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Abstract

Particle-like charge migration (CM) is the coherent, back-and-forth motion of a

positively-charged electron hole along the backbone of a molecule following a sudden

ionization. CM in small molecules generally occurs on an Angstrom (10−10 m) spatial

scale and an attosecond (10−18 s) timescale. I use time-dependent density-functional

theory (TDDFT) to simulate CM modes in organic molecules, and to explore all-optical

probes of this attosecond electron dynamics using high-harmonic spectroscopy (HHS).

By leveraging my results from previous studies of two-center interferences in carbon

dichalcogens, in which I separated the harmonic signal into contributions from individual

Kohn-Sham orbitals, I first develop high-harmonic sideband spectroscopy (HHSS) as a

robust, background-free, and all-optical probe of particle-like CM dynamics. The CM

manifests in the high-order harmonic signal as a beat in the time domain and as sidebands

in the frequency domain and over several laser cycles. By varying the driving laser wave-

length, I am able to extract the characteristic frequency of the relevant CM mode. Then,

by exploiting the inherent time-resolution of the high-harmonic generation process (the

attochirp), I develop frequency-matched strobo-spectroscopy (FMSS). Here, I vary the

delay between the initiation of the CM dynamics and a few-cycle laser pulse in order to

track the location of the electron hole along the molecular backbone as a function of time.

v



Chapter 1. Introduction

In this chapter, I first introduce the field of attosecond physics (Sec. 1.1), which

raises the possibility of investigating the dynamics of electrons on their natural timescale.

I then discuss two such ultrafast processes, charge migration (Sec. 1.2) and high-harmonic

generation (Sec. 1.3).

1.1. Attosecond Physics

On a microscopic scale, many disparate scientific fields, such as biology, chemistry,

and physics, blur together, as they are all initially governed by the motion of electrons

within atoms and molecules. The typical timescale for electronic motion is given by the

period of an electron circling the first Bohr orbit divided by 2π; this is the atomic time

unit, equal to about 2.4 × 10−17 seconds, or 24 attoseconds. The most common anecdote

for the incredibly short timescales being studied here is that there are more attoseconds in

one second than there are seconds in the age of the universe – having done the math, I am

happy to report that ultrafast physicists will be able to continue using this fun fact until

long after the Sun has died out.

Since the invention of the laser in the early 1960s, the need for higher spatial and

temporal resolution has been persistent in the field of atomic physics. In Figure 1.1, I

show the history of pulse duration and intensity of once-cutting-edge laser systems. No-

tably, there was a time, between the late 1980s and the early 2000s, when laser systems

struggled to pass the so-called “femtosecond barrier”. Despite this hurdle, studies of time-

resolved chemical bond formation and dissociation performed using these technologies was

crucial to our understanding of these processes [1], ultimately leading to the Nobel Prize
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Figure 1.1: History of (a) laser pulse intensity, in W/cm2, and (b) pulse duration [11], in
seconds. Notable advancements in laser technology have been indicated.

in Chemistry for A. H. Zewail in 1999 [2]. Not long after, the discovery of high-order har-

monic generation [3, 4] and its ability to create a train of coherent attosecond pulses [5, 6]

ushered in the era of “attosecond physics” [1, 7–10], which aims to image, understand, and

eventually control electronic motion in atoms and molecules.

In October 2023, three prominent members of the attosecond physics community

– Pierre Agostini, Ferenc Krausz, and Anne L’Huillier – were awarded the Nobel Prize in

physics “for experimental methods that generate attosecond pulses of light for the study of

electron dynamics in matter” [12]. The Royal Swedish Academy of Sciences recognized the

monumental amount of work that had been done since the early 1980s, and the myriad of

potential applications of the control of ultrafast processes. To quote Nobel laureate Ferenc

Krausz, “What are the most efficient ways of putting atoms into highly excited states that

allow X-ray light amplification and thus creation of X-ray compact lasers? Can the func-

tion of biomolecules be manipulated and novel molecular structures be formed by steering

electrons in chemical bonds? How does charge transfer occur in molecules assembled on

2



surfaces and how can it be optimized for more efficient solar cells or for fighting radiation

damage during biological imaging? What are the ultimate size and speed limits of elec-

tronic information processing and magnetic information storage, and how can we approach

these limits? How can energy be most efficiently transported into high-density matter to

ignite nuclear fusion? Answers to these scientific and technological questions will require

insight into and possibly control of microscopic electron motion.” [7]

1.2. Molecular Movies of Charge Migration

The quest to make shorter and more intense laser pulses has long been the corner-

stone of ultrafast physics – see again Fig. 1.1. Using these extremely short laser pulses, we

are able to image electron dynamics on its natural timescale, in the range of tens of at-

toseconds. One example of this ultrafast dynamics, charge migration (CM), has attracted

significant interest in the atomic, molecular, and optical (AMO) community [8, 9, 13–15].

This is in part because CM can be a precursor to many downstream processes such as

chemical reactions, photosynthesis, and photovoltaics; therefore, it is a means of under-

standing and perhaps steering these processes with the goal of charge-directed reactivity

[16–18]. Traditionally, CM is defined as “a time-dependent oscillation of the charge density

in a molecule, which is driven by the electronic coherence of a superposition state” (taken

from Ref. [15]). Throughout this report, however, I will use a more stringent definition:

after a localized ionization in a molecule, CM is the subsequent motion of a positively-

charged hole along the molecular backbone in a coherent, particle-like manner. This back-

and-forth motion of the electron hole, with a well-defined CM frequency, is called a CM

mode [18, 19].
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Before the advent of CM, chemical reactivity was described by the Rice-Ramsperger-

Kassel-Marcus (RRKM) theory [20–22], in which it is assumed that any excess energy is

rapidly equipartitioned amongst all of the molecular degrees of freedom. Thus, according

to RRKM theory, larger molecules with more degrees of freedom are much slower to disso-

ciate, since there is a much lower probability that there will be a localized fluctuation in

the electron density which would cause a bond to break [23]. However, in 1997, Weinkauf

et al. [24] observed that ions of small and medium-sized peptides dissociated much faster

than would be predicted by RRKM theory. Furthermore, they demonstrated that these

peptides could dissociate at a site far away from the initial site-specific ionization, and

attributed their observations to “charge migration along the peptide backbone, like a

beaded chain” (taken from Ref. [24]).

The first theory of CM was formulated in 1999 by Cederbaum and Zobeley [25], in

which they ascribe CM to the correlation between electrons, saying that “in the absence of

electron correlation the hole stays in the orbital in which it has been initially created and

does not migrate”. In other words, if an electron is removed from the system is such a way

that the remaining ion is in a stationary eigenstate of the cation, then there will be no

CM. In this picture, the simplest CM motion is caused by a beating between two cationic

eigenstates, producing an oscillating electron hole density with a characteristic frequency

equal to the difference of the energies of the two states involved (see Refs. [26, 27]). How-

ever, analyzing CM as a beating of molecular orbitals quickly becomes extremely compli-

cated when more than a few orbitals are involved [28–31]. Furthermore, molecular orbitals

cannot be probed directly in an experiment; instead, experiments rely on various forms of

spectroscopy to measure CM [32–34]. In this report, I will discuss a more intuitive way to
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Figure 1.2: Ultrafast electron dynamics after the sudden removal of an electron from bro-
mobutadiyne (BrC4H).

look at the problem, involving only the one-body electron density [18, 19, 35], which is a

physical and (in principle) measurable quantity.

Since its inception, the theory of CM has experienced a golden age [18, 23, 35–46].

In addition, there have been many combined experiment/theory efforts to explain CM in

specific molecules, such as glycine [47–50], PENNA [51–54], and other biologically-relevant

systems [33, 55–61]. Such a myriad of perspectives on the subject has fostered a vibrant

ecosystem for studying CM, likely due to the many possible benefits of being able to un-

derstand and control this phenomenon.

1.3. High-Harmonic Generation

The interaction between light and matter is at the heart of AMO physics. As an

example, high-harmonic generation (HHG) is a process in which the target matter re-

sponds to an intense laser field in an extremely nonlinear manner, emitting high-energy

photons with frequencies which are multiples (harmonics) of the incident laser. Due to its

inherent sub-femtosecond resolution, HHG has been developed over the past two decades

as a powerful spectroscopic tool, used to probe both structural and dynamical features
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Figure 1.3: Example of a HHG spectrum, taken from a 1D atomic single-active-electron
(SAE) calculation in Octopus, for λ = 1500 nm and I◦ = 75 TW/cm2. The spectrum is
divided into three regions: the perturbative regime, the harmonic plateau, and the cutoff
region.

in atomic, molecular, and condensed-phase systems [8, 15, 62–64], including CM [34, 65–

69]. HHG was first observed in 1987 simultaneously by Ferray et al. in Paris [3] and by

McPherson et al. in Chicago [4], and over the next few years, theory made great strides

towards explaining this phenomenon [70–75]. HHG has two important applications: in

the early 2000s, it was discovered that HHG could generate coherent attosecond pulses

[5, 76–80]. Second, HHG was also developed as a spectroscopic tool used to measure the

structure and dynamics of matter, which will be the main focus here. Since then, HHG

has been used to recover internuclear distances [81, 82] and perform molecular tomography

[83–86], among many other applications [66, 87–91].

As a demonstration, I apply an intense laser field to a gas-phase target (in simu-

lations, modeled by a single atom or molecule) in order to induce HHG. Consider a laser

pulse, described mathematically by

E⃗(t) = E◦ sin2

(
πt

Tp

)
· cos (ωLt) x̂ , 0 ≤ t ≤ Tp (1.1)

where ωL is the driving laser frequency and Tp is the pulse width. Under these condi-
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Figure 1.4: Schematic of the three-step model of high-order harmonic generation (HHG) in
the gas phase. An electron is released into the continuum via tunnel ionization (1), accel-
erates under the influence of the laser field (2), until it recombines with its parent ion and
emits a high-energy photon (3).

tion, a typical high-harmonic spectrum is shown in Figure 1.3, calculated from the Fourier

transform of the time-dependent dipole moment induced in a one-dimensional atomic-like

system by an intense laser pulse. Within the spectrum, there are dozens of peaks corre-

sponding to the odd-integer harmonics nωL (odd n ∈ Z) of the fundamental laser fre-

quency ωL. For a one-color laser field acting on an inversion-symmetric system, the even

harmonic orders will be suppressed in the harmonic spectrum. Within the harmonic spec-

trum, there are three distinct regions: (1) the perturbative regime, with rapidly-decreasing

harmonic intensities; (2) the harmonic plateau, in which the intensity of a particular odd-

harmonic peak is roughly frequency-independent; and (3) the cutoff region, where again

the harmonic peaks’ intensity goes down exponentially. The cutoff energy Ec is given by

Ec = Ip + 3.17Up , where Up =
E2

◦
4ω2

L

(1.2)

where Up is the ponderomotive energy [71, 72].

7



The HHG process is often described by the semi-classical three-step model [72–75],

pictured in Figure 1.4. Here, the atom is represented by a potential energy curve, shown

on the bottom left of the figure, which is to be distorted by the applied laser field. In the

first step, an electronic wave packet (EWP) is released into the continuum, with zero ki-

netic energy, at a time ti either by multi-photon ionization or by tunnelling through the

barrier created by the combined Coulomb and laser potentials (1). Once the EWP is liber-

ated, it is affected only by the Lorentz force due to the laser field, not the Coulomb force

due to the remaining ion. Thus, the EWP accelerates (2) under the influence of E(t), gov-

erned by the equation of motion

ẍ(t) = −E⃗(t) · x̂ = −E◦ cosωLt (1.3)

where, assuming that the pulse length Tp ≫ 1, the effect of the pulse envelope can be

neglected. The EWP follows a particular trajectory x(t), until it recombines (3) with its

parent ion at a time tr. Upon recombination, a high-energy photon is released, with an

energy equal to the kinetic energy of the returning EWP plus the ionization potential Ip.

Integrating the equation of motion in Eq. 1.3, using the initial conditions x(ti) =

ẋ(ti) = 0, one obtains

ẋ(t) = −E◦

ωL

[sin (ωLt) − sin (ωLti)] (1.4)

x(t) =
E◦

ω2
L

[cos (ωLt) − cos (ωLti) + ωL(t− ti) · sin (ωLti)] (1.5)

By solving Eq. 1.5 numerically, one finds that there are two distinct pathways – two sets

of related ionization/recombination times (ti, tr) – that correspond to the same return ki-

netic energy, giving rise to harmonic emissions that can interfere with each other; this is

8



Figure 1.5: Kinetic energy of the returning electron, for different ionization and recombi-
nation phases. There are two valid ionization/recombination phases for each value of the
return kinetic energy, corresponding to the short- and long-trajectory pathways.

shown in Figure 1.5. For instance, an EWP which is released at t = πTL/4 will return near

t = πTL with a kinetic energy of 1.5Up. Similarly, an electron ionized near t = 0.1πTL

will return at t = 7πTL/8, with the same kinetic energy but having taken longer to make

the trip. These two pathways are called “short” and “long” quantum orbits, or trajectories

[73, 92, 93], respectively. In most experiments, phase matching conditions strongly favor

the short-trajectory contributions [94–98]. As a consequence, in most of the calculations

shown in Chapters 3 and 4, I therefore also consider mainly the short-trajectory contri-

butions. Finally, the slope of the return kinetic energy (the derivative of the blue curve in

Fig. 1.5, U−1
p ∂tK(t)) is called the attochirp [93, 99] – more formally, the group delay dis-

persion – and reflects the fact that different photon energies are emitted at different times.

The attochirp is positive for short trajectories, and negative for long trajectories.

9



Chapter 2. Theoretical Methods

In this chapter, I discuss the theoretical and numerical methods used in order to

simulate and subsequently characterize the structure and dynamics of molecules, including

charge migration. After an introduction to atomic units (Sec. 2.1), I explore the method of

time-dependent density-functional theory (TDDFT) from a user’s perspective in Sec. 2.2.

Finally, I formalize the discussion of high-harmonic spectroscopy from the previous chap-

ter in Sec. 2.3, with the aim of computing the high-harmonic spectrum within real-spaced

TDDFT.

2.1. Atomic Units

When studying atomic physics, it is often convenient to work in atomic units (a.u.)

[100], in which the reduced Planck constant ℏ, the mass of the electron me, the fundamen-

tal electronic charge e, and the Bohr radius a◦ are all taken to equal 1, and all other quan-

tities are derived. This system of units is closely related to Bohr’s model of the hydrogen

atom, pictured in Fig. 2.1. Here, the orbital angular momentum of the electron l = mevr

is quantized: l = nℏ. In the hydrogenic ground state (the first Bohr orbit, n = 1), an

electron of mass me and charge −e orbits the nucleus at a radius a◦, at a rate such that it

travels a distance subtended by 1 radian in 1 atomic time unit, and a photon with energy

E = 0.5 H = 1 Ry (atomic energy unit) is needed in order to ionize this electron. Using

atomic units, the time-dependent Schrödinger equation (TDSE) simplifies to

i
∂

∂t
Ψ(r⃗, t) =

[
−∇2

2
+ V (r⃗, t)

]
Ψ(r⃗, t) (2.1)

where V is the total potential energy and Ψ is the time-dependent wavefunction. Atomic

units will be used throughout, unless otherwise stated.

10



Figure 2.1: Bohr model for the hydrogen atom.

2.2. Time-Dependent Density Functional Theory

Despite looking simple enough, the time-dependent Schrödinger Equation (TDSE)

Ĥ |ψ⟩ = i∂t |ψ⟩ of Eq. 2.1 can be extremely complicated, even using numerical methods,

when considering systems with several electronic and nuclear degrees of freedom, such as

molecules [101–104] (even small ones). Even after applying the frozen-nuclei approxima-

tion, in which the electrons are assumed to be moving in the potential created by fixed-in-

space nuclei, the N -electron Hamiltonian is quite formidable:

Ĥelec = −
N∑
i=1

1

2
∇2

i −
N∑
i=1

M∑
A=1

ZA

riA
+

N∑
i=1

N∑
j>i

1

rij
(2.2)

where the index A denotes a nucleus and the indices i and j denote electrons. Here, ZA

is the charge of the Ath nucleus, riA is the distance between the ith electron and the Ath

nucleus, and rij is the distance between the ith and jth electrons. This level of complex-

ity renders the TDSE analytically and computationally intractable for systems with more

than just a few electrons [101–103]. In particular, for my studies of correlation-driven

multi-electron quantum dynamics (e.g. CM), the exponential scaling of the N -electron

Hamiltonian in Eq. 2.2 is untenable.
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As an alternative, I use time-dependent density-functional theory (TDDFT), which

is a formally-exact, computationally-tractable theoretical approach to the quantum many-

body problem [102, 104–107]. The primary appeal of TDDFT is to be able to replace the

time-dependent many-body wave function Ψ(r⃗1, r⃗2, . . . , r⃗N , t) of 3N + 1 variables (where N

is the number of electrons in the system) with a one-body density n(r⃗, t), which depends

on only 4 variables (three for space and one for time). This is depicted in Figure 2.2.

Mathematically, the one-body density is defined by

n(r⃗, t) = N

∫
d3r⃗2 · · ·

∫
d3r⃗N

∣∣Ψ(r⃗, r⃗2, . . . , r⃗N , t)
∣∣2 (2.3)

Here, the N -electron wavefunction is integrated over all electron coordinates except one –

note that the choice of which electrons’ coordinates to integrate over is arbitrary. The cen-

tral theorem of TDDFT (called the Runge-Gross theorem) states, for many-body systems

evolving from a fixed initial state, that there is a one-to-one correspondence between the

above-defined electron density n(r⃗, t) and the time-dependent external potential Vext(r⃗, t)

which produces that density [104, 105]. Thus, if we can find a potential – any potential –

that reproduces the electron density of Eq. 2.3, then the full time evolution of the system

can be determined using that potential.

The goal of TDDFT is to design a fictitious system of non-interacting electrons

which reproduces the electron density of the fully interactive system [102], following

the procedure laid out by Kohn and Sham [108, 109] twenty years earlier in the case of

ground-state density-functional theory (DFT). In the Kohn-Sham (KS) formalism, the

TDDFT equations are given by(
−∇2

2
+ VKS[n](r⃗, t)

)
ϕi(r⃗, t) = i

∂

∂t
ϕi(r⃗, t) (2.4)
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Figure 2.2: (a) Depiction of the quantum many-body problem: here, each electron must
interact with every other electron and the nucleus. (b) Depiction of the TDDFT frame-
work: the electrons are replaced by a density n(r⃗, t) which, via the Runge-Gross theorem,
proceeds identically to the many-body description.

