let G ̸= K4 be a 3-connected graph and let

e ∈ E(G). Then G/e is 3-connected or G\e is a subdivision of a 3-connected graph.

Given a 3-connected graph G together with a subset X of E(G), if we know that

every proper minor of G no longer contains X, then we can say something about how X

interacts with edges not in X. This is the main idea of the next theorem.

Theorem 2.1.2. Let G ̸= K4 be a 3-connected graph and let X be a subset of E(G).

Assume that for every proper 3-connected minor H of G, we have X ̸⊆ E(H). Then for

every e ∈ E(G)−X, one of the following must be true

1. one endpoint of e is cubic in G and is incident with two edges of X,

2. e and two edges of X form a triangle.

Proof. By Theorem 2.1.1, either H = G/e is 3-connected or G\e is a subdivision of a

3-connected graph H. In both cases, H is a proper minor of G, so by the minimality
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assumption, X ̸⊆ E(H). If H = G/e, then after identifying the two ends of e, there exist

two parallel edges that are both in X. Thus, e and two edges of X form a triangle in G,

so statement 2 is satisfied. Otherwise, G\e is a subdivision of H. Since H is simple and

3-connected and X ̸⊆ E(H), it follows that G\e has a vertex v of degree 2 that is incident

with two edges of X and v is incident with e in G. Hence, in G, one endpoint of e is cubic

and is incident with two edges of X, so statement 1 is satisfied.

The next theorem asserts that a sufficiently large connected graph contains a vertex

of high degree or a long path starting from any vertex.

Theorem 2.1.3. Let d, t ≥ 3 and let f2.1.3(t) = 1+(d−1)+(d−1)(d−2)+(d−1)(d−2)2+

· · · + (d − 1)(d − 2)t−1. Let G be a connected graph with |G| ≥ f2.1.3(d, t). Then ∆(G) ≥ d

or G contains a path of length t starting from any vertex.

Proof. Assume ∆(G) ≤ d−1, for otherwise we are done. Let v ∈ V (G) be chosen arbitrarily

and let nk be the number of vertices in G of distance k from v. Then n0 = 1, n1 = degG v ≤

d− 1, and nk ≤ nk−1(d− 2) for all k ≥ 2. Hence,

n0 + n1 + · · ·+ nt−1 ≤ 1+ (d− 1) + (d− 1)(d− 2) + (d− 1)(d− 2)2 + · · ·+ (d− 1)(d− 2)t−2.

In addition, when d, t ≥ 3,

1 + (d− 1) + (d− 1)(d− 2) + (d− 1)(d− 2)2 + · · ·+ (d− 1)(d− 2)t−2 < |G|.

This implies that nt ̸= 0. Hence, G contains a path of length t starting from v.

The next theorem is a special case of Theorem 1.1.12. Given a connected graph G

and a large subset X of V (G), the unavoidable topological minors containing many elements
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of X are a path, a subdivided star, or a subdivided comb. If in addition, we know that

vertices of X have degree 1 in G, then we can eliminate the path possibility.

Theorem 2.1.4. There exists a function f2.1.4(d, t) where d, t ≥ 3 with the following property.

Let T be a tree with at least f2.1.4(d, t) leaves. Then T contains a subdivided K1,d or a

subdivided Ct whose leaves are the leaves of T .

Proof. Let k = max (d, t) and let X be the set of leaves of T . Let f2.1.4(d, t) = f1.1.12(k).

Note that every element of X has degree one in T . By Theorem 1.1.12, T contains one of

the following subgraphs

1. a path containing at least k vertices of X,

2. a subdivided K1,k whose leaves belong to X,

3. a subdivided Ck whose leaves belong to X.

Note that statement 1 is not possible because vertices of X have degree 1 in T . Therefore,

T contains a subdivided K1,d or a subdivided Ct whose leaves are the leaves of T .

We will need a stronger version of Theorem 2.1.4. We want to insist that in case T

contains a subdivided a comb, the leaves of the comb are arranged in a nice way with respect

to T .

Definition 2.1.5. Let T be a tree whose leaves are labeled u1, u2, . . . , uk where k ≥ 3.

Suppose T contains K, a subdivided comb Cn whose leaves are the leaves of T . If a leaf

sequence ui1 , ui2 , . . . , uin of K satisfies i1 < i2 < · · · < in or in < in−1 < · · · < i1, then we

say K is straight with respect to T (or simply straight when the tree T is clear).
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Theorem 2.1.6. There exists a function f2.1.6(m,n) where m,n ≥ 3 with the following

property. Let T be a tree with at least f2.1.6(m,n) leaves. Then T contains a subdivided K1,m

or a subdivided straight Cn whose leaves are the leaves of T .

Proof. Let k = R(n, n) and let f2.1.6(m,n) = f2.1.4(m, k). We label the leaves of T as

u1, u2, . . . , ul where l ≥ f2.1.4(m, k). By Theorem 2.1.4, T contains a subdivided K1,m or

a subdivided Ck whose leaves are the leaves of T . If T contains a subdivided K1,m, then

the theorem holds. Otherwise, T contains a subdivided Ck whose leaf sequence is labeled

v1, v2, . . . , vk, so that each vi corresponds to a leaf uij of T . Let H = Kk be a complete graph

on {v1, v2, . . . , vk}. We color an edge vavb of H red if a < b and ia < ib and blue if a < b and

ia > ib. By the definition of k, the graph H contains a monochromatic subgraph Kn. This

yields a subdivided straight Cn.

We now turn back to discuss unavoidable structures of large graphs. Recall that at

the beginning, we have a theorem about the unavoidable topological minors of 3-connected

graphs with many vertices. Since all graphs in this thesis are simple, we can also determine

the unavoidable topological minors of 3-connected graphs with many edges as well. The

following is a reformulation of Theorem 1.1.7. We want to use this theorem because it is

essential later on in our proof.

Theorem 2.1.7. There exists a function f2.1.7(t) where t ≥ 3 with the following property.

Let G be a 3-connected graph with at least f2.1.7(t) edges. Then G contains a subdivided H

for some H in {K3,t,Wt, Vt}.

Proof. Let n be determined as in Theorem 1.1.7 and let f2.1.7(t) =
(
n
2

)
. Then |G| ≥ n
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because G is simple. The theorem then follows from Theorem 1.1.7.

Finally, we discuss the concepts of cycles and chords and examine chord arrangements.

Definition 2.1.8. Let n ≥ 3. A cycle C is a graph whose vertex set is {x1, x2, . . . , xn} and

whose edge set is {x1x2, x2x3, . . . , xn−1xn, xnx1}. We denote C by listing its vertices, in the

order as they appear on C, so we will write C = x1x2 . . . xn. The length of a cycle is the

number of its edges, which is also the same as the number of its vertices. A cycle of length n

is denoted as Cn. We call a C-path a C-chord (or simply chord when the cycle C is clear).

Definition 2.1.9. Let {M1,M2, . . . ,Mk} be a set of k pairwise internally disjoint chords of

a cycle C. For each i, let xi, yi be the endpoints of Mi on C. The set {M1,M2, . . . ,Mk} is of

• arrangement 1 if x1 = x2 = · · · = xk and y1, y2, . . . , yk are distinct,

• arrangement 2 if the chords are pairwise disjoint and their endpoints appear in the

order x1, x2, . . . , xk, y1, y2, . . . , yk,

• arrangement 3 if the chords are pairwise disjoint and their endpoints appear in the

order x1, x2, . . . , xk, yk, . . . , y2, y1,

• arrangement 4 if the chords are pairwise disjoint and their endpoints appear in the

order x1, y1, x2, y2, . . . , xk, yk.
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Figure 2.1. Top left: arrangement 1, top right: arrangment 2, bottom left: arrangement 3,

bottom right: arrangement 4

To examine chord arrangements, we need a stronger version of Ramsey Theorem

stated at the beginning of this thesis. In fact, Ramsey Theorem can be formulated using

the language of coloring, which gives us the following theorem. We will refer to this result

as Ramsey Theorem from now on.

Theorem 2.1.10 (Ramsey Theorem). For any positive integers t1, t2, . . . , tn, there exists an

integer N satisfying the following. For any function π : E(KN) → {1, 2, . . . , n}, there exists

an i ∈ {1, 2, . . . , n} such that the subgraph formed by edges e with π(e) = i contains a clique

of size ti. The smallest such N is denoted as R(t1, t2, . . . , tn).

Using Ramsey Theorem, we prove that if a cycle has many chords, then many of them

will be of the same arrangement.

Theorem 2.1.11. Let t1, t2, t3, t4 ≥ 3 be integers. Then there exists a function

f2.1.11(t1, t2, t3, t4) with the following property. Let C be a cycle with at least f2.1.11(t1, t2, t3, t4)
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chords. Then in C, we can find a set of ti chords of arrangement i for some i ∈ {1, 2, 3, 4}.

Proof. Let f2.1.11(t1, t2, t3, t4) = R(t1, t2, t3, t4) = N and let C be a cycle with at least

f2.1.11(t1, t2, t3, t4) chords. Let π : E(KN) → {1, 2, 3, 4} be a function. Then there exists

an i ∈ {1, 2, 3, 4} such that the subgraph formed by edges e with π(e) = i contains a clique

of size ti. This yields a set of ti chords of arrangement i in C.

2.2. Edge Version

In this section, we prove Theorem 1.2.1. To do so, we prove the minor version of

Theorem 1.2.1 and then open up the contracted vertices to obtain the topological minor

result. We need the following definitions.

Definition 2.2.1. Let n ≥ 3 and let {x1, x2, . . . , xn} be a set of vertices. Let u, v be vertices

not in {x1, x2, . . . , xn}. A K2,n is obtained by adding edges uxi and vxi for i = 1, 2, . . . , n.

Definition 2.2.2. Let n ≥ 3 and let G1, G2, G3 be disjoint graphs such that each Gi is either

a star or a comb with n leaves. For i = 1, 2, 3, we label the leaves of Gi as xi
1, x

i
2, . . . , x

i
n

(if Gi is a comb, then we label the leaves according to one of its leaf sequences). Let G be

the graph obtained by identifying x1
i , x

2
i , x

3
i , for i = 1, 2, . . . , n, and then unsubdividing all

vertices of degree two.

• If all of the Gi are stars, then we call G a K3,n. For a K3,n or its subdivision, we use

the term cores to denote its degree-n vertices and the term children to denote its

cubic vertices.
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• If exactly two of the Gi are stars, then we call G a K1
3,n.

• If exactly one of the Gi is a star, then we call G a K2
3,n.

• If none of the Gi is a star, then we call G a K3
3,n.

Definition 2.2.3. Let n ≥ 3 and let C = x1x2 . . . xn be a cycle. A wheel Wn is obtained

by adding a vertex u, called the center, and edges ux1, ux2, . . . , uxn. For i = 1, 2, . . . , n,

an edge uxi is called a spoke and an edge xixi+1 (with xn+1 = x1) is called a rim. For a

subdivided wheel, we will use the terms spoke and rim to denote its subdivided spoke and

subdivided rim respectively.

Definition 2.2.4. Let n ≥ 3. Let P = x1x2 . . . xn and Q = y1y2 . . . yn be two disjoint

paths. For every i ∈ {1, 2, . . . , n}, we add an edge between xi and yi. A ladder with

a handle Vn is the graph obtained by adding two vertices u, v, called the grips, and

edges uv, ux1, uy1, vxn, vyn. We call xiyi (i = 1, 2, . . . , n) a rung and xixi+1 or yiyi+1

(i = 1, 2, . . . , n − 1) a rail edge of Vn. We call P,Q the rails and uv the handle of

Vn. For a subdivided ladder, we will use the terms rung, rail, and handle to denote its

subdivided rung, subdivided rail, and subdivided handle respectively.

Lemma 2.2.5. There exists a function f2.2.5(t) where t ≥ 3 with the following property.

Let G be a 3-connected graph and let X be a subset of E(G) with |X| ≥ f2.2.5(t). Then G

contains a K3,m- or a Wm-minor, for some m, each containing at least t edges of X.

Remark. We can actually insist that m = t in the statement of the lemma. However, to

facilitate the case analysis in Theorem 1.2.1, we are not concerned with how big m is, as

long as the minor contains at least t edges of X.
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Proof. Let f2.2.5(t) = min {f2.1.7(t2 + 3t), 7}. By proving the lemma on the largest 3-

connected minor of G containing X, we may assume that no 3-connected proper minor of

G contains X. Note that G ̸= K4 because K4 has only six edges whereas |X| ≥ 7. By

Theorem 2.1.2, for every e ∈ E(G)−X, one of the following must be true

1. one endpoint of e is cubic in G and is incident with two edges of X,

2. e and two edges of X form a triangle.

Let E1 be the set of edges in E(G)−X satisfying statement 1 and let E2 = E(G)−(X∪E1).

Since |X| ≥ f2.1.7(t
2+3t), G contains a subdivision H of J for some J in {K3,n,Wn, Vn | n ≥

t2 + 3t}. We choose H with the largest number of heavy component paths. The following

observation is immediate.

Claim 2.2.5.1. Let P be a light component path of H. Then G does not contain a P -path

P ′ such that P ′ is also an H-path and P ′ contains an edge of X.

Assume for a contradiction that there exists such a path P ′. Let x, y be the two

endpoints of P ′. Since P is light, we can replace P [xy] by P ′ and obtain a subdivision of J

with more heavy component paths than H, contradicting the choice of H. Consequently, no

such P ′ exists. This proves the claim.

We divide the remain of this proof into three cases.

Case 1: H is a subdivided K3,n where n ≥ t2 + 3t. Let u1, u2, u3 be the cores and

let v1, v2, . . . , vn be the children of H. Let Pi,j be the component path between ui and vj. A

component path is called good if it contains at least one edge of X ∪ E1 and is called bad

otherwise. A child vertex is called good if it belongs to at least one good component path
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and is called bad otherwise.

Claim 2.2.5.2. If H contains at least t good children, then the lemma holds.

Let v1, v2, . . . , vt be the good children of H and let H ′ ⊆ H be the subdivided K3,t

with u1, u2, u3 as the cores and v1, v2, . . . , vt as the children. Then for every k ∈ {1, 2, . . . , t},

there exists a component path Pi,k, for some i ∈ {1, 2, 3}, containing at least one edge of

X ∪ E1 because vk is good. If a component path Pi,k contains an edge ek ∈ X, then we

associate vk with this ek. Otherwise, Pi,k does not contain any edge belonging to X. Thus,

in Pi,k, there exists an edge e′k ∈ E1. By definition, one endpoint of e′k is cubic in G, call it x,

and is incident with two edges of X. Observe that x ̸= ui because degG(ui) ≥ n > 3. Hence,

x = vk or it is an internal vertex of Pi,k. If x = vk, then vk is cubic in G and is incident with

two edges of X. Since degH′(vk) = 3, there exists an i′ ̸= i such that the component path

Pi′,k contains an edge ek ∈ X. In this case, we associate vk with this ek. Otherwise, x is

an internal vertex of Pi,k. But then this implies that Pi,k contains an edge ek ∈ X, which is

not possible. We have shown that for every k ∈ {1, 2, . . . , t}, we can associate a good child

vk with an edge ek ∈ X. In addition, e1, e2, . . . , et are distinct because every ek belongs to

E(P1,k ∪ P2,k ∪ P3,k). We now perform contraction in H ′ to obtain the desired K3,t-minor

according to the following procedure. For a component path containing an ek ∈ X that has

been associated with a good vk, we contract all edges except ek in that component path.

For every other component path, we contract it into an edge. Doing so yields a K3,t-minor

containing at least t edges of X. This proves the claim.

From the previous claim, we may assume that H has fewer than t good children and
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so it has at least t2 bad children because n ≥ t2 + 3t. We choose t2 bad children and label

them v1, v2, . . . , vt2 . By the definition of being bad, E(Pi,k) ⊆ E2 for every i ∈ {1, 2, 3} and

every k ∈ {1, 2, . . . , t2}. Let wk be the neighbor of u1 on P1,k for k = 1, 2, . . . , t2. Then for

every k, there exists a zk such that u1wkzk is a triangle with zku1, zkwk ∈ X. We call zk the

tip of vk.

Claim 2.2.5.3. For every k = 1, 2, . . . , t2, zk ∈ H.

If zk /∈ H for some k, then we get a contradiction of Claim 2.2.5.1 by setting P = P1,k

and P ′ = zku1 ∪ zkwk. This proves the claim.

Claim 2.2.5.4. For every k = 1, 2, . . . , t2, zk /∈ {u1, u2, u3}.

Clearly, zk ̸= u1 because G is simple. Assume for a contradiction that zk = u2

for some k. By replacing P2,k with u2wk, we obtain a subdivided K3,n with more heavy

component paths than H and this contradicts the choice of H. This proves the claim.

Claim 2.2.5.5. For every k = 1, 2, . . . , t2, zk does not belong to a component path for which

one of its endpoint is a bad child.

Assume for a contradiction that some zk belongs to a Pi,l, for a bad child vl, where

l = k is possible. If i = 1, then we get a contradiction of Claim 2.2.5.1 by setting P = P1,l

and P ′ = zku1. Hence, i ̸= 1. By replacing P1,l with u1zk, we obtain a subdivided K3,n with

more heavy component paths than H and this contradicts the choice of H. This proves the

claim.

From the previous three claims, we deduce that for every bad child vk, its tip zk is
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not a core vertex and belongs to a component path for which one of its endpoint is a good

child. Since H has at least t2 bad children and fewer than t good ones, there exists a good

child vl, for some l, such that (P1,l ∪P2,l ∪P3,l)−{u1, u2, u3} contains at least t tips zk of at

least t bad children. We choose t bad children and label them v1, v2, . . . , vt. We now describe

the process to obtain the desired K3,m-minor. We first contract (P1,l ∪ P2,l ∪ P3,l)− {u2, u3}

into a vertex u′. Next, for k = 1, 2, . . . , t, we have the paths P1,k[wkvk] ∪ wku
′ between

u′ and vk, each of which contains at least one edge of X. Finally, for k = 1, 2, . . . , t, we

have the paths P2,k between u2 and vk and the paths P3,k between u3 and vk. This yields a

subdivided K3,t-minor with cores u′, u2, u3 and children v1, v2, . . . , vt where every u′vi-path

(for i = 1, 2, . . . , t) contains at least one edge of X. This yields a K3,t-minor in G containing

at least t edges of X.

Case 2: H is a subdivided Wn where n ≥ t2 + 3t. We orient the rim cycle of H

clockwise and call it C. Let u be the center of H. A spoke is called good if it contains at

least one edge of X ∪ E1 and is called bad otherwise.

Claim 2.2.5.6. If H contains at least t good spokes, then the lemma holds.

Let H ′ consists of C and t good spokes of H. In H ′, let v1, v2, . . . , vt be the cubic

vertices on C, listed in the order as they appear on C. For i = 1, 2, . . . , t, let Si be the

uvi-spoke of H ′ and let Qi be the directed vivi+1-rim on C (with vn+1 = v1). Observe that

each Si contains an edge of X ∪E1 by the definition of being good. If an Si contains an edge

ei ∈ X, then we associate Si with this ei. Otherwise, Si does not contain any edge belonging

to X. Thus, it contains an edge e′i ∈ E1. By definition, one endpoint of e′i is cubic in G, call
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it x, and is incident with two edges of X. Observe that x ̸= u because degG(u) ≥ n > 3.

Hence, x = vi or x is an internal vertex of Si. If x is an internal vertex of Si, then Si contains

an edge ei ∈ X, which is not possible. Otherwise, x = vi. This means that vi is cubic and

is incident with two edges of X. Since degH′(vi) = 3, Qi contains an edge ei ∈ X. We

associate Si with this ei. We have shown that every good Si can be associated with an edge

ei ∈ X. In addition, e1, e2, . . . , et are distinct because every ei belongs to E(Si ∪ Qi). To

obtain the desire Wt-minor, we contract H ′ as following. For a component path containing

an ei ∈ X that has been associated with a good Si, we contract all edges except ei in that

component path. For every other component path, we contract it into an edge. Since there

are t good spokes, we obtain a Wt-minor containing at least t edges of X. This proves the

claim.

From the previous claim, we may assume that H has fewer than t good spokes and

so it has at least t2 + 2t bad spokes because n ≥ t2 + 3t. Let S be a bad spoke and let v be

the endpoint of S on C. By definition, E(S) ⊆ E2. Let w be the neighbor of u on S. Then

there exists a vertex z such that uwz forms a triangle with zu, zw ∈ X. We call z the tip of

S.

Claim 2.2.5.7. z ∈ H − u.

If z /∈ H, then we get a contradiction of Claim 2.2.5.1 by setting P = S and P ′ =

zu ∪ zw. In addition, z ̸= u because G is simple. This proves the claim.

Claim 2.2.5.8. z belongs to a good spoke.

Since z ∈ H and z ̸= u, either z is an internal vertex of a rim or z belongs to a
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spoke. If z is an internal vertex of a rim, then H ∪uz is a subdivided Wn+1 with more heavy

component paths than H, contradicting the choice of H. This means that z belongs to a

spoke. If z belongs to a bad spoke S ′, where S ′ = S is possible, then we get a contradiction

of Claim 2.2.5.1 by setting P = S ′ and P ′ = zu. Therefore, if z belongs to a spoke, then it

belongs to a good spoke. This proves the claim.

We have shown that for every bad spoke S, its tip z is not the center and belongs to

a good spoke. Since H has at least t2 + 2t bad spokes and fewer than t good spokes, there

exists a good spoke Sg such that Sg − u contains at least t+ 2 such tips z. We choose t+ 2

of those bad spokes and label them as S1, S2, . . . , St+2, so that all of their corresponding tips

z1, z2, . . . , zt+2 belong to Sg−u. Let vi be the endpoint of Si on C and let wi be the neighbor

of u on Si for i = 1, 2, . . . , t+2. Let w be the neighbor of u on Sg and let v be the endpoint

of Sg on C. Then on C, we may assume, without loss of generality, that v is between v1 and

v2. We construct the desire Wt-minor as following. Let Q be the v1v2-subpath of C that is

disjoint from Sg and let D = S1 ∪ S2 ∪Q. Then D is a cycle. Let M = D ∪ (Sg − u) and let

Ri = (Si∪ziwi)−u for i = 3, 4, . . . , t+2. The subgraph (
⋃t+2

i=3 Ri)∪M contains a Wt-minor

containing at least t edges of X.

Case 3: H is a subdivided Vn where n ≥ t2 + 3t. Let u, v be the grips and let P,Q

be the rails of H. A rung is called good if it contains at least one edge of X ∪ E1 and is

called bad otherwise.

Claim 2.2.5.9. If H contains at least 3t+ 1 good rungs, then the lemma holds.

Let R1, R2, . . . , R3t+1 be 3t+1 good rungs of H, listed in the order they appear along
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the ladder, where each Ri has endpoints xi ∈ P, yi ∈ Q. Let H ′ be the subgraph of H

that is obtained from H by deleting edges and internal vertices of other rungs. Then H ′

is a subdivided V3t+1 whose rungs are R1, R2, . . . , R3t+1. In H ′, let Pi be the subdivided

xixi+1-rail edge and Qi be the subdivided yiyi+1-rail edge for i = 1, 2, . . . , 3t. Observe that

each Ri contains an edge of X ∪ E1 by the definition of being good. If Ri contains an edge

ei ∈ X, then we associate Ri with this ei. Otherwise, Ri does not contain any edge belonging

to X. Thus, it contains an edge e′i ∈ E1. By definition, one endpoint of e′i is cubic in G, call

it x, and is incident with two edges of X. If x is an internal vertex of Ri, then Ri contains

an edge ei ∈ X, which is not possible. Otherwise, x = xi or x = yi. This means that xi or

yi is cubic and is incident with two edges of X. Since degH′(xi) = degH′(yi) = 3, Pi or Qi

contains an edge ei ∈ X. We associate Ri with this ei. We have shown that every good Ri

can be associated with an edge ei ∈ X. In addition, e1, e2, . . . , e3t are distinct because every

ei belongs to E(Ri ∪ Pi ∪ Qi). Note that each chosen ei ∈ X is on a rung or a rail. Since

there are 3t such chosen ei, at least t of them are on the rungs or at least t of them are on

the same rail. To obtain the desire Wm-minor, we do the following to H ′. For a component

path contains an ei ∈ X that has been associated with a good Ri, we contract all edges

except ei in that component path. For every other component path, we contract it into an

edge. First, suppose at least t of those ei are on the rungs. By contracting one of the rails

into a single vertex, we obtain a Wm-minor with at least t edges of X. Now suppose at least

t of them are on a rail, say P . By contracting Q into a single vertex, we obtain a Wm-minor

with at least t edges of X. This proves the claim.
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From the previous claim, we may assume that H has fewer than 3t + 1 good rungs.

