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ABSTRACT

A polynomial invariant of links in a solid torus is defined through an
algebra Hn(1). Hn(}) modulo by an ideal is the type-B Hecke algebra.
This invariant satisfies the S3-skein relation as in the 1-trivial links case of
dicromatic link invariant discovered by J. Hoste and M. Kidwell.

A link in the solid torus is isotopic to a closed braid which is a braid
in the braid group of the annulus. We find an invariant of links through a
represention 7 of the braid group of the annulus to the algebra Hn(%).

A trace map X is defined on a basis
B={(t)" - (t,)*"B|si € Z, f € H(An-1), in normal form }

of Hy(3). Then, there is a map Z from UB,(Ann) (braid group of annulus)
to C(g, VA)[riliez defined by Z(a) = (VAz)!""VA X(n(a)). The invariant
Z(a) is an ambient isotopy invariant for the links in the isotopy class that
a represents. Therefore, this is a computational approach to the S3-skein
module for solid torus.

An invariant of links in a solid torus was discovered by S. Lambropoulou

through the type-B Hecke algebra. It can be recovered from Z(a).
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CHAPTER 1. INTRODUCTION AND BACKGROUND
1.1. Polynomial invariants of links

A link in 3-manifold is a smooth submanifold consisting of disjoint simple
closed curves. A knot is a link with one component. Two links K and L are
ambient isotopic if and only if a link diagram of K can be obtained from that
of L by a sequence of Reidemeister moves (see Figure 1). An ambient isotopy
invariant of oriented links is an invariant under the Reidemeister moves. Let
Ly,L_, and Lo denote links that are identical except in one crossing of a
link diagram L, conventionally with L, a single right handed crossing, as in
Figure 2.

After the Alexander, the Conway, and the Jones polynomials, a two-
variable twisted Alexander polynomial invariant of oriented links in 3-space
was published in 1985. A combined paper due to the coincidence of the
research announcements by four groups, each describing the same result (see

[F]) is as follows:

Theorem 1.1.1. [HOMFLY-PT] There is a unique function P from the set
of isotopy classes of tame oriented links to the set of homogeneous Laurent
polynomials of degree 0 in x, y, z such that

(1) =Py, (z,y,2) + yPL_(2,y,2) + 2P, (2,y,2) =0,

(2) Pr(z,y,z) =1 if L consists of a single unknotted component.
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Figure 1. Reidemeister moves I, II, and III in an oriented link diagram

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 2. Signed crossings in an oriented link diagram
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Then the Jones polynomial can be expressed as a special case by
Vi(t) = Pr(t,—t~1,t% —t~%). A relation as in the part(1) in theorem 1.1.1 is
called a skein relation. For the skein relation given by v~'P,, —vPy_ = 2P,
the Alexander polynomial and the Jones polynomial V() occur as the
special cases v = 1, and v = ¢,z = t¥ —t~#, respectively (see [HP2]).

To describe a series of further work, we introduce the type-A Hecke
algebra H(A,_;). It is an algebra with generators g, g2,...,gn~1 and
relations:

(1) gig; = gjg: if[i -3l >1,
(2) 9igi+19i = gi+19igi+1, fori=1---n -2,
(3) 2 =(g—1)gi+q for all 7, and q is a complex number as a parameter.

A basis for the type-A Hecke algebra is furnished by a system of reduced

words as

{(9i19ir~1 "~ Giv—k, )(Giz *** Gia—ky) "+ (Giry =+ * Gir =k ) }

wherel < 13 < i3 < -+ < i, < n — 1. We see that the dimension of
H(An-1) is n!. Using the basis of the type-A Hecke algebra, V.F.R. Jones
again constructed the HOMFLY-PT polynomial invariant (see [J]) using

Ocneanu’s work as follows:

P
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Theorem 1.1.2. [Ocneanu] For every z € C there is a linear trace
tr on (Jp—, H(An—1) uniquely defined by

(1) tr(ab) = tr(ba) a, b€ H(An—1);

(2) tr(1) =1 ;

(3) tr(agnb) = z tr(ab) if a, b€ H(An—1).