Here, VKS(r⃗, t) is the KS potential, and {ϕi(r⃗, t)} is the set of N orthonormal single-

particle Kohn-Sham orbitals. Though these orbitals have not been mathematically proven

to be physical quantities, they are often a good starting point for the qualitative in-

terpretation of molecular orbitals [110–112]. These Kohn-Sham orbitals generate the

time-dependent density of Eq. 2.3:

n(r⃗, t) =
N∑
i=1

ni(t)
∣∣ϕi(r⃗, t)

∣∣2 , (2.5)

where ni(t) are the time-dependent orbital occupation numbers. The density in Eq. 2.5

is equal to the one-body density of the interacting system from Eq. 2.3. These equations,

known as the time-dependent Kohn-Sham equations, would be equivalent to the TDSE in

Eq. 2.1 if we knew the exact form of the Kohn-Sham potential VKS in Eq. 2.4.

The time-dependent Kohn-Sham potential VKS(r⃗, t) is traditionally decomposed
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into three parts [102, 104, 106]:

VKS[n](r⃗, t) = Vext(r⃗, t) + VH[n](r⃗, t) + Vxc[n](r⃗, t) , where VH[n](r⃗, t) =

∫
d3r⃗ ′ n(r⃗ ′, t)

|r⃗ − r⃗ ′|

(2.6)

The first term is the time-dependent external potential Vext, and the second term is the

electrostatic potential due to the electron density, called the Hartree potential VH , defined

explicitly in Eq. 2.6. Finally, the last term is the exchange-correlation (XC) potential Vxc

[113–115], which contains all of the information about non-classical interactions (e.g. the

Pauli principle) within the original many-body system. Though there is no closed-form an-

alytical expression for the XC potential in terms of the one-body density, there are many

good approximations (of varying computational costs) to choose from.

For my purposes, TDDFT is a good choice for studies of HHS of charge migration

because (1) it has the ability to systematically handle large molecules with many active

and correlated electrons [18, 101–104], and (2) the one-body density n(r⃗, t) defined by

Eq. 2.3 above is the physical observable for CM [35]. Furthermore, TDDFT is also de-

signed to simulate time-dependent laser-matter interactions, making it ideal for perform-

ing high-harmonic spectroscopy on various molecules [110, 116]. Though there have been

recent attempts to perform high-harmonic spectroscopy using Gaussian basis-set TDDFT

[117], grid-based TDDFT [118–120] is the more natural choice for HHS because one needs

to be able to accurately describe the electron dynamics far away from the molecule.

2.2.1. Necessary Approximations

As a practitioner of TDDFT, there are a few (often inconsequential, but nonethe-

less present) approximations inherent to the framework that one should be mindful of
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when performing simulations and analyzing their results:

1. adiabatic approximation: Formally, the functional dependence of Vxc involves
the full history of the electron density n(r⃗, t) and the initial condition; in practice,
I instead assume an adiabatic (local-in-time) approximation to the XC functional,
described by Vxc[n](r⃗, t) = Ṽxc[n](r⃗)|n=n(t) [102, 107, 121, 122].

2. local-density-approximation XC functional: I also use a local-density-
approximation (LDA) XC functional [123–125], in which Vxc(r⃗◦, t) depends only
on n(r⃗◦, t) for every r◦ within the simulation domain (as opposed to the electron
density and its spatial derivatives). Using this type of functional and the adiabatic
approximation above, Vxc(r⃗, t) is equal to the XC potential of a static (frozen at
each time t) homogeneous electron gas of density n(r⃗, t) [102].

3. spin-restricted: In principle, the N -electron Hamiltonian in Eq. 2.4 could differ
for spin-up and spin-down Kohn-Sham orbitals [102, 107] (especially for open-shell
systems). For my simulations, I use a spin-restricted system, where the spin-up and
spin-down channels are identical.

4. average-density self-interaction correction (ADSIC): Since electrons are in-
distinguishable from one another within the electron density n(r⃗, t), I must use a
self-interaction correction which removes electrons’ interactions with themselves
[126–128]. Here, I use an average-density self-interaction correction (ADSIC).

5. dipole approximation: I neglect the spatial variation of the applied electromag-
netic field over the simulation region: E⃗(r⃗, t) = E⃗(t)|r⃗=0. This is known as the
dipole approximation [122].

The second class of approximations that I consider are due to the implementation

of TDDFT on a real-spaced grid. For my TDDFT calculations, I use the open-source code

Octopus [118–120, 129, 130], which solves the Kohn-Sham equations on a user-defined

Cartesian grid.

1. pseudopotentials: Even with the approximations noted above, TDDFT simula-
tions which explicitly include all electrons are often not feasible on a real-spaced
grid. The core orbitals are extremely localized on a single atomic site, meaning that
an exceedingly small spacing would be needed to accurately capture the specifics
of those core orbitals [131], while interactions with a strong laser field often require
relatively large box sizes due to the need to simulate electron density far away from
the core (e.g. the HHG process) [110]. Instead, I represent an atom’s nucleus and
its core electrons – all but the relatively-delocalized valence electrons – by a pseu-
dopotential. Here, atoms are represented by either PSF-type [132–136] or HGH-
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type [137] pseudopotentials.

2. time propagation: I want to take the initial state of the system {ϕi(r⃗, t◦)} and
propagate it forward in time until it reaches a final time t. For this purpose, the
time-dependent Kohn-Sham equations of Eq. 2.4 can be rewritten as:

ϕi(r⃗, t) = Û(t, t◦)ϕi(r⃗, t◦) , where Û(t, t◦) = T̂ exp

[
−i

∫ t

t◦

dt′
(
−∇2

2
+ VKS(r⃗, t′)

)]
(2.7)

where the time-ordering operator T̂ is important since the Kohn-Sham potential
VKS is time-dependent [102, 107]. Due to this time-ordering operator, the expres-
sion in Eq. 2.7 is too complicated to apply directly, and so Û(t, t◦) must be ap-
proximated instead. For my simulations, I use the enforced time-reversal symme-
try (ETRS) scheme, or its approximated form (AETRS), both of which have been
extensively tested [121, 138]. Both of these propagators assert that the system is
time-reversible:

exp

[
i

(
δt

2

)
Ĥ(t+ δt)

]
ϕ(t+ δt) = exp

[
−i

(
δt

2

)
Ĥ(t)

]
ϕ(t) (2.8)

The approximation then lies in determining Ĥ(t + δt), which defines the difference
between ETRS and AETRS.

2.3. High-Harmonic Spectroscopy

High-harmonic spectroscopy (HHS) is the application of HHG, discussed in

Sec. 1.3, to study a wide range of static and dynamic properties of atomic, molecular,

and condensed-phase systems (see Refs. [77, 82–84, 90], among many others). Since the

underlying HHG process relies on ultrashort laser pulses, HHS is ideal for investigating the

fastest electronic processes, such as charge migration. Here, the returning electron wave

packet (EWP) coherently probes the remaining cation with sub-laser-cycle resolution (see

again the discussion around Fig. 1.5) [67]. The primary goal of HHS is to access the dipole

matrix element between this recombining EWP in the continuum and the bound molec-

ular orbital, called the recombination dipole matrix element, or RDME; this information

is imprinted in the frequency-dependent amplitude and phase of the harmonic radiation

[110].
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Figure 2.3: Comparison of calculated high-harmonic spectra for the filtered and windowed
dipole acceleration (red) and the raw data (blue). Data taken from a TDDFT simulation
of bromobutadiyne (BrC4H) using a laser with a wavelength of 1800 nm, and an intensity
of 60 TW/cm2.

From my TDDFT simulations, I obtain the dipole moment d⃗(t) = ⟨Ψ|r⃗|Ψ⟩ and/or

the dipole acceleration a⃗(t) = d2

dt2
d⃗(t) = −⟨Ψ|∇⃗V |Ψ⟩, from which I can extract both

amplitude and phase information:

Stot(ω) =
3∑

i=1

Si(ω) =
3∑

i=1

∣∣Di(ω)
∣∣2 (spectral intensity) (2.9)

φtot(ω) =

∑3
i=1[Si(ω)φi(ω)]

Stot(ω)
, where φi(ω) = arg

(
Di(ω)

Dref(ω)

)
(phase) (2.10)

where Di(ω) is the complex dipole signal in the frequency domain along the ith Cartesian

direction, which has been windowed using W (t) and (optionally) high-pass-filtered using

F (t):

Di(ω) = F [W (t) ãi(t)](ω), ãi(t) = [F ∗ (⃗a · x̂i)](t) (2.11)

where ω is the frequency of the emitted high-harmonic light and ∗ denotes the convolution

operator. Because the harmonic phase accumulates very rapidly even in the absence of

any distinguishing features (for instance, HHG from a single atom), I normalize the com-

plex dipole signal in Eq. 2.10 by a reference signal Dref(ω) which is essentially featureless
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in the spectral region of interest. This reference signal can be obtained, for instance, by

computing the dipole signal from a one-dimensional atomic-like system with the same ion-

ization potential as the full molecular system.

For the complex dipole signal in Eq. 2.11 above, I apply a high-pass filter F with

a cutoff frequency ωc = 20 eV, which removes intense low-frequency components in the

dipole signal found in the perturbative region of the harmonic spectrum that would bleed

into higher frequencies when I apply the short time-selection window W (t). The window

function W (t) has two purposes: first, it forces the harmonic signal to go to zero at both

ends, eliminating high-frequency artifacts in the Fourier transform which are unphysical

and therefore unwanted. Second, it allows me to select the time-dependent response from

one or multiple half-cycles of the laser field. In general, W (t) is defined as

W [t◦, τ, p](t) =


cos2p

(
π(t−t◦)

τ

)
, t◦ − τ

2
≤ t ≤ t◦ + τ

2

0, otherwise

(2.12)

where t◦ is the central time, τ is the window width, and p is a positive integer which de-

termines the steepness of the window (usually p = 1 or 2). The effects of filtering and

windowing on an example harmonic spectral intensity is shown in Figure 2.3.

Another useful tool for analyzing the harmonic emission is the Gabor transform,

or spectrogram. This time- and harmonic-frequency-dependent signal is constructed by

taking many windowed spectra, using small windows with τ ≈ 50 a.u., centered around

different times. Examples of spectrograms are given in Figure 2.4, for a one-dimensional

atomic-like potential. A spectrogram is used to map out which harmonic frequencies were

emitted at what time within the laser cycle, providing an observation of the blue curve
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Figure 2.4: Gabor transforms of 1D HHG simulations in Octopus, for (a-e) an APT-seeded
and a (f-j) MIR-only driving laser, for five different simulation box lengths. As l increases,
the long-trajectory contribution to the dipole signal increases.

in Fig. 1.5. Constructing the spectrogram requires access to the time-dependent dipole

signal; thus, both amplitude and phase information is necessary.

In Sec. 2.2.3.1, I discuss the above-mentioned methods for enhancing the short-

trajectory contribution to the harmonic signal. In Sec. 2.2.3.2, I derive a method for deter-

mining the isotropic (orientation-averaged) harmonic spectrum from relatively few calcu-

lations, and in Sec. 2.2.3.3, I discuss how to isolate the contributions of individual Kohn-

Sham orbitals to the harmonic signal in order to further refine my future analyses.

2.3.1. Short-Trajectory Selection

In an experiment, the short-trajectory contribution dominates, due to macroscopic

effects (e.g. phase matching) in the laser focal volume [94–97]. In my grid-based TDDFT

simulations, which are done for a single molecule, there are no such macroscopic effects,

and the interference between the short- and long-trajectory contributions of Fig. 1.5 yields
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Figure 2.5: An illustration of the laser fields used to select the short-trajectory contribu-
tion to the HHG signal in TDDFT computations. The APT (red) is synchronized with the
mid-infrared (MIR) HHG-driving laser field (blue).

a complicated harmonic spectrum. Thus, I attempt to filter out the long-trajectory contri-

butions in two ways: (1) using a complex absorbing potential (CAP) [139–141], and/or (2)

using an attosecond pulse train (APT) [94, 98, 142–144].

Since the long quantum orbits travel further away from the ionization event (thus

taking longer to return), they can be suppressed by placing an absorbing boundary [139]

at the maximum excursion distance of the short-trajectory contribution, called the quiver

radius. In Octopus, this absorbing boundary condition is defined by

VCAP(xi) = iη sin2
(πxi

2w

)
, where Lxi

− w ≤ xi ≤ Lxi
(2.13)

where {η, w} are the parameters of the CAP described by the Octopus variables

ABCapHeight and ABWidth, respectively, and Lxi
is the length of the box in the xi di-

rection. By default, I use η = −1 and w = 15 atomic units. Then, by scaling the length of

the simulation box in the direction of the driving laser polarization to the quiver radius of

the HHG electron, defined by α◦ = E◦/ω
2
L, I can suppress the long-trajectory contribution

to the dipole signal. The issue with this approach is that by placing the absorbing bound-

ary conditions at the quiver radius, I am intentionally eating electron density (that of the
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long-trajectory contribution to the HHG signal). This means that if the laser intensity is

too high, a significant portion of the total electron density could be eaten by the absorbing

boundary (not returning to the molecule in the third step of HHG), causing unexpected

changes in both structural and dynamic features.

The second method of enhancing the short-trajectory contribution to the harmonic

signal is to include another laser field, which is composed of harmonics of the HHG-driving

laser field. The combination of these harmonics of the fundamental laser field, with the

correct phases, leads to a series of localized-in-time laser pulses, called an attosecond pulse

train (APT) – see Figure 2.5. The purpose of the APT is to replace the tunnel ioniza-

tion in the first step of the HHG process with one-photon ionization, so that I can con-

trol when the ionization is happening on a sub-cycle level. This APT is timed to coincide

with the release of each short-trajectory burst of the laser field – see again Fig. 1.5 [143];

here, the delay δ between the peaks of the HHG-driving laser field and the APT is approx-

imately 0.06 optical cycles (o.c.). While the use of an APT often improves the ability of

TDDFT calculations to extract target-specific information from the HHG signal, it also

has the opportunity to disproportionately ionize electrons from lower-lying Kohn-Sham

orbitals which may not contribute to the signal otherwise.

As an illustration of these two different methods, in Figure 2.4, I vary the length

of a one-dimensional simulation box between 40 and 100 atomic units, and perform HHG

on an atomic-like pseudopotential sitting at x = 0, using both an MIR-only and an

APT-seeded driving laser. For the laser parameters used in these 1D simulations, the

quiver radius is α◦ = 50 a.u., and the semiclassical cutoff energy is Ec = 70 eV. By doing

this, one can clearly see that increasing the box length past α◦ in either the MIR-only
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or APT-seeded case causes a significant amount of long trajectories to appear, causing

unwanted interference in the HHG spectrum (not shown). The feasibility of using the ab-

sorbing boundary conditions versus the APT-ionization seed to select the short-trajectory

contributions can be strongly limited by the specifics of the problem at hand. That said,

I can deduce some generic pros and cons to each approach. For the CAP, the obvious

advantage is that it is the closest to experimental conditions since no additional laser field

is added to the simulations. This means that one can expect the wavelength and intensity-

dependence of the ionization to be relatively well-accounted for, especially for Kohn-Sham

channels that are close to each other energetically. On the other hand, the absorbing

boundary conditions must essentially leave the short-trajectory component intact while

damping the long-trajectory component and without inducing spurious reflections. Simul-

taneously fulfilling these conditions can become increasingly difficult for shorter-than-MIR

wavelengths. For the APT, in addition to the difficulty of recombining the dipole signal

from different Kohn-Sham channels, the performance of the ionization seed is dependent

upon a proper calibration of the APT. This includes avoiding APT-field-induced effects

(see, for instance, Sec. 3.3), and there are no one-size-fits-all solutions.

2.3.2. Orientation Averaging using Lebedev Grids

In an experiment, molecules in the gas phase are randomly oriented unless aligned

by a laser field. Thus, in order to make accurate quantitative comparisons to experimental

HHG spectra, one must compute an orientation-angle-averaged (or isotropic) harmonic

spectrum [145, 146].

In general, it takes three angles to describe an object’s orientation with respect to
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some reference frame. They can be defined equivalently by Euler or Tait-Bryan angles; I

will be using the latter, since they are the easiest to work with in this case. Any rotation

of a molecule in three-dimensional space can be defined in terms of these Tait-Bryan an-

gles:

R̂(ϕ, θ, ψ) = R̂x(ψ)R̂y(θ)R̂z(ϕ) (2.14)

where R̂k is the rotation operator around the kth Cartesian axis (in a stationary reference

frame), and ϕ ∈ [0, 2π), θ ∈ [0, π), and ψ ∈ [0, 2π). More familiarly, the non-technical

terms for ϕ, θ, and ψ would be the yaw, pitch, and roll, respectively. However, without

loss of generality, one can safely ignore rotations around the laser polarization axis (which

I will define here as x̂), and so we can ignore the ψ-dependence in Eq. 2.14. Thus, the

next step is to sample points (θ, ϕ) on the unit sphere S2 in a consistent way, so that I can

compute the isotropic harmonic spectrum:

S(ω) ≡
∑
k

∣∣∣∣ ∫ π

0

sin θ dθ

∫ 2π

0

dϕ D̃k[θ, ϕ](ω)

∣∣∣∣2 (2.15)

where D̃k[θ, ϕ](ω) is the windowed Fourier transform of the dipole moment, defined by

Eq. 2.11, along the kth Cartesian axis, for a particular orientation (θ, ϕ) of the molecule.

For any arbitrary function f(θ, ϕ), the surface integral over the unit sphere R2 can

be approximated by a Riemann sum

I[f ] =

∫ π

0

sin θ dθ

∫ 2π

0

dϕ f(θ, ϕ) ≈
∑
i

wi f(θi, ϕi) (2.16)

where wi is the weight corresponding to a particular orientation (θi, ϕi). Different methods

of sampling points on S2 have already been thoroughly investigated [147]. I will use the

Lebedev quadrature rule [148]; despite its limited flexibility in choosing the number of grid
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Figure 2.6: Examples of two quadrature rules: (a) Lebedev grid with 350 points, and (b)
Gauss-Legendre grid with 512 points. Adapted from [149].

points to use, it outperforms product grids such as the Gauss-Legendre quadrature – see

Fig. 2.6 [149]. The Lebedev quadrature is constructed such that it has octahedral-rotation

and inversion symmetries; and, as with any quadrature rule, the grid points and weights

are determined by enforcing the exact integration of polynomials up to a given order.

The Lebedev quadrature rule provides the most efficient way to sample over the

surface of S2; however, by exploiting the symmetries of the molecule, I can further reduce

the number of simulations required in order to compute the isotropic harmonic spectrum.

As an example, rotating a benzene molecule by π radians in the plane of the molecule

yields the exact same ground-state electron density – thus, the harmonic signal induced by

the applied laser field will also be identical. Using the Lebedev grid without these consid-

erations, I would treat these two orientations separately, even though only one simulation

(with twice the weight) is required to achieve the same result.