This implies that H has at least t2 bad rungs because n ≥ t2 + 3t. We choose t2 of them

and label them as R1, R2, . . . , Rt2 , in the order as they appear along the ladder. For each

Ri, let xi ∈ P and yi ∈ Q be its two endpoints. By the definition of being bad, E(Ri) ⊆ E2

for every i ∈ {1, 2, . . . , t2}. Let wi be the neighbor of xi on Ri. Then there exists a vertex zi

such that zixiwi forms a triangle with zixi, ziwi ∈ X.

Claim 2.2.5.10. zi ∈ H for i = 1, 2, . . . , t2.

If zi /∈ H, then we get a contradiction of Claim 2.2.5.1 by setting P = Ri and

P ′ = zixi ∪ ziwi. This proves the claim.

Let A be the handle of H and let a, b be the endpoints of P such that a is adjacent to

u and b is adjacent to v. We define B to be the union of P and the ua, bv-component paths

of H and let D = H − (A∪B). From the previous claim, we deduce that each zi belongs to

one of the subgraphs A,B, or D because V (H) = V (A) ∪ V (B) ∪ V (D). Since there are t2

such zi, at least t of them belong to one of the following

• V (B). In this case, we contract
◦
B into a vertex.

• V (A−B). In this case, we contract
◦
A into a vertex.

• V (D). In this case, we contract D into a vertex.

This yields a minor of G, which contains a Wm-minor with at least t edges of X.

We will now prove the edge version.

Proof of Theorem 1.2.1. Let a = f2.1.6(t, t), b = f2.1.6(a, a), and c = f2.1.6(b, b). Let
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f1.2.1(t) = f2.2.5(3c). We divide the proof into two cases.

Case 1: G contains a Wm-minor, for some m, containing at least 3c edges of X. Let

H be this Wm-minor. Then in G, there exist a cycle C, a tree T disjoint from C, and m

edges {e1, e2, . . . , em} between T and C where the endpoints of ei on C are disjoint. Since

H contains at least 3c edges of X, either C contains at least c heavy component paths or

at least c edges ei belong to X. If C contains at least c heavy component paths, then let

S = {ei | ei is incident with a heavy component path}. Otherwise, at least c edges ei belong

to X, and we let S be the set of those ei. Observe that |S| ≥ c. Let S be the union of

all edges in S and let Y = V (C) ∩ V (S). Then |Y | ≥ c. Let T ′ be the minimal subtree of

T ∪ S such that the leaves of T ′ are elements of Y . Then T ′ contains a subdivided K1,b or

a subdivided straight Cb whose leaves are the leaves of T ′. This yields a subdivided Wb or a

subdivided Vb with edge-weight at least t in G.

Case 2: G does not contain a Wm-minor, for any m, containing at least 3c edges of

X. Then G contains a K3,n, for some n, containing at least 3c edges of X. Let H be this

K3,n-minor and let u1, u2, u3 be the cores of H. A child v of H is called type i, for some

i ∈ {1, 2, 3}, if vui ∈ X. Note that a child may belong to more than one types. Since H

has at least 3c edges of X, we may assume, without loss of generality, that it has at least c

children of type 1. Let v1, v2, . . . , vl be all the children of type 1 in H for some l ≥ c. Let H ′

be the K3,l whose cores are u1, u2, u3, whose children are v1, v2, . . . , vl, and whose edges are

edges of H between ui, vj for i ∈ {1, 2, 3} and j ∈ {1, 2, . . . , l}. Note that by the construction

of H ′, u1vi ∈ X for all i ∈ {1, 2, . . . , l}.
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Since H ′ is also a minor of G, there exists an embedding π. In G|H ′, let

M1 =

(
l⋃

j=1

π(u1vj)

)
∪ π(u1)

and let N1 = V (M1) ∩
(⋃l

j=1 π(vj)
)
. Then M1 is connected and every vertex in N1 has

degree 1 in M1. Let T1 be the minimal subtree of M1 whose leaves are elements of N1. Since

|N1| = l ≥ c, T1 contains Z1 that is subdivided K1,b or a subdivided straight Cb whose leaves

are the leaves of T1.

Let x1, x2, . . . , xb be the leaves of Z1 where each xj belongs to some π(vij). Let

M2 =

(
b⋃

j=1

π(u2vij)

)
∪ π(u2)

and let N2 = V (M2) ∩
(⋃b

j=1 π(vij)
)
. Then M2 is connected and every vertex in N2 has

degree 1 in M2. Let T2 be the minimal subtree of M2 whose leaves are elements of N2. Since

|N2| = b, T2 contains Z2 that is subdivided K1,a or a subdivided straight Ca whose leaves

are the leaves of T2.

Let y1, y2, . . . , ya be the leaves of Z2 where each yj belongs to some π(vkj). Let

M3 =

(
a⋃

j=1

π(u3vkj)

)
∪ π(u3)

and let N3 = V (M3) ∩
(⋃a

j=1 π(vkj)
)
. Then M3 is connected and every vertex in N3 has

degree 1 in M3. Let T3 be the minimal subtree of M3 whose leaves are elements of N3. Since

|N3| = a, T3 contains Z3 that is subdivided K1,t or a subdivided straight Ct whose leaves are

the leaves of T3.

Recall that each of the Z1, Z2, or Z3 has two possibilities, a subdivided star or a
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subdivided comb. To complete the proof, we divide the analysis into subcases, depending

on the choice of Z1, Z2, and Z3.

Case 2a: At least two of them are subdivided combs. Then G contains a subdivided

Vt with edge-weight at least t.

Case 2b: Exactly one of them is a subdivided comb. Then G contains a subdivided

Wt with edge-weight at least t.

Case 2c: All of them are subdivided stars. Then G contains a subdivided K3,t with

edge-weight at least t.

2.3. Vertex Version

In this section, we prove Theorem 1.2.2. To do so, we prove the minor version of

Theorem 1.2.2 and then open up the contracted vertices to obtain the topological minor

result.

First, it is helpful to mention the notion of suppressing a vertex of G. As we will

see below, this operation produces a graph that is isomorphic to a minor of G while still

preserving the vertices in X. We then discuss the idea of X-preserving minor that is central

to the proof of the vertex version.

Definition 2.3.1. Let z be a vertex of degree 2 in G and let u, v be the neighbors of z.

By suppressing z we mean deleting z and in addition, adding an edge between u, v if

uv /∈ E(G).

Remark. Let z be a vertex of degree 2 in G and let u, v be the neighbors of z. Note that
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suppressing z produces a graph that is isomorphic to a minor of G (the minor is G/uz or

G/vz). However, we want to distinguish between suppressing z from contracting uz (or vz),

even though both produce two isomorphic graphs. When we suppress z, the vertices u, v in

the resulting graph are still vertices of G. This is not the case if we contract uz or vz.

Definition 2.3.2. Let H be a subgraph of G and let X ⊆ V (H) such that for every

v ∈ V (H) −X, degH v ≥ 2. Assume a graph G′ can be obtained from G by a sequence of

the following operations, in any order

• deleting an edge uv where u, v /∈ H,

• contracting an edge uv where u /∈ H and v /∈ X,

• suppressing a vertex not in X.

In addition, G′ has a subgraph H ′ where H ′ is obtained from H by suppressing vertices of

V (H)−X and X ⊆ V (H ′). Then we say (G′, H ′) is an X-preserving minor of (G,H).

Remark. We want to point out that G′ is not minor of G, but it is isomorphic to a minor

of G.

Lemma 2.3.3. Let G ̸= K4 be a 3-connected graph and let H be a subgraph of G. Let

X ⊆ V (H) such that for every v ∈ V (H) − X, degH v ≥ 2. Then there exists an X-

preserving minor (G′, H ′) of (G,H) satisfying the following

1. G′ is 3-connected,

2. for every v ∈ V (G′)− V (H ′), all neighbors of v belong to X.

Proof. Let e ∈ E(G) whose both endpoints are not in H. Then G/e is 3-connected or G\e
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is a subdivision of a 3-connected graph by Theorem 2.1.1. If G/e is 3-connected, then we

contract e. Otherwise, G\e is a subdivision of a 3-connected graph, for which we delete e and

suppress any resulting degree-2 vertices. By repeating this process for all edges of G whose

both endpoints are not in H, we obtain an X-preserving minor (G′, H) of (G,H) where G′

is 3-connected. In addition, V (G′)− V (H) is stable.

Let v ∈ V (G′)−V (H) and suppose v has a neighbor u ∈ V (H)−X. Let e = uv. Then

G′/e is 3-connected or G′\e is a subdivision of a 3-connected graph. If G′/e is 3-connected,

then we contract e. Otherwise, G′\e is a subdivision of a 3-connected graph, for which we

delete e and suppress any resulting degree-2 vertices. By repeating this process, we obtain

the desired X-preserving minor.

We now turn our attention to rooted trees, which in essence is a tree with a specified

vertex as a root. Let T be a tree and let u, v ∈ V (T ). Then there exists a unique path

between u and v in T . We denote this unique path as uTv and we adopt this notation for

the next few definitions and lemmas.

Definition 2.3.4. Let r be a vertex in a tree T . We call (T, r) a rooted tree with r as its

root. For two vertices x, y ∈ T , we say y is a child of x if x ∈ rTy and x is adjacent to y in

T . We say x, y are comparable if x ∈ rTy or y ∈ rTx. Let G be a graph and let (T, r) be

a rooted tree in G. We say (T, r) is a normal tree of G if the endpoints of every T -path in

G are comparable.

We have the following two rephrases in [4].

Lemma 2.3.5 (Lemma 1.5.5 in [4]). Every connected graph contains a normal spanning tree
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with any specified vertex as its root.

Lemma 2.3.6 (Lemma 1.5.6 in [4]). Let (T, r) be a normal tree of G and let x, y ∈ V (T ).

Then x, y are separated in G by V (rTx) ∩ V (rTy).

The following corollary is needed.

Corollary 2.3.7. Let (T, r) be a normal tree of G and let v ∈ V (T ). Then in G− rTv, no

two children of v belongs to the same component.

Proof. Let x, y be two distinct children of v. Then V (rTx) ∩ V (rTy) = V (rTv). The

corollary then follows from the previous lemma.

We have seen that a large 3-connected graph contains a large wheel or a large K3,n as

a minor. In their paper, Ding, Dziobiak, and Wu determines the requirement to have each of

these two as an unavoidable minor. Informally, their result states that a large 3-connected

graph containing a long path must contain a large wheel as a minor and conversely, a large

3-connected graph without a long path must contain a large K3,n as a minor. The following

result is a reformulation of Theorem 3.8 in [5].

Lemma 2.3.8. There exists a function f2.3.8(t) where t ≥ 3 with the following property.

Let G be a 3-connected graph that contains a path of length f2.3.8(t). Then G contains a

Wt-minor.

In the next two lemmas, we prove an equivalence of Theorem 2.1 and Theorem 3.8 in

[5] for rooted graphs. Our results also establish that the existence of a long path (or a lack

thereof) determines whether a large wheel (or a large K3,n) exists as a minor.

Lemma 2.3.9. Let t ≥ 3, n = f2.1.11(t, t, t, t), and a = f2.3.8(tn + t). Let G be a 3-
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connected graph such that G has no path of length a. Let X be a subset of V (G) such that

|X| ≥ f2.1.3
(
t
(
a
3

)
+ a, t

(
a
3

)
+ a
)
. Then G contains a subdivided K3,t where all cubic vertices

belong to X.

Proof. We define the height h(T ) of a tree T to be the length of its longest path. Let (T, r)

be a normal spanning tree of G for some specified r, whose existence is guaranteed by Lemma

2.3.5. Now h(T ) < a because G has no path of length a. Let T ′ be the minimal subtree of

T containing X ∪ {r}. Then (T ′, r) is a rooted tree with h(T ′) < a. In addition, every leaf

of T ′ belongs to X.

Claim 2.3.9.1. T ′ has a vertex with at least t
(
a
3

)
children.

Since |X| ≥ f2.1.3
(
t
(
a
3

)
+ a, t

(
a
3

)
+ a
)
and X ⊆ V (T ′), either ∆(T ′) ≥ t

(
a
3

)
+ a or T ′

contains a path of length t
(
a
3

)
+a. The latter is not possible because G has no path of length

a. Thus, ∆(T ′) ≥ t
(
a
3

)
+ a, so T ′ has a vertex with at least t

(
a
3

)
children. This proves the

claim.

Let v ∈ V (T ′) that has at least t
(
a
3

)
children. We choose t

(
a
3

)
of those children and

we label them as u1, u2, . . . , ut(a3)
. By Corollary 2.3.7, in G − rTv, no two children of v

belongs to the same component. Let Gi be the component containing ui in G − rTv for

i = 1, 2, . . . , t
(
a
3

)
. Observe that every Gi contains a leaf li of T

′, which belongs to X. By

Menger Theorem, there exist three weakly disjoint li(rTv)-paths Pi, Qi, Ri in G. Note that if

i ̸= j, then Pi∪Qi∪Ri only intersects Pj∪Qj∪Rj on V (rTv). Let ai, bi, ci be the endpoints of

Pi, Qi, Ri in V (rTv) respectively. Since there are fewer than
(
a
3

)
possible choices for ai, bi, ci

(because |V (rTv)| < a), whereas there are t
(
a
3

)
possible li, at least t of those li all have the
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same ai, bi, ci. The union of all such Pi, Qi, Ri yields the desired subdivided K3,t in G.

Lemma 2.3.10. Let t ≥ 3, n = f2.1.11(t, t, t, t), and a = f2.3.8(tn + t). Let G be a 3-

connected graph such that G has a path of length a. Let X be a subset of V (G) such that

|X| ≥ f2.1.3
(
t
(
a
3

)
+ a, t

(
a
3

)
+ a
)
and V (G) −X is a stable set. Then G contains a minor H

where H is isomorphic to a graph obtained from Wt by subdividing its rims. In addition, all

non-center cubic vertices of H are firm and belong to X.

Proof. Since G has a path of length a, by Lemma 2.3.8, G has a Wtn+t-minor. This means

that G has subgraph H, consisting of a cycle C, a tree T disjoint from C, and edges {ei | i =

1, 2, . . . , tn + t} between C and T where the endpoints of all ei are disjoint on C. For each

i ∈ {1, 2, . . . , tn+ t}, let vi be the endpoint of ei on C. If at least t vertices, say v1, v2, . . . , vt,

belong to X, then the union of those vi and C and T contains the desired minor. Otherwise,

fewer than t vertices vi belong to X, so at least tn vertices vi do not belong to X. We relabel

those vertices as v′1, v
′
2, . . . , v

′
tn and for each v′i, let e

′
i be the edge of H with v′i as one of its

endpoints and the other endpoint belongs to T . Let K be the union of C, T , and those e′i

(for i = 1, 2, . . . , tn).

Claim 2.3.10.1. Every path of C−{v′1, v′2, . . . , v′tn} has a vertex w′
i ∈ X for i = 1, 2, . . . , tn.

Since V (G)−X is stable, for every v ∈ V (G)−X, all of its neighbors are in X. Thus,

for every v′i, both its neighbors in C are in X. This proves the claim.

Let X ′ = {w′
1, w

′
2, . . . , w

′
tn}. Clearly, X ′ ⊆ V (K). We now apply Lemma 2.3.3 on

(G,K) to obtain an X-preserving minor (G′, K ′). Note that G′ is 3-connected and for every
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vertex in V (G′)− V (K ′), all of its neighbors belong to X ′. In G′/T , let u be the contracted

T .

Claim 2.3.10.2. G′/T is 3-connected.

Clearly, G′/T is connected. Assume for a contradiction that G′/T has a separator Y

of size 1 or 2 separating A,B ⊆ V (G′/T ) where A,B is a partition of V (G′/T ). Note that

u ∈ Y for otherwise, G′ has a separator of size 1 or 2. This means that V (C) ⊆ A − u or

V (C) ⊆ B − u. Without loss of generality, we may assume V (C) ⊆ A− u. Let b ∈ B − Y .

Then b has at least 3 neighbors because G′ is 3-connected. But every neighbor of b must be

in X ′ and X ′ ⊂ V (C) ⊆ A− u. Hence, b has at least one neighbor in A− Y and this is not

possible. Therefore, no such separator Y exists. This proves the claim.

For the remain of this proof, by bridge we mean a (K ′/T )-bridge of G′/T and by

chord we mean a C-chord. Note that for every bridge, its feet belong to X ′.

Claim 2.3.10.3. If there exists a bridge with at least t feet, then the lemma holds.

Let B be a bridge with at least t feet and let Y be the set of feet of B. Then Y ⊆ X ′

and |Y | ≥ t. By contracting B−Y into a single vertex, we obtained the desired minor. This

proves the claim.

From the previous claim, we may assume that every bridge has fewer than t feet.

Since every foot of a bridge belongs to X ′ and |X ′| = tn, there are at least n bridges. Now

every bridge B has two distinct feet x, y ∈ X ′. Let Q be an xy-path in B. Then Q is a

chord. We have shown that every bridge contains at least one chord, so there are at least n

chords because there are at least n bridges. Additionally, two different chords are internally
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disjoint because two different chords are subpaths of two different bridges. By the definition

of n, we can find a set S of t chords of arrangement i for some i ∈ {1, 2, 3, 4}. Let S be the

union of all chords in S. To make the last part of the proof more convenient, in the set of t

chords of arrangement i, we relabel each chords to have endpoints xj, yj for j = 1, 2, . . . , t.

Note that xj, yj ∈ X ′ for every j ∈ {1, 2, . . . , t}.

First, suppose i = 1. This means that x1 = x2 = · · · = xt and y1, y2, . . . , yt are

distinct. Without loss of generality, we may assume that the endpoints of the chords appear

in the order x1, y1, y2, . . . , yt. Let P be the x1y1-subpath of C that does not contain yt and let

Q be the xtyt-subpath of C that does not contain y1. By the construction of X ′, there exist

a v′a ∈
◦
P and a v′b ∈

◦
Q such that both v′a, v

′
b are adjacent to u. Let R be the v′av

′
b-subpath of

C that does not contain x1. Then R ∪ v′au ∪ v′bu is a cycle, call it C1. The subgraph C1 ∪ S

yields the desired minor.

Next, suppose i = 2. This means that the chords are pairwise disjoint and their

endpoints appear in the order x1, x2, . . . , xt, y1, y2, . . . , yt. Let P be the x1yt-subpath of C

that does not contain xt and let Q be the xty1-subpath of C that does not contain x1. By

the construction of X ′, there exist a v′a ∈
◦
P and a v′b ∈

◦
Q such that both v′a, v

′
b are adjacent

to u. Let R be the v′av
′
b-subpath of C that does not contain x1. Then R ∪ v′au ∪ v′bu is a

cycle, call it C2. Let R′ be the x1xt-subpath of C that is disjoint from R. The subgraph

C2 ∪ S ∪R′ yields the desired minor.

Next, suppose i = 3. This means that the chords are pairwise disjoint and their

endpoints appear in the order x1, x2, . . . , xt, yt, . . . , y2, y1. Let P be the x1y1-subpath of C
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that does not contain xt and let Q be the xtyt-subpath of C that does not contain x1. By

the construction of X ′, there exist a v′a ∈
◦
P and a v′b ∈

◦
Q such that both v′a, v

′
b are adjacent

to u. Let R be the v′av
′
b-subpath of C that does not contain x1. Then R ∪ v′au ∪ v′bu is a

cycle, call it C3. Let R′ be the x1xt-subpath of C that is disjoint from R. The subgraph

C3 ∪ S ∪R′ yields the desired minor.

Finally, suppose i = 4. This means that the chords are pairwise disjoint and their

endpoints appear in the order x1, y1, x2, y2, . . . , xt, yt. For each i, let Qi be the xiyi-subpath

of C that does not contain any other xj. By the construction of X ′, there exist a v′ai ∈
◦
Qi

such that v′ai is adjacent to u for every i ∈ {1, 2, . . . , t}. Let Z =
⋃t

i=1Qi and let C4 =

(C ∪ S)\E(Z). Then C4 is a cycle. The subgraph (
⋃t

i=1 uv
′
ai
∪ Qi[xiv

′
ai
]) ∪ C4 yields the

desired minor.

We will now prove the minor version of Theorem 1.2.2.

Lemma 2.3.11. There exists a function f2.3.11(t) where t ≥ 3 with the following property.

Let G be a 3-connected graph and let X be a subset of V (G) such that |X| ≥ f2.3.11(t). Then

G contains one of the following

1. a minor H that is isomorphic to a K3,t where all cubic vertices are firm and belong

to X,

2. a minor H that is isomorphic to a graph obtained from Wt by subdividing its rims.

In addition, all non-center cubic vertices of H are firm and belong to X.

Proof. Let n = f2.1.11(t, t, t, t) and let a = f2.3.8(tn+t). Let f2.3.11(t) = f2.1.3
(
t
(
a
3

)
+ a, t

(
a
3

)
+ a
)
.

We first prove that there exists a 3-connected graph G′ containing X such that G′ is iso-
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morphic to a minor of G and V (G′) − X is a stable set. Let e = uv ∈ E(G) where

u, v /∈ X. Then G/e is 3-connected or G\e is a subdivision of a 3-connected graph. If G/e

is 3-connected, then we contract e. Otherwise, G\e is a subdivision of a 3-connected graph,

for which we delete e and suppress any resulting degree-2 vertices. By repeating this process

for all edges of G whose both endpoints are not in X, we obtain the desired G′. Since G′ is

isomprhic to a minor of G, it suffices to show that G′ contains a minor satisfying statement

1 or statement 2 in the lemma.

Now G′ either has a path of length a or it does not. In both cases, by applying

Lemma 2.3.9 and Lemma 2.3.10, we obtain the desired conclusion. (Note that if G′ contains

a minor that is isomorphic to a subdivided K3,t where all cubic vertices are firm and belong

to X, then G contains a minor that is isomorphic to a K3,t with the same property.)

We conclude this chapter with the proof of the vertex version.

Proof of Theorem 1.2.2. Let a = f2.1.6(t, t), b = f2.1.6(a, a), and c = f2.1.6(b, b). Let

f1.2.2(t) = f2.3.11(c). We apply the previous lemma and divide the proof into two cases.

Case 1: G contains a minor H that is isomorphic to a K3,c where all cubic vertices

are firm and belong to X.

Let u1, u2, u3 be the cores and let v1, v2, . . . , vc be the children of H. Since H is a

minor of G, there exists an embedding π. In G|H, let

M1 =

(
c⋃

j=1

π(u1vj)

)
∪ π(u1).

Then M1 is connected and every vj has degree 1 in M1. Let T1 be the minimal subtree of M1

whose leaves are v1, v2, . . . , vc. Then T1 contains Z1 that is subdivided K1,b or a subdivided
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straight Cb whose leaves are the leaves of T1.