Theorem 1.1.3. [J] To each oriented link L (up to isotopy) there is a
Laurent polynomial Xr(./q, V) satisfying:

VIO XL, = (VADXL_ = (T~ F5) XL,

This work was done through the representation = of Artin’s braid group
to the type-A Hecke algebra. A connection of H(B,) to B,(Ann) was
observed by A. McDaniel and L. Smolinsky (see [MS]), and X. Lin ([LI]).
They noted that the Brieskorn braid group of type B, is the braid group of
the annulus, B,(Ann).

S. Lambropoulou produced an invariant for S* x D? (see [LA]) by use of
the braid group By, (Ann) and the type-B Hecke algebra.

B,(Ann) has generators t,01,...,0,—; (see Figure 3) and relations:

(1) oio; = oj0; if |i — j| > 1;
(2) 0i0i410; = 0i410:0i41 fori=1,2,...,n—2;

(3) torto; =o1tort.
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Figure 3. Generators of the braid group B,(Ann)
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A presentation of the type-B Hecke algebra H(B,) is as follows:

(t1,91,92,- - s9n—1 | 1918191 = Grt1g1t1,
9i9; = gigi if[i—j|>1,
9igi+19i = Ji+19iJi+1,
92 =(q—1)gi + g for all ¢},
t} =(Q—-1t1+Q)

and @ may be equal to q.

This work was also done through the representation 7, where n(o;) = g;
and 7(t) = t;. VA is also computed, as did Jones, to satisfy tr(vVA(0;)) =
tr(v~ 11r(cr,-‘ 1)). Thus the modified representation ) is defined as 7(0;) =
Vvg;. t; and t; are defined by t; = gi—1---g1t191---gi—1 and t; =
gi-1- - 1t197 1... g;'_ll, respectively. In Figure 4, there are illustrated two
braids, the images of which under = are t3, and t§, respectively, in H(B,) and
in the algebra Hn(%) that is introduced in chapter 2. This invariant through
type-B Hecke algebra will be discussed again in section 1.3.

1.2. Markov moves

We review some background definitions and facts. A fibered knot or link
in S3 is a collection of disjointly embedded circles L = L; U Ly U --- U Lg such
that §3 — L is the total space of a fiber bundle over S!, and the meridians
map to the S by degree 1 maps (see [R]). The unknot is the simplest fibered
knot in S3 and its fiber is a disk D2. This unknot is called an axis and a

closed braid in S° is defined relative to this axis.
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Figure 4. (A.) t3 = n(0201t0102) (B.) t§ = m(020:1to 05 1)
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Alexander showed that every oriented link in S3 is isotopic to a closed
braid. This closed braid is never unique and the exact non-uniqueness is
explained by the Markov Theorem. It says two closed braids are equivalent
as oriented links if and only if one closed braid may be deformed to the
other through horizontal, #H, and stabilizing, W, deformations, which reflect
Reidemeister moves II and I, respectively. A complete proof of the Markov
Theorem was published by Birman (see [B]).

A link in M3 is a closed braid in the braid group of the fiber if it
is transverse to each fiber and its orientation agrees with the transverse
orientation of the fiber. The height of a piecewise transverse link L with
decomposition si,..., Sk is the number of negative oriented segments. In
other words a piecewise transverse link of height zero is a closed braid.