To further capitalize on the molecular symmetries, I look for pairs of orientations
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whose ground-state densities are consistent when one is rotated around one of the three

Cartesian axes; for each of these pairs, I can determine how their corresponding dipole

moments are related, add them together, and then only have to simulate one of those ori-

entations.

Let us define π-rotation operators around each of the three Cartesian axes, which

act on time-dependent electron densities ρ(r⃗, t) in a monochromatic electric field:

Π̂xρ(r⃗, t) ≡ R̂x(π)ρ(r⃗, t) = ρ(x,−y,−z, t)

Π̂yρ(r⃗, t) ≡ R̂y(π)Û(t+ TL/2, t)ρ(r⃗, t) = ρ(−x, y,−z, t+ TL/2)

Π̂zρ(r⃗, t) ≡ R̂z(π)Û(t+ TL/2, t)ρ(r⃗, t) = ρ(−x,−y, z, t+ TL/2)

(2.17)

For rotations around the y and z axes, the rotation operator R̂ needs to be accompanied

by a time-translation operator Û which advances the laser field by one-half optical cycle,

since for a monochromatic laser field E(t) = −E(t+ TL/2).

For the trivial case described above, that of a benzene molecule rotated by π ra-

dians in the plane of the molecule, the π-rotated ground-state electron density ρ[θ′, ϕ′](r⃗)

is identical to the original ground-state density ρ[θ, ϕ](r⃗); therefore, all three components

of the corresponding dipole moments are also identical. However, suppose that I find that

two orientations’ ground-state electron densities are not identical, but instead related by a

Π̂z rotation. Mathematically, this can be represented by:

ρ[θ′, ϕ′](r⃗, t) = Π̂zρ[θ, ϕ](r⃗, t) = ρ[θ, ϕ](−x,−y, z, t+ TL/2) (2.18)

for two unique orientations (θ, ϕ) and (θ′, ϕ′) of the molecule. Then the corresponding
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dipole moment in the x-direction is given by

dx[θ′, ϕ′](t) =

∫∫∫
R3

x ρ[θ′, ϕ′](r⃗, t) dx dy dz

=

∫∫∫
R3

x ρ[θ, ϕ](−x,−y, z, t+ TL/2) dx dy dz (2.19)

Then, using the following properties of integrals:
∫∞
−∞ f(x)g(x) dx =

∫∞
−∞ f(−x)g(x) dx, even g(x)

∫∞
−∞ f(x)g(x) dx = −

∫∞
−∞ f(−x)g(x) dx, odd g(x)

(2.20)

the aim is to recover ρ[θ, ϕ](r⃗, t) in the integrand and simplify the above equation. For the

x integral, g(x) = x is odd; therefore, I gain a minus sign by transforming −x → x. For

the y integral, g(y) = 1 is even, so no additional minus sign is needed when transforming

−y → y. The z integral remains unchanged. Lastly, assuming that d(t = 0) = 0, d(t +

TL/2) = −d(t); therefore the time translation provides an additional factor of −1. Thus,

assuming that two orientations’ ground-state densities are linked by a π-rotation around

the z-axis, their x-axis dipole moments dx[θ′, ϕ′](t) = dx[θ, ϕ](t).

I repeat a similar procedure for the y and z components of the dipole moment, and

also for the other two rotations Π̂x and Π̂y. Doing so, I find that

1̂ :



dx same

dy same

dz same

Π̂x :



dx same

dy opposite

dz opposite

Π̂y :



dx same

dy opposite

dz same

Π̂z :



dx same

dy same

dz opposite

(2.21)

for a laser polarization axis along x̂. This means that if a π-rotation around the x-axis

makes two ground-state densities consistent, then one should expect that if I were to do
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Figure 2.7: Plot showing the reduction of the number of required simulations achieved by
exploiting molecular symmetries in benzene and chlorobenzene, as a function of the total
number of grid points in the Lebedev quadrature.

both simulations, the resulting dipole signals are identical in the x direction, and oppo-

site (multiplied by -1) in the y and z directions. These results are indeed consistent with

simulations of orientation-dependent HHG signals in Octopus.

As a demonstration of the utility of this method, in Fig. 2.7 I show the number of

required TDDFT simulations after taking account of molecular symmetries in benzene and

chlorobenzene, as a function of the number of points in the Lebedev grid. If I had not

done anything, I would expect a line of slope 1. Using the above method, the number of

Lebedev grid points per unique simulation (inverse of the slopes of the lines) is approxi-

mately 4 for chlorobenzene and 8 for benzene. For less symmetric molecular systems, I ex-

pect that the slope of the lines in Fig. 2.7 will converge to 1, and the order of the Lebedev

grid required to accurately compute the isotropic harmonic spectrum will increase. More

detailed results of isotropic harmonic spectra can be found in Ref. [146].

Looking toward the future, one could imagine further improving the efficiency of

the orientation averaging method described here by generating a quadrature rule that

matches the point-group symmetry of the molecule. Thus, the ratio between the number
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of required simulations and the number of points in the grid reaches its theoretical max-

imum (per molecule), and so one could use a more precise quadrature without incurring

heavy computational costs.

2.3.3. Orbital-Resolved HHS

Even when properly processed, HHG spectra calculated in TDDFT can still be

quite congested. Thus, I want to be able to resolve the different contributions from each

of the individual orbitals in the total dipole acceleration [110, 150–155]. This breakdown

is useful, for example, when looking at two-center interferences which only manifest in a

specific orbital symmetry (see Ch. 3) [110]. This functionality is now native to Octopus, as

of version 11.0, using the TDOutputResolveStates variable; however, because it is a useful

exercise, I will explain how I did it before this feature was available.

Given that the one-body density n(r⃗, t) can be defined in terms of individual Kohn-

Sham orbitals – see again Eq. 2.5 – I can rewrite the total dipole moment as a sum of the

individual orbitals’ dipole contributions:

d⃗(t) =

∫∫∫
r⃗ n(r⃗, t) d3r⃗

=
N∑
k=1

d⃗k(t) =
N∑
k=1

∫∫∫
r⃗ |ψk(r⃗, t)|2 d3r⃗ (2.22)

With Octopus, I can calculate the x-component of the orbital-resolved dipole moment

dk(t) by exporting the transversely-integrated densities ρk(x, t) (OutputFormat = integrate dydz),

and then use post-processing to calculate

d⃗k(t) · x̂ =

∫
x

∫∫
|ψk(r⃗, t)|2 dy dz︸ ︷︷ ︸

ρk(x,t)

dx (2.23)

The y- and z-components of the orbital-resolved dipole moment can readily be calculated
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in a similar way:

d⃗k(t) · ŷ =

∫
y

∫∫
|ψk(r⃗, t)|2 dx dz︸ ︷︷ ︸

ρk(y,t)

dy (2.24)

d⃗k(t) · ẑ =

∫
z

∫∫
|ψk(r⃗, t)|2 dx dy︸ ︷︷ ︸

ρk(z,t)

dz (2.25)

A general caveat to the orbital-resolution procedure that I propose here is that

(as mentioned in Section 2.2) the Kohn-Sham orbitals of Eq. 2.4 were introduced as

non-physical quantities in the construction of the electron density [108, 109] and thus

the orbital-resolved dipole signals above do not correspond exactly to experimental ob-

servables. However, compared to single-active-electron or static-orbital approximations,

I expect time-dependent Kohn-Sham orbitals to provide significant improvements by

allowing for (i) laser-field dressing effects such as polarization, Stark shift, reshaping the

density, etc., which can qualitatively affect the HHS response [156, 157]; and (ii) multi-

channel contributions, if more than one Kohn-Sham channel significantly contributes to

the HHG signal and is included in the analysis. Despite their introduction to ground-state

DFT as non-physical quantities, the Kohn-Sham orbitals are the closest set of one-particle

wavefunctions to the total multi-electron wavefunction. In that sense, I expect that time-

dependent Kohn-Sham orbitals to reproduce some elements of fully-correlated models [111,

112], although the qualitative and quantitative agreement is likely to be both system- and

observable-dependent [158, 159].

In order to quantitatively compare HHG spectra from different molecules, one

needs to correct for the inaccurate ionization potentials (therefore, inaccurate tunnel-

ionization rates) computed from TDDFT with LDA [160–163]. This process involves
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breaking the total HHG spectrum into contributions from each of the Kohn-Sham orbitals,

as described above, and rescaling them in accordance to the correct ionization poten-

tial [146]. Thus, the Kohn-Sham orbital resolution method brings us one step closer to

bridging the gap between theoretical calculations of HHG spectra and experiment.
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Chapter 3. Two-Center Interferences

In this chapter, I apply the methods put forth in Sec. 2.3 by performing high-

harmonic spectroscopy (HHS) on molecules in the carbon dichalcogen family (CO2, CS2,

and CSe2). These molecules have a well-documented minimum in the high-harmonic

spectral intensity due to destructive interference between two prominent centers of charge

within the molecule, called a two-center interference (TCI) minimum. I have found that

via careful signal processing and normalization, I can identify the TCI minima in several

linear, triatomic molecules and compare these results with experiments performed at OSU.

TCI minima are introduced in Sec. 3.1, and the specifics of my analysis can be

found in Sec. 3.2. In Sec. 3.3, I validate the orbital-resolved methodology that I out-

lined in Sec. 2.3.3. I then compare the TCI minima for different molecules in the carbon

dichalcogen family (Sec. 3.4), and also for different laser parameters in CO2 (Sec. 3.5).

Finally, I develop and validate field-free scattering simulations performed in MATLAB,

which are compared to the full TDDFT simulations in Octopus – see Sec. 2.6.

3.1. Introduction

In the third step of high-harmonic generation (HHG), the recombining electron

wave packet (EWP) coherently probes the molecule from which it was ionized, encoding

information about structural and dynamical features onto the high-harmonic spectral in-

tensity and phase – see again Sec. 1.3. The simplest example of a structural feature in a

molecule is a two-center interference (TCI), which occurs in a molecule whose highest-

occupied molecular orbital (HOMO) is predominantly composed of two centers of charge

density [141, 157, 164, 165]. Similar in spirit to Young’s double-slit experiment, a mini-
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mum in the spectral intensity results from the destructive interference between recombi-

nation events at each center of charge. The recombining electron wave packet (EWP), de-

picted as a plane wave with a de Broglie wavelength λe, is incident upon a molecule with

two prominent charge centers separated by a distance R – see Figure 3.1(a). The EWP

sees the effective distance R cos θ between the two charge centers when the molecule is ro-

tated in the xy plane. For symmetric molecules like the ones I consider in this chapter,

the TCI shifts in energy as a function of the relative angle θ between the laser polarization

direction and the molecular axis, according to the equation

R cos θ = mλe = mπ ·
√

2E ∀ m ∈ Z (3.1)

where λe is the electron’s de Broglie wavelength, E is the electron’s returning kinetic en-

ergy, and R is the distance between the two centers of electron density – see Fig. 3.1(a).

By rearranging Eq. 3.1, we can conclude that the energy of the destructive interference

scales quadratically with the effective distance R cos θ. For a fixed internuclear distance R

(for a given molecular target), this results in a parabolic minimum in the spectral intensity

with respect to angle θ, as is shown in Figure 3.2(a).

TCIs have been studied extensively in several molecules, in both experiment and

theory [152, 156, 165–171], serving as an excellent demonstration of the ability of HHS

to probe the electronic structure of a molecule. To measure a TCI, the molecule’s align-

ment angle θ needs to be controlled with some level of accuracy in a field-free setting,

which is achievable with current experimental techniques [172–177]. Once the sample has

been aligned, an applied laser field induces HHG, and the resulting complex dipole sig-

nal encodes information about the molecule’s TCI. Both amplitude and phase information
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Figure 3.1: (a) Diagram of a two-center interference: the recombining EWP, depicted
as a plane wave with a de Broglie wavelength λe, is incident upon a molecule with two
prominent charge centers (the red atoms) separated by a distance R. The EWP sees the
effective distance R cos θ between the two charge centers when the molecule is rotated in
the xy plane. (b) Isosurfaces of the in-plane (top) and out-of-plane (bottom) HOMO for
CO2. The purple and yellow lobes have equal amplitude but opposite phase.

(Eqs. 2.9 and 2.10) is crucial to characterizing the TCI minimum [110, 156, 165, 178]. The

theoretical work presented here [110, 179] was motivated by experimental results provided

by collaborators at The Ohio State University (OSU), in which they were able to char-

acterize the TCI in CO2 using both intensity and phase information from HHS measure-

ments [165, 179].

3.2. Simulation Details

I investigate symmetric molecules in the carbon dichalcogen family; namely, carbon

dioxide (CO2), carbon disulfide (CS2), and carbon diselenide (CSe2), and extract infor-

mation about the structure of the molecules from TDDFT calculations of HHS. For my

real-spaced TDDFT simulations in Octopus, I require a simulation domain that allows for

the EWP to freely propagate under the influence of the HHG-driving laser field and sub-

sequently recombine with the molecule. Thus, I use a box that is elongated along the laser
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polarization direction, and the length of the box along this axis is scaled to the maximum

distance that the short-trajectory contribution to the EWP will travel (the quiver radius).

For a laser wavelength of λ = 1500 nm and an intensity of 60 TW/cm2, I use a simulation

box which is 140 × 70 × 60 atomic units in the x, y, and z directions, respectively, with

a grid spacing of 0.3 a.u. in all directions. The laser field is polarized in the x-direction,

and I impose the molecular alignment (parameterized by the angle θ) by rotating the tar-

get molecule in the xy-plane inside that box. Since the HHG electron wave packet travels

along the direction of the laser polarization, I avoid needing to redefine the simulation box

to rotate with the laser polarization by instead rotating the molecule within the box.

Because I am using a finite grid spacing, rotating the molecule within the simula-

tion box leads to small changes in its representation on the grid. This leads to an angular

dependence of the field-free ionization potential, which is clearly non-physical. With my

chosen grid spacing, I have ensured that the energy of the HOMO varies by less than 0.1

eV as the target molecule is rotated. My calculated ionization potentials (simply the neg-

ative of the orbital binding energies, according to Koopmans’ theorem) are Ip = 14.5 eV

(experimental 13.8 eV) for CO2, Ip = 10.4 eV (10.1 eV) for CS2, and Ip = 9.5 eV (9.3 eV)

for CSe2 [180]. Lastly, note that carbon dichalcogens have a pair of degenerate HOMOs,

which can be randomly oriented around the molecular axis; for my orbital-resolved simula-

tions (see Sec. 3.3), I further impose the orientation of the orbitals such that one HOMO

lies in the xy-plane (“in-plane”), and the other lies in the xz-plane (“out-of-plane”) [110] –

see Fig. 3.1(b).

I then apply a linearly-polarized mid-infrared (MIR) laser field in order to drive

HHG. The envelope of this laser field has a sin2 ramp-up for two laser cycles, and then re-
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Figure 3.2: Example of the alignment-angle-dependent HHG spectral intensity (a), phase
(b), and group delays (c) for CO2 for a driving laser with a wavelength of 1500 nm and an
intensity of 60 TW/cm2.

mains a continuous wave. The wavelength and intensity of the MIR field will be varied in

Sec. 3.5. For some of the calculations shown below, I add a weak attosecond pulse train

(APT) ionization seed, meant to select the short-trajectory contribution to the dipole sig-

nal; the efficacy of the APT will be investigated in the following section. The APT used

here is comprised of odd harmonics, ranging from the 9th to the 17th orders, and is syn-

chronized such that its peak is 0.06 cycles after each peak of the MIR [156] – see again

Fig. 2.5. Both the MIR and APT laser fields are polarized along the x̂-axis, and I scale

the APT intensity to 2% of that of the MIR. In all simulations, I use the AETRS time-

propagation scheme with a time step of 0.05 atomic units [110].

For a driving laser wavelength of 1500 nm and an intensity of 60 TW/cm2, examples

of the angle-dependent spectral intensity (a), phase (b), and group delay (c) are shown in

Figure 3.2. The spectral intensity and phase are taken from Eqs. 2.9 and 2.10; the group

delay, related to the spectral phase by a derivative and often what is measured in an ex-
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periment, is defined by

τtot(ω) =

∑3
i=1[Si(ω) τi(ω)]

Stot(ω)
, where τi(ω) = − ∂

∂ω
φi(ω) = − ∂

∂ω
arg

(
Di(ω)

Dref(ω)

)
(3.2)

The TCI feature manifests as a smooth parabolic feature in all three cases, with a zero-

degree TCI energy of around 27 eV. The TCI is a minimum in the spectral intensity, π

discontinuity in the phase, and a derivative discontinuity in the group delay. In order to

obtain Fig. 3.2, I calculate the alignment-angle-dependent complex dipole signal D⃗[θ](ω)

using the orbital-resolved dipole moment (see again Sec. 2.3.2) from TDDFT simulations

in Octopus. From this dipole signal, I extract the relevant intensity and phase information

in order to characterize the TCI minimum. Here, I only look at the dipole signal in the

direction parallel to the laser polarization, since the harmonic signal in the two perpendic-

ular directions is negligible within the harmonic plateau.

The frequency-dependent overlap (inner product) between the returning EWP in

the continuum and the remaining molecular bound wavefunction, called the recombination

dipole matrix element (RDME), contains the information relevant to characterizing the

TCI minimum. For the target-specific harmonic phase and group delay, the RDME is ac-

cessed by using a reference dipole signal Dref, as shown in Eqs. 2.10 and 3.2, respectively.

Here, I use the 60-degree HHG signal (treated identically to the angle-resolved signal), be-

cause its spectral intensity and phase are essentially featureless in the range of energies

that I am interested in here. Note that one could also use the 90-degree signal for normal-

ization.

However, for the spectral intensity in Eq. 2.9, there is no reference dipole signal

used; instead, I take inspiration from the semiclassical three-step model [72, 73]. The de-
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Figure 3.3: Angle-dependent group delays in CO2 for three different central times used for
the half-laser-cycle window W (t): (a) t◦ = 2.15TL, (b) t◦ = 2.25TL, and (c) t◦ = 2.35TL,
where TL is the period of the HHG-driving laser field.

composition of the HHG process into ionization, propagation, and recombination steps

which embodies the three-step model, discussed in Sec. 1.3, is not just a conceptual aide;

it can also be useful in a mathematical sense [159, 181, 182]:

HHG[θ](ω) =
√
I(θ)︸ ︷︷ ︸
Ion.

HHGavg(ω)︸ ︷︷ ︸
Prop.

RDME[θ](ω)︸ ︷︷ ︸
Scat.