Let vi1 , vi2 , . . . , vib be the leaves of Z1. Let

M2 =

(
b⋃

j=1

π(u2vij)

)
∪ π(u2).

Then M2 is connected and every vij has degree 1 in M2. Let T2 be the minimal subtree of M2

whose leaves are vi1 , vi2 , . . . , vib . Then T2 contains Z2 that is subdivided K1,a or a subdivided

straight Ca whose leaves are the leaves of T2.

Let zi1 , zi2 , . . . , zia be the leaves of Z2. Let

M3 =

(
a⋃

j=1

π(u3zij)

)
∪ π(u3).

Then M3 is connected and every zij has degree 1 in M3. Let T3 be the minimal subtree of M3

whose leaves are zi1 , zi2 , . . . , zia . Then T3 contains Z3 that is subdivided K1,t or a subdivided

straight Ct whose leaves are the leaves of T3.

Recall that each of the Z1, Z2, or Z3 has two possibilities, a subdivided star or a

subdivided comb. To complete this case, we divide the analysis into subcases, depending on

the choice of Z1, Z2, and Z3.

Case 1a: All of them are subdivided stars. Then G contains a subdivided K3,t with

vertex-weight at least t.

Case 1b: Exactly two of them are subdivided stars. Then G contains a subdivided

K1
3,t with vertex-weight at least t.

Case 1c: Exactly one of them is a subdivided star. Then G contains a subdivided

K2
3,t with vertex-weight at least t.
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Case 1d: All of them are subdivided combs. Then G contains a subdivided K3
3,t

with vertex-weight at least t.

Case 2: G contains a minor H where H is isomorphic to a graph obtained from Wc

by subdividing its rims. In addition, all non-center cubic vertices of H are firm and belong

to X. Then G contains a subgraph K consisting of a cycle C, a tree T disjoint from C, and

edges {ei | i = 1, 2, . . . , c} where the endpoints of all ei are disjoint on C. For each ei, let

vi be the endpoint of ei on C. Now vi ∈ X for i = 1, 2, . . . , c. Let S be the union of all ei

for i = 1, 2, . . . , c. Let T ′ be the minimal subtree of T ∪ S such that the leaves of T ′ are

{v1, v2, . . . , vc}. Then T ′ contains a subdivided K1,b or a subdivided straight Cb whose leaves

are the leaves of T ′. This yields a subdivided Wb or a subdivided Vb with vertex-weight at

least t in G.
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Chapter 3. Unavoidable Topological Minors of Infinite
2-connected Rooted Graphs

Graphs in this chapter are infinite.

3.1. Definitions and Lemmas

This section defines more terminology and states some theorems that are needed for

the proof of our main result. We first prove two standard results from real analysis and set

theory.

Lemma 3.1.1. Let {xi}∞i=1 be a sequence of distinct positive integers. Then {xi}∞i=1 contains

an increasing infinite subsequence.

Proof. We call an index n good if xn < xm for all m > n and is bad otherwise.

Claim 3.1.1.1. There are infinitely many good indices.

Suppose there are only finitely many good indices n1, n2, . . . , nk for some k. Then

there exists an index a1 that is greater than every ni. Now a1 is bad, so there exists an index

a2 > a1 such that xa2 < xa1 . Next, a2 is also bad, so there exists an index a3 > a2 such

that xa3 < xa2 . Note that we can choose a1 < a2 < a3 < . . . indefinitely whereas we cannot

choose xa1 > xa2 > xa3 > . . . indefnitely since {xi}∞i=1 is a sequence of positive integers.

This proves the claim.

From the previous claim, we can choose infinitely many good indices n1 < n2 < n3 <

. . . . Now xn1 , xn2 , xn3 , . . . is an increasing infinite subsequence as wanted.
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Lemma 3.1.2. Let A,B be infinite sets. Then A has an infinite subset A′ and B has an

infinite subset B′ such that A′ ∩B′ = ∅.

Proof. If A∩B is finite, then A′ = A−B and B′ = B−A are the desired subsets. Otherwise,

A ∩B is infinite and so it contains two disjoint infinite subsets A′, B′.

The following is an immediate application of Theorem 1.1.14.

Lemma 3.1.3. Let H be a subgraph of G and let B be an H-bridge. Let X be the set of feet

of B. If X is infinite, then B contains a subdivided K1,∞ or comb whose leaves belong to X.

Proof. For every x ∈ X, we delete all but one edge of B that is incident with x. Let B′ be

the subgraph of B obtained after performing this operation. Then B′ is connected and X is

an infinite subset of V (B′). In addition, every x ∈ X has degree 1 in B′. By Lemma 1.1.14,

B′ contains one of the following subgraphs

1. an X-rich ray,

2. an X-rich K1,∞ whose leaves belong to X,

3. an X-rich comb whose leaves belong to X.

Note that statement 1 is not possible because every x ∈ X has degree 1 in B′. Therefore, B

contains a subdivided K1,∞ or comb whose leaves belong to X.

The following lemma is also very useful.

Lemma 3.1.4 (Lemma 3.1 in [3]). Every locally finite, connected graph contains an induced

ray starting from any vertex.

We now describe the graphs K2,∞, F∞, L∞ that are important in our later discussion.
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Definition 3.1.5. Let {x1, x2, . . .} be an infinite set of vertices. A K2,∞ is obtained by

adding edges x1xi and x2xi for every i ≥ 3.

Definition 3.1.6. Let R = x1x2 . . . be a ray and let u be a vertex not on R. We then add

an edge ei between u and xi for i = 1, 2, . . . . The resulting graph is called a fan and is

denoted as F∞. We call R the rail and each edge ei a spoke. For a subdivided F∞, we use

the terms rail and spoke to mean its subdivided rail and subdivided spoke respectively.

Definition 3.1.7. Let P = x1x2 . . . and Q = y1y2 . . . be disjoint rays. We then add an edge

ei between xi and yi for i = 1, 2, . . . . The resulting graph is called a ladder and is denoted

as L∞. We call P,Q the rails and each edge ei a rung. For a subdivided L∞, we use the

terms rail and rung to mean its subdivided rail and subdivided rung respectively.

The ladder L∞ is an important unavoidable graph since it is 2-connected and serves

as the basis where more complicated 3-connected graphs are built upon. However, in many

case analyses, we obtain something that is very close to a true ladder (a locally finite graph

consisting of two disjoint rays together with infinitely many internally disjoint rungs in

between). In the next three lemmas, we will clean up those types of messy ladders to obtain

an L∞.

Lemma 3.1.8. Let G be the union of a ray R and infinitely many internally disjoint R-paths

Q1, Q2, . . . such that with respect to R, Qi+1 crosses Qi but does not cross Qj for any j < i.

Then G = H1 ∪H2 where H1 is a finite graph and H2 is the union of two disjoint rays A,B

and infinitely many internally disjoint AB-paths. In addition, H1 and H2 are edge-disjoint

and G is locally finite.
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Proof. Let r be the endpoint of R. For each Qi, we denote its two endpoints as ai, bi

where ai is on the left of bi with respect to R. Since R is a ray, there exists an index i0

such that for every i ̸= i0, neither ai nor bi is on the left of ai0 with respect to R. Let

H1 = (
⋃i0−1

i=1 Qi) ∪ R[rai0). Then H1 is a finite graph. Let R′ be the subray of R with

ai0 as the endpoint and let H2 = (
⋃∞

i=i0
Qi) ∪ R′. Clearly, G = H1 ∪ H2 and H1, H2 are

edge-disjoint.

We now show that H2 is the union of two disjoint rays A,B and infinitely many

internally disjoint AB-paths. For the remain of this proof, every crossing and left, right

position is with respect to R′. For convenience, we relabel the Qi in H2. Let Q1 = Qi0 , Q2 =

Qi0+1, . . . , so that Qi+1 crosses Qi but does not cross Qj for any j < i. For each Qi, we

denote its two endpoints as ai, bi where ai is on the left of bi. Note that a1 is the endpoint

of R′.

Claim 3.1.8.1. For any i, j with j > i + 1, if aj or bj belongs to R′(aibi), then R′[ajbj] ⊆

R′[aibi] and at least one of the aj+1 or bj+1 belongs to R′(aibi).

Since Qj does not cross Qi and one of the aj or bj belongs to R′(aibi), it follows

that both aj and bj belongs to R′[aibi]. Hence, R′[ajbj] ⊆ R′[aibi]. Additionally, since Qj+1

crosses Qj, at least one of the aj+1 or bj+1 belongs to R′(ajbj) ⊆ R′(aibi). This proves the

claim.

Claim 3.1.8.2. For any i, j with j > i+ 1, neither aj nor bj belongs to R′(aibi).

Assume for a contradiction that such i, j exist. By induction on k using the previous

claim, we deduce that R′[akbk] ⊆ R′[aibi] for all k ≥ j. Since R′[aibi] is finite, there exist

56



m,n such that n > m ≥ j and R′[ambm] = R′[anbn]. But this implies that Qn+1, which

crosses Qn, also crosses Qm, a contradiction. This proves the claim.

Claim 3.1.8.3. If x is an endpoint of Qj and x is not a1, then ai is on the left of x for

every i < j.

Assume for a contradiction that there exists an i < j where ai is on the right of x.

Since x is not a1, there exists an ak with k < i, namely a1, such that ak is on the left of x.

We choose the largest such k. Since j > i ≥ k + 1, by Claim 3.1.8.2, x /∈ R′(akbk). This

implies that bk = x or bk is on the left of x. Since Qk+1 crosses Qk, either ak+1 or bk+1

belongs to R′(akbk). If ak+1 ∈ R′(akbk), then ak+1 is on the left of x and this contradicts the

maximality of k. Hence, bk+1 ∈ R′(akbk). But then ak+1, being on the left of bk+1, is on the

left of x and this again contradicts the maximality of k. Therefore, no such i exists. This

proves the claim.

Claim 3.1.8.4. We have an+1 ∈ R′(anbn) for all n ≥ 1.

Assume there exists such an n where the statement is false. This means that bn+1 ∈

R′(anbn) and an+1 is on the left of an since Qn+1 crosses Qn. If an+1 is not a1, then this

contradicts Claim 3.1.8.3 because an+1 is on the left of an. Thus, an+1 = a1. Since Qn+2

crosses Qn+1, it has an endpoint x ∈ R′(an+1bn+1). By Claim 3.1.8.3, x is on the right of an.

But since x is also on the left of bn+1, which is on the left of bn, it follows that x ∈ R′(anbn)

and this contradicts Claim 3.1.8.2. Therefore, no such n exists. This proves the claim.

It follows from the previous claim that starting from the endpoint a1 of R
′ and going

from left to right, the endpoints of Q1, Q2, . . . are a1, a2, b1, a3, b2, a4, . . . , bi, ai+2, . . . , where
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bi = ai+2 is possible. This implies that G is locally finite because ai ̸= bi for every i. Let

A =
∞⋃
k=0

Q2k+1 ∪R′[b2k+1a2k+3] = Q1 ∪R′[b1a3] ∪Q3 ∪R′[b3a5] ∪ . . .

and let

B =
∞⋃
k=0

Q2k+2 ∪R′[b2k+2a2k+4] = Q2 ∪R′[b2a4] ∪Q4 ∪R′[b4a6] ∪ . . . .

Then A,B are disjoint rays. Let

M =
∞⋃
k=1

R′[a2k+1b2k] = R′[a3b2] ∪R′[a5b4] ∪ . . .

and let

N =
∞⋃
k=0

R′[a2k+2b2k+1] = R′[a2b1] ∪R′[a4b3] ∪ . . . .

Then M ∪ N ∪ R′[a1a2] is the set of infinitely many internally disjoint AB-paths. Finally,

H2 = A ∪B ∪M ∪N ∪R′[a1a2], which completes the proof.

Lemma 3.1.9. Let A,B be disjoint rays and let P be an infinite set of internally disjoint

AB-paths. Let H be the union of A,B, and all paths in P. Assume additionally that H is

locally finite. Then H contains a subdivided L∞ whose rails are contained in A,B and whose

rungs belong to P.

Proof. Since H is locally finite, P has an infinite subset P ′ such that two paths in P ′ are

disjoint. Starting at the endpoint of A, we label the vertices of A that are incident with a

path in P ′ as a sequence {xi}∞i=1, in the order as they appear on A. Let yi be the endpoint

on B of the path in P ′ with xi as one of its endpoints. Starting at the endpoint of B, we

list the vertices yi in the order as they appear on B. This yields a sequence {yij}∞j=1 where
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{ij}∞j=1 is a sequence of distinct positive integers. By Lemma 3.1.1, the sequence {ij}∞j=1

contains an increasing infinite subsequence {i′j}∞j=1. Let Pj be the path in P ′ with endpoints

xi′j
, yi′j . The graph

⋃∞
j=1 Pj ∪ A ∪ B contains a subdivided L∞ that is the desired subgraph

of H.

Lemma 3.1.10. Let A,B be disjoint rays and let P be an infinite set of internally disjoint

AB-paths. Let H be the union of A,B, and all paths in P and let X be an infinite subset

of V (H). Assume additionally that H is locally finite. Then H contains a subdivided L∞,

whose rails are contained in A,B and whose rungs belong to P, such that one of its rails

contains infinitely many elements of X or every of its rungs contains at least one element

of X.

Proof. Since X ⊆ V (H), one of the following is true

1. A ∪B contains infinitely many elements of X,

2. there exists an infinite subset P ′ of P such that each path in P ′ contains at least one

element of X.

If statement 1 is true, then let P ′ = P . Otherwise, let P ′ be an infinite subset of P such

that each path in P ′ contains at least one element of X. Let H ′ be the union of A,B, and

all paths in P ′. By Lemma 3.1.9, H ′ contains the desired subdivided L∞.

3.2. Vertex Version

For connected rooted graphs, their unavoidable rooted topological minors are a path,

a subdivided star, or a subdivided comb. Thus, it is natural to consider the simplest case
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when a 2-connected rooted graphs contains a rich path. We begin with the following lemma.

Lemma 3.2.1. Let G be a 2-connected graph and let X be an infinite subset of V (G).

Assume G contains an X-rich ray. Then G contains an X-rich F∞ or an X-rich L∞.

Proof. Let R be the ray that contains infinitely many elements of X in G. For the remain

of the proof, every bridge and crossing is with respect to R.

Claim 3.2.1.1. If there exists a bridge with infinitely many feet, then the lemma holds.

Suppose there exists a bridge B with infinitely many feet. Let Y be the set of feet of

B. By Lemma 3.1.3, one of the following is true

1. B contains a subdividedK1,∞, call itK, whose leaves belong to Y . Then the subgraph

K ∪R contains an X-rich F∞.

2. B contains a subdivided comb, call it K, whose leaves belong to Y . Starting from the

endpoint of R, we label the leaves ofK as x1, x2, . . . , in the order as they appear on R.

Let W be the spine of K and let yi ∈ W such that xiyi is a tooth of K. Starting from

the endpoint of W , we list the vertices yi in the order as they appear on W . This

yields a sequence {yij}∞j=1 where {ij}∞j=1 is a sequence of distinct positive integers.

By Lemma 3.1.1, the sequence {ij}∞j=1 contains an increasing infinite subsequence

{i′j}∞j=1. Let Pi′j
be the tooth of K with endpoints xi′j

, yi′j . Then the union of R,W ,

and all Pi′j
contains an X-rich L∞.

This proves the claim.

By the previous claim, we may assume that every bridge has finitely many feet. We
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now define the peak of a bridge and the reach of a vertex in R. Starting from the endpoint of

R, we list all of its vertices from left to right as a sequence x1, x2, . . . . The peak of a bridge

B is the largest i such that xi is a foot of B and is denoted as p(B). Note that p(B) is finite

because B has finitely many feet. Let xi be a vertex of R. If no bridge contains xi as a foot,

then the reach r(xi) of xi is 0. Otherwise, we define its reach r(xi) to be the largest p(B),

among all bridges B that contain xi, or r(xi) = ∞ if no such p(B) exists.

Claim 3.2.1.2. If r(xi) = ∞ for some i, then the lemma holds.

Since r(xi) = ∞ and every bridge has finitely many feet, there exists a sequence

of bridges B1, B2, . . . each containing xi such that p(B1) < p(B2) < . . . . Let Pk be the

xixp(Bk)-path in Bk. Let R′ be the subray of R with xp(B1) as its endpoint. The subgraph

(
⋃∞

k=1 Pk) ∪R′ is an X-rich F∞. This proves the claim.

From the previous claim, we may assume additionally that every vertex in R has finite

reach. We now construct a sequence Q1, Q2, . . . of internally disjoint R-paths such that Qi+1

crosses Qi but does not cross Qj for any j < i. Intuitively, we construct the sequence using a

greedy process; at each step, we choose Qi with its reach as large as possible and also crosses

Qi−1.

We first construct Q1. Let y1 = xr(x1) and let B1 be a bridge containing x1, y1. Let

Q1 be an x1y1-path in B1. Next, we construct Q2. Since G − y1 is connected, it has an

R-path from R[x1y1) to R−R[x1y1]. In addition, this aforementioned path cannot has x1 as

its endpoint by the choice of Q1. Hence, G− y1 has a vertex in R(x1y1) whose reach exceeds

r(x1). Among all such vertices in R(x1y1), we choose one with the largest reach and call it
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x2. Let y2 = xr(x2) and let B2 be a bridge containing x2, y2. Let Q2 be an x2y2-path in B2.

Observe that Q2 crosses Q1 since x2 ∈ R(x1y1) and y2 /∈ R[x1y1]. In addition, Q1 and Q2

are internally disjoint because B1 ̸= B2 as p(B1) < p(B2).

Suppose Q1, Q2, . . . , Qn are constructed such that Qi+1 crosses Qi but does not cross

Qj for any j < i. In Qn−1, let xn−1 be one of its endpoint with its corresponding yn−1 =

xr(xn−1). In Qn, let xn be one of its endpoint with its corresponding yn = xr(xn). Since G−yn

is connected, it has an R-path from R[x1yn) to R−R[x1yn]. This aforementioned path must

have an endpoint in R[yn−1yn) by the construction of Q1, Q2, . . . , Qn. Hence, G − yn has a

vertex in R[yn−1yn) whose reach exceeds r(xn). Among all such vertices in R[yn−1yn), we

choose one with the largest reach and call it xn+1. Let yn+1 = xr(xn+1) and let Bn+1 be a

bridge containing xn+1, yn+1. Let Qn+1 be an xn+1yn+1-path in Bn+1. Observe that Qn+1

crosses Qn since xn+1 ∈ R[yn−1yn) ⊆ R(xnyn) and yn+1 /∈ R[xnyn]. In addition, Qn+1 does

not cross Qj for any j < n+ 1 because xn+1, yn+1 are not in R[x1yn−1).

We have constructed a sequence Q1, Q2, . . . of internally disjoint R-paths such that

Qi+1 crosses Qi but does not cross Qj for any j < i. Let K = (
⋃∞

i=1Qi) ∪ R. By Lemma

3.1.8, K = H1 ∪H2 where H1 is a finite graph and H2 is the union of two disjoint rays A,B

and infinitely many internally disjoint AB-paths. In addition, H1 and H2 are edge-disjoint

and K is locally finite. Since R contains infinitely many elements of X, so does K. Since

H1 is finite, H2 contains infinitely many elements of X. By Lemma 3.1.10, H2 contains an

X-rich L∞.

The next lemma asserts that given a rooted graph consisting of a ray and infinitely

62



many paths in a nice configuration, we can obtain a rich ray, for which the analysis is reduced

to the previous lemma.

Lemma 3.2.2. Let H be the union of a ray R and infinitely many disjoint R-paths Q1, Q2, . . .

such that with respect to R, Qi is on the left of Qi+1 for every i. Let X be an infinite subset

of V (H). Then H contains an X-rich ray.

Proof. For eachQi, let xi, yi be its endpoints on R. SinceH contains infinitely many elements

of X, either R contains infinitely many elements of X or infinitely many Qi each contains

at least one element of X in its interior. If R contains infinitely many elements of X, then

the lemma holds. Otherwise, infinitely many Qi each contains at least one element of X in

its interior. If a Qi does not contain any element of X in its interior, then we delete E(Qi).

Otherwise, it contains at least one element of X in its interior and we delete edges of R[xiyi].

By repeating this process, we obtain an X-rich ray in H.

We will now prove the vertex version.

Proof of Theorem 1.2.3. For a subgraph H of G, an H-path is called an H-ear if its interior

contains at least one element of X.

Claim 3.2.2.1. Every finite subgraph H of G with at least two vertices has an H-ear.

Since H is finite and X is infinite, there exists an a ∈ X − V (H). Since G is 2-

connected, a and V (H) cannot be separated by fewer than two vertices. By Corollary 1.3.2,

G contains two weakly disjoint aV (H)-paths. The union of these two paths yields an H-ear.

This proves the claim.
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Back to our proof, we first construct an infinite sequence of subgraphs H0, H1, H2, . . .

of G such that for every n ≥ 1, Hn = Hn−1 ∪ Qn where Qn is an Hn−1-ear and is chosen

according to the rule which we will describe in the next paragraph. Let H0 be a cycle of G

containing at least one element of X and let e0 = x0y0 be an edge of H0. Let P0 = H0\e0

and let T0 = P0. Note that T0 is a spanning tree of H0. To illustrate, we will construct

H1. Every H0-ear has two distinct endpoints x, z ∈ H0 and we denote x as the endpoint so

that ||P0[xx0]|| < ||P0[zx0]||. Among all H0-ears, we choose one such that ||P0[xx0]|| is the

smallest and then ||P0[zx0]|| is the smallest. Let Q1 be such an H0-ear and let H1 = H0∪Q1.

Let x1, z1 be the two endpoints of Q1 where ||P0[x1x0]|| < ||P0[z1x0]|| by construction. Let

e1 = y1z1 be the edge of Q1 with z1 as an endpoint and let P1 = Q1 − z1. Let T1 = P0 ∪ P1.

Note that T1 is a spanning tree of H1.

Suppose H0, H1, H2, . . . , Hn−1 are defined and let Tn−1 = P0 ∪ P1 ∪ · · · ∪ Pn−1. Note

that Tn−1 is a spanning tree of Hn−1. For every vertex v ∈ Hn−1, we define l(v) = (i, d)

where i is the smallest index such that v ∈ Pi and d = ||Pi[vxi]||. For any two distinct

vertices u, v ∈ Hn−1, by l(u) < l(v) we mean l(u) is lexicographically smaller than l(v).

Every Hn−1-ear has two distinct endpoints xn, zn ∈ Hn−1 and we denote xn as the endpoint

so that l(xn) < l(zn). Among all Hn−1-ears, we choose one with endpoints xn, zn where

l(xn) < l(zn) such that l(xn) is the smallest and then l(zn) is the smallest. Let Qn be such

an Hn−1-ear and let Hn = Hn−1 ∪ Qn. Let en = ynzn be the edge of Qn with zn as an

endpoint and let Pn = Qn − zn. Let Tn = Tn−1 ∪ Pn. Note that Tn is a spanning tree of Hn.

Let H = H0 ∪H1 ∪H2 ∪ . . . and let T = T0 ∪ T1 ∪ T2 ∪ . . . . Observe that for every
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i, Hi is 2-connected and Hi ⊆ Hi+1. Let a, b be two distinct vertices of H. Then we may

assume a ∈ Hi and b ∈ Hj for some i ≤ j. Thus, a ∈ Hj because Hi ⊆ Hj. Since Hj is

2-connected, it contains a cycle containing a, b. Hence, H contains a cycle containing a, b.

This proves that H is 2-connected. In addition, we can naturally extend the definition of

l(v) for every vertex v ∈ H as l(v) = (i, d) where i is the smallest index such that v ∈ Pi

and d = ||Pi[vxi]||. Note that by definition, u = v if and only if l(u) = l(v).