Using the known fact that every closed 3-manifold contains a fibered
knot or link (see [A]), Skora showed the generalization of the Alexander
Theorem that every link in any closed 3-manifold is isotopic to a closed braid
for a fixed fibered knot or link which is called an axis which we denote A (see
[S]). Let D be a disk in M and let 8,8’ be arcs in 8D with disjoint interior
and union equal to 8D . Let L,L' belinksin M. 8 =LND,8 =L'NnD
and L' = (L — B) U B, then say L’ is obtained from L by an elementary
deformation through D. Two links are combinatorially equivalent if there is
a sequence of links L = Lg,L;,...,L, = L' such that for each k, Liy; is

obtained from L by an elementary deformation.
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Skora also proved a generalization of the Markov Theorem. Let L,L’ be
closed braids. Then L, L’ are equivalent if and only if there is a sequence
of piecewise transverse links L = Lg,L;,...,L¢ = L', where each L;y;
results from L; by an H or W deformation. An H deformation corresponds
to genuine conjugation. A W deformation is defined as follows. Let L, L’ be
piecewise transverse links. Suppose a disk D meets the axis A transversely
in one point and it meets each fiber transversely except exactly one fiber it
meets in a saddle. If L' results from L by an elementary deformation through
D where 0D =sUs', LND =3, L' N D = ¢, then say L’ results from L by a
W deformation through D. The Markov theorem is restated in terms of braid

representative 8 of a closed braid J as a link (see [B]) as follows:

Theorem 1.2.1. Let 3 and 3’ be two closed braids, with braid
representatives 8, '. Then (3 is combinatorially equivalent to 8’ if and only
if there is a deformation chain f = 1 — --- = [, = [’ such that each
braid ;4 in the chain can be obtained from B; € B, with n strings by the
following moves:

H : B; = a~'B;a where a is a braid word in the same braid group;

W: B; — BioE! where B; € By, 0n € Bpy1.

A closed braid in a solid torus S* x D? can be viewed as follows ([HK],
[LA]). In S3, the axis A is an unknot, and its fiber is a disk D2?. A 1-trivial
dicromatic link in S3 is a link colored with two colors {1,2} where the color 1

is used only to color a single unknotted component and the color 2 is used to
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11
color all the remaining of the link. Placing the unknotted component meeting
every fiber of the axis A transversely in S%, we can obtain a dicromatic closed
braid. Then, we obtain a solid torus by removing a tubular neighborhood
of the unknotted component of color 1 from $3. The remaining closed braid
with color 2 inside the solid torus can be viewed as a monocromatic closed
braid. Thus, a closed braid in a solid torus is defined relative to the axis A,
which serves for S® and which is a longitude with framing zero in the solid
torus.(See Figure 4. and 5.) Therefore, the Markov moves for a solid torus
are the same as for $3.

1.3 Invariants through Hecke algebras

In general, a Hecke algebra is associated with each type of the
Weyl group. It is known that the type-B Weyl group W is generated by
wo,w1, ... ,w; and the relations:
(1) o =1,
(2) wiwj = wjw; if [i —j| > 1,
(3) wiwip1wi = wipwiwipy fori=1,...,0-1
(4) wowiwowy = wywowiwy.

With H(B,) introduced in section 1.1, if we define ¢ by ¢(w;) =
gi, ¢(wg) = t;, then the images of the reduced words, t7't3? - - - t& o where
€i = Oor 1 and a is a normal form of type-A, under ¢ form a basis of the

type-B Hecke algebra H(B,).
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A closed braid in a solid torus

Figure 5. A closed braid in a solid torus
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We restrict the general case of the theorem to the type-B case.

Theorem 1.3.1. (N. Iwahori[l]) Let W be the Weyl group for By, then
(i) g(w), w € W form a basis of the free Z- module H(B,,), the type-B
Hecke algebra;
(ii) if w = wj, ---w;, is a reduced expression for w € W then

9(w) =gi, - gi,.

Therefore, the rank of the free Z-module H(B,,) is equal to the cardinal
number of the Weyl group W by part (i) of the theorem above. The type-B
Weyl group is known to be isomorphic to the semidirect product Z3x Z,,, &,
the symmetric group.