(3.3)

The aim is to divide through by the ionization yield I(θ) and the average harmonic signal

HHGavg(ω) in order to recover the RDME. Therefore, I first divide each dipole signal by

a global ionization-yield factor which depends only on molecular alignment and which I

estimate as

I(θ) =

∫ ∞

20 eV

S[θ](ω) dω (3.4)

where S[θ](ω) is the windowed harmonic spectral intensity defined by Eq. 2.9, and I in-

tegrate over frequencies not included in the perturbative region of the spectrum. Sec-

ond, I divide the angle-dependent HHG spectrum S[θ](ω) by the angle-averaged spectrum

HHGavg(ω), which removes the general structure of the harmonic spectrum and allows us

to see the effect of the TCI near the cutoff energy despite the weaker signal.

Lastly, I note that there is some ambiguity in choosing the central time t◦ used in
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the window function W (t) – again, see Eq. 2.12 and the discussion surrounding Fig. 2.4. I

wish to choose t◦ such that there is only one short-trajectory burst in the half-laser-cycle-

windowed dipole signal. In Figure 3.3, I show the angle-dependent group delays for vary-

ing values of t◦, where the differences are most noticeable. If t◦ is too low, interference ef-

fects (between two short-trajectory bursts, not the two-center interference I am looking

for) muddle the high-energy signal, near the cutoff energy; if t◦ is too high, the low-energy

signal near the ionization potential is muddled by similar interference effects. Thus, I must

find a balance which does not disturb the spectral range of interest; this value may be dif-

ferent for different molecular targets (with different ionization potentials), or driving laser

wavelengths (different cutoff energies). For the figures shown, the value of t◦ will be listed

in the caption – see also the supplemental data and code corresponding to Ref. [179].

3.3. Validation of Orbital-Resolved HHS

Ordinarily, TDDFT calculations of HHG spectra use the Fourier transform of the

total dipole acceleration a⃗(t) = −⟨Ψ| − ∇VKS|Ψ⟩ = d
dt

∫
r⃗ ρ(t). However, the TDDFT-

calculated orbital energies (which can often be inconsistent with experimental data [146,

160]) and symmetries of the HOMO-2 and lower-lying orbitals are such that larger-than-

expected multi-orbital effects can be prevalent in the HHG signature of CO2 [110, 150,

179]. These multi-orbital effects can be quite destructive to imaging a TCI [151, 183–187],

which lies only in the HOMO.

Historically, the short-trajectory contribution to the HHG signal was enhanced by

including an attosecond pulse train (APT), synchronized with the HHG-driving MIR laser,

which replaces tunnel ionization with one-photon ionization – see again Sec. 2.3.1. Despite
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Figure 3.4: Angle-dependent HHG spectra calculated from (a,b) the HOMO-resolved
dipole moment and (c,d) the total dipole acceleration. I use either an MIR-only (a,c) or
an APT-seeded (b,d) driving laser with λ = 1500 nm and I◦ = 60 TW/cm2. (t◦ = 2.25TL
for all panels.)

its advantages, I have found the APT further disproportionately enhances ionization from

lower-lying Kohn-Sham orbitals, since tunnel ionization depends much more heavily on the

orbital binding energy than one-photon ionization. To alleviate the effects of multiple or-

bitals in the harmonic signal, I can use the technique of resolving individual Kohn-Sham

orbitals as described in Sec. 2.3.1. In Figure 3.4, I look at spectral intensities for MIR-only

(a, c) and APT-seeded (b, d) driving lasers calculated from either the HOMO-resolved

dipole moment (a, b) or the total dipole acceleration (c, d). The black dashed lines in all

panels, taken to be the “true” TCI minimum, is taken from scattering simulations per-

formed in MATLAB, discussed further in Section 3.6.

Considering all four cases in Fig. 3.4, the best scenario for detecting the TCI fea-

ture in CO2 appears to be HOMO-resolved and MIR-only (panel (a)), in which there is
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Figure 3.5: Angle-dependent HOMO-resolved HHG spectra (a,c,e) and phases (b,d,f) for
CO2 (a,b), CS2 (c,d), and CSe2 (e,f), for λ = 1500 nm and 60 TW/cm2. (t◦ = 2.22TL for
all panels.)

a clear parabolic minimum in the spectral intensity. In both the total-dipole and orbital-

resolved cases, the inclusion of the APT greatly obscures the TCI feature in CO2. These

conclusions are also supported by the angle-dependent spectral phases (not shown).

3.4. TCIs in Carbon Dichalcogens

Now that I have extracted the TCI feature using HHS, I perform a systematic

investigation of the molecules in the carbon dichalcogen family. Figure 3.5 shows the

spectral intensities (a,c,e) and phases (b,d,f) using the HOMO-resolved dipole signal for

three different molecules in the carbon dichalcogen family: CO2, CS2, and CSe2. All three

molecules exhibit the same qualitative feature in both the spectral intensity and phase, as

expected. Comparing the three TCI minima, it is apparent that their zero-degree ener-

gies decrease across the family. This trend is expected, since the carbon-chalcogen bond

length increases with heavier elements, and the energy of the TCI feature is expected to
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Figure 3.6: Markers: comparison of the TCI minimum in the carbon dichalcogen family
for different MIR wavelengths and intensities, as well as scattering simulations – see leg-
end. For each datum, I report the difference between the HHG energy at which the TCI
minimum is located at zero degrees and the molecule’s ionization potential. The dotted
curve is proportional to 1/R2, as predicted by scattering theory [157, 165, 184].

qualitatively scale as the inverse of the charge-separation distance squared (see Eq. 3.1).

For the phases in Fig. 3.5(b,d,f), we see a clear difference between the value of the phase

above and below the TCI. Since the TCI feature results from destructive interference, it is

accompanied by a π phase jump [156]. This transition, as a function of alignment angle θ,

is entirely consistent with the features shown in the spectral intensities in (a,c,e); compare,

for instance, the dashed lines in both plots.

In Fig. 3.6, I show the location of the zero-degree minima for the three molecules,

plotted versus the carbon-chalcogen bond length R, for a number of different pulse param-

eters. The location has been extracted from the data shown in Fig. 3.5 as the energy of

the deepest minimum of the zero-degree spectral intensity. I also show the location of the

minimum extracted from my scattering calculations (see Sec. 3.6) as well as a fit propor-
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tional to 1/R2, which is what one would expect for plane-wave scattering of the returning

wave packet on two centers separated by a distance R. The small variation between the

different IR-only extracted results, as well as the good agreement with the scattering re-

sults, provides a measure of the accuracy of the HHS-based approach. The APT-seeded re-

sults for CS2 and CSe2 also agree well with the other results; however, for CO2 the APT-

seeded results are substantial outliers, something which has been noted elsewhere [150,

152, 179, 186]. Taken together, these results also illustrate the benefits of comparing spec-

tral features across multiple dimensions [171, 179, 188] – here, the parameters of the laser

field and the molecular targets within the carbon-dichalcogen family – to identify both

generic spectroscopic features that can be compared against each other as well as signa-

tures that are unique to each system.

3.5. Wavelength and Intensity Dependence of the TCI

While the first experimental measurement of the spectral minimum in CO2 in 2005

[167] attributed the feature to a two-center interference in the doubly-degenerate HOMO,

later studies [150, 152, 158, 186] reinterpreted this result as an interference between HHG

signals from the HOMO and HOMO-2 orbitals. In recent years, the consensus is that both

of these mechanisms are at play, depending on the wavelength and intensity of the HHG-

driving laser. This claim was rigorously tested in collaboration with The Ohio State Uni-

versity in Ref. [179]. This was done by taking simultaneous measurements of the spectral

intensity and phase of harmonic radiation generated in CO2 at different driving wave-

lengths and intensities, and comparing them with TDDFT simulations performed in Oc-

topus (the computational details of which have been discussed above).
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Figure 3.7: Angle-dependent spectral intensities for (a,b) λ = 800 nm, I◦ = 350 TW/cm2;
(c,d) λ = 1500 nm, I◦ = 60 TW/cm2; and (e,f) λ = 2000 nm, 60 TW/cm2, calculated from
both the HOMO-resolved dipole signal (a,c,e) and the total dipole acceleration (b,d,f).

In Figure 3.7, I plot the (a-c) HOMO-only and (d-f) total HHG spectra for three

different wavelengths: 800, 1500, and 2000 nm. Again, the dotted lines correspond to scat-

tering calculations, discussed in the following section. For the HOMO-resolved HHG spec-

tra, the three driving wavelengths show a qualitatively similar yield to the experimental

results with a parabolic minimum which shifts to higher energies as the molecule is ro-

tated away from parallel to the laser polarization. However, the zero-degree energy is quite

different from the experiment (33 eV here as opposed to 47 eV in the experiment), likely

due to the use of an LDA exchange-correlation functional. The uniformity of Figs. 3.7(a-c)

suggest that the structural shape of the feature is wavelength- and intensity-independent,

consistent with a static TCI minimum. By contrast, the total HHG spectrum in panel (d)

is dramatically different from that of its HOMO-resolved complement in (a); here, multi-

orbital effects from the HOMO-2 and lower-lying orbitals have completely washed out the
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TCI minimum. The total HHG spectra for 1500 and 2000 nm (e,f), however, are quite con-

sistent with (b,c) – this suggests that other orbitals do not play a significant role in the

HHG process at those wavelengths. This behavior is reflected also in the spectral phase

measurements shown in Figure 3.8.

The simulation results shown in Figs. 3.7 and 3.8 are in good agreement with the

experiment [179]: for 800 nm, multi-channel interferences play an important role in the ob-

served spectral feature, while for longer wavelengths, the influence of the HOMO-2 fades

and the TCI minimum is the predominant interference mechanism. It was found that a

wavelength of approximately 1200 nm was the turning point between the two mechanisms,

though the exact wavelength where the interplay between interference mechanisms is ob-

served depends heavily on the degree of alignment (which strongly governs the ratio of

yields between the HOMO and HOMO-2), the magnitude of the interference, and the en-

ergetic location of the spectral feature.

3.6. Field-Free Scattering Simulations

As discussed in Sec. 2.3, the rescattering step of HHG imprints the recombination

dipole matrix element (RDME) onto the harmonic signal [110, 179]. I have already ex-

amined how to extract the RDME from the dipole acceleration obtained from TDDFT

simulations, via careful normalization. Instead, I propose to achieve a similar result by

taking a user-defined scattering seed and throwing it at the bound wavefunction in order

to calculate the RDME directly. A schematic of my scattering simulations is shown in Fig-

ure 3.9. Within the ground-state DFT potential VKS(r⃗), a scattering seed |ϕs⟩ in the con-

tinuum travels towards the field-free out-of-plane HOMO |ϕMO
k [θ]⟩ of a carbon dichalcogen
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Figure 3.8: Angle-dependent spectral phases for (a,b) λ = 800 nm, I◦ = 350 TW/cm2; (c,d)
λ = 1500 nm, I◦ = 60 TW/cm2; and (e,f) λ = 2000 nm, 60 TW/cm2, calculated from both
the HOMO-resolved dipole signal (a,c,e) and the total dipole acceleration (b,d,f).

Figure 3.9: Schematic of my scattering simulations. A scattering seed |ϕs⟩ propagates
towards the field-free out-of-plane HOMO |ϕMO

k [θ]⟩, immersed in the ground-state Kohn-
Sham potential VKS(r⃗).
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molecule, where the TCI minimum resides. In the field-free case, I can formally calculate

the time evolution of an arbitrary wave packet without explicitly computing any scattering

states, which is a non-trivial process for arbitrary potentials [110, 189].

In Sec. 3.3.6.1, I go into the mathematical details of how these scattering simula-

tions are performed. In Sec. 3.3.6.2, I present the results from my scattering simulations of

TCIs in carbon dichalcogens, to be compared to the full TDDFT results in Fig. 3.5.

3.6.1. Methodology

Here, I am looking for the recombination dipole matrix element (RDME), defined

by ⟨ϕs|x̂|ϕMO
k ⟩, where |ϕs⟩ is a user-defined scattering seed, and |ϕMO

k ⟩ is the bound molec-

ular orbital with an orbital energy −Ikp , which acts as the scattering target, as illustrated

in Fig. 3.9.

Consider the orthonormal set of wavefunctions {|ϕsc⟩} such that(
−1

2
∇2 + VKS(r)

)
|ϕsc⟩ =

p2

2
|ϕsc⟩ , where VKS(r) ∝ 1

r
+ O(r−2) (3.5)

The above scattering wavefunctions are target-specific, since O(r−2) above depends on the

molecular structure and orientation. I can formally decompose the scattering seed |ϕs⟩ in

momentum space, initially localized away from the core, as

ϕs(r⃗, t = 0) ≈
∫
w(p⃗) · ϕsc[θ, p⃗](r⃗) dp⃗ (3.6)

I would like to analytically calculate the field-free time-dependent dipole signal, but I

do not know the mathematical form of the scattering states {|ϕsc⟩} due to their target-

specificity. However, far away from the molecular core (as r ≫ 1), the Kohn-Sham poten-

tial VKS converges to something which is proportional to 1/r (the Coulomb tail). There-

fore, since the scattering seed is initially far away from the molecule, I assume that the
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coefficients w(p⃗) in Eq. 3.6 are independent of the molecular alignment, parameterized by

the angle θ. Thus, in the above factorization, the weight distribution w(p⃗) is solely deter-

mined by |ϕs⟩, while all of the information associated with the specifics of the molecular

target are contained in the scattering states {|ϕsc⟩}.

In a practical sense, for the scattering simulations, I know the initial scattering seed

ϕs(r⃗, t = 0) and seek to cancel out the weights w(p⃗) in order to access the RDME with-

out ever explicitly computing either w(p⃗) or ϕsc(r⃗). Since |ϕMO
k ⟩ and |ϕsc⟩ are eigenstates

of the Kohn-Sham potential VKS(r⃗) (bound and continuum, respectively), I know their ex-

plicit time dependence since there is no time-dependent laser field:

|ϕMO
k (t)⟩ = exp

[
−iIkp t

]
|ϕMO

k (0)⟩ |ϕsc(t)⟩ = exp

[
i
p2

2
t

]
|ϕsc(0)⟩ (3.7)

Thus, using Eqs. 3.6 and 3.7 above, I can formally write the time-dependent dipole matrix

element as

dsck (θ, t) = ⟨ϕs(t)|x̂|ϕMO
k (t)⟩ + c.c. (3.8)

⇓ ϕs(r⃗, t) =

∫
w(p⃗) · ϕsc[θ, p⃗](r⃗) exp

[
−1

2
ip2t

]
dp⃗

=

∫
w∗(p⃗) · ⟨ϕsc[θ, p⃗]|x̂|ϕMO

k (0)⟩ exp

[
i

(
Ikp +

p2

2

)
t

]
dp⃗+ c.c. (3.9)

where c.c. denotes the complex conjugate. The term w(p⃗) ⟨ϕsc|x̂|ϕMO
k (0)⟩ is time-

independent, and thus dsck in Eq. 3.9 looks like a Fourier expansion at the frequencies

ω ≡ Ikp + p2

2
. Thus, taking the Fourier transform of the scattering dipole is proportional to

the RDME:

F [dsck (θ, t)](ω) ∝ RDMEk(θ, ω) (3.10)

The only unknown factor here is the weight distribution w(p⃗). As mentioned, if the scat-
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tering seed is sufficiently far away from the target wavefunction at t = 0 (if r ≫ 1), then

w(p⃗) is identical for wavefunctions with a Coulomb tail given a scattering seed |ϕs⟩. Thus,

I can remove w(p⃗) by normalizing the scattering-seed results with a reference set of pa-

rameters:

RDMEk(θ, ω) =
F [W (t) × dsck (θ, t)](ω)

F [W (t) × dscref(t)](ω)
(3.11)

As with my full TDDFT HHS calculations, I require that both ends of the dipole signal

dsck [θ](t) go to zero. Since the scattering seed and molecular target wavefunction start so

far apart, dsck (t = 0) is already zero; thus, I multiply the dipole signal by a broad time

window W (t) equal to 1 for the beginning of the scattering simulation and then goes to 0,

with a cos6 shape, at the end of the simulation duration. This result can then be treated

like a normalized complex dipole signal in Eqs. 2.9 and 2.10.

In practice, I define a scattering seed |ψs⟩ of the form

ϕs(r⃗, t = 0) = N∥(x− x◦)N⊥(y, z) · eip◦x (3.12)

where x◦ is the initial central position of the scattering seed, and p◦ is the initial momen-

tum in the +x̂ direction. The parallel term N∥e
ip◦x emulates the wave front along the scat-

tering direction of the rescattering electron in HHG – similar to the plane wave in Fig. 3.1.

The parameters x◦, p◦, and N∥ must be chosen such that none of the scattering seed prop-

agates backwards (in the −x̂ direction). One final detail to consider is that the symmetry

of the target molecular orbital is carried over to the outgoing EWP at ionization (and thus

rescattering). I account for this by choosing the transverse component N⊥ such that its

shape reflects the symmetry of the outgoing EWP resulting from strong-field ionization.

For example, in the case of the out-of-plane HOMO of CO2, as is shown in Fig. 3.9, the
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Figure 3.10: Field-free scattering simulations, for the out-of-plane HOMO, in the carbon-
dichalcogen family. I show the angle-resolved target-specific intensities (a,c,e) and phases
(b,d,f) for CO2 (a,b), CS2 (c,d), and CSe2 (e,f). (t◦ = 2.25TL for all panels.)

outgoing EWP has a nodal plane at z = 0, which is accounted for in the following section.

3.6.2. Results/Comparison with TDDFT

My computational approach to the scattering simulations is similar to that of the

full TDDFT simulations, described in Section 3.1. I again put the carbon-dichalcogen tar-

get (more specifically, the out-of-plane HOMO of such – see again Fig. 3.9) at the origin

of the simulation box and impose alignment by rotating the the molecule inside the box.

In all scattering simulations, I use an initial scattering seed of the form given in Eq. 3.12,

with a central position x◦ = −60 a.u. and a central momentum p⃗◦ = 1.21 a.u. (≈ 20 eV) in

the positive x-direction. The in-plane component N∥ is a Gaussian function in the x direc-

tion, with a width of σ = 0.3 a.u., and I take N⊥(y, z) = (Lz/2π) sin (2πz/Lz), where Lz

is the total length of the simulation box in the direction of the lobes of the HOMO. Note

that N⊥(y, z) here applies only because I am using the out-of-plane orbital; if I was scat-
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tering off of the in-plane orbital, I would need to replace z with y in the above expression.