Claim 3.2.2.2. We have l(xi) ≤ l(xi+1) for every i.

Assume for a contradiction that l(xi+1) < l(xi) for some i. Then xi+1 /∈ Qi. This

means that xi+1 ∈ V (Hi−1) − {xi, zi}. If zi+1 ∈ Hi−1, then Qi+1 is an Hi−1-ear. But

l(xi+1) < l(xi) implies that Qi+1 must be chosen before Qi and this is not possible. Thus,

zi+1 ∈ V (Qi)− {xi, zi}. Let Q′ be the xizi+1-subpath of Qi. Then Qi+1 ∪Q′ is an Hi−1-ear.

But l(xi+1) < l(xi) again implies that Qi+1 ∪ Q′ must be chosen before Qi and this is not

possible. This proves the claim.

Let F = {e0, e1, e2, . . .}. Then T is a spanning tree of H and H = T ∪ F . We divide

the proof into two cases.

Case 1: H contains a vertex v of infinite degree. We further divide this case into

two subcases.

Case 1a: v is incident with infinitely many edges of F . This means that the set

I = {i | v = zi} is infinite. Let l(v) = (n, d). Since l(xi) < l(zi) for every i ∈ I, it follows

that xi ∈ Hn for all i ∈ I. Since Hn is finite, it contains a vertex u such that u = xj for

infinitely many j ∈ I. The union of all such Qj yields an X-rich K2,∞.
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Case 1b: v is incident with only finitely many edges of F and no vertex in H is

incident with infinitely many edges of F . This means that the set I = {i | v = xi} is infinite.

Let j be the smallest index in I.

Claim 3.2.2.3. Every k ≥ j is in I.

Since I is infinite, there exists a k′ ∈ I such that k′ ≥ k. Hence, by Claim 3.2.2.2,

l(xj) ≤ l(xk) ≤ l(xk′). But l(xk′) = l(xj) because k′ ∈ I. Thus, l(xj) = l(xk) = l(xk′). This

implies xk = xk′ , so k ∈ I. This proves the claim.

This means that we can write I = {k | k ≥ j}. Since H is 2-connected, H − v is

connected and it can be obtained from Hj−1 − v by repeatedly adding paths Qk − v for all

k ∈ I. Note that every Qk has v, zk as its two endpoints. Now H − v is locally finite since

none of its vertices is incident with infinitely many edges of F . Thus, H−v contains a ray R

by Theorem 3.1.4. Since Hj−1−v is a finite subgraph of H−v, this ray R contains subpaths

of infinitely many Qk − v. Let

I ′ = {k ∈ I | R contains at least one edge of Qk − v}.

Then I ′ is infinite and for every k in I ′ that is not the smallest element, zk ∈ R. Let

M = (
⋃

k∈I′ Qk)∪R. Then M is a union of R and infinitely many weakly disjoint vR-paths.

Hence, it contains a subdivided F∞. Furthermore, since every Qk contains at least one

element of X, M contains an X-rich F∞.

Case 2: H is locally finite. This means that T is also locally finite and contains a

ray R starting from x0. Let

I = {i | Pi contains at least one edge of R}.
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For an i ∈ I, let span(yi) be the union of all Pj for all j ∈ I with j ≤ i. Let S =
⋃

i∈I Pi.

We can also label the elements of I in increasing order as i1 < i2 < . . . where xin+1 ∈ Pin for

n = 1, 2, . . . . For the remain of this proof, by bridge we mean an S-bridge of H.

Claim 3.2.2.4. If there exists a bridge B containing infinitely many yi with i ∈ I, then the

lemma holds.

Let Y = {yi | i ∈ I and yi ∈ B}. Then Y is infinite. By Corollary 3.1.3 and the

assumption that H is locally finite, B contains a subdivided comb, call it K, whose leaves

belong to Y . The subgraph K ∪ S contains an X-rich L∞. This proves the claim.

From the previous claim, we may assume that every bridge contains finitely many yi

with i ∈ I.

Claim 3.2.2.5. For every i = in ∈ I with n ≥ 2, H has an S-path Lin with yin as an

endpoint and the other endpoint belongs to span(yin−1).

Observe that zi ∈ Ti−1 and span(yin−1) is nonempty and is contained in Ti−1. Hence,

Ti−1 has an S-path P from zi to span(yin−1). The path P ∪ei is the desired S-path Lin . This

proves the claim.

We now construct a sequence of disjoint R-paths M1,M2, . . . such that with respect

to R, Mi is on the left of Mi+1 for every i. We first construct M1 and we consider i2. By the

previous claim, H has an S-path Li2 with yi2 as an endpoint and the other endpoint belongs

to span(yi1). Let Bi2 be the bridge containing Li2 . Let M1 = Li2 ∪ Pi2 [xi3yi2 ]. Then M1 is

an R-path. Next, we construct M2. Let j ∈ I be the largest index such that yj is a foot of

Bi2 . Since G is locally finite and span(yi1) is a finite graph, there exists an ik > max (i2, j)
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such that Lik has yik as an endpoint and the other endpoint does not belong to span(yi1).

Let Bik be the bridge containing Lik . Note that Lik is disjoint from Li2 because Bik ̸= Bi2 .

Let M2 = Lik ∪ Pik [xik+1
yik ]. Then M2 is an R-path. Clearly, M2 and M1 are disjoint and

M1 is on the left of M2 with respect to R. By repeating this process, we obtain the desired

sequence M1,M2, . . . . The subgraph (
⋃∞

i=1Mi)∪R satisfies the hypotheses in Lemma 3.2.2,

so H contains an X-rich ray. Therefore, it contains an X-rich F∞ or an X-rich L∞ by

Lemma 3.2.1. Since H is also locally finite, it contains an X-rich L∞.

3.3. Edge Version

As described below, the edge version is a simple application of the vertex version.

The following theorem asserts that the subdivision operation still preserves 2-connectivity.

Theorem 3.3.1. Let G be a 2-connected graph and let G′ be a subdivision of G. Then G′ is

2-connected.

Proof. Clearly, G′ is connected and |G′| > 2 since G is 2-connected. Let v be a vertex in

G′. Assume for contradiction that G′ − v is not connected. If v is a subdividing vertex,

then there exists an edge e ∈ E(G) such that G\e is not connected, which is not possible.

Hence, v is a branching vertex. But this means that G− v is not connected, a contradiction.

Therefore, G′ − v is connected for every v, so G′ is 2-connected.

We conclude this chapter with the proof of the edge version.

Proof of Theorem 1.2.4. Let G′ be obtained from G by subdividing each edge in X exactly
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once. Then G′ is 2-connected by Theorem 3.3.1. Let Y be the set of subdividing vertices

of G′. Then Y is infinite because X is infinite. In addition, every vertex of Y has degree

2 in G′. By Theorem 1.2.3, G′ contains a Y -rich H ′ for some H ′ in {K2,∞, F∞, L∞}. Con-

sequently, G contains a subdivided H containing infinitely many edges of X for some H in

{K2,∞, F∞, L∞}.
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Chapter 4. Unavoidable Topological Minors of Infinite
3-connected Rooted Graphs

Graphs in this chapter are infinite.

4.1. Definitions and Lemmas

This section defines more terminology and states some theorems that are needed for

the proof of our main result. We will prove a stronger version of Theorem 1.2.5 by weakening

the 3-connectivity assumption. In particular, we prove Theorem 1.2.5 under the assumption

that G is weakly 3-connected.

Definition 4.1.1. A graph G′ is weakly 3-connected if G′ is obtained from a 3-connected

graphG by subdividing every edge ofG at most once. We callG the underlying 3-connected

graph of G′.

In the next few lemmas, we establish some properties of weakly 3-connected graphs.

Lemma 4.1.2. Every weakly 3-connected graph is 2-connected.

Proof. By definition, every weakly 3-connected graph is a subdivision of a 2-connected graph,

so the lemma follows from Theorem 3.3.1.

Lemma 4.1.3. Let G be a weakly 3-connected graph and let a, b be vertices of degree at least

3 in G. Then G does not contain a separator of size 2 separating a from b.

Proof. Suppose for contradiction that such a separator X of size 2 exists. This means that

there is no ab-path in G − X. Let G′ be the underlying 3-connected graph of G. Then

a, b ∈ V (G′) since a, b has degree at least 3 in G. Now deleting X in G is equivalent to
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deleting {m,n} in G′ where each m,n is either a vertex or an edge. Thus, since there is no

ab-path in G − X, there is no ab-path in G′ − {m,n}. But this is not possible since G′ is

3-connected. Therefore, no such X exists.

Lemma 4.1.4. Let G be a weakly 3-connected graph and let a be a vertex of degree at least

3 in G. Let B ⊆ V (G)− a contain at least three vertices of degree at least 3. Then G does

not contain a separator of size 2 separating a from B.

Proof. Suppose for contradiction that such a separator X of size 2 exists. By the definition

of separating a vertex and a set, a /∈ X, so a ∈ G−X. In G−X, let C1 be the component

containing a. If C1 contains a vertex of B−X, then there exists an a(B−X)-path in G−X.

Thus, there exists an aB-path in G that does not meet X, which is not possible. Hence, C1

and B−X are disjoint. Since B contains at least three vertices of degree at least 3 in G and

|X| = 2, there exists a vertex b ∈ B−X of degree at least 3 in G. Now X is an ab-separator

of size 2 in G, contradicting Lemma 4.1.3. Therefore, no such X exists.

Lemma 4.1.5. Let G be a connected graph and X = {X1, X2, . . .} be an infinite set of

disjoint connected subgraphs of G. Then one of the following is true in G

1. There exists an infinite subset of Y = {Y1, Y2, . . .} of X and internally disjoint (Y1 ∪

Y2 ∪ . . . )-paths P1, P2, . . . of G where Pi is between Yi and Yi+1 for i = 1, 2, . . . ;

2. G contains K, a subdivided K1,∞ or a subdivided comb, such that each leaf of K

belongs to an Xi and this Xi does not contain any other vertices of K.

Proof. Let G′ be the graph obtained from G by contracting each Xi into a vertex x′
i. Then
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G′ is a minor of G, so there exists an embedding π′. For every v ∈ V (G′) whose degree is

at most three in G′, we first define the process of truncating π′(v) in G|G′ as following. In

G|G′, let A be the set of vertices of π′(v) that are adjacent to a vertex not in π′(v). Since v

has degree at most three in G′, at most three vertices of π′(v) are adjacent to a vertex not

in π′(v) in G|G′, so |A| ≤ 3. First, suppose A = ∅. In this case, we delete all but one vertex

in π′(v) from G|G′. Next, suppose |A| = 1, so A contains a vertex a. In this case, we delete

π′(v)− a from G|G′. Next, suppose |A| = 2, so A contains distinct vertices a, b. Since π′(v)

is connected, there exists an ab-path P in π′(v). In this case, we delete π′(v)−P from G|G′.

Finally, suppose |A| = 3, so A contains distinct vertices a, b, c. Since π′(v) is connected,

there exist an ab-path P and a cP -path Q in π′(v). In this case, we delete π′(v)− (P ∪Q)

from G|G′.

Next, since G′ is connected and X ′ = {x′
1, x

′
2, . . .} is an infinite subset of V (G′), by

Theorem 1.1.14, G′ contains one of the following subgraphs

1. A ray R with infinitely many elements of X ′. Now R is a minor of G, so there exists

an embedding π. A vertex p on R is called good if π(p) = Xi for some i. Starting

from the endpoint of R, we label the good vertices of R as a sequence p1, p2, . . . . In

G|R, let Yi = π(pi) and let Pi be the path between Yi and Yi+1. By the definition

of being good, every Yi is an Xj for some j. Furthermore, Pi and Pj are internally

disjoint when i ̸= j. Thus, statement 1 is satisfied.

2. A subdivided K1,∞, denoted by K, whose leaves belong to X ′. Let u be the infinite
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degree vertex of K. For every leaf v of K, if the uv-path Q of K contains a vertex w

of degree 2 in K that belongs to X ′, then we delete the tv-subpath of Q from K where

t is the neighbor of w in the wv-subpath of Q. By doing this to every uv-path where

v is a leaf of K, we may assume that every degree-2 vertex of K does not belong to

X ′. Since K is also a minor of G, there exists an embedding π mapping each leaf of

K to an Xi in G. Clearly, this Xi does not contain any other vertices of K. In G|K,

let F be the set of edges with one end in π(u) and the other end not in π(u) and let

Y = V (F )−V (π(u)). Now π(u)∪F is a connected graph and Y is an infinite subset

of V (π(u) ∪ F ). In addition, (π(u) ∪ F ) − Y is connected. By Theorem 3.1.3, the

graph π(u)∪F contains a subdivided K1,∞ whose leaves belong to Y or a subdivided

comb whose leaves belong to Y . Suppose π(u)∪F contains a subdivided K1,∞ whose

leaves belong to Y , call it K ′. Let y1, y2, . . . be the leaves of K ′. For every yi, there

exists a yivi-path Qi in G|K that is disjoint from π(u) where vi belongs to an Xi.

Now
⋃∞

i=1K
′ ∪Qi is a subdivided K1,∞ satisfying statement 2. Otherwise, π(u) ∪ F

contains a subdivided comb whose leaves belong to Y , call it K ′. Let y1, y2, . . . be

the leaves of K ′. For every yi, there exists a yivi-path Qi in G|K that is disjoint from

π(u) where vi belongs to an Xi. Now
⋃∞

i=1K
′ ∪ Qi is a subdivided comb satisfying

statement 2.

3. A subdivided C, denoted by K, whose leaves belong to X ′. Let P be the spine of

K. For every leaf v of K, if the Pv-path Q of K contains a vertex w of degree 2
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in K that belongs to X ′, then we delete the tv-subpath of Q from K where t is the

neighbor of w in the wv-subpath of Q. By doing this to every Pv-path where v is a

leaf of K, we may assume that every degree-2 vertex not on P of K does not belong

to X ′. Since K is also a minor of G, there exists an embedding π mapping each leaf

of K to an Xi in G. Clearly, this Xi does not contain any other vertices of K. Let

u ∈ V (K). Then u has degree at most 3 in K. Thus, we can perform truncation on

π(u) in G|K. By doing this truncation process for every vertex in K, statement 3 is

satisfied.

This completes the proof.

We now describe the graphs K3,∞, FF, FL, LL that are important in our later dis-

cussion.

Definition 4.1.6. Let {x1, x2, . . .} be an infinite set of vertices. A K3,∞ is obtained by

adding edges x1xi, x2xi, and x3xi for every i ≥ 4.

Definition 4.1.7. We define the graph FF as following. Let R = x1y1x2y2 . . . be a ray and

let u, v be vertices not on R. We add edges uxi and edges vyi for i = 1, 2, . . . . Finally, we

add an edge bewteen v and x1.

We define the graph FL as following. Let P = x1y1x2y2 . . . and Q = z1z2 . . . be

disjoint rays. We add an edge between xi and zi for i = 1, 2, . . . . Let u, v be vertices not on

P ∪Q. We add an edge between u and yi for i = 1, 2, . . . . Finally, we add edges uv, vx1, vz1.

We define the graph LL as following. Let P = x1y1x2y2 . . . , Q = z1z2 . . . , and

R = r1r2 . . . be disjoint rays. We add an edge between xi and zi and an edge between yi and

74



ri for i = 1, 2, . . . . Let u be a vertex not on P ∪Q ∪R. Finally, we add edges ux1, uz1, ur1.

Next, we examine six classes of graphs {FF1,FF2,FL1,FL2,LL1,LL2} that are

essential in the analysis of Theorem 1.2.5.

Definition 4.1.8. Let FF1 be the set of graphs defined as follows. Let R be a ray, which

we call the rail, and let u, v be vertices not on R. We then add infinitely many edges from

u to R, which we call spokes at u, and infinitely many edges from v to R, which we call

spokes at v.

Let FF2 be the set of graphs defined as follows. Let R be a ray, which we call the

rail, and let u, v be vertices not on R. We then add infinitely many uR-edges e1, e2, . . . ,

which we call spokes at u, and hook v to infinitely many ei such that each edge ei is hooked

at most once. Note that in this process, some ei become two-edge paths if they are hooked;

we still consider those two-edge paths spokes at u. We call each edge incident with v a spoke

at v.

Let FL1 be the set of graphs defined as follows. Let A,B be disjoint rays, which we

call rails, and let u be a vertex not in A∪B. We first add infinitely many AB-edges, which

we call rungs, such that no vertex in A∪B is incident with infinitely many rungs. We then

add infinitely many uA-edges, which we call spokes.

Let FL2 be the set of graphs defined as follows. Let A,B be disjoint rays, which we

call rails, and let u be a vertex not in A∪B. We first add infinitely many AB-edges, which

we call rungs, such that no vertex in A∪B is incident with infinitely many rungs. We then

hook u to infinitely many rungs such that each rung is hooked at most once. Note that in
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this process, some rungs become two-edge paths if they are hooked; we still consider those

two-edge paths rungs. We call each edge incident with u a spoke.

Let LL1 be the set of graphs defined as follows. Let A,B,C be disjoint rays, which

we call rails. We then add infinitely many AB-edges and infinitely many BC-edges, which

we call rungs, such that no vertex in A ∪B ∪ C is incident with infinitely many rungs.

Let LL2 be the set of graphs defined as follows. Let A,B,C be disjoint rays, which

we call rails. We then add infinitely many AB-edges, which we call rungs, such that no

vertex in A ∪ B is incident with infinitely many rungs. We then choose an infinite subset

{x1, x2, . . .} of V (C) and hook each xi to a rung such that each rung is hooked at most once.

Note that in this process, some rungs become two-edge paths if they are hooked; we still

consider those two-edge paths rungs. A spoke is an edge with an endpoint on C and the

other endpoint on the interior of a rung.

For a subdivision of a graph in {FF1,FF2,FL1,FL2,LL1,LL2}, we use the terms

rail, spoke, and rung where applicable to mean its subdivided rail, subdivided spoke, and

subdivided rung, respectively.

The six classes of graphs {FF1,FF2,FL1,FL2,LL1,LL2} are important because

graphs in each class can be reduced to one of the graphs in {FF, FL, LL}, which we now

justify in the next few lemmas.

Lemma 4.1.9. Let R be a ray and let A,B be two infinite subsets of V (R). Then R contains

a sequence of vertices {xi}∞i=1, listed in the order as they appear on R, such that for every

nonnegative integer k, x2k+1 ∈ A and x2k+2 ∈ B.
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Proof. We label all vertices of R as a sequence {ri}∞i=1 in the order as they appear on R. We

define {xi}∞i=1 inductively. Let x1 be a vertex ri ∈ R, for some i, that is in A. Since there

are infinitely many vertices in R that are in B, there exists an rj ∈ R with j > i that is

in B. Let x2 = rj. Next, since there are infinitely many vertices in R that are in A, there

exists an rk ∈ R with k > j that is in A. Let x3 = rk. By repeating this process, we obtain

the desired sequence {xi}∞i=1.

Lemma 4.1.10. Let H be a subdivision of a graph in FF1 and let X be an infinite subset

of V (H). Then H contains an X-rich FF .

Proof. Let R be the rail and let u, v be the infinite-degree vertices of H. Since X ⊆ V (H),

one of the following is true

1. R contains infinitely many elements of X,

2. there exist infinitely many spokes at u, each contains at least one element of X − u,

3. there exist infinitely many spokes at v, each contains at least one element of X − v.

Thus, H contains a subgraph H ′, which is also a subdivision of a graph in FF1 and

with the same u, v, R, satisfying one of the following

1. R contains infinitely many elements of X,

2. every spoke at u of H ′ contains at least one element of X − u,

3. every spoke at v of H ′ contains at least one element of X − v.

In H ′, let

A = {x ∈ V (R) | x is an endpoint of a spoke at u}
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and let

B = {x ∈ V (R) | x is an endpoint of a spoke at v}.

Then A and B are infinite subsets of V (R). By Lemma 4.1.9, R contains a sequence of

vertices {xi}∞i=1, listed in the order as they appear on R, such that for every nonnegative

integer k, x2k+1 ∈ A and x2k+2 ∈ B. For a nonnegative integer i, let P2i+1 be the spoke

with endpoints u, x2i+1 and let Q2i+2 be the spoke with endpoints v, x2i+2. The subgraph

(
⋃∞

i=0 P2i+1 ∪Q2i+2) ∪R contains an X-rich FF .

Lemma 4.1.11. Let H be a subdivision of a graph in FF2 and let X be an infinite subset

of V (H). Then H contains an X-rich FF .

Proof. Let R be the rail and let u, v be the infinite-degree vertices of H. Let P be the set of

spokes at u so that every spoke in P has an endpoint on R. Let Q be the set of spokes at

v. Since X ⊆ V (H), one of the following is true

1. R contains infinitely many elements of X,

2. there exists an infinite subset P ′ of P where each path in P ′ contains at least one

element of X − u,

3. there exists an infinite subset Q′ of Q where each path in Q′ contains at least one

element of X − v.

We divide the proof into two cases.

Case 1: Statement 1 or statement 3 is true.

If statement 1 is true, let Q′ = Q. Otherwise, let Q′ be determined as in statement

3. We label the paths in P that are hooked by a path in Q′ as P1, P2, . . . , in the order as
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their endpoints appear on R. For a Pi ∈ P , let Qi ∈ Q′ be the path that is hooked to Pi.

Let ti be the endpoint of Pi on R and let zi be the endpoint of Qi on
◦
Pi. Let Ri be the

ziti-subpath of Pi. The subgraph (
⋃∞

i=0 P2i+1 ∪Q2i+2 ∪R2i+2) ∪R contains an X-rich FF .

Case 2: Statement 2 is true.

A path in P ′ is called good if it is hooked and is bad otherwise. First, suppose there

are infinitely many good paths in P ′. We label the good paths in P ′ as P1, P2, . . . , in the

order as their endpoints appear on R. For each i, let Qi ∈ Q be the path that is hooked to

Pi. Let ti be the endpoint of Pi on R and let zi be the endpoint of Qi on
◦
Pi. Let Ri be the

ziti-subpath of Pi. The subgraph (
⋃∞

i=0 P2i+1 ∪Q2i+2 ∪R2i+2) ∪R contains an X-rich FF .

Now suppose there are only finitely many good paths in P ′, so there are infinitely

many bad paths in P ′. We label the bad paths in P ′ as P ′
1, P

′
2, . . . . In addition, we label the

paths in P that are hooked as P ′′
1 , P

′′
2 , . . . . For a P ′′

i ∈ P , let Q′′
i ∈ Q be the path that is

hooked to P ′′
i . Observe that the two sets {P ′

1, P
′
2, . . .} and {P ′′

1 , P
′′
2 , . . .} are disjoint. Let ti be

the endpoint of P ′′
i on R and let zi be the endpoint of Q

′′
i on

◦
P ′′
i . Let R

′′
i be the ziti-subpath

of P ′′
i . The subgraph (

⋃∞
i=1 P

′
i ∪Q′′

i ∪R′′
i )∪R is a subdivision of a graph in FF1 containing

infinitely many elements of X. By Lemma 4.1.10, it contains an X-rich FF .

Lemma 4.1.12. Let H be a subdivision of a graph in FL1 and let X be an infinite subset

of V (H). Then H contains an X-rich FL.

Proof. In H, let u be the infinite-degree vertex and let A,B be the rails. Without loss of

generality, let A be the rail that contains the endpoints of the spokes of H. Let R be the

union of all rungs. Since X ⊆ V (H), one of the following is true
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1. A ∪B ∪R contains infinitely many elements of X,

2. there exist infinitely many spokes each contains at least one element of X − u.