Let t; = wi_jwi—g - wWiWowy * - - Wi—ow;—1. Then t? = 1 and ¢;t; = t;t;, so
(t1,---ty) is isomorphic to Z7. Since the type-A Weyl group is generated by
{w1,...,wn_1} together with the relations {w? = 1, wiw; = wjw; if |[i —j| > 1,
Wiwit1wi = Wipiwiwier for i = 1,...,n — 2} and it is isomorphic to the
symmetric group Z,, a word w in type-A Weyl group can be used as a word
in ¥,. One can also check that witiw; = tiy1, witip1w; = t;, and wjtiw; = t; if
J#4i+1 Thus W = Z3xZ,. A word in the semidirect product Z3x X,
can be written as  t{'t3? -+ - t5 w, € =0 or 1, t;t; = t;t; for all i, 7.

Then w € T, acts on Z7 as w(a) = waw™! in ZF where o € Z3.

Sofia S.F. Lambropoulou defined an analogue to the HOMFLY-PT

polynomial for the links in solid torus. By representing the braid group

of the annulus into type-B Hecke algebra, H(B,,) (or Hn.(q,Q)) in the
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14
following theorem, the invariant contains one more variable T representing
the longitude. The representation 7 of the braid of annulus into H,(q, Q) is
defined by #(t) = ¢, 7(0;) = g;.

The unique trace function Xp was defined as follows.

Theorem 1.3.2. (S. Lambropoulou [LA]) Given z and s in C, there exists a
unique linear function Xpg : H := U H,(q,Q) — C such that the following
hold:

(1) Xp(ab) = Xp(ba), a,be H

(2) Xp(1) =1 for all Ha(g, Q)

(3) XB(agn) = 2Xp(a), a € Hn(q,Q)

(4) Xp(at],) =7 Xp(a), a € Ho—1(q,Q) where

th = Gno1-" G1t1g7 " gnty

Then a 4-variable invariant I(q, @, A, 7) was defined as:

1-Agq

n—1
) (VA Xs(a(e)

In=1(q,Q,A\,T) = (

where e is the exponent sum of the g;s that appear in a. Thus, an invariant I
was defined that satisfies the skein relations:
Al — VAL = (Vi- )5, and 7131,;; —VRIL = (V- 75,
where ao?b is a braid presentation for Ly, abfor L_, ao;bfor Ly, atb for
', at~tbfor L', and ab for Lj.
Skein module S3(M) has been computed for M = §3, M = S x D?, and

M = H, a handlebody (see [HP2], [P]). For M = S x D2, links in a solid
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15
torus was interpreted as the second colored components where the first one is
a single unknotted component in dicromatic links (see [HK]). The following

theorem from [HK] is restated in [P].

Theorem 1.3.3. ( [HK]) S3(S' x D?) is a free Z[v*¥!, z¥] module with
basis consisting of a trivial circle and families of layered torus links of type

(k,1), k # 0 satisfying the following properties: v"1L, —vL_ = zLy.

In chapter 2, we define an invariant of links in a solid torus through
an algebra H,(%) (we adopted the notation for the algebra in a private
communication from J. H. Przytycki). Our approach to the invariant is
similar to the ones by Jones and Lambropoulou. Our invariant is an invariant
in C(q,VA)[--+,T—2,71,71, 72, -] while Lambropoulou’s is in C(q, Q, VA)[7].
In chapter 3, we recover the invariant of links in S® by Jones and the

invariant of links in the solid torus by S.F Lambropoulou from this invariant.