In the scattering simulations, performed in MATLAB, I propagate in time a scat-

tering seed |ϕs⟩ in the DFT ground-state potential VKS(r⃗) (which I export from Octopus)

using a second-order spectral-split scheme with a time step of 0.01 a.u. for about 3 fem-

toseconds. With my box and initial-seed parameters, this ensures that the entire scatter-

ing wave packet |ϕs⟩ can travel through the target |ϕMO
k ⟩. To enhance the signals’ spectral

resolution, in the computation of the scattering dipole components I artificially shift the

molecular orbital’s ionization potential to a higher energy value, which I then compensate

for in Eq. 3.9. Spatially, I use a rectangular domain elongated along the scattering direc-

tion x, similar to the full TDDFT simulations. I impose absorbing boundary conditions in

the scattering direction and periodic boundary conditions in the other directions. On both

ends of the domain I leave a buffer of about 40 a.u. along, and 30 a.u. transversely to, the

scattering direction between the faces of the box and the centers of both the molecule and

the initial ionization seed. Finally, I use the 0.3 a.u. discretization step in all directions,

same as for my TDDFT simulations.

In Fig. 3.10, I show the results of the scattering simulations described above for the

out-of-plane HOMO in the carbon dichalcogen family. Overall, these are strikingly similar

to the TDDFT MIR-only HHS results with a clear local minimum in the spectral intensity

that moves to higher energies with increasing the alignment angle – compare with Fig. 3.5,

for both the spectral intensities and phases. Note that, for small alignment angle, the CS2

and CSe2 TCI features are close to the ionization threshold and it is therefore more chal-

lenging to accurately extract the phase information, which explains the small strip of neg-

ative phase around 20 eV in Figs. 3.10 (e) and (f). The location of the zero-degree mini-
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mum is also consistent with my TDDFT MIR-only findings, as shown in the dashed lines

in Fig. 3.5 and the black dots in Fig. 3.6.
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Chapter 4. High-Harmonic Sideband Spectroscopy

In this chapter, I simulate charge migration (CM) dynamics with grid-based

TDDFT, and then apply the principles of high-harmonic spectroscopy (HHS, discussed

in Sec. 2.3) to probe that dynamics. First, I have found that creating a localized outer-

valence hole on the halogen end of a bromobutadiyne (BrC4H) molecule causes a particle-

like motion of the electron hole along the molecular backbone with a fundamental CM

frequency of ωCM = 1.845 eV. By applying an HHG-driving laser field that is polarized

perpendicular to the molecular backbone, I can independently probe the CM dynamics

without driving it. I have found that the periodic modulation of the time-dependent

electron density caused by the CM gives rise to a beat in the time-dependent harmonic

yield since the laser and CM frequencies are in general incommensurate. This beat leads

to sidebands in the resulting harmonic spectrum, which can be used to determine the

underlying fundamental CM frequency.

In Sec. 4.1, I discuss experimental efforts to measure CM using various techniques,

and make the case for HHS. The initial condition I use for particle-like CM, how I ob-

tain it, and what the resulting CM looks like, is discussed in Sec. 4.2. The emergence of

sidebands within the harmonic spectrum is presented and explained in Sec. 4.3, and the

methodology I use to characterize the CM dynamics using the location of these sidebands

is discussed in Sec. 4.4. In Sec. 4.5, I define a model calculation which reproduces the side-

bands I find in the full TDDFT calculations; in Sec. 4.6, I discuss the experimental viabil-

ity of my approach.
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4.1. Introduction

As discussed in Sec. 1.2, charge migration (CM) is the motion of a positively-

charged electron hole along the backbone of a molecule following a localized ionization.

Now, I wish to use the foundations laid in the previous chapter to first simulate and

subsequently probe periodic, particle-like CM using high-harmonic spectroscopy (HHS).

However, the first task at hand is to determine which molecules are a suitable platform

for this type of CM. As discussed in Ref. [35], double- and triple-bonded molecules can

often support robust CM that progresses via hopping from π bond to π bond. Though

this conjugation requirement had previously been observed [28, 190–192], our research

group was the first to systematically study this phenomenon in families of molecules using

first-principles calculations in NWChem [193–195]. Then, leveraging tools from nonlinear

dynamics [196, 197], we used frequency-map analysis [198] to study this type of coher-

ent CM [18]. While previous studies [23, 25, 33, 49] invoked the beating between a few

molecular orbitals as the underlying mechanism for CM, we found that periodic modes

of CM emerge as solitary waves [18, 199] which represent a balance between dispersion

and non-linear, time-dependent multi-electron interactions. Furthermore, we found that

a single molecule can robustly support several different CM modes, with periods varying

by several hundred attoseconds. We have also spent considerable time trying to relate the

metrics of CM (time, length, speed, and contrast) to simple attochemistry principles, such

as electron donating strength [35, 39].

Though symmetric conjugated molecules like diacetylene can also support facile

CM modes [18], adding a heavy halogen like bromine or iodine [35] allows for the creation
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of a site-specific localized electron hole via either strong-field ionization (SFI) [200–203]

or X-ray inner-shell ionization [204–206]. Previous studies [42, 61, 207] have shown that a

core-level ionization event causes a localized shake-up in the valence shell due to the Auger

effect. However, TDDFT is known to have challenges when using adiabatic exchange-

correlation functionals to drive systems far from equilibrium [208–212]. Though efforts

have been made to incorporate the ionization step into existing quantum chemistry codes

[15, 53] (including my own [213] – see Sec. 6.4), we instead emulate the creation of a lo-

calized electron hole using constrained density-functional theory (cDFT) [214–218] by us-

ing an energy-minimization procedure to put the molecule in an intricate superposition of

cationic states at some initial time [66] which mimics a site-specific outer-valence ioniza-

tion.

Once a mode of periodic CM has been identified, I want to characterize the dy-

namics using HHS [66]. Despite the challenges of experimental control at the attosecond

timescale, CM has been detected in several measurements [14, 33, 34, 65, 219–221], many

of them very recent [55, 61, 67, 68, 222–226]. The majority of these have documented a

modulation of in the double-ionization signal of a molecular fragment following ultrafast

photoionization. These delay-dependent variations have been ascribed to CM, with the-

ory showing similar modulations in the populations of cationic states [14, 33, 49, 55, 221].

Two of these experimental studies [34, 67] employ self-probing HHS, where the ionization

and recombination steps of the HHG process were used to initiate and probe the CM, re-

spectively. Accordingly, the CM dynamics was re-initiated in each half-laser-cycle, and

therefore did not manifest in a straightforward modulation. Instead, these experiments

heavily relied on theory computations to validate and interpret their results. Other studies
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have used attosecond pump-probe spectroscopy [221] or attosecond transient absorption

spectroscopy (ATAS) [222], to similar effect.

Here, I introduce high-harmonic sideband spectroscopy (HHSS), a robust probe

of CM that uses HHS as an independent probe step following a CM-inducing pump. The

HHG-driving laser field is perpendicular to the molecular backbone so that it does not

drive the CM dynamics. This CM dynamics, initiated by the creation of a localized hole,

leads to a coherent modulation of time-dependent HHG yield produced by a delayed probe

pulse, and I demonstrate how to extract detailed information about the characteristics of

the CM motion [66]. By varying the driving laser wavelength, I can very precisely obtain

the CM frequency (see Sec. 4.4).

4.2. Initial Condition using Constrained DFT

Though efforts have been made to perform cDFT calculations on a real-spaced grid

[19], Octopus does not natively have the ability to perform cDFT calculations like the ones

done in Ref. [35]. Thus, I instead import the initial condition, represented by a wavefunc-

tion |ψ⊕⟩ (the cDFT HOMO obtained from NWChem), by taking a linear combination of

the ground-state molecular orbitals {|χk⟩} from Octopus [66]. However, |ψ⊕⟩ cannot be

reproduced exactly since the set of wavefunctions available to NWChem is different from

that of Octopus (and both are incomplete sets). Thus, the reconstructed target |ψCM⟩ is

defined by

|ψCM⟩ =
N∑
k=1

⟨χk|ψ⊕⟩ |χk⟩ (4.1)

where {|χk⟩} and |ψ⊕⟩ are all normalized. A good measure of the accuracy of this recon-

structed target wavefunction with respect to the original is simply ⟨ψCM|ψ⊕⟩.
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Figure 4.1: (a) Schematic of HHSS configuration to probe CM in BrC4H. The HHG driv-
ing field is polarized perpendicular to the molecular backbone along which the periodic
CM occurs. I also show the isosurface of the electron density contribution from the un-
paired Kohn-Sham channel in which I introduce the initial localized-hole perturbation. (b)
Time evolution of the electron density contribution from (a), integrated over the directions
transverse to the molecular backbone, as a function of position. (c) Fourier transform of
the time-dependent dynamics in (b).

56



However, directly replacing |χ1⟩ with |ψCM⟩ would have devastating effects on the

remainder of the basis, since the set would no longer be orthonormal. Thus, I instead ob-

tain a unitary transformation matrix Û that transforms {|χk⟩} to a new orthonormal basis

set {|ψk⟩}; to this end, the coefficients ⟨χk|ψ⊕⟩ in Eq. 4.1 are important, since they are

the first row in Û . In order to find the remainder of Û , I use the Gram-Schmidt orthonor-

malization procedure outlined in several quantum mechanics textbooks (i.e. Ref. [227]).

Briefly, the state |ψk⟩ is given by

|ψk⟩ = |χk⟩ −
k−1∑
j=1

⟨ψj|χk⟩ |ψj⟩ , k = 2 . . . N (4.2)

Thus, having found {|ψk⟩}, I can obtain the transformation matrix U :

Uij = ⟨χi|ψj⟩ ∀ i, j (4.3)

where |ψ1⟩ ≡ |ψCM⟩. At this point, one should confirm that the resulting transfor-

mation matrix Û is unitary by checking that Û †Û = 1̂. Using this method, I am able

to reproduce the cDFT-localized electron hole from NWChem with greater than 99%

accuracy (⟨ψCM|ψ⊕⟩ > 0.99). This matrix can be directly imported into Octopus via

the TransformStates block; then, one electron can be removed from |ψCM⟩ using the

Occupations block, inducing periodic CM in the target molecule.

For the molecules considered here, such as bromobutadiyne, I am mainly interested

in the electron hole density integrated in the directions transverse to the molecular back-

bone, here defined to be along the z-axis:

ρh(z, t) =

∫∫
dx dy ρh(r⃗, t) (4.4)

In Figure 4.1, I show (a) the unpaired Kohn-Sham orbital density |ψCM(r⃗, 0)|2
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which I use as the initial condition for periodic CM (which I will call the CM orbital), as

well as the resulting field-free dynamics in both the time (b,c) and frequency (d) domains.

More specifically, I plot the electron hole density ρh(z, t) defined in Eq. 4.4 in panel (b),

as well as the time-dependent CM orbital density |ψCM(z, t)|2 (again, integrated over the

x and y directions) in panel (c). The total electron hole density in (b) has high-frequency

artefacts related to the creation of the initial condition which do not appear in panel (c).

In both cases, however, starting on the halogen atom, the electron hole migrates to the

middle triple bond, then to the terminal triple bond, and then back again in about 2.2 fs,

yielding a fundamental CM frequency of 1.83 ± 0.05 eV. In the absence of nuclear mo-

tion, this CM dynamics persists for several tens of femtoseconds. The position-dependent

Fourier transform of the CM dynamics in panel (c), shown in (d), is also very interesting:

in addition to this fundamental CM frequency ωCM, there are also features at 2ωCM and

3ωCM, consistent with the mechanism for CM discussed in Ref. [18]. In particular, the

2ωCM component is most easily seen in panel (c) near the middle triple bond, where the

electron hole has to travel through twice per CM cycle. Moreover, there is a feature at

2.4 eV which is not a part of the harmonic comb, likely due to the ad hoc creation of the

initial electron hole.

4.3. Emergence of Sidebands

Without pump-initiated CM (thin red curve in Figure 4.2), I observe well-resolved

odd-harmonic peaks, as expected. By contrast, the solid blue curves showing the HHG

spectra with CM for two different wavelengths (1575 and 1800 nm) exhibit additional

peaks located between the harmonic orders. These sidebands are caused by the CM mo-
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tion along the molecular backbone. This periodic modulation gives rise to a beat in the

time-dependent harmonic yield since the laser and CM frequencies ωL and ωCM are in

general incommensurate. As illustrated in Fig. 4.2, the location, strength, and number

of sidebands depend on the driving laser frequency relative to the CM frequency. Thus,

the CM-driven modulation of the HHG signal is a clear and background-free probe of the

CM dynamics. Note that any potential MIR-triggered CM is re-initiated every half cycle

and therefore contributes only to the signal at the odd-harmonic frequencies. Also, here

I have chosen a consistent value for the sub-cycle delay between the phase of the driving

laser field and the CM (defined formally in Sec. 5.2) in my TDDFT simulations; but, in

an experiment, this delay does not need to be controlled since I am always calculating a

multi-cycle-windowed high-harmonic spectrum in order to detect sidebands.

Working in the frequency domain, I show that the energies of these sidebands can

be used to directly measure the fundamental frequency of the CM mode. To that end, I

track the energy separation between each sideband and its nearest odd harmonic. Since

the sideband amplitudes vary considerably across the harmonic plateau, I use a stacked

spectrum obtained by averaging over 2ωL-wide slices taken from the entire spectrum above

20 eV. For a driving laser wavelength of 1575 nm, the stacking process is illustrated in

Figure 4.3(a) using the slices associated with harmonics 83 to 87, and the correspond-

ing stacked spectrum is shown in (b). This stacked spectrum clearly shows two sideband

peaks to the right of the central odd harmonic, marked by SB1 and SB2. The frequencies

of SB1 and SB2 are given by

∆ω1 = ±(ωCM − 2ωL) , ∆ω2 = 2 · ∆ω1 (4.5)
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Figure 4.2: Multi-cycle HHG spectra for 1575 nm (top light blue) and 1800 nm (middle
dark blue) driving wavelengths. The bottom thin red curve shows the 1800 nm spectrum
in the absence of CM (in the neutral molecule). For clarity, the light blue curve is offset
by a factor of 200.

Figure 4.3: (a) Schematic of the stacking process I use to produce the stacked sideband
spectrum, where I average 2ωL-wide slices of the relevant HHG spectrum centered around
successive odd harmonics. (b) Stacked HHG spectrum around one odd harmonic at 1575
nm. Sideband peaks 1 and 2, above and below the odd harmonic peak, are marked.
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Figure 4.4: Stacked HHG spectra as a function of laser frequency, for laser wavelengths
between 1575 nm and 1800 nm. The trendlines correspond to the sum and difference fre-
quencies ∆ω1 and ∆ω2 of Eq. (4.5), as fitted in Fig 4.5(b).

It is worth noting that there is nothing special about the sidebands appearing on the high-

energy side of the harmonic peaks, and that there are other driving laser wavelengths for

which the low-energy sidebands dominate. This fluctuation in the relative strength be-

tween the harmonics and the sidebands is due to the finite sampling of the beat between

incommensurate frequencies.

The fact that two sidebands are present in Fig. 4.3 above (and below, though they

are less intense) each harmonic peak is significant, however: it means that the harmonics

are modulated not just at ωCM, but also at 2ωCM. This modulation is consistent with the

particle-like CM shown in Fig. 4.1(c), in which the time-dependent hole density evolves at

both the fundamental CM frequency and its second harmonic. The presence of both sets

of sidebands thus means that the HHSS probe is sensitive to the full dynamical evolution

of the CM.

One could determine the CM frequency ωCM from the single stacked spectrum
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shown in Fig. 4.3(b); however, I now show that the accuracy of the extraction of ωCM

increases if one scans the driving laser frequency. This is illustrated in Figure 4.4, which

shows clear patterns in the evolution of the sidebands’ locations relative to the central odd

harmonic. The four trend lines correspond to the sum and difference frequencies ∆ω1 and

∆ω2 of Eq. 4.5, highlighted by the blue and green lines, respectively. The green dashed

lines have a discontinuity near ωL = 0.74 eV (λL = 1675 nm), when SB2 reaches the edge

of the stacking box and reemerges on the other side of it. This means that sidebands from

different harmonics interfere with each other at the edges of the stacked spectra and then

cross. Similarly, for laser frequencies near ωL = 0.70 eV (1775 nm), SB1 and SB2 cross

paths and interfere with each other.

4.4. Extraction of CM Frequency

To extract ωCM from the laser-wavelength scan, I systematically record the fre-

quency difference between each sideband peak and its nearest odd harmonic across the

plateau and sort these peaks into two groups associated with SB1 and SB2. To do so, for

each laser wavelength I record the energies of all of the peaks in the harmonic plateau and

then distinguish between odd harmonics (at odd multiples of the MIR frequency) and

sidebands (every other peak). In Figure 4.5(a), I plot the frequency difference between

each of the thus-detected sideband peaks and their nearest odd harmonics for driving

wavelengths between 1575 and 1800 nm. Here, all of the sideband peaks clearly fall into

two groups, which I will associate with SB1 and SB2. For each wavelength, I automate the

sorting of the sideband peaks between SB1 and SB2 using a 1D k-means clustering algo-

rithm [228] with k = 2 since there are two sets of sidebands. Essentially, this algorithm
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Figure 4.5: (a) Individual harmonic and sideband peaks analysis. Markers show the fre-
quency difference between all the sideband peaks and their nearest odd harmonic through-
out the HHG plateau for driving laser wavelengths between 1575 and 1800 nm. The two
dashed curves mark the linear regression of the clusters of points associated with SB1 and
SB2 (see text). (b) Sideband analysis to extract the CM frequency. The markers show the
average energy separation of SB1 and SB2 from their odd harmonics with the error bars
marking the standard deviation – note that most error bars are contained within their
respective markers. The vertical red line marks ωCM/2, where SB1, SB2, and the odd har-
monics are all predicted to overlap.
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calculates the average difference frequency, and then sorts the peaks by whether they fall

above or below this average. Compared to the stacked spectrum, the analysis of the indi-

vidual sideband peaks across the entire harmonic plateau provides not only ∆ω1 and ∆ω2

(which are indeed consistent with the stacked-spectrum results), but also a measure of the

corresponding uncertainties.

In Figure 4.5(b), I plot the mean values and standard deviations of the sideband

energy differences ∆ω1 and ∆ω2 as a function of the laser frequency ωL. For clarity, I have

unfolded SB2 below ωL = 0.74 eV to avoid the discontinuity seen in (a). Note that this

unfolding does not require prior knowledge of the CM frequency, only that of the driving

laser. I have also chosen to plot the frequency differences with positive (negative) values

for laser wavelengths where 2ωL < ωCM (2ωL > ωCM). Again, this does not require prior

knowledge of the CM frequency since it can be inferred from the sign of the slopes in the

stacked spectrum. The shaded gap in the middle marks the laser frequencies where the

sideband peaks become indistinguishable from the odd harmonics in the HHG spectrum.