First, suppose statement 1 is true. By Lemma 3.1.10, A∪B∪R contains a subdivided

L∞, which we call L, whose rails are contained in A,B and whose rungs are rungs of H, such

that one of its rails contains infinitely many elements of X or every of its rungs contains at

least one element of X. Let

M = {x ∈ V (A) | x is an endpoint of a spoke of H}

and let

N = {x ∈ V (A) | x is an endpoint of a rung of L}.

Then both M and N are infinite subsets of V (A). By Lemma 4.1.9, A contains a sequence

of vertices {xi}∞i=1, listed in the order as they appear on A, such that for every nonnegative

integer k, x2k+1 ∈ M and x2k+2 ∈ N . For a nonnegative integer i, let S2i+1 be the spoke of

H with endpoints u, x2i+1 and let R2i+2 be the rung of L with x2i+2 as its endpoint in A.

The subgraph (
⋃∞

i=0 S2i+1 ∪R2i+2) ∪ A ∪B contains an X-rich FL.

Now suppose statement 2 is true. Let S be an infinite set of the spokes of H such

that every spoke in S contains at least one element of X − u. By Lemma 3.1.9, A ∪ B ∪ R

contains a subdivided L∞, which we call L, whose rails are contained in A,B and whose

rungs are rungs of H. Let

M = {x ∈ V (A) | x is an endpoint of a spoke in S}
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and let

N = {x ∈ V (A) | x is an endpoint of a rung of L}.

Then both M and N are infinite subsets of V (A). By Lemma 4.1.9, A contains a sequence

of vertices {xi}∞i=1, listed in the order as they appear on A, such that for every nonnegative

integer k, x2k+1 ∈ M and x2k+2 ∈ N . For a nonnegative integer i, let S2i+1 be the spoke

in S with endpoints u, x2i+1 and let R2i+2 be the rung of L with x2i+2 as its endpoint in A.

The subgraph (
⋃∞

i=0 S2i+1 ∪R2i+2) ∪ A ∪B contains an X-rich FL.

Lemma 4.1.13. Let H be a subdivision of a graph in FL2 and let X be an infinite subset

of V (H). Then H contains an X-rich FL.

Proof. In H, let A,B be the rails and let u be the infinite-dergree vertex. Let S be the set

of spokes and let R be the set of rungs. Since X ⊆ V (H), one of the following is true

1. A ∪B contains infinitely many elements of X,

2. there exists an infinite subset S ′ of S where every spoke in S ′ contains at least one

element of X − u,

3. there exists an infinite subset R′ of R where every rung in R′ contains at least one

element of X.

We divide the proof into two cases.

Case 1: Statement 1 or statement 2 is true.

If statement 1 is true, let S ′ = S. Otherwise, let S ′ be determined as in statement

2. Let R′′ be the set of rungs of H that are hooked by a spoke in S ′ and let R′′ be the

union of all rungs in R′′. If statement 1 is true, then by Lemma 3.1.10, A∪B ∪R′′ contains
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a subdivided L∞, whose rails are contained in A,B and whose rungs belong to R′′, such

that one of its rails contains infinitely many elements of X. Otherwise, by Lemma 3.1.9,

A ∪ B ∪ R′′ contains a subdivided L∞, whose rails are contained in A,B and whose rungs

belong to R′′. In either case, we denote L to be this subdivided L∞. We label the rungs of

L as R1, R2, . . . , in the order as their endpoints appear on A. Note that every Ri is hooked

by a spoke in S ′ by the choice of R′′. For an Ri, let Si ∈ S ′ be the path that is hooked to

Ri. Let ti be the endpoint of Ri on A and let zi be the endpoint of Si on
◦
Ri. Let Mi be the

ziti-subpath of Ri. The subgraph (
⋃∞

i=0R2i+1 ∪ S2i+2 ∪M2i+2) ∪ A ∪ B contains an X-rich

FL.

Case 2: Statement 3 is true.

A rung in R′ is called good if it is hooked and is bad otherwise. First, suppose there

are infinitely many good rungs in R′. Let R′′ ⊆ R′ be an infinite subset of good rungs and

let R′′ be the union of all rungs in R′′. By Lemma 3.1.10, A∪B ∪R′′ contains a subdivided

L∞, which we call L, whose rails are contained in A,B and whose rungs belong to R′′, such

that one of its rails contains infinitely many elements of X or every of its rungs contains

at least one element of X. We label the rungs of L as R1, R2, . . . , in the order as their

endpoints appear on A. Note that every Ri is hooked by the definition of being good. For

an Ri, let Si ∈ S be the spoke that is hooked to Ri. Let ti be the endpoint of Ri on A

and let zi be the endpoint of Si on
◦
Ri. Let Mi be the ziti-subpath of Ri. The subgraph

(
⋃∞

i=0R2i+1 ∪ S2i+2 ∪M2i+2) ∪ A ∪B contains an X-rich FL.

Now suppose there are only finitely many good rungs in R′, so there are infinitely
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many bad rungs in R′. Let R′′ ⊆ R′ be an infinite subset of bad rungs and let R′′ be the

union of all rungs in R′′. By Lemma 3.1.10, A ∪ B ∪ R′′ contains a subdivided L∞, which

we call L, whose rails are contained in A,B and whose rungs belong to R′′, such that L

contains infinitely many elements of X. Let R′′′ ⊆ R be an infinite subset of rungs that are

hooked and let R′′′ be the union of all rungs in R′′′. By Lemma 3.1.9, A∪B ∪R′′′ contains a

subdivided L∞, which we call L′, whose rails are contained in A,B and whose rungs belong

to R′′′. We label the rungs of L as R′
1, R

′
2, . . . . We label the rungs of L′ as R′′

1, R
′′
2, . . . . Note

that every R′′
i is hooked by the definition of being good. For an R′′

i , let S
′′
i ∈ S be the spoke

that is hooked to R′′
i . Observe that the two sets {R′

1, R
′
2, . . .} and {R′′

1, R
′′
2, . . .} are disjoint.

Let ti be the endpoint of R′′
i on A and let zi be the endpoint of S ′′

i on
◦
R′′

i . Let M ′′
i be the

ziti-subpath of R′′
i . The subgraph (

⋃∞
i=1R

′
i ∪ R′′

i ∪M ′′
i ) ∪ A ∪ B is a subdivision of a graph

in FL1 containing infinitely many elements of X. By Lemma 4.1.12, it contains an X-rich

FL.

Lemma 4.1.14. Let H be a subdivision of a graph in LL1 and let X be an infinite subset

of V (H). Then H contains an X-rich LL.

Proof. In H, let A,B,C be its rails, let M be the set of rungs between A,B, and let N

be the set of rungs between B,C. Let M be the union of all rungs in M and let N be the

union of all rungs in N . Since X ⊆ V (H), we may assume, without loss of generality, that

A∪B ∪M contains infinitely many elements of X. By Lemma 3.1.10, A∪B ∪M contains a

subdivided L∞, which we call L, whose rails are contained in A,B and whose rungs belong

to M, such that L contains infinitely many elements of X. In addition, by Lemma 3.1.9,
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B ∪ C ∪ N contains a subdivided L∞, which we call L′, whose rails are contained in B,C

and whose rungs belong to N . Let

S = {x ∈ V (B) | x is an endpoint of a rung of L}

and let

T = {x ∈ V (B) | x is an endpoint of a rung of L′}.

Then both S and T are infinite subsets of V (B). By Lemma 4.1.9, B contains a sequence

of vertices {xi}∞i=1, listed in the order as they appear on B, such that for every nonnegative

integer k, x2k+1 ∈ M and x2k+2 ∈ N . For a nonnegative integer i, let S2i+1 be the rung of

L with x2i+1 as its endpoint in B and let T2i+2 be the rung of L′ with x2i+2 as its endpoint

in B. The subgraph (
⋃∞

i=0 S2i+1 ∪ T2i+2) ∪ A ∪B ∪ C contains an X-rich LL.

Lemma 4.1.15. Let H be a subdivision of a graph in LL2 and let X be an infinite subset

of V (H). Then H contains an X-rich LL.

Proof. In H, let A,B,C be the rails, let R be the set of rungs between A,B, and let S be

the set of spokes. Since X ⊆ V (H), one of the following is true

1. A ∪B contains infinitely many elements of X,

2. C contains infinitely many elements of X,

3. there exists an infinite subset S ′ of S where every spoke in S ′ contains at least one

element of X,

4. there exists an infinite subset R′ of R where every rung in R′ contains at least one

element of X.
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We divide the proof into two cases.

Case 1: Statement 1, statement 2, or statement 3 is true.

If statement 1 or statement 2 is true, let S ′ = S. Otherwise, let S ′ be determined as

in statement 3. Let R′′ be the set of rungs of H that are hooked by a spoke in S ′ and let R′′

be the union of all rungs in R′′. If statement 1 is true, then by Lemma 3.1.10, A ∪ B ∪ R′′

contains a subdivided L∞, whose rails are contained in A,B and whose rungs belong to R′′,

such that one of its rails contains infinitely many elements of X. Otherwise, by Lemma 3.1.9,

A ∪ B ∪ R′′ contains a subdivided L∞, whose rails are contained in A,B and whose rungs

belong to R′′. In either case, we denote L to be this subdivided L∞. We label the rungs of

L as R1, R2, . . . , in the order as their endpoints appear on A. Note that every Ri is hooked

by a spoke in S ′ by the choice of R′′. For an Ri, let Si ∈ S ′ be the path that is hooked to

Ri. Let ti be the endpoint of Ri on A and let zi be the endpoint of Si on
◦
Ri. Let Mi be the

ziti-subpath of Ri. The subgraph (
⋃∞

i=0R2i+1 ∪ S2i+2 ∪M2i+2) ∪A ∪B ∪ C is a subdivision

of a graph in LL1 containing infinitely many elements of X. By Lemma 4.1.14, it contains

an X-rich LL.

Case 2: Statement 4 is true.

A rung in R′ is called good if it is hooked and is bad otherwise. First, suppose there

are infinitely many good rungs in R′. Let R′′ ⊆ R′ be an infinite subset of good rungs and

let R′′ be the union of all rungs in R′′. By Lemma 3.1.10, A∪B ∪R′′ contains a subdivided

L∞, which we call L, whose rails are contained in A,B and whose rungs belong to R′′, such

that one of its rails contains infinitely many elements of X or every of its rungs contains
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at least one element of X. We label the rungs of L as R1, R2, . . . , in the order as their

endpoints appear on A. Note that every Ri is hooked by the definition of being good. For

an Ri, let Si ∈ S be the spoke that is hooked to Ri. Let ti be the endpoint of Ri on A

and let zi be the endpoint of Si on
◦
Ri. Let Mi be the ziti-subpath of Ri. The subgraph

(
⋃∞

i=0R2i+1 ∪ S2i+2 ∪M2i+2)∪A∪B is a subdivision of a graph in LL1 containing infinitely

many elements of X. By Lemma 4.1.14, it contains an X-rich LL.

Now suppose there are only finitely many good rungs in R′, so there are infinitely

many bad rungs in R′. Let R′′ ⊆ R′ be an infinite subset of bad rungs and let R′′ be the

union of all rungs in R′′. By Lemma 3.1.10, A ∪ B ∪ R′′ contains a subdivided L∞, which

we call L, whose rails are contained in A,B and whose rungs belong to R′′, such that one

of its rails contains infinitely many elements of X or every of its rungs contains at least one

element of X. Let R′′′ ⊆ R be an infinite subset of rungs that are hooked and let R′′′ be the

union of all rungs in R′′′. By Lemma 3.1.9, A ∪ B ∪ R′′′ contains a subdivided L∞, which

we call L′, whose rails are contained in A,B and whose rungs belong to R′′′. We label the

rungs of L as R′
1, R

′
2, . . . . We label the rungs of L′ as R′′

1, R
′′
2, . . . . Note that every R′′

i is

hooked by the definition of being good. For an R′′
i , let S

′′
i ∈ S be the spoke that is hooked

to R′′
i . Observe that the two sets {R′

1, R
′
2, . . .} and {R′′

1, R
′′
2, . . .} are disjoint. Let ti be the

endpoint of R′′
i on A and let zi be the endpoint of S ′′

i on
◦
R′′

i . Let M
′′
i be the ziti-subpath of

R′′
i . The subgraph (

⋃∞
i=1 R

′
i∪R′′

i ∪M ′′
i )∪A∪B is a subdivision of a graph in LL1 containing

infinitely many elements of X. By Lemma 4.1.14, it contains an X-rich LL.

Lemma 4.1.16. Let A,B be disjoint rays and let R be an infinite set of internally disjoint

86



AB-paths. Let R be the union of all paths in R and let H = A∪B∪R. Assume H is locally

finite. Let u be a vertex not in H and let S be an infinite set of weakly disjoint uH-paths.

Let S be the union of all paths in S and let G = H ∪S. Let X be an infinite subset of V (G).

Then G contains an X-rich FL.

Proof. Since X ⊆ V (G), one of the following is true

1. H contains infinitely many elements of X,

2. S has an infinite subset S ′ such that every path in S ′ contains an element of X − u.

We divide the proof into two cases.

Case 1: Statement 1 is true.

If infinitely many paths in S has endpoints in A ∪ B, then G contains a subdivision

of a graph in FL1 containing infinitely many elements of X. By Lemma 4.1.12, it contains

an X-rich FL. Otherwise, infinitely many paths in S has endpoints in R − (A ∪ B). If a

path in R contains endpoints of more than one path in S, then we delete edges of all but one

path in S. By repeating this process, we obtain a subdivision of a graph in FL2 containing

infinitely many elements of X. By Lemma 4.1.13, G contains an X-rich FL.

Case 2: Statement 2 is true. If a path in R contains endpoints of more than one

path in S ′, then we delete edges of all but one path in S ′. By repeating this process, we

obtain a subdivision of a graph in FL2 containing infinitely many elements of X. By Lemma

4.1.13, G contains an X-rich FL.

In addition to cleaning up the graphs in {FF1,FF2,FL1,FL2,LL1,LL2}, we also

need to clean up graphs of an LL1 or LL2 nature, but with extra jumps inside. The next
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three lemmas make this idea more precise.

Lemma 4.1.17. Let A,B be disjoint rays and let R be an infinite set of internally disjoint

AB-paths. Let R be the union of all paths in R and let H = A∪B∪R. Assume H is locally

finite. Let J be an infinite set of disjoint H-paths. Let G be the union of H and all paths in

J and let X be an infinite subset of V (G) such that every path in J contains at least one

element of X. Then G contains an X-rich L∞.

Proof. First, observe that G is locally finite since H is locally finite and paths in J are

disjoint. By definition, every path in J has its two endpoints on H. Up to symmetry, we

may assume that each path in J is exactly one of the following types

• type 1: both endpoints belong to A,

• type 2: one endpoint belongs to A and the other endpoint belongs to B,

• type 3: one endpoint belongs to A and the other endpoint belongs to R− (A ∪B).

Note that infinitely many paths in J are of one type. For convenience, in this proof,

a path in R is called a rung.

Claim 4.1.17.1. If there exist infinitely many paths of J of type 1, then the lemma holds.

Since paths in J are disjoint, we can find infinitely many paths J1, J2, . . . in J such

that with respect to A, Ji is on the left of Ji+1 for i = 1, 2, . . . . For each Ji, let ai, bi be its

two endpoints on A. Observe that every A[aibi] contains endpoints of finitely many rungs

because G is locally finite. First, if an A[aibi] contains endpoints of more than one rung,

then we delete edges of all but one rung with an endpoint in A[aibi]. Hence, we may assume
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every A[aibi] contains endpoint of at most one rung. Next, suppose a rung has an endpoint

r in an A[aibi]. If r ∈ A(aibi), then we delete edges of A[air]. Otherwise, r ∈ {ai, bi}, and

we delete edges of A[aibi]. By repeating this process, we obtained a graph satisfying the

conditions in Lemma 3.1.10. Thus, G contains an X-rich L∞. This proves the claim.

Claim 4.1.17.2. If there exist infinitely many paths of J of type 2, then the lemma holds.

Let J ′ be an infinite subset of J such that every path in J ′ is of type 2. Let J ′ be

the union of all paths in J ′. The subgraph A ∪ B ∪ J ′ satisfies the conditions in Lemma

3.1.10, so it contains an X-rich L∞. This proves the claim.

Claim 4.1.17.3. If there exist infinitely many paths of J of type 3, then the lemma holds.

Let J ′ be an infinite subset of J such that every path in J ′ is of type 3. Since G

is locally finite, J ′ has an infinite subset J ′′ = {P1, P2, . . .} such that every rung contains

endpoints of at most one path in J ′′. For each i, let Qi be the unique rung such that
◦
Qi

contains an endpoint of Pi. Let xi be the endpoint of Qi on B. and let yi be the endpoint

of Pi on
◦
Qi. Let Mi be the xiyi-subpath of Qi. Now Q′

i = Pi ∪ Mi is an AB-path. Let

R′ =
⋃∞

i=1Q
′
i. The subgraph A ∪ B ∪ R′ satisfies the conditions in Lemma 3.1.10, so it

contains an X-rich L∞. This proves the claim.

We have shown that if infinitely many paths of J are of type i, for any i ∈ {1, 2, 3},

then the lemma holds. This completes the proof.

Lemma 4.1.18. Let H be a subdivision of a graph in LL1 and let J be an infinite set of

disjoint H-paths. Let G be the union of H and all paths in J and let X be an infinite subset
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of V (G) such that every path in J contains at least one element of X. Then G contains an

X-rich LL.

Proof. First, observe that G is locally finite since H, being a subdivision of a graph in LL1,

is locally finite and paths in J are disjoint. In H, let A,B,C be its rails and let S1 be the

sets of rungs between A,B and let S2 be the sets of rungs between B,C. Let Si be the union

of all paths in Si for i = 1, 2. By definition, every path in J has its two endpoints on H.

Up to symmetry, we may assume that each path in J is exactly one of the following types

• type 1: both endpoints belong to A,

• type 2: one endpoint belongs to A and the other endpoint belongs to B ∪ C,

• type 3: one endpoint belongs to A and the other endpoint belongs to S1 − (A ∪B),

• type 4: one endpoint belongs to A and the other endpoint belongs to S2 − (B ∪ C),

• type 5: both endpoints belong to B,

• type 6: one endpoint belongs to B and the other endpoint belongs to S1 − (A ∪B),

• type 7: both endpoints belong to S1 − (A ∪B),

• type 8: one endpoint belongs to S1 − (A ∪ B) and the other endpoint belongs to

S2 − (B ∪ C).

Note that infinitely many paths in J are of one type.

Claim 4.1.18.1. If there exist infinitely many paths of J of type 1, then the lemma holds.

Since paths in J are disjoint, we can find infinitely many paths J1, J2, . . . in J such

that with respect to A, Ji is on the left of Ji+1 for i = 1, 2, . . . . For each Ji, let ai, bi be its
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two endpoints on A. Observe that every A[aibi] contains endpoints of finitely many rungs

because G is locally finite. First, if an A[aibi] contains endpoints of more than one rung, then

we delete edges of all but one rung with an endpoint in A[aibi]. Hence, we may assume every

A[aibi] contains endpoint of at most one rung. Next, suppose a rung has an endpoint r in an

A[aibi]. If r ∈ A(aibi), then we delete edges of A[air]. Otherwise, r ∈ {ai, bi}, and we delete

edges of A[aibi]. By repeating this process, we obtained a subdivision of LL1 containing

infinitely many elements of X. By Lemma 4.1.14, it contains an X-rich LL. This proves the

claim.

Claim 4.1.18.2. If there exist infinitely many paths of J of type 2, then the lemma holds.

Let J ′ be an infinite subset of J such that every path in J ′ is of type 2. Then J ′

has an infinite subset J ′′ such that every path in J ′′ is an AB-path or every path in J ′′ is

an AC-path. Let J ′′ be the union of all paths in J ′′. The subgraph A ∪ B ∪ C ∪ S2 ∪ J ′′

is a subdivision of a graph in LL1 containing infinitely elements of X. By Lemma 4.1.14, it

contains an X-rich LL. This proves the claim.

Claim 4.1.18.3. If there exist infinitely many paths of J of type 3 or type 6, then the lemma

holds.

Let J ′ be an infinite subset of J such that every path in J ′ is of type 3 or every

path in J ′ is of type 6. Since G is locally finite, J ′ has an infinite subset J ′′ = {P1, P2, . . .}

such that every path in S1 contains endpoints of at most one path in J ′′. For each i, let Qi

be the unique path in S1 such that
◦
Qi contains an endpoint of Pi. If every path in J ′ is of

type 3, then let xi be the endpoint of Qi on B. Otherwise, every path in J ′ is of type 6
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and we let xi be the endpoint of Qi on A. Let yi be the endpoint of Pi on
◦
Qi. Let Mi be

the xiyi-subpath of Qi. Now Q′
i = Pi ∪Mi is an AB-path. Let S ′

1 =
⋃∞

i=1 Q
′
i. The subgraph

A ∪ B ∪ C ∪ S ′
1 ∪ S2 is a subdivision of a graph in LL1 containing infinitely elements of X.

By Lemma 4.1.14, it contains an X-rich LL. This proves the claim.

Claim 4.1.18.4. If there exist infinitely many paths of J of type 4, then the lemma holds.

Let J ′ be an infinite subset of J such that every path in J ′ is of type 4. Since

G is locally finite, J ′ has an infinite subset J ′′ = {P1, P2, . . .} such that every path in S2

contains endpoints of at most one path in J ′′. For each i, let Qi be the unique path in S2

such that
◦
Qi contains an endpoint of Pi. Let xi be the endpoint of Qi on C. Let yi be the

endpoint of Pi on
◦
Qi. Let Mi be the xiyi-subpath of Qi. Now Q′

i = Pi ∪Mi is an AC-path.

Let S ′
2 =

⋃∞
i=1Q

′
i. The subgraph A ∪ B ∪ C ∪ S1 ∪ S ′

2 is a subdivision of a graph in LL1

containing infinitely elements of X. By Lemma 4.1.14, it contains an X-rich LL. This proves

the claim.

Claim 4.1.18.5. If there exist infinitely many paths of J of type 5, then the lemma holds.

Since paths in J are disjoint, we can find infinitely many paths J1, J2, . . . in J such

that with respect to B, Ji is on the left of Ji+1 for i = 1, 2, . . . . For each Ji, let xi, yi be its

two endpoints on B. Observe that every B[xiyi] contains endpoints of finitely many rungs

because G is locally finite. If a B[xiyi] contains endpoints of more than one rung in S1, then

we delete edges of all but one rung in S1 with an endpoint in B[xiyi]. Similarly, if a B[xiyi]

contains endpoints of more than one rung in S2, then we delete edges of all but one rung in

S2 with an endpoint in B[xiyi]. Hence, we may assume every B[xiyi] contains endpoints of
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at most one rung in S1 and at most one rung in S2. We consider a path Ji to be type 5a if

B[xiyi] contains no endpoint of rungs in S1 and no endpoint of rungs in S2 and to be type

5b otherwise. Let I = {i | Ji is of type 5a} and let I ′ = {i | Ji is of type 5b}. Then either

I or I ′ is infinite. First, suppose I is infinite. By replacing B[xiyi] with Ji for every i ∈ I,

we obtain a subdivision of a graph in LL1 containing infinitely elements of X. By Lemma

4.1.14, it contains an X-rich LL. Now suppose I ′ is infinite. Let I1 be the subset of I ′ such

that if i ∈ I1, then B[xiyi] contains an endpoint of a rung in S1 and let I2 be the subset of

I ′ such that if i ∈ I2, then B[xiyi] contains an endpoint of a rung in S2. Note that I1 and I2

may have common elements. Since I ′ is infinite, at least one of the I1 or I2 is infinite. We

divide the remain of this claim into two cases.