— e —
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CHAPTER 2. A POLYNOMIAL INVARIANT OF
LINKS IN A SOLID TORUS

Here, we define an algebra H,(3) with a trace map. Using the trace, we
define a polynomial invariant of links in §* x D2.
2.1. An algebra H,() as a vector space
H,(}) is an algebra with a presentation:
Ho(3) = (¢t 01,02, 1 Gn1 | 0tT = 871 = 1,
tigitig1 = gitig1ty,
9:9; = g;9: if |i—j|>1,
9i9i+19i = i+19igiy1 for i =1,--- ,n -2,
g =(q~-1lgi+qfori=1---,n—1).
H,(%) is an algebra over the ring kfg, ¢~!] where k is a commutative ring
with 1. We obtain H, (%) through an exact sequence,
0T, = Ha(3) & H(Bp—1) 2 0
where T is the ideal generated by {t|t = t? ~ (Q — 1)t; — Q}. Let
p be the map from Hn(}) to H(Ba—1), then Ty = ker(p). Furthermore,
7 : Bn — Hp(1) defined by n(0;) = g; Vi, and n(t) = t; is a representation of
the braid group of the annulus into Hyn(}).
Note that g;! € Hn(%) as g;'! = ¢~1g; + (¢! — 1) from the relation
9% = (¢ —1)g: + ¢. In this section, we define and show a basis for H,(}) as an

infinite dimensional vector space.

16
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17
Definition 2.1.1. We define tf by ti—‘ = (gi-1gi—2- - g1t19192 - -* g,-_gg,-_l)",
fori=1,---,n, and (t:’)h by (té)h = Gi~-1Gi-2 """ glt{‘gi—lgi’-l Tt g;’——12g::--11’

fort=1,---,n.

Throughout the sections 2.1 and 2.2, we will make use of the following

formulas which are derived from the relations in H,(3).

Lemma 2.1.2. For arbitrary n, i, j <nandm, k, s € Z,
(al) t;tj = tjt; for any i, j;
(al') tPg1t191 = grt1gut’;
(a1") gitfgits = gitigitP oy’
(a2) tigitigr " = g1 ‘tigrts;
(a3) gitfaitigr! = (¢— 1) qutf'gr 't — (g — 1) qatf YoMty

+ glt’f‘1 atigr 1t,, which is a recursive formula;

and
( k-1 . )
(@— 1)) qutk~igr eyt
i=1
(a3') gitfortigr' = ] + tiatt + 3
k-1
(1-9) ) atit g7}
\ =1 /
Proof:

(al): We see t;t; = t;t; for any ¢,j as following. Assume ¢ < j, then either
t=j—1ori<j—1. Since tit; = tigj—1tj—195-1 = gj—1titj-19j—1 for i < j—1,
tit; = tjt; if titip1 = tigati. Fori=1, t1ty = t1g1t191 = g1t191t1 = tat; by the

relation in H,(3).
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Assuming it is true for 1,2,---7 —1,
titiv1 =gi-1ti—1Gi—19igi—1ti—-19i~19:
=gi-1ti—19igi~19iti~19i—1Gi, SinCe gi_19iGi~1 = GiGi—1:,
=gi-19iti—1gi—1ti-19i9i—18;, since t;_19; = giti—1,
=gi-1Giti—19i-1ti-19i—19:gi—1
=gi—19iti-1tigigi—1
=g;—10;tigiti—19i—1 from induction hypothesis, and ¢;_;g; = g;ti—1,
=gi-1ti+1ti—1gi-1, since g;_jti+1 = ti419im1
=tit+19i-1ti-19i-1
=t;+1ti, by definition of ¢;.
(al’): It holds by (al) since tT*g1t191 = t{*t2, and
g1t1g1tT = totT* by definition 2.1.1.
(al"): gitT o1ty = gitPgit1grgy”
= git1g1tTg7 ", by (al’).
(a2): tigitig7! = g7 t1gity;
tigitigr ! = ¢ tigitigr + (g7t — Dtigity
=g lgtigits + (¢71 — Dtagity
=[g7'g1 + (g7 = D]tagrta
=gy 'higita.
(a3):
qutfaitigr = qitf Higitggr