To recover the CM frequency, I then fit the sideband energies against the prediction of

Eq. 4.5. For both datasets, the fits are excellent. Each set of sidebands provides an inde-

pendent measurement of ωCM/2 with

SB1 : ωCM = 1.841 ± 0.004 eV,

SB2 : ωCM = 1.849 ± 0.002 eV.

(4.6)

The extracted frequencies in Eq. 4.6 are both in good agreement with each other and also

consistent with the value of 1.83 ± 0.05 eV which I obtain directly from the CM dynamics

in Fig. 4.1. I note that the inclusion of laser wavelengths above and below the CM fre-

quency greatly improves the precision of the measurement of the CM frequency ωCM.
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Figure 4.6: Gabor transforms corresponding to four different values of α, defined in
Eq. 4.8. Changing α modifies the attochirp of the harmonic response.

4.5. Simplified Model of CM+HHSS

The idealized harmonic response from a gas-phase target irradiated by a one-color

laser field with a frequency ωL, a cutoff frequency ωc defined by Eq. 1.2, and an envelope

F (t) is given by

d(t) = F (t) ·
∞∑

n=1,3,5...

An sin (nωLt+ ϕn) (4.7)

where the amplitude and phase of the nth harmonic are defined by

An =


1 , nωL ≤ ωc

e−(nωL−ωc) , otherwise

; ϕn =
αωL

Up

n2 − 2πn∆ (4.8)

where ∆ is the delay between the start of the driving laser field and the initiation of the

CM, Up is the ponderomotive energy defined by Eq. 1.2, and α is a parameter which de-

scribes the attochirp. I have chosen a value α = −0.3 for my model calculations – see Fig-

ure 4.6), since the slope of the features in Fig. 4.6(c) match the slope of the semiclassical

short trajectory curves shown in i.e. Fig. 2.4.

Now I wish to include in this model a periodic modulation, as if by the particle-like

CM dynamics shown in Fig. 4.1. Thus, I modify the previously-obtained dipole signal d(t)
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via

d̃(t) = d(t) ·

[
1 + e−t/τ

∑
m

Bm sin (mωCMt+ ϕm)

]
(4.9)

where τ is a decoherence time for the CM dynamics, and the parameters {m,Bm, ϕm} de-

scribe the individual Fourier components of the field-free CM dynamics. For instance, for

the particle-like CM in BrC4H shown in Fig. 4.1(d), there are two main Fourier compo-

nents: one at ω = 1 ·ωCM, and a second at 2 ·ωCM that is roughly four times less intense as

the first, and with an extra π/4 phase shift. Note that between Eq. 4.7 and 4.9, there are

many “free” parameters in this analytical model which pertain to either the description

of the laser or the CM. However, most of these parameters are determined by the laser

and molecular parameters chosen for the full TDDFT simulations. Additionally, the CM-

induced modulation of the harmonic response is quite robust in both the model and the

full TDDFT calculations.

In Figure 4.7, I perform the same analysis as Fig. 4.4, instead using these model

CM+HHSS spectra. The blue and green trendlines are taken from the full TDDFT re-

sults, using Eq. 4.5 and the measurements of the CM frequency in Eq. 4.6 for SB1 and

SB2). The resulting wavelength-dependent stacked spectrum looks very similar to Fig. 4.4.

Here, I use the same time discretization in the model calculations as the full TDDFT

simulations, so that the width of the harmonic and sideband peaks are the same as in

Fig. 4.4. The ratio of amplitudes between SB1 and SB2 has been set at 4:1 for all laser

wavelengths explicitly in the model calculations, while there is no such determination in

the full TDDFT simulations.
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Figure 4.7: Stacked HHG spectra as a function of laser frequency taken from model cal-
culations, for laser wavelengths between 1575 nm and 1800 nm. The trendlines are taken
from full TDDFT calculations (same as Fig. 4.4).

4.6. Experimental Viability

Until now, I have assumed the idealized condition of a single, perfectly oriented,

BrC4H molecule undergoing particle-like CM. However, I have verified the viability of

HHSS for more realistic experimental considerations. I start by investigating the effect of

a distribution of molecular alignments. I use a Gaussian distribution of angles around per-

pendicular alignment and coherently average the corresponding CM+HHG dipole signals,

for λ = 1575 nm. In Fig. 4.8, I plot the evolution of the stacked spectrum (see Section 4.3)

when increasing the width of the alignment distribution from perfect orientation (θ ≡ 0◦).

Strikingly, up to 40◦ FWHM, I clearly see SB1 and SB2 sideband peaks, and I find that

their positions can be located with error bars comparable to those in Fig. 4.5(b). The rel-

atively lower strength of the sidebands when including the distribution of alignment an-

gles is caused by the the component of the MIR field that is parallel to the molecular axis

which disturbs the field-free CM dynamics. This generally leads to sidebands at slightly
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Figure 4.8: Effect of having a distribution of molecular-alignment angles around per-
pendicular alignment. The solid curves compare the stacked spectrum of Fig. 4.3 when
including various Gaussian angular distributions – see colorbar. For comparison, the blue
dotted curve shows the unaligned stacked spectrum. Vertical black lines mark the loca-
tions of the odd harmonic and sidebands.

different frequencies for different alignment angles. For the completely unaligned sample

(blue dotted curve in Fig. 4.8), the sidebands average out altogether. I note that the CM

induces different modulation amplitudes in the sub-cycle dipole signals of molecules with

the same alignment but opposite orientations, except when the molecule is exactly per-

pendicular to the laser polarization. To generate Fig. 4.8, I therefore sample molecular-

orientation angles covering a full 180◦ instead of the 90◦ range that would otherwise be

sufficient for a linear molecule in a symmetric multi-cycle MIR field.

Next, I have found that the sideband signals are robust with respect to having only

a fraction of the molecules in the HHG target gas undergoing CM. I consider a weighted

average of the dipole signals from the target with and without CM – thin red and solid

blue curves in Fig. 4.2, respectively. I find that the intensity of the sidebands scales

quadratically with the fraction of molecules with CM, as expected for a coherent process.
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I also expect the sidebands to phase match to the same extent as the constituent harmon-

ics in that pulse train, since they originate from the time-domain amplitude modulation of

the individual bursts in the harmonic pulse train.

Finally, I have tested the influence of a finite CM lifetime, e.g., due to the onset

of nuclear dynamics. When adding a phenomenological exponential decay to the CM-

modulated dipole component, I still observe well-defined sidebands with a lifetime as short

as 10 fs. Although the formal inclusion of nuclear motion is beyond the scope of this re-

port, my preliminary calculations including (classical) nuclear dynamics described at the

Ehrenfest level indicate that the linear, triple-bonded BrC4H molecule is quite rigid, such

that the localized hole motion is stable over multiple CM cycles.
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Chapter 5. Frequency-Matched Strobo-Spectroscopy

In this chapter, I present frequency-matched high-harmonic strobo-spectroscopy

of charge migration (CM+FMSS), which takes advantage of the intrinsic time resolution

of the HHG process (the attochirp) in order to track the time-dependent location of the

electron hole by scanning the delay between the initiation of the CM and a frequency-

matched few-cycle laser pulse. More specifically, I find that there is a harmonic-frequency-

and delay-dependent modulation in the yield that results from a site-specific feature of

the harmonic spectrum – in this case, a decrease in the total yield when the hole is on the

halogen atom. Finally, I also begin a preliminary investigation into the effect of a many-

cycle laser pulse on the CM dynamics.

In Sec. 5.1, I introduce the concept of CM+FMSS, an independent pump-probe

scheme which I use to track particle-like CM dynamics. The simulation details are dis-

cussed in Sec. 5.2. In Sec. 5.3, I present delay-dependent HHG spectra of bromobutadiyne

(BrC4H) undergoing CM dynamics, and I extract the time-dependent location of the elec-

tron hole along the molecular backbone in Sec. 5.4. I investigate whether the modulation

of the harmonic signal via the CM dynamics occurs in the ionization step or the recombi-

nation step of the HHG process in Sec. 5.5, and I check the robustness of my results with

respect to more realistic experimental conditions in Sec. 5.6. Finally, in Sec. 5.7, I detail

my preliminary findings of a delay-dependent drift in the CM dynamics when irradiated

by a many-cycle laser pulse.
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5.1. Introduction

In Chapter 4, I presented high-harmonic sideband spectroscopy of charge migration

(CM+HHSS), in which the CM dynamics causes a coherent time-dependent beat in the

harmonic signal, resulting in sidebands in the corresponding CM-modulated HHG spec-

trum. By varying the wavelength of the HHG-driving laser field, I was able to accurately

determine the CM frequency ωCM. Knowing this frequency, the inherent sub-femtosecond

temporal resolution of the HHG process (via the attochirp [98, 158, 229, 230] of the har-

monic radiation), allows me to go further with this line of investigation. Instead of varying

the laser wavelength, I vary the sub-cycle delay between the initiation of the CM dynam-

ics and a frequency-matched few-cycle laser pulse; by doing so, I gain access to some phase

information: put simply, where the hole is at what time.

In this chapter, I present frequency-matched high-harmonic strobo-spectroscopy

of charge migration (CM+FMSS), simulated with time-dependent density-functional

theory (TDDFT) [105, 109]. Here, I am studying the same CM mode in bromobu-

tadiyne (BrC4H) as was described in Sec. 4.2. After the initiation of the CM dynamics,

CM+FMSS uses a delay-dependent, few-cycle HHG-driving laser pulse as an independent

probe step to precisely determine the time-dependent location of the electron hole, by

tracking the amount of electron density on the bromine atom. I match the frequency ωL of

the laser to ωCM such that the position of the electron hole is the same in each half-cycle

of the laser field for any given delay. The driving laser field is polarized perpendicular to

the CM motion, so that it does not drive the electron density.
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Figure 5.1: Schematic of the CM+FMSS analysis: (a) snapshots of the time-dependent
CM dynamics following the creation of a localized hole on the bromine atom for two dif-
ferent time delays (purple and green frames). (b) This dynamics is probed by a delayed,
frequency-matched HHG-driving laser field (red curve). The semiclassical return energy
of the rescattered electron wave packet is plotted as a function of the recombination time
(blue curve). (c) The resulting orbital-resolved, normalized CM+FMSS spectrum (see
text) over half an optical cycle for delays near 4.50 optical cycles (approximately 18 fs af-
ter the initiation of the CM). There is a clear variation in the delay-dependent harmonic
spectrum due to the CM dynamics.

CM+FMSS is a pump-probe scheme: the “pump step” occurs at t = 0 when the

CM dynamics is initiated via constrained DFT, and a HHG-driving laser field probes the

CM dynamics at some later time. Importantly, in CM+FMSS the pump and probe steps

are completely independent of one another, in contrast to other studies using HHG to

probe CM dynamics [34, 67, 231]. In Figure 5.1, I show a schematic which describes the

FMSS concept: panel (a) depicts the time-dependent CM dynamics at two different time

delays after initiation (purple and green frames, respectively). This dynamics is probed af-

ter some time τ by a HHG-driving laser field, shown in panel (b), with ωL = ωCM/2. Also
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in panel (b) I show the semiclassical [72–74, 93] time-dependent return energies during

one-half cycle of the HHG-driving laser field, which maps to the sub-cycle time-dependent

emission frequencies in the harmonic spectrum [99, 158, 232] – see again Fig. 1.5. For dif-

ferent delays, a given harmonic energy is emitted at a different time during the CM pe-

riod, and this strongly affects the resulting HHG yield as shown in panel (c). For example,

at a delay of 4.55 o.c., the low-order (high-order) harmonics are emitted when the hole

is located on the bromine atom (terminal C ≡ C bond), which gives rise to low (high)

HHG yield – see the purple dashed lines in Fig. 5.1. A central finding of this work is that

the delay-dependent harmonic yield tracks the time-dependent electron density on the

bromine atom, from which I determine the phase of the CM motion.

5.2. Simulation Details

In my CM+FMSS simulations, I start by creating a one-electron valence hole lo-

calized on the halogen end of a bromobutadiyne (BrC4H) molecule using constrained den-

sity functional theory, as described in Sec. 4.2. I then induce HHG in the BrC4H cation

undergoing CM, using a laser pulse with a polarization direction perpendicular to the

molecular backbone so that the electron density is not driven along the molecular back-

bone. Unlike my sideband spectroscopy analysis from Chapter 4, I use a fixed laser fre-

quency ωL = ωCM/2 (corresponding to a laser wavelength λL = 1344 nm). The frequency-

matching condition is chosen such that the electron hole is at the same position along the

molecular backbone at every half-cycle of the laser field. By using different sub-cycle de-

lays between the initiation of the CM and the laser field, I therefore sample different po-

sitions of the electron hole along the molecular backbone. For my TDDFT simulations,
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I use sin2 laser pulses centered around a delay τ relative to the initiation of the CM, and

that last for 5 o.c. in total (≈ 1.5 o.c. FWHM). I then scan the sub-cycle-resolved delay

over two full laser cycles, advancing the delay τ in increments of 1/16 optical cycles. In

all simulations I use a peak intensity of 45 TW/cm2, leading to a cutoff energy of around

40 eV.

Again, I use grid-based TDDFT with a local-density-approximation exchange-

correlation functional [123–125] and average-density self-interaction correction [126–128]

within the Octopus software package [119, 120, 129, 130] to describe both the CM and

HHG processes. I use a simulation box with dimensions of 90 × 40 × 90 a.u. (with the

shorter box length transverse to both the laser field and molecular axes), and a complex

absorbing potential that extends 15 a.u. from each edge of the box. I choose the box

dimensions such that I select the short-trajectory contribution to the HHG spectrum

that is usually observed in HHG measurements [110], by absorbing the long-trajectory

contribution. I use a grid spacing of 0.3 a.u. in all directions.

The harmonic spectrum is calculated using a sin2 window function that has the

same width as the laser pulse (5 o.c. in total) – see again Sec. 2.3. I focus on the dipole

signal parallel to the driving laser field (in the x-direction). I have checked that the results

shown below are nearly identical when including the dipole signal in the directions perpen-

dicular to the laser field. The oscillating charge density along the molecular axis induces

a significant dipole contribution along the axis of the molecular backbone, as was also ob-

served in Kuleff et al [233]. However, above 20 eV, the total emission spectrum is domi-

nated by the driven (harmonic) response, with the CM-only emission rapidly decreasing

with respect to the emission frequency – see Figure 5.2.
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Figure 5.2: Total spectral intensities for a bromobutadiyne molecule undergoing CM, with
(red curve) and without (blue curve) the harmonic-generation field applied in the perpen-
dicular direction.

As a first approximation, I calculate the delay-dependent CM+FMSS spectra from

the CM-orbital-resolved dipole moment, since the CM orbital dynamics provides the clear-

est picture of the CM motion – see again Fig. 4.1(b,c). However, the CM-orbital-resolved

spectrum cannot be observed experimentally. Consider the electronic structure of BrC4H:

in addition to six lower-lying σ-type orbitals that do not contribute to the CM or the

HHG, there are six π-type orbitals that span the entire length of the molecular backbone.

Three of these π orbitals lie in the xz-plane (where the molecular backbone is along the

z-axis, and the laser polarization direction is along the x-axis), while the other three lie

in the yz-plane. By pulling one of the two electrons from one of the π orbitals in the xz-

plane (the CM orbital), I induce particle-like CM in BrC4H; however, there are an addi-

tional 4 electrons in the πx system that strongly contribute to both the valence electron

dynamics and the HHG process. As an illustration, Figure 5.3 shows the orbital-resolved

CM+FMSS spectra for different groups of orbitals. The πx-orbitals-resolved CM+FMSS

spectrum is indeed consistent with the total dipole signal, while the contributions from the

πy and σ orbitals are several orders of magnitude lower, as expected.

Lastly, in order to more clearly investigate the CM-induced delay-dependent mod-
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Figure 5.3: CM+FMSS spectra (a) from the total dipole signal (black), and (b) from the
πx-orbitals-resolved (blue), (c) πy-orbitals-resolved (green), and (d) σ-orbitals-resolved
dipole moments, for a delay τ = 4 optical cycles.

ulation of the harmonic signal, I first smooth the spectrum using a 6ωL-wide moving av-

erage to remove the individual harmonic peaks. Then, I normalize the delay-dependent

CM+FMSS spectrum by the delay-averaged harmonic signal, as I did in Ch. 3; this final

step removes the general shape (perturbative region, plateau, and cutoff region) of the

harmonic spectrum and focuses purely on the delay dependence.

5.3. Delay-Dependent CM+HHG Spectra

In Figure 5.4(a), I show an expanded version of the normalized CM+FMSS

spectrum calculated from the CM-orbital-resolved dipole moment shown previously in

Fig. 5.1(c), around 4 optical cycles (approximately 18 fs) after the initiation of the CM.

Clearly, there is a pronounced half-laser-cycle-periodic, delay- and harmonic-frequency-

dependent variation in the harmonic signal which is not present in the neutral molecule.

This variation is such that the yield is roughly five times more intense when the hole is

not on the bromine atom. Below the cutoff energy Ec = 40 eV, this spectral maximum

trends towards earlier delays as the harmonic frequency increases. As I discuss below, the

slope of this tilt matches the negative of the attochirp of the harmonic radiation.

In addition, I plot the delay-dependent harmonic spectrum calculated from the
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Figure 5.4: (a) Normalized, CM-orbital-resolved FMSS spectrum for λL = 1344 nm
(ωL = ωCM/2), I◦ = 45 TW/cm2. (b) Delay-dependent harmonic spectrum taken from
model calculations (see text). Black dashed lines are taken from ridge detection of the
peaks in panel (b).

delay-dependent model dipole signal of Sec. 4.5 in Figure 5.4(b). Like in panel (a), we see

a half-cycle-periodic modulation tilting to the left as the harmonic frequency increases.

The modulations seen in both panels are consistent with one another, as evidenced by the

black dashed lines in both plots, taken from a ridge detection of the peaks in the model

spectrum in (b). Removing the attochirp from the model calculations of Sec. 4.5 (first

term in the phase of Eq. 4.8) eliminates the slope of the variation shown in Fig. 5.4(b).

The delay dependence of the variation in the harmonic signal in Fig. 5.4(a) is therefore

sensitive to the attochirp of the harmonic radiation, as illustrated in the schematic of

Fig. 5.1. The recombining electron wave packet images different molecular landscapes

depending on when it rescatters [98, 99, 158, 229, 230, 232], leading to a variation in
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Figure 5.5: (a) Normalized CM+FMSS spectrum, again for λL = 1344 nm and
I◦ = 45 TW/cm2, calculated from the dipole signal from the three πx orbitals. Black
dashed lines again taken from model calculations. (b) Amount of ionized charge, three
optical cycles after the center of the laser pulse, as a function of delay.

the HHG light emission. High-frequency light (near the cutoff energy) is emitted later,

meaning that an earlier delay is required to image any given position of the hole along the

molecular backbone.