Case 1: Both I1 and I2 are infinite. By Lemma 3.1.2, there exist two infinite sets

I3 ⊆ I1 and I4 ⊆ I2 such that I3 ∩ I4 = ∅. For i ∈ I3, let Mi be the rung in S1 with

an endpoint mi in B[xiyi]. If mi ∈ B(xiyi), then we delete edges of B[ximi]. Otherwise,

mi ∈ {xi, yi}, and we delete edges of B[xiyi]. For j ∈ I4, let Nj be the rung in S2 with

an endpoint nj in B[xjyj]. If nj ∈ B(xjyj), then we delete edges of B[xjnj]. Otherwise,

nj ∈ {xj, yj}, and we delete edges of B[xjyj]. By repeating this process for all i ∈ I3 and all

j ∈ I4, we obtain a subdivision of a graph in LL1 containing infinitely elements of X. By

Lemma 4.1.14, it contains an X-rich LL.

Case 2: Exactly one of the I1 or I2 is infinite. Without loss of generality, we may

assume I1 is infinite while I2 is finite. Hence, I3 = I1 − I2 is infinite. For i ∈ I3, let Mi

be the rung in S1 with an endpoint mi in B[xiyi]. If mi ∈ B(xiyi), then we delete edges of
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B[ximi]. Otherwise, mi ∈ {xi, yi}, and we delete edges of B[xiyi]. By repeating this process

for every i ∈ I3, we obtain a subdivision of a graph in LL1 containing infinitely elements of

X. By Lemma 4.1.14, it contains an X-rich LL. This proves the claim.

Claim 4.1.18.6. If there exist infinitely many paths of J of type 7, then the lemma holds.

Let J ′ be an infinite subset of J such that every path in J ′ is of type 7. Since G is

locally finite, J ′ has an infinite subset J ′′ such that every path in S1 contains endpoints of

at most one path in J ′′. To see this, we start with J ′′ = ∅. Let J ∈ J ′ − J ′′. Then J has

endpoints in
◦
P ,

◦
Q for some P,Q ∈ S1 where P = Q is possible. Next, we delete edges of all

paths in J ′, except for J , with an endpoint in
◦
P ∪

◦
Q and then we add J into J ′′. Note that

after doing this, J ′ is still infinite as we only delete finitely many paths in J ′. We then pick

a J ′ ∈ J ′ − J ′′ and repeat the process. This yields the desired J ′′. A path in J ′′ is called

type 7a if its two endpoints belong to
◦
Q for some Q ∈ S1 and is called type 7b otherwise.

First, suppose there are infinitely many paths P1, P2, . . . of type 7a in J ′′. Then each Pi has

endpoints xi, yi ∈
◦
Qi for some Qi ∈ S1. Let Q′

i be the path obtained by replacing Qi[xiyi]

by Pi and let S ′
1 =

⋃∞
i=1Q

′
i. The subgraph A ∪ B ∪ C ∪ S ′

1 ∪ S2 is a subdivision of a graph

in LL1 containing infinitely elements of X. By Lemma 4.1.14, it contains an X-rich LL.

Now suppose there are infinitely many paths P1, P2, . . . of type 7b in J ′′. Then each Pi has

endpoints xi ∈
◦
Qi and yi ∈

◦
Ri for some distinct Qi, Ri ∈ S1. Note that both Qi, Ri contain

only endpoints of Pi by the choice of J ′′. Let qi be the endpoint of Qi on A and let ri be

the endpoint of Ri on B. Let Q′
i be the qixi-subpath of Qi and let R′

i be the yiri-subpath

of Ri. Let Mi = Q′
i ∪ Pi ∪ R′

i and let S ′
1 =

⋃∞
i=1Mi. The subgraph A ∪ B ∪ C ∪ S ′

1 ∪ S2 is
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a subdivision of a graph in LL1 containing infinitely elements of X. By Lemma 4.1.14, it

contains an X-rich LL. This proves the claim.

Claim 4.1.18.7. If there exist infinitely many paths of J of type 8, then the lemma holds.

Let J ′ be an infinite subset of J such that every path in J ′ is of type 8. Since G

is locally finite, J ′ has an infinite subset J ′′ = {J1, J2, . . .} such that every path in S1 and

every path in S2 contain endpoints of at most one path in J ′′. To see this, we start with

J ′′ = ∅. Let J ∈ J ′−J ′′. Then J has endpoints in
◦
P ,

◦
Q for some P ∈ S1 and some Q ∈ S2.

Next, we delete edges of all paths in J ′, except for J , with an endpoint in
◦
P ∪

◦
Q and then

we add J into J ′′. Note that after doing this, J ′ is still infinite as we only delete finitely

many paths in J ′. We then pick a J ′ ∈ J ′ − J ′′ and repeat the process. This yields the

desired J ′′. Now every Ji has its two endpoints on
◦
Pi,

◦
Qi where Pi is a path in S1 and Qi is

a path in S2. Let xi be the endpoint of Pi on A and let yi be the endpoint of Ji on
◦
Pi. Let

Mi = Ji ∪Qi ∪Pi[xiyi] and let M =
⋃∞

i=1Mi. The subgraph A∪B ∪C ∪M is a subdivision

of a graph in LL2 containing infinitely many elements of X. By Lemma 4.1.15, it contains

an X-rich LL. This proves the claim.

We have shown that if infinitely many paths of J are of type i, for any i ∈ {1, 2, . . . , 8},

then the lemma holds. This completes the proof.

Lemma 4.1.19. Let H be a subdivision of a graph in LL2 and let J be an infinite set of

disjoint H-paths. Let G be the union of H and all paths in J and let X be an infinite subset

of V (G) such that every path in J contains at least one element of X. Then G contains an

X-rich LL.
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Proof. First, observe that G is locally finite since H, being a subdivision of a graph in LL2,

is locally finite and paths in J are disjoint. In H, let A,B,C be its rails and let S1 be the

set of rungs between A,B and let S2 be the set of spokes. Let Si be the union of all paths in

Si for i = 1, 2. By definition, every path in J has its two endpoints on H. Up to symmetry,

we may assume that each path in J is exactly one of the following types

• type 1: both endpoints belong to A,

• type 2: one endpoint belongs to A and the other endpoint belongs to B,

• type 3: one endpoint belongs to A and the other endpoint belongs to C,

• type 4: one endpoint belongs to A and the other endpoint belongs to S1 − (A ∪B),

• type 5: one endpoint belongs to A and the other endpoint belongs to S2 − (C ∪ S1),

• type 6: both endpoints belong to C,

• type 7: one endpoint belongs to C and the other endpoint belongs to S1 − (A ∪B),

• type 8: one endpoint belongs to C and the other endpoint belongs to S2 − (C ∪ S1),

• type 9: both endpoints belong to S1 − (A ∪B),

• type 10: both endpoints belong to S2 − (C ∪ S1),

• type 11: one endpoint belongs to S1 − (A ∪ B) and the other endpoint belongs to

S2 − (C ∪ S1).

Note that infinitely many paths in J are of one type.

Claim 4.1.19.1. If there exist infinitely many paths of J of type 1, then the lemma holds.

96



Since paths in J are disjoint, we can find infinitely many paths J1, J2, . . . in J such

that with respect to A, Ji is on the left of Ji+1 for i = 1, 2, . . . . For each Ji, let ai, bi be its

two endpoints on A. Observe that every A[aibi] contains endpoints of finitely many rungs

because G is locally finite. First, if an A[aibi] contains endpoints of more than one rung, then

we delete edges of all but one rung with an endpoint in A[aibi]. Hence, we may assume every

A[aibi] contains endpoint of at most one rung. Next, suppose a rung has an endpoint r in an

A[aibi]. If r ∈ A(aibi), then we delete edges of A[air]. Otherwise, r ∈ {ai, bi}, and we delete

edges of A[aibi]. By repeating this process, we obtained a subdivision of LL2 containing

infinitely many elements of X. By Lemma 4.1.15, it contains an X-rich LL. This proves the

claim.

Claim 4.1.19.2. If there exist infinitely many paths of J of type 2, then the lemma holds.

Let J ′ be an infinite subset of J such that every path in J ′ is of type 2. Let J ′

be the union of all paths in J ′. The subgraph H ∪ J ′ is a subdivision of a graph in LL2

containing infinitely many elements of X. By Lemma 4.1.15, it contains an X-rich LL. This

proves the claim.

Claim 4.1.19.3. If there exist infinitely many paths of J of type 3, then the lemma holds.

Let J ′ be an infinite subset of J such that every path in J ′ is of type 3. Let J ′ be

the union of all paths in J ′. The subgraph A ∪ B ∪ C ∪ S1 ∪ J ′ is a subdivision of a graph

in LL1 containing infinitely many elements of X. By Lemma 4.1.14, it contains an X-rich

LL. This proves the claim.

97



Claim 4.1.19.4. If there exist infinitely many paths of J of type 4, then the lemma holds.

Let J ′ be an infinite subset of J such that every path in J ′ is of type 4. Since G

is locally finite, J ′ has an infinite subset J ′′ such that every path in S1 contains endpoints

of at most one path in J ′′. Let S ′
1 be an infinite subset of S1 such that every path in S ′

1

contains endpoints of a path in J ′′. A path in S ′
1 is called type 4a if it is hooked by a spoke

and is called type 4b otherwise. We divide the remain of this claim into two cases.

Case 1: There exist infinitely many paths in S ′
1 of type 4a. Since G is locally finite,

S ′
1 has an infinite subset S ′′

1 = {P1, P2, . . .} such that paths in S ′′
1 are pairwise disjoint. For

each i, let Qi be the path in J ′′ whose one of the endpoints is in
◦
Pi and let Si be the spoke

that is hooked to Pi. Let xi be the endpoint of Si on
◦
Pi and let yi be the endpoint of Qi

on
◦
Pi. Let pi be the endpoint of Pi on B. Let Mi be the xipi-subpath of Pi and let Ni be

the yipi-subpath of Pi. Let Ai = Qi ∪ Mi ∪ Ni ∪ Si and let A′ =
⋃∞

i=1Ai. The subgraph

A∪B ∪C ∪A′ is a subdivision of a graph in LL2 containing infinitely many elements of X.

By Lemma 4.1.15, it contains an X-rich LL.

Case 2: There exist infinitely many paths P1, P2, . . . in S ′
1 of type 4b. For each i, let

Qi be the path in J ′′ whose one of the endpoints is in
◦
Pi. Let xi be the endpoint of Pi on A

and let yi be the endpoint of Qi on
◦
Pi. We then remove the edges of Pi[xiyi]. By repeating

this process, we obtain a subdivision of a graph in LL2 containing infinitely many elements

of X. By Lemma 4.1.15, it contains an X-rich LL. This proves the claim.

Claim 4.1.19.5. If there exist infinitely many paths of J of type 5, then the lemma holds.

Let J ′ be an infinite subset of J such that every path in J ′ is of type 5. Since G is
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locally finite, J ′ has an infinite subset J ′′ such that every path in S2 contains endpoints of

at most one path in J ′′. Let S ′
2 = {P1, P2, . . .} be an infinite subset of S2 such that every

Pi contains endpoints of a path in J ′′. For each i, let Qi be the path in J ′′ whose one of

the endpoints is in
◦
Pi. Let xi be the endpoint of Pi on C and let yi be the endpoint of Qi

on
◦
Pi. Let Mi be the xiyi-subpath of Pi and let Ni = Qi ∪ Mi. Then Ni is an AC-path.

Let N =
⋃∞

i=1Ni. The subgraph A ∪ B ∪ C ∪ S1 ∪ N is a subdivision of a graph in LL1

containing infinitely many elements of X. By Lemma 4.1.14, it contains an X-rich LL. This

proves the claim.

Claim 4.1.19.6. If there exist infinitely many paths of J of type 6, then the lemma holds.

Since paths in J are disjoint, we can find infinitely many paths J1, J2, . . . in J such

that with respect to C, Ji is on the left of Ji+1 for i = 1, 2, . . . . For each Ji, let ai, bi be its

two endpoints on C. Observe that every C[aibi] contains endpoints of finitely many spokes

because G is locally finite. First, if a C[aibi] contains endpoints of more than one spoke,

then we delete edges of all but one spoke with an endpoint in C[aibi]. Hence, we may assume

every C[aibi] contains endpoint of at most one spoke. Next, suppose a spoke has an endpoint

s in a C[aibi]. If s ∈ C(aibi), then we delete edges of C[ais]. Otherwise, s ∈ {ai, bi}, and

we delete edges of C[aibi]. By repeating this process, we obtained a subdivision of LL2

containing infinitely many elements of X. By Lemma 4.1.15, it contains an X-rich LL. This

proves the claim.

Claim 4.1.19.7. If there exist infinitely many paths of J of type 7, then the lemma holds.

Let J ′ be an infinite subset of J such that every path in J ′ is of type 7. Since G is
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locally finite, J ′ has an infinite subset J ′′ such that every path in S1 contains endpoints of at

most one path in J ′′. Let J ′′ be the union of all paths in J ′′. The subgraph A∪B∪C∪S1∪J ′′

is a subdivision of a graph in LL2 containing infinitely many elements of X. By Lemma

4.1.15, it contains an X-rich LL. This proves the claim.

Claim 4.1.19.8. If there exist infinitely many paths of J of type 8, then the lemma holds.

Let J ′ be an infinite subset of J such that every path in J ′ is of type 8. Since G is

locally finite, J ′ has an infinite subset J ′′ = {P1, P2, . . .} such that every path in S2 contains

endpoints of at most one path in J ′′. For each i, let Si be the path in S2 that contains an

endpoint of Pi and let Ri be the path in S1 for which Si is hooked to. Let xi be the endpoint

of Pi on
◦
Si and let yi be the endpoint of Si on

◦
Ri. Let Mi be the xiyi-subpath of Si and

let Ni = Pi ∪Mi. Let N =
⋃∞

i=1 Ni. The subgraph A ∪ B ∪ C ∪ S1 ∪ N is a subdivision of

a graph in LL2 containing infinitely many elements of X. By Lemma 4.1.15, it contains an

X-rich LL. This proves the claim.

Claim 4.1.19.9. If there exist infinitely many paths of J of type 9, then the lemma holds.

Let J ′ be an infinite subset of J such that every path in J ′ is of type 9. Since G

is locally finite, J ′ has an infinite subset J ′′ such that every path in S1 contains endpoints

of at most one path in J ′′. To see this, we start with J ′′ = ∅. Let J ∈ J ′ − J ′′. Then J

has endpoints in
◦
P ,

◦
Q for some P,Q ∈ S1 where P = Q is possible. Next, we delete edges

of all paths in J ′, except for J , with an endpoint in
◦
P ∪

◦
Q together with edges of all spokes

incident with those paths, and then we add J into J ′′. Note that after doing this, J ′ is

still infinite as we only delete finitely many paths in J ′. We then pick a J ′ ∈ J ′ − J ′′ and
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repeat the process. This yields the desired J ′′. A path in J ′′ is called type 9a if both of

is endpoints belong to
◦
P for some P ∈ S1 and is called type 9b otherwise. We divide the

remain of this claim into two cases.

Case 1: There exist infinitely many paths {P1, P2, . . .} in J ′′ of type 9a. For each i,

let Qi be the path in S1 that contains both endpoints of Pi. Now each Qi is either hooked

or not hooked. Suppose there exist infinitely many Qi that are not hooked; we label them

Q′
1, Q

′
2, . . . . Let P

′
i be the path in J ′′ whose endpoints x′

i, y
′
i are in

◦
Q′

i. We then delete edges

of Q′
i[x

′
iy

′
i]. By repeating this process, we obtain a subdivision of a graph in LL2 containing

infinitely many elements of X. By Lemma 4.1.15, it contains an X-rich LL. Now suppose

there exist infinitely many Qi that are hooked; we label them Q′′
1, Q

′′
2, . . . . Let P ′′

i be the

path in J ′′ whose endpoints x′′
i , y

′′
i are in

◦
Q′′

i . Let R′′
i be the spoke in S2 that is hooked to

Q′′
i ; let r

′′
i be the endpoint of R′′

i in
◦
Q′′

i . If r
′′
i /∈ Q′′

i (x
′′
i , y

′′
i ), then we delete edges of Q′′

i [x
′′
i y

′′
i ].

Otherwise, r′′i ∈ Q′′
i (x

′′
i y

′′
i ), and we delete edges of Q′′

i [r
′′
i y

′′
i ]. By repeating this process, we

obtain a subdivision of a graph in LL2 containing infinitely many elements of X. By Lemma

4.1.15, it contains an X-rich LL.

Case 2: There exist infinitely many paths {P1, P2, . . .} in J ′′ of type 9b. For each i,

there exist distinct Ai, Bi ∈ S1 such that
◦
Ai contains an endpoint xi of Pi and

◦
Bi contains

the other endpoint yi of Pi. We call Pi type 9b1 if neither Ai nor Bi is hooked and type

9b2 otherwise. First, suppose infinitely many paths in J ′′ is of type 9b1. For each such Pj

of type 9b1, let aj be the endpoint of Aj on A and let bj be the endpoint of Bj on B. Let

Mj = Aj[ajxj] ∪ Pj ∪ Bj[yjbj] and let M =
⋃∞

j=1 Mj. Let S ′
1 be the union of all rungs that
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are hooked. The subgraph A ∪ B ∪ C ∪ S ′
1 ∪ S2 ∪ M is a subdivision of a graph in LL2

containing infinitely many elements of X. By Lemma 4.1.15, it contains an X-rich LL. Now

suppose infinitely many paths in J ′′ is of type 9b2. For each such Pj, we may assume that

Aj is hooked by a spoke Sj. This means that Sj has an endpoint sj ∈
◦
Aj. Without loss of

generality, we may assume that sj ∈ Aj(ajxj] where aj is the endpoint of Aj on A. Let bj

be the endpoint of Bj on B. Let Mj = Aj[ajxj] ∪ Pj ∪ Bj[yjbj] and let M =
⋃∞

j=1 Sj ∪Mj.

The subgraph A ∪B ∪C ∪M is a subdivision of a graph in LL2 containing infinitely many

elements of X. By Lemma 4.1.15, it contains an X-rich LL. This proves the claim.

Claim 4.1.19.10. If there exist infinitely many paths of J of type 10, then the lemma holds.

Let J ′ be an infinite subset of J such that every path in J ′ is of type 10. Since G is

locally finite, J ′ has an infinite subset J ′′ such that every path in S2 contains endpoints of

at most one path in J ′′. To see this, we start with J ′′ = ∅. Let J ∈ J ′ − J ′′. Then J has

endpoints in
◦
P ,

◦
Q for some P,Q ∈ S2 where P = Q is possible. Next, we delete edges of all

paths in J ′, except for J , with an endpoint in
◦
P ∪

◦
Q and then we add J into J ′′. Note that

after doing this, J ′ is still infinite as we only delete finitely many paths in J ′. We then pick

a J ′ ∈ J ′ − J ′′ and repeat the process. This yields the desired J ′′. A path in J ′′ is called

type 10a if both its endpoints belong to
◦
P for some P ∈ S2 and is called type 10b otherwise.

First, suppose there exist infinitely many paths {P1, P2, . . .} in J ′′ of type 10a. For each

i, let Qi be the spoke in S2 containing the endpoints xi, yi of Pi. We then delete edges of

Qi[xiyi]. By repeating this process, we obtain a subdivision of a graph in LL2 containing

infinitely many elements of X. By Lemma 4.1.15, it contains an X-rich LL. Now suppose
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there exist infinitely many paths {P ′
1, P

′
2, . . .} in J ′′ of type 10b. Then each P ′

i has endpoints

x′
i ∈

◦
Q′

i and y′i ∈
◦
R′

i for some distinct Q′
i, R

′
i ∈ S2. Note that both Q′

i, R
′
i contain endpoints

of only P ′
i by the choice of J ′′. Let q′i be the endpoint of Q

′
i on C and let r′i be the endpoint

of R′
i on

◦
R for some R ∈ S1. Let Mi =

⋃∞
i=1Q

′
i[q

′
ix

′
i] ∪ P ′

i ∪ R′
i[y

′
ir

′
i] and let M =

⋃∞
i=1Mi.

The subgraph A ∪ B ∪ C ∪ S1 ∪M is a subdivision of a graph in LL2 containing infinitely

many elements of X. By Lemma 4.1.15, it contains an X-rich LL. This proves the claim.

Claim 4.1.19.11. If there exist infinitely many paths of J of type 11, then the lemma holds.

Let J ′ be an infinite subset of J such that every path in J ′ is of type 11. Since G

is locally finite, J ′ has an infinite subset J ′′ = {P1, P2, . . .} such that every path in S1 and

every path in S2 contain endpoints of at most one path in J ′′. To see this, we start with

J ′′ = ∅. Let J ∈ J ′−J ′′. Then J has endpoints in
◦
P ,

◦
Q for some P ∈ S1 and some Q ∈ S2.

Next, we delete edges of all paths in J ′, except for J , with an endpoint in
◦
P ∪

◦
Q and then we

add J into J ′′. (If we delete edges of a rung that is hooked, then we also delete edges of the

spoke that is incident with that rung.) Note that after doing this, J ′ is still infinite as we

only delete finitely many paths in J ′. We then pick a J ′ ∈ J ′ −J ′′ and repeat the process.

This yields the desired J ′′. For each i, let Si ∈ S2 be the spoke that contains an endpoint

xi of Pi. Let si be the endpoint of Si on V (C) and let Mi = Si[sixi]∪Pi. Let M =
⋃∞

i=1Mi.

The subgraph A ∪ B ∪ C ∪ S1 ∪M is a subdivision of a graph in LL2 containing infinitely

many elements of X. By Lemma 4.1.15, it contains an X-rich LL. This proves the claim.

We have shown that if infinitely many paths of J are of type i, for any

i ∈ {1, 2, . . . , 11}, then the lemma holds. This completes the proof.
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To finish this section, we discuss the crossing property of bridges and paths.

Lemma 4.1.20. Let S be an infinite path and let B1, B2, . . . be distinct S-bridges, each

having finitely many feet such that with respect to S, Bi+1 crosses Bi but does not cross Bj

for any j < i. Then there exist infinitely many S-paths Q1, Q2, . . . satisfying the following

1. two distinct Qi and Qj are internally-disjoint,

2. with respect to S, Qi+1 crosses Qi but does not cross Qj for any j < i.

Proof. Throughout this proof, every crossing and left, right positions are with respect to S.

Claim 4.1.20.1. No two bridges have the same set of feet.

Suppose there exist two distinct bridges Bi and Bj where i < j with the same set of

feet. Then Bj+1 crosses Bi and this is contradictory. This proves the claim.

Back to our proof, we proceed using induction with our induction hypothesis P (n),

for a positive integer n, as:

There exist Qn
1 , Q

n
2 , . . . , Q

n
n, where Qn

i is the ith S-path obtained at step n, such that

1. Qn
i is a subgraph of Bi for every i,

2. for every i ≤ n− 1, Qn
i+1 crosses Qn

i ,

3. Qn−1
i = Qn

i for i = 1, 2, . . . , n− 2.

We first prove P (n) for n = 1. Since B1 crosses B2, it has two feet x1, y1 that crosses

two feet of B2. Thus, we can find an x1y1-path in B1 and let Q1
1 be this path. Clearly, Q1

1

satisfies statements 1, 2, and 3 in the induction hypothesis. Now suppose P (n) is true for

some n = k. We show that P (n) holds for n = k + 1. Let B1, B2, . . . be given and let
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Qk
1, Q

k
2, . . . , Q

k
k be obtained from P (k). Since Bk crosses Bk−1, we may assume, without loss

of generality, that Bk−1 has two feet xk−1, yk−1 and Bk has two feet xk, yk such that xk−1 is

on the left of yk−1, xk ∈ S(xk−1yk−1), and yk is on the right of yk−1. This also implies that

xk−1 is on the left of xk and yk−1 is on the right of xk. For each Bi, let mi, ni ∈ S be two

distinct feet such that all feet of Bi are contained in S[mini], denoted as Si. Such mi, ni

exist since Bi has finitely many feet.