k-1 -1 _
= gity gy ' qitigitigr?
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= git¥ gyt g1t1g197 ", by (al’),
= gty g7 'tg1ts
= ¢ ittt qutigits + (71 — 1) it 'tggits since g7t = q71gy + (¢! — 1),
=q"Yg— 1) ;itf ' qutits + ¢ g gt ontggr e
+(g7t - 1)(g— 1) gitf Mt + (a7t - 1) quts Mgt
since g1 = (¢ — 1) +q97 ',
=q7} (g~ 1)* gut7 ' eits + g7 (g~ D) oat} gy
+q7'q it Taitier iy + (¢ — 1)(g - 1) grt¥Megey
+(g7 — 1)q grt5tigr 't
since g1 = (¢—1) +gg7 %,
= (¢~ 1) it gr et — (g - 1) qutf Tl Mty
+g1tf gitigr 'ty
(a3'): Applying (a3) repeatedly to the last part of the recursive formula (a3)
itself , we obtain
atfaitigr?
=(g—1) guitf gt - (¢~ 1) glt’f““gf 'ty
+(g—1) g1ty 297 1% — (g - 1) utf T 2018 + gutt2gutggr e
+ cos
=(¢—-1) ity Lo it — (g~ 1) utf g Mty
+(g—1) g1t g7 5%2 — (g — 1) i 2743
+(@—1) g1 g7t — (g — 1) qutf 39743

+---
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k—(k=1) —1,a+(k— (k=
+a=1) gt " gt D — (g - 1) uept Vg ek - 1)
+aitigitigr eF !
‘ k-1 w
(@—1) ) guts g7 teg¥
=1
=4 + t g1t'° + f
(1 _ q) Zgltk-i-a 1 ltt
=1 /
since gitigitigr 'ty ! = t{gitrgrgr 5! = tigith. a

Lemma 2.1.3. For arbitrary n,
(b1) (gn—1---95)9F" = g1 (gn-1---gj) forj+1<i<n—1.
(61) (9221 ---g7 Mgt = gy (g7t - g7 ) forj+1<i<n—1.
(62) (91" gn-1)g" = gE (g1 Gn1) for L <i<n 2.
(62') (g7 - g7t = g,+1(g cegilyforl<i<n-—2.
(83) gi(9ir - 9nta) (g - 0720) = (9 -+ 92 1)(g7 - 97 22)gn1
for1<i<n-2.
Proof:
The formulas are derived from the relations: in Hn (1),
9i9; = g5g: if i —j|> 1
9igi+19i = Gi+19igi1 for i =1,--- n -2,

Also, we have g;gi+19;" = g319igi+1 since gigit19;" =

1 -1

q71gigit19i + (¢71 = 1)gigi+1 = ¢ gi410igi4+1 + (7! — 1)gigis1

1

= [Q'lgi+1 +(¢g7" =~ 1)]91’9:’-{-1 = g,-].llgigiﬂ-

—_—— - - — e e —— v —
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Here, we will show only (b1), and (b3). The proofs for the others are
similar.
(01): (9n—1--93)9F" = Gn1 - Git10iGi—19F"gi2 - - 9;
= Gne1- Git1051GiGi-10i~2* ** G5
= Qih_llgn—l *Gi41Gicc G5 = 92511(91;-1 )
(®3): gi(gi3h -~ gmi)(g7 -+ gnle
= gigh 97 95 gnti(gh oty
=997 Gi+19i72 Gt (9 -+ 9l
= 9,'_.;.11.92- 19i+19;_.:29f+1195-|-13 T 9;11(9{112 o 9:12
= 9 97 92092955 - 9t (90 - gt
= (9534942097 951902935 - 91 (9532 -+ 972,
repeating this process,
= (9531 9at)(g7 - 9725)gn—1 O
We will make use of the following formula for existence part of theorem

2.1.9, and theorem 2.2.2 in next section.