Note that harmonic generation from any neutral molecules not undergoing CM

would not have any delay dependence, and so would be canceled out by the normalization

process. I also note that the time resolution built into FMSS via the attochirp means that

there will be a delay and frequency dependence to the harmonic yield even if ωCM does

not match ωL/2 exactly, i.e., as long as 1/|ωCM − ωL/2| is small compared to the time (de-

lay) duration over which the CM is sampled. For an arbitrary driving laser frequency, I

expect that there will still be a modulation of the resulting HHG signal, even if it is more

complicated [234].
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From the purple and green dashed lines in Fig. 5.1, we see that the HHG yield in-

creases when the hole is located in the terminal bond (i.e. when the electron density is

on the bromine atom), and vice versa. This conclusion suggests that the scattering cross-

section of the bromine atom is larger than the rest of the carbon chain, meaning that an

increase in the overall density on the bromine atom (when the hole is not on the halogen)

results in a relative increase in the harmonic yield. This is a crucial result: because there

is a spatially-resolvable feature in the harmonic spectrum – here, a decrease in the har-

monic yield when the hole is located on the halogen atom – I am able to perform a time-

and space-resolved measurement of the CM dynamics using FMSS.

Though I am simulating and measuring particle-like CM dynamics [35, 66, 69] here,

I expect that FMSS can be used to characterize a variety of ultrafast electron dynam-

ics. The only requirement is that the electron dynamics is periodic, and that there is one

or more features of the harmonic yield that can be traced back to specific parts of the

molecule. As an example, in the usual way that CM is described, as a back-and-forth mo-

tion between two sites (e.g. bromoacetylene), a measure of the amount of electron density

on one of the sites fully describes the CM motion since any hole density not on the probed

site must be on the other site.

As discussed in Sec. 5.2, the CM orbital used in Fig. 5.4 does not correspond to an

experimental observable. Therefore, I look at the combined dipole signal from the three

πx orbitals in Figure 5.5(a). Thus far, we have been looking at the relative increase in the

delay-dependent HHG yield that occurs when the hole is not on the bromine atom. This

method works well for the CM-orbital-resolved FMSS spectrum of Fig. 5.4(a); switch-

ing to the πx-orbitals-resolved FMSS spectrum, however, I instead look for an absence
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of harmonic yield corresponding to the hole being on the bromine atom. This is because

the hole spends only about 25% of its time on the halogen end, meaning that the dip in

harmonic signal is sharper and therefore easier to detect when inverting the spectrum.

Thus, in Fig. 5.5(a), I plot the inverse of the πx-orbitals-resolved harmonic yield, 1/Sπ(ω).

Again, we see a delay- and harmonic-frequency-dependent variation in the (inverse) har-

monic yield due to the CM dynamics. The black dashed lines, again taken from my model

calculations in Fig. 5.4(b), have been shifted by 0.25ωL since I am looking for an absence,

rather than the presence, of harmonic signal.

5.4. Tracking the Electron Hole

I have shown that the HHG yield tracks the hole density on the bromine atom. To

further illustrate this, I algebraically remove the effect of the attochirp in the CM+FMSS

spectra of Figs. 5.4(a) and 5.5(a) in order to obtain an absolute-time-dependent measure

of how much hole density is on the bromine end of the molecule. This analysis is per-

formed in Figure 5.6. From the semiclassical model of HHG [72–74, 93], I know exactly

when each harmonic is emitted as a function of absolute time (for every delay τ). From

my TDDFT simulations, I also know the exact location of the electron hole as a func-

tion of absolute time. Thus, I can unambiguously map the variation in the harmonic sig-

nal to the amount of electron density on the halogen atom. The blue curve depicts the

amount of hole density centered around the bromine atom, taken from the field-free CM

dynamics depicted in Fig. 4.1(b). I compare this hole density to the recombination-time-

dependent harmonic yield, integrated over harmonic frequencies above 20 eV, for the CM-

orbital-resolved data in Fig. 5.4(a) (solid red curve) and the πx-orbitals-resolved data in
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Figure 5.6: Comparison between time-dependent, field-free hole density on the bromine
atom (blue) and recombination-time-dependent HHG yield, with the attochirp removed
and integrated over harmonic frequencies above 20 eV (red). The solid red line is taken
from the CM-orbital-resolved spectra in Fig. 5.4(a), and the dashed line corresponds to
the πx-orbitals-resolved data in Fig. 5.5(a).

Fig. 5.5(a) (dashed red curve). In Fig. 5.6, a value near the top of the figure means the

hole density is not localized on the bromine atom (is localized on the terminal bond), and

therefore results in a larger HHG yield. Despite the vastly different methods used to ob-

tain the red and blue curves in Fig. 5.6, they match each other very well. Note that the

higher-frequency oscillations in the red curves (particularly, the dashed red curve) can be

explained by the additional atomic-center-localized oscillations in the hole density seen in

Fig. 4.1(c).

5.5. Ionization versus Rescattering

I now ask the question of whether the CM-induced modulation of the harmonic

yield is due to the ionization step or the rescattering step. To do so, I return to Fig-

ure 5.5(b): here, I plot the amount of charge ionized from the simulation box, one-half

laser cycle after the end of the laser pulse, as a function of the delay τ . There is a small
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amount of leakage – ionized charge leaving the simulation box even in the absence of the

laser field, approximately 2% of an electron per laser cycle – as evidenced by the overall

slope in Fig. 5.5(b), which can be attributed to the absorbing boundaries in the direction

perpendicular to both the CM and the laser. I have checked that the leakage disappears

for a larger box size in the ŷ direction, and that the leakage does not effect the results

shown here. On top of this overall linear slope, we see a clear half-laser-cycle-periodic

modulation in the ionization signal due to the CM dynamics. Different relative phases

between the CM and the peaks of the laser field cause different amounts of charge to be

ionized as a function of the delay τ . However, after correcting for the leakage, the ampli-

tude of the oscillation in the ionization signal is quite small (roughly 1%) compared to the

variation in the harmonic signal, for which the yield is roughly three times larger when the

hole density is not localized on the bromine atom (as opposed to five times larger, for the

CM-orbital-resolved case). Thus, I conclude that the modulation of the HHG signal from

the CM dynamics occurs mainly as a result of the recombination step, not the ionization

step.

5.6. Experimental Viability

It is interesting to consider how the CM+FMSS envisioned in this paper would fare

when considering more realistic experimental conditions; in particular, the two approxima-

tions I am making concerning (1) the (perfect) perpendicular alignment of the molecule

relative to the laser polarization, and (2) the absence of nuclear motion. For (1), I expect

the biggest issue to be that a laser field component that is parallel to the molecular back-

bone will drive CM that is not necessarily in phase with the field-free CM, and which will
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therefore likely give rise to a different delay dependence. For bromobutadiyne interact-

ing with the few-cycle laser pulse I have used here, I find that the harmonic response to a

parallel-polarized laser pulse does indeed exhibit a different delay dependence but that it

is also substantially weaker than that of the perpendicular-polarized pulse and thus does

not contribute much in the total delay dependence. For the longer driving pulses used in

Chapter 4, I found that the sideband-based HHS proposed in that paper was valid for a

full-width half-maximum angular distribution of 40◦. Given the weaker response for the

shorter pulse duration used here, I expect that FMSS will also tolerate at least 40◦ of an-

gular distribution.

For (2) I can approximate the effects of including nuclear motion in several differ-

ent ways. First, I have performed preliminary calculations of CM in bromobutadiyne when

including Ehrenfest dynamics and find that the molecule is quite rigid when starting from

the optimized ground-state geometry. A more thorough investigation into the nuclear de-

grees of freedom in bromobutadiyne can be found in Ref. [19]. However, I can also con-

sider the timescale for the nuclear dynamics, as compared to the timescale of the few-cycle

probe pulse that I use here. In particular, by incorporating decoherence into the model

calculations described above, I find that FMSS remains applicable within the typical time

scale for nuclear dynamics and decoherence. This robustness is demonstrated for a deco-

herence time of 10 fs in Figure 5.7.

Beyond the BrC4H molecule used here, I note that similar particle-like CM modes

have been predicted in other classes of molecules [35, 39]. Thus, given the generalizable

nature of this approach, I expect that CM+FMSS analyses can be applied broadly to

other classes of molecules, such as functionalized benzenes or even bio-molecules and be-
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Figure 5.7: CM+FMSS analysis around τ = 0, using the model calculations described by
Sec. 4.5, with a 10 fs phenomenological decay on the CM dynamics.

yond. Given the intense, current interest in probing and understanding charge migration,

with a range of experiments underway at large-scale X-ray facilities [223, 235], approaches

based on HHS, such as FMSS, could be appealing due to the much wider availability of

table-top based HHG sources.

5.7. Outlook: Charge Migration Drift

In this chapter and the previous one, I have investigated the effect of the CM dy-

namics on an applied laser field (in other words, performing spectroscopy). However, it

would be naive to expect that the applied laser field has no effect on the CM dynamics,

especially when using longer laser pulses, even despite the perpendicular configuration I

use here. To that end, I apply a linearly-polarized MIR laser field which has a 2-cycle sin2

ramp-up, and then remains a continuous wave thereafter, to a BrC4H molecule undergoing

CM. I again look at the case where the polarization direction of the laser is perpendicular

to the molecular backbone – see also Figure 4.1(a). I vary the wavelength λL, intensity I◦,

and relative delay ∆ between the initiation of the CM and the start of the laser field.

In Figure 5.8, I plot the amount of hole density located around the bromine
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atom as a function of time for four different sub-cycle delays ∆. In the incommensurate-

laser-frequency case in panel (a), for λL = 1575 nm, the time-dependent CM dynamics

do not change significantly as a function of delay, as I would expect since the laser is

perpendicular to the CM motion. However, for the commensurate-laser-frequency case

(λL = 1344 nm) in panel (b), there are some delays for which the CM dynamics deviate

(or “drift”) from the field-free dynamics. As an analogy, consider a pendulum swinging

at a frequency ω, with an applied periodic perturbation with the same frequency ω. De-

pending on the relative phase between the perturbation-free pendulum dynamics and the

perturbation itself, the pendulum’s dynamics will deviate from a simple harmonic oscil-

lator as a function of time (eventually converging to a motion which is in phase with the

perturbation). This drift does not occur in the incommensurate frequency case because

the electron density is being nudged one way just as often as it is nudged in the opposite

way.

I now investigate the dependence of the severity of the CM drift on the intensity of

the applied laser field. Similar to Fig. 5.8, in Figure 5.9 I show the time-dependent hole

density ρH(z, t), this time along the entire molecular backbone, for several different sub-

cycle delays ∆. The images are superimposed on top of one another; a clean periodic mo-

tion of the electron hole (near the left end of the figures) indicates that there is very little

CM drift, while a blurring of the dynamics (near the right end of the figures) indicates

strong CM drift. This is done for λL = 1344 nm and for two different laser intensities: (a)

I◦ = 60 TW/cm2 and (b) I◦ = 150 TW/cm2. The vertical dashed red lines in each panel

marks the time at which the delay-dependent CM dynamics starts to blur. Since the blur-

ring starts approximately two optical cycles earlier in the lower-intensity case, I conclude
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Figure 5.8: For laser wavelengths of (a) 1575 nm and (b) 1344 nm: the amount of hole
density located on the bromine atom, as a function of time, for several different delays ∆
between the initiation of the CM dynamics and the phase of the flat-top laser pulse.

that an increase in the laser intensity will cause the CM drift to progress faster.

Finally, I ask the question of whether there is a particular delay for which there is

little to no CM drift. In Figure 5.10, I look at the time-dependent hole density around the

bromine atom, at a delay ∆ = 0.4375 optical cycles. The applied laser has a wavelength

λL = 1344 nm, and I look at three different laser intensities: (black curve) 0 TW/cm2

(field-free), (blue curve) 60 TW/cm2, and (red curve) 150 TW/cm2. At this particular de-

lay, there does not appear to be much CM drift. Thinking about the semiclassical model

of HHG presented in Sec. 1.3, I find that ∆ = 0.4375 o.c. is the delay at which each half-

laser-cycle’s ionization event coincides with when the hole is on the terminal bond (when

there is an excess of electronic density on the bromine atom). Thus, going back to the

resonantly-driven harmonic oscillator analogy, this delay is close to the steady-state so-

lution. The pendulum is being nudged in phase with the original motion.
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Figure 5.9: For a commensurate laser wavelength and laser intensities of (a) 60 TW/cm2

and (b) 150 TW/cm2: time-dependent hole densities, for four different sub-cycle delays,
superimposed on top of each other. A blurring of the image indicates that the CM drift
has dephased the delay-dependent dynamics.

I have avoided the effects of CM drift in the HHSS analysis of Chapter 4 by us-

ing an incommensurate laser frequency, and in the FMSS analysis of this chapter by using

short (few-cycle) laser pulses. However, I do think that CM drift is an interesting phe-

nomenon – in particular, in relation to the analogy with a driven simple harmonic oscilla-

tor – and I hope that it will be studied more closely in the future.
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Figure 5.10: For a commensurate laser wavelength and three different laser intensities
of (black curve) 0 TW/cm2 (field-free), (blue curve) 60 TW/cm2, and (red curve) 150
TW/cm2, the amount of hole density located on the bromine atom, as a function of time,
for a delay ∆ = 0.4375 optical cycles. (There is an offset between each of the curves.)
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Chapter 6. Summary and Outlook

6.1. Summary: Two-Center Interferences

In Chapter 3, I showed that I can reliably recover both amplitude and phase in-

formation specific to a molecular target in TDDFT simulations of HHS, in order to char-

acterize the two-center interference (TCI) minima in three molecules within the carbon

dichalcogen family [110]. This TCI is characterized by a minimum in the spectral inten-

sity and a π phase jump, both of which were recovered using this methodology. To do

so, I have combined resolving the total dipole signal into contributions from individual

Kohn-Sham orbitals with careful signal processing and normalization. I compared generic

strategies on how to select a single set of short trajectories either through the simulation-

box absorbing boundary conditions or with an APT-ionization seed [143], together with

a well-timed short-window time filtering, in order to compare my results directly with ex-

periment [165, 171, 179]. I also discussed field-induced effects that can be unique to a spe-

cific target, such as the reshaping of the TCI feature induced by the APT in CO2 that is

absent in the other carbon dichalcogens. Also, in conjunction with the experiments per-

formed at The Ohio State University, I further studied the wavelength and intensity de-

pendence of the TCI minimum in CO2 [179], and determined that multi-orbital effects

were to blame for the deviation from the expected results for wavelengths less than 1200

nm. Finally, I introduced a method to numerically approximate the field-free scattering-

dipole matrix elements through coherent scattering simulations. These field-free scattering

simulations showed an excellent agreement when compared to the full TDDFT HHS re-

sults [110].
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More generally, the idea of working with the Kohn-Sham-orbital-resolved dipole sig-

nal, as proposed in Sec. 2.2.3.3 and first tested in Chapter 3, is a powerful tool for prac-

titioners of TDDFT, like myself. Though the Kohn-Sham (KS) orbitals are not physi-

cal quantities per se [108, 109], their usefulness (particularly with respect to the correct

shape/symmetry of the wavefunction) is starting to become more widely-recognized within

the community [111, 112, 156, 157]. Even when using an LDA exchange-correlation func-

tional, one can make quantitative comparisons between high-harmonic spectra from differ-

ent molecules by simply correcting for the incorrect ionization potentials of the computed

KS orbitals [146]. Furthermore, the ability to decompose and correct the dipole signal

from individual KS orbitals will be even more important when performing high-harmonic

spectroscopy on larger molecules, or on molecules in the condensed phase.

6.2. Summary: High-Harmonic Sideband Spectroscopy

In Chapter 4, I showed that periodic, particle-like CM dynamics initiated in bro-

mobutadiyne (BrC4H) leads to a coherent time-dependent modulation of a wavelength-

dependent HHG probe, reflecting the sensitivity of the HHG process to the local charge

density [66]. In the spectral domain and over several laser cycles, the CM dynamics mani-

fests as sidebands whose energies correspond to the sum and the difference frequencies be-

tween the driving laser and the CM. These sidebands constitute a background-free probe

of the CM motion from which one can unambiguously extract the migration frequencies by

scanning the laser wavelength. Interestingly, a localized, particle-like CM motion in BrC4H

is characterized by multiple sidebands, associated with ωCM and 2ωCM, which each give

a measurement of the CM frequency which is consistent with the value obtained directly

90



from the time-dependent dynamics. I also explored the experimental viability of these re-

sults, by investigating the effect of a distribution of molecular alignments, of having only a

fraction of the molecules undergoing CM, and of a finite CM lifetime.

6.3. Summary: Frequency-Matched Strobo-Spectroscopy

In Chapter 5, I showed that frequency-matched high-harmonic strobo-spectroscopy

of charge migration (CM+FMSS) in BrC4H causes a coherent modulation of the HHG

signal that precisely tracks the amount of electron density on the bromine atom, which

provides information about the phase of the CM motion. By exploiting a site-specific fea-

ture of the HHG spectrum, I achieve a time- and space-resolved analysis of the CM by

performing a sub-cycle-resolved delay scan [69]. FMSS takes advantage of the intrinsic

attosecond time resolution of the HHG process (the attochirp), in which different har-

monics are emitted at different times and thus probe different locations of the electron

hole. These claims are supported by a similar result from an SFA-inspired model calcu-

lation. I can also make a direct comparison between the recombination-time-dependent,

harmonic-frequency-integrated HHG yield and the hole density on the halogen. Lastly, I

briefly explored the effect of the laser field on the CM dynamics (the CM drift), and con-

nected those results to what I learned from nonlinear dynamics [18].
When combined with my previous results, outlined in the previous section, I get a

full picture of how one could measure CM using high-harmonic spectroscopy:

1. Choose the target molecule wisely. A conjugated system of π bonds (alkenes and
alkynes) acts as a “highway” for the electron density to travel along, and a heavy
halogen on one end of the molecule provides a site for localized ionization [35, 39].

2. Initiate CM dynamics in the target sample via a localized ionization – see also Sec-
tion 6.4. According to nonlinear dynamics, the characteristics of the created CM
mode should be robust with respect to the specifics of the ionization event [18].
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3. Apply a laser field polarized perpendicular to the molecular backbone. The time-
dependent beat between the periods of the CM dynamics and the laser causes side-
bands to appear in the resulting high-harmonic spectrum. By varying the wave-
length of the applied laser field, one can precisely determine the fundamental CM
frequency [66].