Claim 4.1.20.2. No foot of Bk+1 is in S(xk−1yk−1).

Suppose for contradiction that there exists a foot of Bk+1 in S(xk−1yk−1). Since Bk+1

does not cross Bk−1, all feet of Bk+1 are in S[xk−1yk−1]. Hence, Sk+1 ⊆ Sk−1. Next, if

Sj ⊆ Sk−1 for some j ≥ k + 1, then Sj+1 ⊆ Sk−1 since Bj+1 does not cross Bk−1. Since

Sk+1 ⊆ Sk−1, it follows that Sj ⊆ Sk−1 for all j ≥ k + 1. Since Sk−1 is finite, there exist

infinitely many bridges with the same set of feet, contradicting Claim 4.1.20.1. This proves

the claim.

Back to our proof, we divide the proof into two cases.

Case 1: No foot of Bk+1 is in S[yk−1nk).

From the previous claim, it follows that no foot of Bk+1 is in S(xk−1nk). First, suppose

mk = xk−1 or mk is on the right of xk−1. Then S(mknk) ⊆ S(xk−1nk). Since Bk+1 crosses

Bk, there exists a foot of Bk+1 in S(mknk). But S(mknk) ⊆ S(xk−1nk), so there exists a

foot of Bk+1 in S(xk−1nk) and this is not possible. Thus, mk is on the left of xk−1. Since

Bk+1 crosses Bk, there exists a foot xk+1 of Bk+1 in S(mknk). This foot xk+1 must be in

S(mkxk−1] since xk+1 /∈ S(xk−1nk). We now have two further cases to consider.
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Case 1a: There exists a foot yk+1 of Bk+1 not in S[mkxk−1].

This implies that yk+1 /∈ S[mknk) since yk+1 /∈ S(xk−1nk). Let Qk+1
i = Qk

i for

i = 1, 2, . . . , k − 1. Let Qk+1
k be the mkxk-path in Bk and let Qk+1

k+1 be the xk+1yk+1-path in

Bk+1. Now Qk+1
k+1 crosses Qk+1

k because xk+1 ∈ S(mkxk−1] ⊂ S(mkxk) and yk+1 /∈ S[mkxk]

since yk+1 /∈ S[mknk) and S[mknk) ⊃ S[mkxk]. In addition, Qk+1
k crosses Qk+1

k−1 because

xk ∈ S(xk−1yk−1) and mk, being on the left of xk−1, is not contained in S[xk−1yk−1].

Case 1b: Every foot of Bk+1 is in S[mkxk−1].

Since Bk+1 crosses Bk, there exists a foot zk of Bk in S(mk+1nk+1). Let Qk+1
i = Qk

i

for i = 1, 2, . . . , k − 1. Let Qk+1
k be the zkxk-path in Bk and let Qk+1

k+1 be the mk+1nk+1-path

in Bk+1. Now Qk+1
k+1 crosses Qk+1

k because zk ∈ S(mk+1nk+1) and xk /∈ S[mk+1nk+1] since

nk+1 ∈ S[mkxk−1] and xk−1 is on the left of xk. In addition, Qk+1
k crosses Qk+1

k−1 because

xk ∈ S(xk−1yk−1) and zk /∈ S[xk−1yk−1] since zk ∈ S(mk+1nk+1) ⊆ S(mk+1xk−1).

Case 2: There exists a foot xk+1 of Bk+1 in S[yk−1nk).

We now have two further cases to consider.

Case 2a: There exists a foot yk+1 of Bk+1 that is not in S[yk−1nk].

From the previous claim, we deduce that yk+1 /∈ S(xk−1nk]. Let Qk+1
i = Qk

i for

i = 1, 2, . . . , k − 1. Let Qk+1
k be the xknk-path in Bk and let Qk+1

k+1 be the xk+1yk+1-path

in Bk+1. Now Qk+1
k crosses Qk+1

k−1 because xk ∈ S(xk−1yk−1) and nk /∈ S[xk−1yk−1] since

nk = yk or nk is on the right of yk and yk is on the right of yk−1. In addition, Qk+1
k+1 crosses

Qk+1
k because xk+1 ∈ S[yk−1nk) ⊆ S(xknk) and yk+1 /∈ S[xknk] since yk+1 /∈ S(xk−1nk] and

S(xk−1nk] ⊃ S[xknk].
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Case 2b: Every foot of Bk+1 is in S[yk−1nk].

Since Bk+1 crosses Bk, there exists a foot zk of Bk in S(mk+1nk+1). Let Qk+1
i = Qk

i

for i = 1, 2, . . . , k − 1. Let Qk+1
k be the xkzk-path in Bk and let Qk+1

k+1 be the mk+1nk+1-path

in Bk+1. Now Qk+1
k+1 crosses Qk+1

k because zk ∈ S(mk+1nk+1) and xk /∈ S[mk+1nk+1] since

mk+1 = yk−1 or mk+1 is on the right of yk−1 and yk−1 is on the right of xk. In addition, Qk+1
k

crosses Qk+1
k−1 because xk ∈ S(xk−1yk−1) and zk /∈ S[xk−1yk−1] since zk is on the right of mk+1

and mk+1 = yk−1 or mk+1 is on the right of yk−1.

By setting Qk+1
i = Qk

i for i = 1, 2, . . . , k − 1 and Qk+1
k and Qk+1

k+1 as described above,

P (k + 1) is true. We have shown that P (k + 1) is true when P (k) is true, so P (n) holds

for all positive integers n. We define the S-paths Q1, Q2, . . . by taking Qi = Qi+2
i in the

induction hypothesis P (i + 2) for i = 1, 2, . . . . Observe that statement 1 in the lemma is

satisfied since Qi is a subgraph of Bi for every i. For statement 2, Qi+1 crosses Qi from the

induction hypothesis and Qi+1 does not cross Qj for any j < i by the definition of crossing

of B1, B2, . . . . This completes the proof.

Lemma 4.1.21. Let H be the union of a double ray S and infinitely many internally disjoint

S-paths Q1, Q2, . . . such that with respect to S, Qi+1 crosses Qi but does not cross Qj for

any j < i. Then H contains three disjoint rays R1, R2, R3 such that every Qi is contained

in some Rj. In addition, if R = R1 ∪ R2 ∪ R3 and J1, J2, . . . are all R-bridges, then each

Ji is a subpath of S with endpoints in different Rj and we call it a jump. Finally, if all but

finitely many jumps are between Ri and Rj, then Rk contains a subray of S.

Proof. Throughout this proof, every crossing is with respect to S. For each Qi, let xi, yi be
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its two endpoints and let Si = S[xiyi]. Since Qi+1 crosses Qi, exactly one endpoint of Qi+1

belongs to
◦
Si. Let xi+1 be that endpoint and let yi+1 be the other endpoint. This uniquely

determines the endpoints of Q2, Q3, . . . . For Q1, let y1 be the endpoint belonging to
◦
S2 and

let x1 be the other endpoint. Let y−1, y0 be the two neighbors of x1 on S. The definition

of y−1, y0 implies that for every n ≥ 1, S(x1yn) contains a vertex of the form yi. Among

all such vertices in S(x1yn), let yn′ be the one whose distance to yn on S is smallest. Let

Hi = (
⋃i

j=1 Qj ∪ Sj) ∪ S[y0y−1].

Back to our proof, we proceed using induction with our induction hypothesis P (n),

for a positive integer n, as

1. Hn is the union of Q1, Q2, . . . , Qn and S[ynyn′′ ] for some n′′.

2. Hn contains three disjoint paths Rn
1 , R

n
2 , R

n
3 between x1, y0, y−1 and yn, yn′ , yn′′ such

that each Qj, for j ≤ n, is contained in some Rn
i . In addition, Rn−1

i is a subpath of

Rn
i for i = 1, 2, 3.

3. Let Rn = Rn
1 ∪Rn

2 ∪Rn
3 . Then S[ynyn′ ] is an Rn-bridge. In addition, xn+1 ∈ S(ynyn′ ]

and yn+1 ∈ S − S[ynyn′′ ].

4. Let Jn
1 , J

n
2 , . . . , J

n
t be the Rn-bridges of Hn that are not S[ynyn′ ], which we call jumps.

Then each jump is a subpath of S with endpoints in two different Rn
i . In addition,

every jump of Hn−1 is a jump of Hn.

First, we prove P (1) is true. Let us consider H1, so that n′ ∈ {−1, 0}. Let n′′ =

{−1, 0} − {n′}.
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1. By definition, H1 = Q1 ∪ S1 ∪ S[y0y−1]. Hence, H1 = Q1 ∪ S[y1yn′′ ].

2. It is easy to verify statement 2 in the induction hypothesis by letting R1
1 = Q1, R

1
2 =

y−1, R
1
3 = y0.

3. Let R1 = R1
1 ∪ R1

2 ∪ R1
3. Clearly, S[y1yn′ ] is an R1-bridge. In addition, x2 ∈ S(y1yn′ ]

because x2 ∈
◦
S1 and y2 ∈ S − S[y1yn′′ ] because Q2 crosses Q1.

4. The two R1-bridges that are not S[y1yn′ ] are S[yn′x1] and S[yn′′x1]. Each is a subpath

of S with endpoints in two different R1
i .

Thus, P (1) is true. Now suppose P (n) is true for some n = m. We show that

P (n) holds for n = m + 1. Observe that Hm+1 is obtained from Hm by adding Qm+1 and

one of the S[ym+1ym] or S[ym+1ym′′ ]. In Hm+1, let Rm+1
1 = Rm

1 , Rm+1
2 = Rm

2 , Rm+1
3 =

Rm
3 ∪ S[ym′xm+1]∪Qm+1. Observe that Rm+1

1 , Rm+1
2 , Rm+1

3 starts at x1, y0, y−1 and ends at

ym+1, ym, ym′′ . In addition, every Qi, for i ≤ m+1, is contained in some Rm+1
j . Furthermore,

Rm
i is a subpath of Rm+1

i for i = 1, 2, 3 by our construction.

Next, let Rm+1 = Rm+1
1 ∪ Rm+1

2 ∪ Rm+1
3 . Then S[ym+1ym] is an Rm+1-bridge. Since

Qm+2 crosses Qm+1, xm+2 ∈ S(xm+1ym+1).

Claim 4.1.21.1. xm+2 /∈ S(xm+1ym).

Assume for contradiction that xm+2 ∈ S(xm+1ym). Then xm+2 ∈ S(xmym). Since

Qm+2 does not cross Qm with respect to S, ym+2 ∈ S(xmym). Hence, Sm+2 ⊆ Sm. Next, if

Sj ⊆ Sm for some j ≥ m + 2, then Sj+1 ⊆ Sm since with respect to S, Qj+1 crosses Qj but

does not cross Qm. Since Sm+2 ⊆ Sm, it follows that Sj ⊆ Sm for all j ≥ m + 2. Since Sm
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is finite, there exist infinitely many Qj with the same set of endpoints. But this means that

there exist j > i ≥ m+2 such that Qj+1 crosses Qi with respect to S, a contradiction. This

proves the claim.

The previous claim implies that xm+2 ∈ S[ymym+1). Also, ym+2 ∈ S − S[ym+1ym′′ ]

because Qm+2 does not cross Qj for any j < m+ 1.

Finally, let Jm
1 , Jm

2 , . . . , Jm
t be the jumps of Hm. Then the jumps of Hm+1 are

Jm
1 , Jm

2 , . . . , Jm
t , S[xm+1ym].

Clearly, each jump is a subpath of S with endpoints in two different Rm+1
i . In addition,

every jump of Hm is a jump of Hm+1. We have shown that P (m+ 1) is true when P (m) is

true, so P (n) is true for all n ≥ 1.

To finish the proof, let R1 =
⋃∞

i=1 R
i
1, R2 =

⋃∞
i=1 R

i
2, and R3 =

⋃∞
i=1 R

i
3. We will

show that if all but finitely many jumps are between Ri and Rj, then Rk contains a subray

of S.

Claim 4.1.21.2. Rk contains finitely many Qi.

Note that every endpoint of any Qi has degree at least 3 in H and every Qi is

contained in some Rj. Thus, every endpoint of any Qi is incident with a jump. Therefore, if

Rk contains finitely many jumps, then it contains finitely many Qi. This proves the claim.

Let Q be the union of all Qi that are contained in Rk. Then Q is a finite graph by

the previous claim. Now Rk ⊆ S ∪Q, so Rk−Q ⊆ S. Since Q is finite, Rk contains a subray

of S.
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4.2. Vertex Version

As mentioned at the beginning of this chapter, we will prove a stronger result than

Theorem 1.2.5. We formally state the theorem below.

Theorem 4.2.1. Let G be a weakly 3-connected graph and let X be an infinite subset of

V (G). Then G contains an X-rich H for some H in {K3,∞, FF, FL, LL}.

Now every weakly 3-connected graph is 2-connected. Hence, by Theorem 1.2.3, G

contains an X-rich H for some H in {K2,∞, F∞, L∞}. We divide the proof Theorem 4.2.1

into three lemmas, each considers a separate case for H.

Lemma 4.2.2. Let G be a weakly 3-connected graph and let X be an infinite subset of V (G).

Assume G contains an X-rich K2,∞. Then G contains an X-rich K3,∞ or an X-rich FF .

Proof. Let H be the subdivided K2,∞ in G and let x, y be the infinite-degree vertices of H.

Since H contains infinitely many elements of X, it contains a subgraph H ′ that is also a

subdivided K2,∞ and for every xy-path P in H ′,
◦
P contains at least one element of X.

Claim 4.2.2.1. There does not exist two distinct xy-paths S1, S2 in H ′ such that S1 is a

path xmy and S2 is a path xny where m,n has degree 2 in G.

If such xy-paths S1, S2 exist in H ′, then the underlying 3-connected graph of G,

denoted by G′, has parallel edges between x and y, which contradicts the assumption that

G′ is simple. This proves the claim.

From the previous claim, we may choose an xy-path S of H ′ containing at least three

vertices of degree at least 3 and we will consider S-bridges of G. First, suppose there exists

an S-bridge B containing infinitely many xy-paths of H ′, denoted by P1, P2, . . . . Note that
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every Pi has length at least 2, so
◦
Pi is non-empty. By applying Lemma 4.1.5 to the connected

graph B − S and disjoint subgraphs
◦
P1,

◦
P2, . . . , one of the following is true in B − S

1. There exists an infinite subset Y = {Y1, Y2, . . .} of {
◦
P1,

◦
P2, . . .} and internally disjoint

paths Q1, Q2, . . . where Qi is between Yi and Yi+1 for i = 1, 2, . . . . Now
⋃∞

i=1 Yi ∪

Qi ∪ {x, y} is a subdivision of a graph in FF1 containing infinitely many elements of

X, so by Lemma 4.1.10, it contains an X-rich FF .

2. B − S contains K, which is a subdivided K1,∞, where each leaf belongs to a
◦
Pi and

this
◦
Pi does not contain any other vertices of K. In addition, every non-leaf vertex

in K does not belong to
◦
P1 ∪

◦
P2 ∪ . . . . In K, let z be the vertex of infinite degree,

Y = {y1, y2, . . .} be the set of its leaves, and Qi be the zyi-path for i = 1, 2, . . . . Let

Q =
⋃∞

i=1 Qi. Let P ⊆ {P1, P2, . . .} be the set of paths Pk that contains a yj and let

P ′ =
⋃

P∈P P . Now P ′ ∪ Q is a subdivided K3,∞, with x, y, z as its infinite-degree

vertices, containing infinitely many elements of X.

3. B − S contains K, which is a subdivided comb, where each leaf belongs to a
◦
Pi and

this
◦
Pi does not contain any other vertices of K. In addition, every non-leaf vertex

in K does not belong to
◦
P1 ∪

◦
P2 ∪ . . . . In K, let P be the spine, Y = {y1, y2, . . .} be

the set of its leaves, and Qi be the Pyi-path for i = 1, 2, . . . . Let Q =
⋃∞

i=1Qi. Let

P ⊆ {P1, P2, . . .} be the set of paths Pk that contains a yj and let P ′ =
⋃

P∈P P . Now

P ′ ∪Q∪P is a subdivision of a graph in FF2 containing infinitely many elements of
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X, so by Lemma 4.1.11, it contains an X-rich FF .

Now suppose every S-bridge contains finitely many xy-paths of H ′. This means that

there are infinitely many such S-bridges, each contains at least one xy-paths of H ′, denoted

by B1, B2, . . . . We define the set B as following: if there exists an S-bridge Bi ∈ {B1, B2, . . .}

that is a path xmy where m has degree 2 in G, then such a Bi is unique by Claim 4.2.2.1

and in this case, B = {B1, B2, . . .} − Bi. Otherwise, no such Bi exists, and in this case,

B = {B1, B2, . . .}.

Claim 4.2.2.2. Every Bi ∈ B contains a vertex u /∈ V (S) and three weakly disjoint uS-paths

in Bi whose union contains an element of X.

Let Bi ∈ B. Observe that Bi−S contains a vertex u ∈ X since Bi contains an xy-path

P where
◦
P is disjoint from S and

◦
P contains an element of X. If u has degree at least 3 in G,

then by Lemma 4.1.4, u cannot be separated from S by fewer than 3 vertices. By Corollary

1.3.2, there exist three weakly disjoint uS-paths whose union contains the vertex u of X. In

addition, the union of those three paths is a subgraph of Bi since Bi is an S-bridge. In this

case, the claim is done. Otherwise, u has degree 2 in G. Let a, b be the neighbors of u in G.

If both a, b ∈ V (S), then Bi is the path aub. Since Bi contains at least one xy-path of H ′,

it follows that {a, b} = {x, y}. This is not possible by the construction of B. Thus, we may

assume that u has a neighbor a that is not on S. Now a has degree at least 3 in G, so by

Lemma 4.1.4, a cannot be separated from S by fewer than 3 vertices. By Corollary 1.3.2,

there exist three weakly disjoint aS-paths Pa, Qa, Ra in G. In addition, the union of those

three paths is a subgraph of Bi since Bi is an S-bridge. If u ∈ V (Pa ∪ Qa ∪ Ra), then the
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claim is done. Otherwise, u /∈ V (Pa∪Qa∪Ra). Since G is 2-connected and u has a neighbor

a, by applying Corollary 1.3.3 to u and Pa∪Qa∪Ra∪S in G, there exist two weakly disjoint

u(Pa ∪ Qa ∪ Ra ∪ S)-paths Pu, Qu. Since u has degree 2 in G, one of those paths Pu must

be the edge ua. If Qu has an endpoint on S, then in Bi, we have three weakly disjoint paths

aS-paths Pa, Qa, ua ∪ Qu whose union contains the vertex u of X, which proves the claim.

Otherwise, we may assume, without loss of generality, that Qu has an endpoint v on Pa. Let

t be the endpoint of Pa on S. Let P ′
a be the vt-subpath of Pa. We now have three weakly

disjoint paths aS-paths Qa, Ra, ua∪Qu ∪P ′
a whose union contains the vertex u of X, which

proves the claim.

From the previous claim, each Bi in B has a vertex u and three weakly disjoint uS-

paths in Bi whose union contains an element of X. Let ai, bi, ci be the three vertices on S of

those paths. Since V (S) is finite, there exist infinitely many Bi whose corresponding vertices

ai, bi, ci on S coincide. This yields a subdivided K3,∞, with ai, bi, ci as its infinite-degree

vertices that contains infinitely many elements of X.

Lemma 4.2.3. Let G be a weakly 3-connected graph and let X be an infinite subset of V (G).

Assume G contains a subdivided F∞ with infinitely many elements of X. Then G contains

an X-rich FF or an X-rich FL.

Proof. Let H be the subdivided F∞. Since H contains infinitely many elements of X, it

contains a subgraph H ′ that is also a subdivided F∞, satisfying one of the following

1. the rail of H ′ contains infinitely many elements of X,

2. every spoke of H ′ contains at least one element of X.
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In H ′, let R be its rail and let Z∗ be its first spoke, namely the spoke that is incident

with the endpoint of R. Let S = R ∪ Z∗, so S is a ray and we will consider S-bridges of G.

Claim 4.2.3.1. Every spoke of H ′, except the first one, is contained in some S-bridge of G.

This is because every spoke of H ′ is connected and its two endpoints are on S. This

proves the claim.

Claim 4.2.3.2. If G has an S-bridge B with infinitely many feet, then the lemma holds.

From the previous claim, every spoke of H ′ is contained in an S-bridge. First, suppose

B contains finitely many spokes of H ′. Let A be the set of spokes of H ′ not contained in B

and let A be the union of all spokes in A. Note that A is an infinite set. Let Y be the set

of feet of B. By Corollary 3.1.3, B contains one of the following subgraphs

1. A subdivided K1,∞, call it K, whose leaves belong to Y . Observe that A and K only

have common vertices on S. Since K has infinitely many leaves on S, it contains a

subdivided K1,∞, denoted by K ′, whose leaves are on R. The subgraph K ′∪S∪A is a

subdivision of a graph in FF1 containing infinitely many elements of X. By Lemma

4.1.10, it contains an X-rich FF .

2. A subdivided comb, call it K, whose leaves belong to Y . Observe that A and K only

have common vertices on S. Since K has infinitely many leaves on S, it contains a

subdivided comb, denoted by K ′, whose leaves are on R. The subgraph K ′ ∪S ∪A is

a subdivision of a graph in FL1 containing infinitely many elements of X. By Lemma
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4.1.12, it an X-rich FL.

Now suppose B contains infinitely many spokes of H ′. Let A′ be the set of spokes

that are contained in B. Then A′ is an infinite set. In addition, every spoke in A′ has length

at least 2 for otherwise, it would be a trivial bridge and thus cannot be contained in B.

Thus, every spoke in A′ has a nonempty interior and also, two distinct spokes in A′ have

disjoint interiors. Let A′′ = {
◦
A | A ∈ A′}. By applying Lemma 4.1.5 to the connected graph

B − S and all paths in A′′, one of the following is true in B − S

1. There exists an infinite subset Z = {Z1, Z2, . . .} of A′′ and internally disjoint (Z1 ∪

Z2∪ . . . )-paths Q1, Q2, . . . of B−S where Qi is between Zi and Zi+1 for i = 1, 2, . . . .

Let Ti be the Zi+1-subpath between Qi and Qi+1 and let M =
⋃∞

i=1 Ti ∪Qi. Then M

is a ray. Let Si be the spoke of H
′ that contains Zi. The subgraph (

⋃∞
i=1 Si)∪M ∪R

is a subdivision of a graph in FL1 containing infinitely many elements of X. By

Lemma 4.1.12, it contains an X-rich FL.

2. B − S contains K, a subdivided K1,∞, where each leaf belongs to an
◦
A ∈ A′′ and

this
◦
A does not contain any other vertices of K. In addition, every non-leaf vertex

in K does not belong to
⋃

◦
A∈A′′

◦
A. Let A1, A2, . . . be the spokes in A′ such that

each
◦
Ai ∈ A′′ contains a leaf of K. The subgraph (

⋃∞
i=1Ai) ∪K ∪ S is a subdivision

of a graph in FF2 containing infinitely many elements of X. By Lemma 4.1.11, it

contains an X-rich FF .

3. B − S contains K, a subdivided comb, where each leaf belongs to an
◦
A ∈ A′′ and
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this
◦
A does not contain any other vertices of K. In addition, every non-leaf vertex in

K does not belong to
⋃

◦
A∈A′′

◦
A. Let A1, A2, . . . be the spokes in A′ such that each

◦
Ai ∈ A′′ contains a leaf of K. The subgraph (

⋃∞
i=1Ai) ∪K ∪ S is a subdivision of a

graph in FL2 containing infinitely many elements of X. By Lemma 4.1.13, it contains

an X-rich FL.