4. Tune the laser wavelength so that it is resonant with the CM dynamics (ωL =
ωCM/2). Then, by scanning the delay between the pump pulse that induces CM
and the (still perpendicularly-polarized) few-cycle laser pulse, one can exploit a
site-specific feature in the harmonic spectrum to track the time-dependent location
of the electron hole [69].

While the procedure outlined above would likely need to adapt to each individual experi-

mental setup, I have endeavoured to make sure that each of the above steps is both robust

and generalizable. I hope that in the future, some or all of these techniques are used to

realize an experimental measurement of CM using high-harmonic spectroscopy.

6.4. Outlook: Initiating CM with Ultrashort Laser Pulses

In the past, theoretical studies of charge migration have often created the initial

condition for ultrafast electron dynamics by simply removing an electron from one (or

more) molecular orbitals – see Refs. [25, 36, 37, 41], among many others. More recently,

however, there has been some effort put towards accurately modeling the ionization of

a molecule via an ultrashort laser pulse [10, 33, 221, 236]. Many CM experiments take

place at free-electron lasers (FELs) [235, 237–239], which promise ultrashort (few hun-

dreds of attoseconds) laser pulses with high photon energies (few tens of electron-volts).

When looking at CM in larger molecules, these laser pulses can communicate with dozens

of molecular orbitals, leading to incredibly complicated CM dynamics. Theoretical models

for these types of CM experiments involve computing the frequency-dependent photoion-

ization cross section of all of the relevant molecular orbitals in order to determine what
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Figure 6.1: (a) Time-dependent hole density ρH(z, t) along the molecular backbone of
BrC4H during and after a 1500 nm, 1 o.c. FWHM (3 o.c. total) laser pulse, parallel to the
molecular axis. Solid black curve denotes the applied laser field; after the black vertical
dashed line, the field is zero. (b) Position-dependent Fourier spectrum of the field-free
(after the laser pulse has ended) CM dynamics in panel (a). Red vertical dashed lines indi-
cate the fundamental CM frequency ωCM and its second harmonic 2ωCM.

the initial condition for CM looks like, while also factoring in the frequency profile of the

applied laser pulse – for an example using the amino acid tryptophan, see Ref. [221].

As discussed in Sec. 4.2, I have instead opted to use constrained DFT to create the

localized initial condition needed to induce CM dynamics. By doing so, I have learned a

lot about the fundamentals of CM [18, 35, 39]; however, the most pressing question is how

particle-like CM dynamics can be created in a laboratory setting. This is the question I

start to grapple with in this section; while these results are preliminary, they are promis-

ing enough to include here.

I apply a few-cycle, strong MIR laser pulse parallel to the backbone of a BrC4H

molecule. For a wavelength of 1500 nm, an intensity of 50 TW/cm2, and a total pulse du-

ration of 3 optical cycles, the resulting dynamics is presented in Figure 6.1. In panel (a),

93



I show the time-dependent hole density ρH(z, t) along the molecular backbone, defined

in Eq. 4.4, during and after the applied laser pulse. During the laser pulse (0 ≤ t ≤

15 fs), polarization effects heavily dominate; after the pulse, however, there is a clear back-

and-forth motion of a localized electron hole moving from one end of the molecule to the

other end, with a well-defined CM frequency. This particle-like CM dynamics is stable (in

the absence of nuclear motion, at least) for another 30 femtoseconds. The corresponding

position-dependent Fourier spectrum of the field-free (after the laser pulse has ended) CM

dynamics is shown in Fig. 6.1(b). As expected for a particle-like CM motion in BrC4H,

we see a strong feature at ωCM ≈ 1.5 eV, as well as a weaker 2ωCM ≈ 3 eV feature that

is found primarily on the middle C ≡ C bond. In addition, there are high-frequency os-

cillations of the electron density, seen in (b) near 6.5 eV, that I believe are caused by the

beating between two or more molecular orbitals (similar to Cederbaum’s original theory

[25]).

Figure 6.1 shows that tunnel ionization from a 1500 nm, few-cycle laser pulse po-

larized parallel to the backbone of a BrC4H molecule can induce a periodic CM motion

along the molecular axis. Furthermore, early investigations of the robustness of this CM

mode with respect to various laser parameters (wavelength, carrier-envelope phase, inten-

sity, etc.) are very encouraging [213]. A robust method for initiating a particle-like mode

of CM would be a big step forward in the field, and another milestone towards the experi-

mental measurement of particle-like CM.
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Appendix A. Angle-Dependent TCI in CO2 (Octopus 8.4)

CalculationMode = td # gs if ground-state, td if time-dependent

TheoryLevel = dft

SICCorrection = sic_adsic

ParStates = no

# convergence parameters for ground state

ConvRelEv = 1E-10

ConvRelDens = 1E-15

MaximumIter = -1

#############################################################################

# !! GROUND STATE PARAMETERS !!

#############################################################################

FromScratch = yes

BoxShape = parallelepiped

Spacing = 0.300 # in atomic length units

%Lsize # in atomic length units

70.0 | 35.0 | 30.0

%
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theta_deg=00 # <-- Scan Parameter

AbsorbingBoundaries = cap

ABWidth = 15.0 # in atomic length units

ABCapHeight = -1.00 # in atomic units

Output = wfs_sqmod

OutputFormat = integrate_yz + integrate_xz

OutputInterval = 5

#############################################################################

%Species

’O’ | species_pseudo | file | ’./O.psf’ | lmax | 1 | lloc | 1

’C’ | species_pseudo | file | ’./C.psf’ | lmax | 1 | lloc | 1

%

theta_rad = theta_deg*pi/180

%Coordinates

’O’ | -2.1966*cos(theta_rad) | -2.1966*sin(theta_rad) | 0.0 | no

’C’ | 0.0000*cos(theta_rad) | 0.0000*sin(theta_rad) | 0.0 | no

’O’ | 2.1966*cos(theta_rad) | 2.1966*sin(theta_rad) | 0.0 | no

%
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#############################################################################

# !! TIME-DEPENDENT PARAMETERS TO BE ALTERED !!

#############################################################################

delay = 0.06 # in IR optical cycles

lambda = 1500 # in nanometers

I0 = 0.6 # x 10^14 W/cm^2

dt = 0.05 # in atomic time units

n = 9 # must be an odd integer!

TDOutput = laser + dipole_acceleration

#############################################################################

F0 = sqrt(I0/351)

F1 = sqrt(0.000*I0/351)

omega = 45.6/lambda

period = 2*pi/omega

tau = 2*period

Ttot = 3*period

Tdel = (delay - 0.25)*period

TDPropagator = aetrs

TDMaxSteps = ceiling(Ttot/dt)

TDTimeStep = dt
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%TDExternalFields

electric_field | 1 | 0 | 0 | omega | "envelope_sin" | "phase"

electric_field | 1 | 0 | 0 | n*omega | "envelope" | "phase1"

electric_field | 1 | 0 | 0 | (n+2)*omega | "envelope" | "phase2"

electric_field | 1 | 0 | 0 | (n+4)*omega | "envelope" | "phase3"

electric_field | 1 | 0 | 0 | (n+6)*omega | "envelope" | "phase4"

electric_field | 1 | 0 | 0 | (n+8)*omega | "envelope" | "phase5"

%

%TDFunctions

"envelope_sin" | tdf_from_expr | "F0*step(tau-t)*((sin(pi*t/(2*tau)))^2)

+F0*step(t-tau-0.001)"

"envelope" | tdf_from_expr | "0.2*F1*step(tau-t)*((sin(pi*t/(2*tau)))^2)

+0.2*F1*step(t-tau-0.001)"

"phase" | tdf_cw | -pi/2

"phase1" | tdf_cw | pi/2 - n*omega*Tdel

"phase2" | tdf_cw | pi/2 - (n+2)*omega*Tdel

"phase3" | tdf_cw | pi/2 - (n+4)*omega*Tdel

"phase4" | tdf_cw | pi/2 - (n+6)*omega*Tdel

"phase5" | tdf_cw | pi/2 - (n+8)*omega*Tdel

%
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Appendix B. CM+HHSS in BrC4H (Octopus 11.4)

CalculationMode = td # gs for ground-state, td for time-dependent

TheoryLevel = kohn_sham

SICCorrection = sic_adsic

ExperimentalFeatures = true

ParStates = no

FromScratch = yes

BoxShape = parallelepiped

Spacing = 0.3

%Lsize

45.0 | 20.0 | 45.0

%

# Comment out for gs, uncomment for td.

AbsorbingBoundaries = cap

ABWidth = 15.0 # in atomic length units

ABCapHeight = -1.00 # in atomic units

%Species

’H’ | species_pseudo | file | ’./H.psf’ | lmax | 1 | lloc | 1

’C’ | species_pseudo | file | ’./C.psf’ | lmax | 1 | lloc | 1
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’Br’ | species_pseudo | file | ’./Br.hgh’ | lmax | 3 | lloc | 1

%

# Geometry for bromobutadiyne.

%Coordinates

’H’ | 0.000000 | 0.000000 | 13.033552 | no

’C’ | -0.004314 | 0.000064 | 11.020957 | no

’C’ | -0.007581 | 0.000113 | 8.753220 | no

’C’ | -0.008477 | 0.000126 | 5.858400 | no

’C’ | -0.006588 | 0.000098 | 3.590760 | no

’Br’ | 0.000000 | 0.000000 | 0.000000 | no

%

%TransformStates # depends on converged ground state

.

.

.

%

%Occupations

1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2

%

ExcessCharge = 1
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#############################################################################

# !! TIME-DEPENDENT PARAMETERS !!

#############################################################################

lambda = 1344 # laser wavelength

I0 = 0.45 # x 10^14 W/cm^2; laser intensity

tIR=0.0000 # delay between start of CM and laser (should not matter)

#############################################################################

F0 = sqrt(I0/351)

omega = 45.6/lambda

period = 2*pi/omega

tau = 2*period

Tdel = (delay - 0.25)*period

Tstart = tIR * period

# Define laser pulse

%TDExternalFields

electric_field | 1 | 0 | 0 | omega | "envelope_sin" | "phase"

%

%TDFunctions

"envelope_sin" | tdf_from_expr | "F0*step(t-Tstart)*step(tau+Tstart-t)
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*((sin(pi*(t-Tstart)/(2*tau)))^2)+F0*step(t-tau-Tstart-0.001)"

"phase" | tdf_cw | -pi/2 - omega*Tstart

%

%TDOutput

dipole_acceleration

multipoles

laser

energy

%

TDPropagator = etrs

TDPropagationTime = ceiling((10.0 + tIR)*period)

TDTimeStep = 0.05

TDEnergyUpdateIter = 1

TDExponentialMethod = lanczos

TDExpOrder = 8

# Output the charge migration dynamics.

%Output

density | "output_format" | integrate_xy + integrate_xz + integrate_yz |

"output_interval" | 5

wfs_sqmod | "output_format" | integrate_xy + integrate_xz + integrate_yz |
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"output_interval" | 5

%

OutputWfsNumber = "1"
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Appendix C. CM+FMSS in BrC4H (Octopus 11.4)

CalculationMofde = td # gs for ground-state, td for time-dependent

TheoryLevel = kohn_sham

SICCorrection = sic_adsic

ExperimentalFeatures = true

FromScratch = no

ParStates = no

BoxShape = parallelepiped

Spacing = 0.3

%Lsize

45.0 | 20.0 | 45.0

%

# Comment out for gs, uncomment for td.

AbsorbingBoundaries = cap

ABWidth = 15.0 # in atomic length units

ABCapHeight = -1.00 # in atomic units

%Species

’H’ | species_pseudo | file | ’./H.psf’ | lmax | 1 | lloc | 1

’C’ | species_pseudo | file | ’./C.psf’ | lmax | 1 | lloc | 1
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’Br’ | species_pseudo | file | ’./Br.hgh’ | lmax | 3 | lloc | 1

%

# Geometry for bromobutadiyne.

%Coordinates

’H’ | 0.000000 | 0.000000 | 13.033552 | no

’C’ | -0.004314 | 0.000064 | 11.020957 | no

’C’ | -0.007581 | 0.000113 | 8.753220 | no

’C’ | -0.008477 | 0.000126 | 5.858400 | no

’C’ | -0.006588 | 0.000098 | 3.590760 | no

’Br’ | 0.000000 | 0.000000 | 0.000000 | no

%

%TransformStates # depends on converged ground state

.

.

.

%

%Occupations

1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2

%
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ExcessCharge = 1

#############################################################################

# !! TIME-DEPENDENT PARAMETERS !!

#############################################################################

lambda = 1344 # laser wavelength (frequency-matched)

I0 = 0.45 # x 10^14 W/cm^2; laser intensity

tIR=3.2500 # delay between laser and CM

CEP = 0.0000 # CEP of laser pulse

pulse_width = 5.0000 # width of laser pulse

#############################################################################

F0 = sqrt(I0/351)

omega = 45.6/lambda

period = 2*pi/omega

tau = pulse_width * period

Tstart = (tIR * period) - 0.5 * tau

%TDExternalFields

electric_field | 1 | 0 | 0 | omega | "envelope_sin" | "phase"

%

%TDFunctions
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"envelope_sin" | tdf_from_expr | "F0*step(tau+Tstart-t)*step(t-Tstart)

*((sin(pi*(t-Tstart)/(tau)))^2)"

"phase" | tdf_cw | -((omega * (pi/2 + Tstart + tau/2)) + CEP)

%

%TDOutput

laser

dipole_acceleration

eigenvalues

multipoles

%

TDPropagator = etrs

TDPropagationTime = ceiling((tIR + 1.5)*period + 0.5*tau)

TDTimeStep = 0.05

TDEnergyUpdateIter = 1

TDExponentialMethod = lanczos

TDExpOrder = 8

# New in Octopus 11: automatically compute orbital-resolved dipole moments.

TDOutputResolveStates = true

# Output the charge migration dynamics.

107



%Output

density | "output_format" | integrate_xy + integrate_xz + integrate_yz

| "output_interval" | 5

wfs_sqmod | "output_format" | integrate_xy + integrate_xz + integrate_yz

| "output_interval" | 5

%

OutputWfsNumber = "1"
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Cohérentes et Incohérentes UV, VUV et X : Applications et développements récents
(2009), pp. 65–70.

[169] E. P. Fowe and A. D. Bandrauk. “Nonlinear time-dependent density-functional-
theory study of ionization and harmonic generation in CO2 by ultrashort intense
laser pulses: Orientational effects”. In: Phys. Rev. A 81 (2 Feb. 2010), p. 023411.

[170] P. V. Abanador. “Theoretical Studies of Ultrafast Electron Dynamics in Atoms and
Molecules via High-Order Harmonic Generation”. PhD thesis. Louisiana State Uni-
versity, 2018.

[171] D. R. Tuthill et al. “Multidimensional molecular high-harmonic spectroscopy: A
road map for charge migration studies”. In: Journal of Molecular Spectroscopy 372
(2020), p. 111353.

[172] S. De et al. “Field-Free Orientation of CO Molecules by Femtosecond Two-Color
Laser Fields”. In: Phys. Rev. Lett. 103 (15 Oct. 2009), p. 153002.

119



[173] K. N. Egodapitiya, S. Li, and R. R. Jones. “Terahertz-Induced Field-Free Orienta-
tion of Rotationally Excited Molecules”. In: Phys. Rev. Lett. 112 (10 Mar. 2014),
p. 103002.

[174] P. M. Kraus, D. Baykusheva, and H. J. Wörner. “Two-pulse orientation dynam-
ics and high-harmonic spectroscopy of strongly-oriented molecules”. In: Journal of
Physics B: Atomic, Molecular and Optical Physics 47.12 (June 2014), p. 124030.

[175] J. Vos et al. “Orientation-dependent stereo Wigner time delay and electron local-
ization in a small molecule”. In: Science 360.6395 (2018), pp. 1326–1330.

[176] A. Sissay et al. “Angle-dependent strong-field molecular ionization rates with tuned
range-separated time-dependent density functional theory”. In: The Journal of
Chemical Physics 145.9 (2016), p. 094105.

[177] P. Sándor et al. “Angle dependence of strong-field single and double ionization of
carbonyl sulfide”. In: Phys. Rev. A 98 (4 Oct. 2018), p. 043425.

[178] W. Boutu et al. “Coherent control of attosecond emission from aligned molecules”.
In: Nature Physics 4.7 (July 2008), pp. 545–549.

[179] D. R. Tuthill et al. “Investigation of Interferences in Carbon Dioxide through Mul-
tidimensional Molecular-Frame High-Harmonic Spectroscopy”. In: The Journal of
Physical Chemistry A 126.46 (2022), pp. 8588–8595.

[180] D. C. Frost, S. T. Lee, and C. A. McDowell. “Photoelectron spectra of OCSe,
SCSe, and CSe2”. In: The Journal of Chemical Physics 59.10 (1973), pp. 5484–
5493.

[181] M. V. Frolov et al. “Analytic formulae for high harmonic generation”. In: Journal
of Physics B: Atomic, Molecular and Optical Physics 42.3 (Jan. 2009), p. 035601.

[182] C.-D. Lin et al. “Strong-field rescattering physics—self-imaging of a molecule by its
own electrons”. In: Journal of Physics B: Atomic, Molecular and Optical Physics
43.12 (June 2010), p. 122001.

[183] H. Akagi et al. “Laser Tunnel Ionization from Multiple Orbitals in HCl”. In: Sci-
ence 325.5946 (2009), pp. 1364–1367.

[184] X. Zhu et al. “Two-center interference in high-order harmonic generation from het-
eronuclear diatomic molecules”. In: Optics express 19 (Jan. 2011), pp. 436–47.

[185] X. Chu and P. J. Memoli. “Role of multiphoton excitation and two-electron effects
in high harmonic generation of H2: A TDDFT calculation”. In: Chemical Physics
391.1 (2011), pp. 83–87.

[186] A. Rupenyan et al. “Quantum interference and multielectron effects in high-
harmonic spectra of polar molecules”. In: Phys. Rev. A 87 (3 Mar. 2013),
p. 031401.

[187] Z. Shu et al. “Channel Coupling Dynamics of Deep-Lying Orbitals in Molecular
High-Harmonic Generation”. In: Phys. Rev. Lett. 128 (18 May 2022), p. 183202.

[188] T. D. Scarborough et al. “Full Characterization of a Molecular Cooper Minimum
Using High-Harmonic Spectroscopy”. In: Applied Sciences 8.7 (2018).

[189] D. J. Tannor. Introduction to quantum mechanics: a time-dependent perspective.
chapter 17. Sausalito, CA: University Science Books, 2007.

[190] A. D. Dutoi, M. Wormit, and L. S. Cederbaum. “Ultrafast charge separation driven
by differential particle and hole mobilities”. In: The Journal of Chemical Physics
134.2 (2011), p. 024303.

120
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