This proves the claim.

From the previous claim, we may assume that every S-bridge of G has finitely many

feet. To analyze the connection between the S-bridges, we introduce the auxiliary graph Γ.

We first partition the S-bridges of G into groups such that two bridges belong to the same

group if they have the same set of feet.

Claim 4.2.3.3. There are infinitely many groups.

Suppose this is not the case. Since every S-bridge has finitely many feet and there

are finitely many groups, the set {x ∈ S | x is a foot of a bridge} is finite. But this implies

that there exists a vertex in S with degree at least 3 in G that does not belong to any bridge

and this is not possible. This proves the claim.

We define the graph Γ whose vertex set consists of the groups and two vertices are

adjacent in Γ if the two corresponding bridges chosen from the two groups cross with respect

to S. This definition of Γ is well-defined because bridges in the same group have the same

set of feet. By the previous claim, Γ is an infinite graph.

Claim 4.2.3.4. The graph Γ has no finite component.
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Suppose for contradiction that Γ has a finite component with vertices x1, x2, . . . , xk.

Let B1, B2, . . . , Bk be a set of corresponding S-bridges chosen from the k groups. Observe

that each Bi has at least two feet because G is weakly 3-connected. Since B1 ∪B2 ∪ · · · ∪Bk

is a finite union of bridges, each has finitely many feet, there exist two distinct x, y ∈ S

where x, y are feet of some bridges in {B1, B2, . . . , Bk} such that every foot of a bridge in

{B1, B2, . . . , Bk} belongs to S[xy]. If S(xy) does not contain a vertex of degree at least 3

in G, then S[xy] is either the edge xy or a path xzy where z has degree 2 in G. In either

case, note that B1 − S contains a vertex u of degree at least 3 in G. Now {x, y} separates u

from S in G, contradicting Lemma 4.1.4. Thus, S(xy) contains a vertex w of degree at least

3 in G. By Lemma 4.1.4, {x, y} does not separate w from S − S[xy]. Thus, there exists a

w(S − S[xy])-path in G− {x, y}. This means that there exists an S-bridge B∗ with a foot t

on S(xy) and another foot on S−S[xy]. This bridge B∗ /∈ {B1, B2, . . . , Bk} because it has a

foot on S−S[xy]. Additionally, B∗ does not cross any Bi with respect to S because B∗ is not

in the component {B1, B2, . . . , Bk} of Γ. Now in {B1, B2, . . . , Bk}, there is a bridge Bi with

x as a foot and a bridge Bj with y as a foot. Since none of the bridges in {B1, B2, . . . , Bk}

crosses B∗ with respect to S, every bridge in {B1, B2, . . . , Bk} has all feet either on S[xt] or

S[yt]. But this means the component {B1, B2, . . . , Bk} of Γ is not connected, a contradiction.

This proves the claim.

We have shown that Γ has no finite component, so it has an infinite component. In

this infinite component, there exists a vertex of infinite degree or an induced ray by Theorem

3.1.4. Suppose Γ has a vertex of infinite degree. Then there exist S-bridges B and B1, B2, . . .
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such that B crosses Bi with respect to S for every i. Since B has finitely many feet, there

exist two feet x, y of B that cross infinitely many Bi. By the definition of crossing, every Bi

has a foot in S(xy). Since S(xy) is finite, it has a vertex z that is a foot of infinitely many

Bi. Let Qxy be an xy-subpath of B and let S ′ be obtained from S by replacing S[xy] with

Qxy. Then S ′ is a ray and we have an S ′-bridge with infinitely many feet on S ′. Let F ′ be

the union of S ′ and all spokes of H ′ with both endpoints in S ′. Then F ′ is a subdivided F∞.

Furthermore, its rail contains infinitely many elements of X or every of its spokes contains

at least one element of X. By Claim 4.2.3.2, G contains a subdivision of FF or FL, each

contains infinitely many elements of X.

Now suppose Γ has an infinite induced path. Then there exist S-bridges B1, B2, . . .

such that with respect to S, Bi+1 crosses Bi but does not cross Bj for any j < i. By Lemma

4.1.20, there exist infinitely many S-paths Q1, Q2, . . . satisfying the following

1. two distinct Qi and Qj are internally-disjoint,

2. with respect to S, Qi+1 crosses Qi but does not cross Qj for any j < i.

Let K = S ∪Q1 ∪Q2 ∪ . . . . By Lemma 3.1.8, K = H1 ∪H2 where H1 is a finite graph and

H2 is the union of two disjoint rays A,B and a set R of infinitely many internally disjoint

AB-paths. In addition, H1 and H2 are edge-disjoint and K is locally finite. Let R1 be the

union of all paths in R. Let u be the infinite degree vertex and let S1, S2, . . . be the spokes

of H ′. For each i, let S ′
i be the subpath of Si such that S ′

i has u as an endpoint and the

other endpoint is the first time Si intersects H
′ − u. Let K ′ = (

⋃∞
i=1 S

′
i)∪K. We divide the

last part of the proof into two cases.
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Case 1: K ′ contains infinitely many elements of X. Since u ∈ K, one of the following

is true

• u ∈ H1,

• u ∈ (A ∪B)−H1,

• u ∈ R1 − (A ∪B ∪H1).

In each case, K contains a subgraph satisfying Lemma 4.1.16, so it contains an X-rich FL.

Case 2: K ′ contains finitely many elements of X. This implies that S contains

finitely many elements of X since S is a subgraph of K ′. Hence, we may assume that every

spoke of H ′ contains at least one element of X. In addition, by deleting edges of finitely

many spokes with an element of X in K ′, we may assume that no S ′
i contains any element

of X. Since every Si contains at least one element of X not in K, every Si has a shortest

subpath Ni that is a K-path and contains at least one element of X not in K. Let N be the

set of those such subpaths Ni. Then N has an infinite subset N ′ such that every path in N ′

is a (A ∪B ∪R1)-path. In addition, by deleting finitely many edges, all of the following are

true

• A,B have a subrays A′, B′ respectively such that u /∈ A′ ∪B′,

• R has an infinite subset R′ such that no path in R′ contains u. Let R′
1 be the union

of all paths in R′.

• N ′ has an infinite subset N ′′ such that every path in N ′′ is an (A′ ∪ B′ ∪ R′
1)-path.

Let N ′′ be the union of all paths in N ′′.

The subgraph A′∪B′∪R′
1∪N ′′ satisfies the conditions in Lemma 4.1.17, so it contains
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an X-rich L∞, call it L. Now L contains infinitely many elements of X, each of them belongs

to an Si − u, and u /∈ L. Thus, there exist infinitely many weakly disjoint uL-paths. Let L′

be the union of L and those weakly disjoint uL-paths. Now L′ contains a subdivided FL1 or

a subdivided FL2, each contains many elements of X. By Lemma 4.1.12 or Lemma 4.1.13,

it contains an X-rich FL.

Lemma 4.2.4. Let G be a weakly 3-connected graph and let X be an infinite subset of V (G).

Assume G contains a subdivided L∞ with infinitely many elements of X. Then G contains

an X-rich FL or an X-rich LL.

Proof. Let H be the subdivided L∞. Since H contains infinitely many elements of X, it

contains a subgraph H ′ that is also a subdivided L∞ satisfying one of the following

1. the rails of H ′ contain infinitely many elements of X,

2. every rung of H ′ contains at least one element of X.

In H ′, let P,Q be its rails and let Z∗ be its first rung, namely the rung that is incident

with the endpoints of P,Q. Let S = P ∪Q ∪ Z∗, so S is a double ray and we will consider

S-bridges of G.

Claim 4.2.4.1. Every rung of H ′, except the first one, is contained in some S-bridge of G.

This is because every rung of H ′ is connected and its two endpoints are on S. This

proves the claim.

Claim 4.2.4.2. If G has an S-bridge B with infinitely many feet, then the lemma holds.
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From the previous claim, every rung of H ′ is contained in an S-bridge. First, suppose

B contains finitely many rungs of H ′. Let A be the set of rungs of H ′ not contained in B

and let A be the union of all rungs in A. Note that A is an infinite set. Let Y be the set of

feet of B. By Corollary 3.1.3, B contains one of the following subgraphs

1. A subdivided K1,∞, call it K, whose leaves belong to Y . Observe that A and K only

have common vertices on S. Since K has infinitely many leaves on S, it contains a

subdivided K1,∞, denoted by K ′, such that all leaves of K ′ are on P or all leaves of

K ′ are on Q. The subgraph K ′ ∪S ∪A is a subdivision of a graph in FL1 containing

infinitely many elements of X. By Lemma 4.1.12, it contains an X-rich FL.

2. A subdivided comb, call it K, whose leaves belong to Y . Observe that A and K only

have common vertices on S. Since K has infinitely many leaves on S, it contains a

subdivided comb, denoted by K ′, such that all leaves of K ′ are on P or all leaves of

K ′ are on Q. The subgraph K ′ ∪ S ∪A is a subdivision of a graph in LL1 containing

infinitely many elements of X. By Lemma 4.1.14, it contains an X-rich LL.

Now suppose B contains infinitely many rungs of H ′. Let A′ be the set of rungs that

are contained in B. Then A′ is an infinite set. In addition, every rung in A′ has length at

least 2 for otherwise, it would be a trivial bridge and thus cannot be contained in B. Thus,

every rung in A′ has a nonempty interior and also, two distinct rungs in A′ have disjoint

interiors. Let A′′ = {
◦
A | A ∈ A′}. By applying Lemma 4.1.5 to the connected graph B − S

and all paths in A′′, one of the following is true in B − S
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1. There exists an infinite subset Z = {Z1, Z2, . . .} ofA′′ and internally disjoint (Z1∪Z2∪

. . . )-paths Q1, Q2, . . . of B−S where Qi is between Zi and Zi+1 for i = 1, 2, . . . . Let

Ti be the Zi+1-subpath between Qi and Qi+1 and let M =
⋃∞

i=1 Ti ∪Qi. Then M is a

ray. Let Ri be the rung of H ′ that contains Zi. The subgraph (
⋃∞

i=1Ri)∪M∪P ∪Q is

a subdivision of a graph in LL1 containing infinitely many elements of X. By Lemma

4.1.14, it contains an X-rich LL.

2. B−S contains K, a subdivided K1,∞, where each leaf belongs to an
◦
A ∈ A′′ and this

◦
A does not contain any other vertices of K. Let A1, A2, . . . be the rungs in A′ such

that each
◦
Ai contains a leaf of K. The subgraph (

⋃∞
i=1Ai) ∪K ∪ S is a subdivision

of a graph in FL2 containing infinitely many elements of X. By Lemma 4.1.13, it

contains an X-rich FL.

3. B−S contains K, a subdivided comb, where each leaf belongs to an
◦
A ∈ A′′ and this

◦
A does not contain any other vertices of K. Let A1, A2, . . . be the rungs in A′ such

that each
◦
Ai contains a leaf of K. The subgraph (

⋃∞
i=1Ai) ∪K ∪ S is a subdivision

of a graph in LL2 containing infinitely many elements of X. By Lemma 4.1.15, it

contains an X-rich LL.

This proves the claim.

From the previous claim, we may assume that every S-bridge of G has finitely many

feet. To analyze the connection between the S-bridges, we introduce the auxiliary graph Γ.

We first partition the S-bridges of G into groups such that two bridges belong to the same
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group if they have the same set of feet.

Claim 4.2.4.3. There are infinitely many groups.

Suppose this is not the case. Since every S-bridge has finitely many feet and there

are finitely many groups, the set {x ∈ S | x is a foot of a bridge} is finite. But this implies

that there exists a vertex in S with degree at least 3 in G that does not belong to any bridge

and this is not possible. This proves the claim.

We define the graph Γ whose vertex set consists of the groups and two vertices are

adjacent in Γ if the two corresponding bridges chosen from the two groups cross with respect

to S. This definition of Γ is well-defined because bridges in the same group have the same

set of feet. By the previous claim, Γ is an infinite graph.

Claim 4.2.4.4. The graph Γ has no finite component.

Suppose for contradiction that Γ has a finite component with vertices x1, x2, . . . , xk.

Let B1, B2, . . . , Bk be a set of corresponding S-bridges chosen from the k groups. Observe

that each Bi has at least two feet because G is weakly 3-connected. Since B1 ∪B2 ∪ · · · ∪Bk

is a finite union of bridges, each has finitely many feet, there exist two distinct x, y ∈ S

where x, y are feet of some bridges in {B1, B2, . . . , Bk} such that every foot of a bridge in

{B1, B2, . . . , Bk} belongs to S[xy]. If S(xy) does not contain a vertex of degree at least 3

in G, then S[xy] is either the edge xy or a path xzy where z has degree 2 in G. In either

case, note that B1 − S contains a vertex u of degree at least 3 in G. Now {x, y} separates u

from S in G, contradicting Lemma 4.1.4. Thus, S(xy) contains a vertex w of degree at least

3 in G. By Lemma 4.1.4, {x, y} does not separate w from S − S[xy]. Thus, there exists a
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w(S − S[xy])-path in G− {x, y}. This means that there exists an S-bridge B∗ with a foot t

on S(xy) and another foot on S−S[xy]. This bridge B∗ /∈ {B1, B2, . . . , Bk} because it has a

foot on S−S[xy]. Additionally, B∗ does not cross any Bi with respect to S because B∗ is not

in the component {B1, B2, . . . , Bk} of Γ. Now in {B1, B2, . . . , Bk}, there is a bridge Bi with

x as a foot and a bridge Bj with y as a foot. Since none of the bridges in {B1, B2, . . . , Bk}

crosses B∗ with respect to S, every bridge in {B1, B2, . . . , Bk} has all feet either on S[xt] or

S[yt]. But this means the component {B1, B2, . . . , Bk} of Γ is not connected, a contradiction.

This proves the claim.

We have shown that Γ has no finite component, so it has an infinite component. In

this infinite component, there exists a vertex of infinite degree or an induced ray by Theorem

3.1.4. Suppose Γ has a vertex of infinite degree. Then there exist S-bridges B and B1, B2, . . .

such that B crosses Bi with respect to S for every i. Since B has finitely many feet, there

exist two feet x, y of B that cross infinitely many Bi. By the definition of crossing, every

Bi has a foot in S(xy). Since S(xy) is finite, it has a vertex z that is a foot of infinitely

many Bi. Let Qxy be an xy-subpath of B and let S ′ be obtained from S by replacing S[xy]

with Qxy. Then S ′ is a double ray and we have an S ′-bridge with infinitely many feet on

S ′. Let L′ be the union of S ′ and all rungs of H ′ with both endpoints in S ′. Then L′ is a

subdivided L∞. Furthermore, its rails contains infinitely many elements of X or every of its

rungs contains at least one element of X. By Claim 4.2.4.2, G contains an X-rich FL or an

X-rich LL.

Now suppose Γ has an infinite induced path. Then there exist S-bridges B1, B2, . . .
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such that with respect to S, Bi+1 crosses Bi but does not cross Bj for any j < i. By Lemma

4.1.20, there exist infinitely many S-paths Q1, Q2, . . . satisfying the following

1. two distinct Qi and Qj are internally-disjoint,

2. with respect to S, Qi+1 crosses Qi but does not cross Qj for any j < i.

By Lemma 4.1.21, the graph K = S ∪ Q1 ∪ Q2 ∪ . . . contains three disjoint rays

R1, R2, R3 such that every Qi is contained in some Rj. In addition, if R = R1 ∪R2 ∪R3 and

J1, J2, . . . are all R-bridges of K, then each Ji is a subpath of S with endpoints in different

Rj and we call it a jump. Finally, if all but finitely many jumps are between Ri and Rj,

then Rk contains a subray of S. We divide the last part of the proof into two cases.

Case 1: K contains infinitely many elements of X.

We further divide this case into two subcases.

Case 1a: There are infinitely many jumps between at least two pairs of {R1, R2, R3}.

Since K contains infinitely many elements of X, either R1∪R2∪R3 contains infinitely

many elements of X or without loss of generality, there exist infinitely many jumps between

R1, R2 each contains at least one element of X. Let A be the union of all jumps between

R1, R2. Since there are infinitely many jumps between at least two pairs of {R1, R2, R3}, we

may assume without loss of generality that there are infinitely many jumps between R2, R3.

Let B be the union of all jumps between R2, R3. The subgraph R1 ∪ R2 ∪ R3 ∪ A ∪ B is a

subdivision of a graph in LL1 containing infinitely many elements of X. By Lemma 4.1.14,

it contains an X-rich LL.

Case 1b: There are infinitely many jumps between only one pair of {R1, R2, R3}.
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Without loss of generality, we may assume that there is a set A of infinitely many

R1R2-jumps, but there are only finitely many R2R3-jumps and only finitely many R1R3-

jumps. Then R3 contains a subray of S, so we may assume it contains a subray P ′ of P .

Let A be the union of all jumps in A. Now there exist infinitely many rungs R′
1, R

′
2, . . . of

H ′ with one endpoint in P ′ and the other endpoint in R1 ∪ R2 ∪ A. For each R′
i, let R′′

i

be the subpath of R′
i with one endpoint in P ′ and the other endpoint is the first time R′

i

intersects R1∪R2∪A. Let M =
⋃∞

i=1R
′′
i . If there exist infinitely many R′′

i with an endpoint

in R1 ∪ R2, then the subgraph R1 ∪ R2 ∪ R3 ∪ A ∪M contains a subdivision of a graph in

LL1 containing infinitely many elements of X. By Lemma 4.1.14, it contains an X-rich LL.

Otherwise, there exist infinitely many R′′
i with an endpoint in A− (R1 ∪R2). The subgraph

R1 ∪ R2 ∪ R3 ∪ A ∪M contains a subdivision of a graph in LL2 containing infinitely many

elements of X. By Lemma 4.1.15, it contains an X-rich LL.

Case 2: K contains finitely many elements of X. This implies that S contains finitely

many elements of X since S is a subgraph of K. Hence, we may assume that every rung of

H ′ contains at least one element of X.

We further divide this case into two subcases.

Case 2a: There are infinitely many jumps between at least two pairs of {R1, R2, R3}.

Without loss of generality, we may assume that there is a set A of infinitely many

R1R2-jumps and a set B of infinitely many R2R3-jumps. Let A be the union of all jumps in

A and let B be the union of all jumps in B. Since every rung of H ′ contains at least one

element of X and K contains only finitely many elements of X, K contains finitely many
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rungs of H ′. Thus, there exist an infinite subset {R′
1, R

′
2, . . .} of the rungs such that each

R′
i contains an element of X that is not in K. Since every rung in {R′

1, R
′
2, . . .} contains at

least one element of X, every R′
i has a shortest subpath Ni that is a K-path and contains

at least one element of X that is not in K. Let N be the set of those such subpaths Ni.

Suppose there exist only finitely many R1R3-jumps. Then N has an infinite subset N ′ such

that every path in N ′ is an (R1 ∪R2 ∪R3 ∪A∪B)-path. Let N ′ be the union of all path in

N ′. The subgraph R1 ∪R2 ∪R3 ∪A∪B ∪N ′ satisfies the hypotheses in Lemma 4.1.18, so it

contains an X-rich LL. Now suppose there exist infinitely many R1R3-jumps. Let C be the

union of all R1R3-jumps. Let K1 = R1 ∪R2 ∪R3 ∪A∪B, K2 = R1 ∪R2 ∪R3 ∪A∪C, and

K3 = R1 ∪R2 ∪R3 ∪B ∪C. Then N has an infinite subset N ′′ such that every path in N ′′

is a Ki-path for some i ∈ {1, 2, 3}. Let N ′′ be the union of all path in N ′′. The subgraph

Ki ∪N ′′ satisfies the hypotheses in Lemma 4.1.18, so it contains an X-rich LL.

Case 2b: There are infinitely many jumps between only one pair of {R1, R2, R3}.

Without loss of generality, we may assume that there is a set A of infinitely many

R1R2-jumps, but there are only finitely many R2R3-jumps and only finitely many R1R3-

jumps. Then R3 contains a subray of S, so we may assume it contains a subray P ′ of P . Let

A be the union of all jumps in A. Now there exist infinitely many rungs R′
1, R

′
2, . . . of H ′

with one endpoint in P ′ and the other endpoint in R1 ∪ R2 ∪ A. For each R′
i, let R

′′
i be the

subpath of R′
i with one endpoint in P ′ and the other endpoint is the first time R′

i intersects

R1 ∪R2 ∪ A. We further divide this case into two subcases.

Case 2b1: There exist infinitely many R′′
i with an endpoint in R1 ∪R2.
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Without loss of generality, we may assume that infinitely many R′′
i has an endpoint

in R1. Let M be the union of all such R′′
i . If there exist infinitely many elements of X in

M , then R1 ∪R2 ∪R3 ∪A∪M is a subdivision of a graph in LL1 containing infinitely many

elements of X. By Lemma 4.1.14, it contains an X-rich LL. Otherwise, let R′
i be the rung

of H ′ that contains R′′
i where R′′

i has an endpoint in R1. Since every R′
i contains at least one

element of X not in K, every R′
i has a shortest subpath Ni that is a K-path and contains

at least one element of X not in K. Let N be the set of those such subpaths Ni. Then N

has an infinite subset N ′ such that every path in N ′ is a (R1 ∪R2 ∪R3 ∪A ∪M)-path. Let

N ′ be the union of all paths in N ′. The subgraph R1 ∪ R2 ∪ R3 ∪ A ∪M ∪N ′ satisfies the

hypotheses in Lemma 4.1.18, so it contains an X-rich LL.

Case 2b2: There exist infinitely many R′′
i with an endpoint in A− (R1 ∪R2).

Let M be the set of all such R′′
i . Then M has an infinite subset M′ such that every

jump in A is incident with at most one R′′
i in M′ because the rungs of H ′ are disjoint. Let

M ′ be the union of all paths in M′. If there exist infinitely many elements of X in M ′, then

R1∪R2∪R3∪A∪M ′ is a subdivision of a graph in LL2 containing infinitely many elements

of X. By Lemma 4.1.15, it contains an X-rich LL. Otherwise, for each R′′
i in M′, let R′

i be

the rung of H ′ that contains R′′
i . Since every R′

i contains at least one element of X not in

K, every R′
i has a shortest subpath Ni that is a K-path and contains at least one element

of X not in K. Let N be the set of those such subpaths Ni. Then N has an infinite subset

N ′ such that every path in N ′ is a (R1 ∪R2 ∪R3 ∪A∪M ′)-path. Let N ′ be the union of all

paths in N ′. The subgraph R1 ∪ R2 ∪ R3 ∪ A ∪M ′ ∪N ′ satisfies the hypotheses in Lemma
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4.1.19, so it contains an X-rich LL.

Proof of Theorem 4.2.1. Since G is weakly 3-connected, it is 2-connected. By Theorem

1.2.3, G contains an X-rich H for some H in {K2,∞, F∞, L∞}. The theorem then follows

from Lemma 4.2.2, Lemma 4.2.3, and Lemma 4.2.4.

We will now prove the vertex version.

Proof of Theorem 1.2.5. Since G is 3-connected, it is also weakly 3-connected. The theorem

then follows from Theorem 4.2.1.

4.3. Edge Version

We conclude this chapter with the proof of the edge version.

Proof of Theorem 1.2.6. Let G′ be obtained from G by subdividing each edge in X exactly

once. Then G′ is weakly 3-connected. Let Y be the set of subdividing vertices of G′. Then Y

is infinite becauseX is infinite. In addition, every vertex of Y has degree 2 inG′. By Theorem

4.2.1, G′ contains an Y -richH ′ for someH ′ in {K3,∞, FF, FL, LL}. Consequently, G contains

a subdividedH containing infinitely many edges ofX for someH in {K3,∞, FF, FL, LL}.
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