Lemma 2.1.4. Fori <n— 1, m positive
(c1) (tn)™t; = ti(tn)™
—(g7 = DE)™(9" - g722)gn-1(gn—2 - g1)ta(g7t - - g2Y)
+Ha = 1) 972 2)gn1(gn2 - g T (07 - 0Th
(c2) (tn)™() ™ = (&)~ ()™
—(¢ ' = 1) Mg 97 2)9n-1(gn—2 - g9t - g

gt = 1)(E)™ g7 - gnZa)(gno1 - 9:)
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(c3) (tn)~™(t) = () ()™

—(g7t = 1)) ™(g7 " - 97 2)gn—1(gn—2 - g1)tr (g7t - 9i4)

+(@ =197t 97 ta) gn—1(gn—z - @1 )ET ™ (g - 0774))
(c4) (tn)™™()~t = ()~ en)™

~(g = 1)) Mg - 9720)9n-1(gn—2 - g1)ET g7 -+ 9T

gt = DE) ™ o 97 2)9n 1 95

Proof:
Here is a computation for the case (c1), and computations for the rest are
similar. Commutativity relations are used without comment.
Form>1, ()™t
= (gn-1-+ g7 - 921 )(gim1 - Grtrgr ™ -~ giTY)
by the definition of t,,
= (n—1--- G IP(gT " -~ 97 ) (Gimr - grtrgrt - 9N ) (93, -+ 9y
= (gn-1--- 1)t (gi -~ g2)(ar " -~ g7 Dtaler - g Mo - o7 ks
by (62),
= (gi=1"+1)(Gn—1- - G797 - g7 Va9 -+ 905 - 9nty)
by repeated use of (b1),

= (Gie1"+G1)n—1-- Q2018707 "t1(gz - g7 (ot - 9N oY - 9 t)
=g N gic1"- 91)Gn-1""- G201t T o1t1(g7 - g7 o - 9 (9 - 9y
+(g7 = 1)(gim1" "+ 91)gn~1-- G201t 7 (g5t - g7 1)
(o7t 995 - 9nty)

since 7! = ¢~ 1g; + (¢~ - 1),
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=g Y(gi-1"-91)9n-1"- G293 t101t 797 - 97 oy - 90 ok
Hq ' = 1)(gim1-+ 91)(gn-1"--g2)g1(g7 - - g7V )EPH (g1t - - gL
(971 9nm) by (al”),
= (g7 = 1)(gi-1"* 91)gn-1 - Grtr1g1tPgT - g7 (gt - g hgT - 9 t)
+(gie1- - g1)(Gn-1- - G2)t101tg7 (g3t - - g7 (g7t - - ) [ (I FoRERY
Hq = 1)(gn—1--- 9201) (95 -+ Fmt e Mo - 0T
by expanding gZ, repeated use of (b1), and cancellation,
=—(q7 ' = 1)(gic1- - 91)(Gn-1- - @)t oata (g3t - g7Y)
(ort - gihemh gk
H(giw1-+- g1)t1(gn-1" - 2) 9127 (g7 - 97 )0t - 0o M gnh - 9nty)
+(g7t — 1)(gn-1-" 9201)(9531 - G e M gr - 9
by (al’) in the first term and (b3),
=—(g7t = )(gim1- - @)t (91" - 971 ) g1 - gt (97t - 9705 - 9n
+(gi—1--g)ta (g7 - 9 (Gno1 - 92) 9t (o1t - - 97 Moy - 9 t)
+(g7t = 1)(gn-1""- 9201) (g3 - Gt )ET T (gt - 0Y
by repeated use of (b1) in the first two terms,
=—(g7' = 1)(t)™(97" -+ 9t2) (9n-1)(gn-2 - - G201)t1 (97" - - 95)
+(t) ()™
Ha =107 gnt2)(9n-1)(gn-2 - G20 T (o7t - g5Y
by use of (b1) and the definition of £..

This completes the demonstration of formula (cl).
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Theorem 2.1.5. Let H be the set of elements of the form
(t1)**(£2)°% - - - (tn) ", where (£:)% = (gi—19i—2-"- 91119192 - gi—29i-1)*,
fori=1,---,n, a is a word in normal form in H(A,—;) and s; € Z.

Then H is a basis of Ha(3).

Proof:
Let w be a word and let ¢; occur in w, then w = alti’:lwl where a; =
Zfe? mite ho; and ay; is written in normal form of H (An-1), t.e., ag; =

9i,929i, " " Gn—1-"" Gi,_, Where 1 < i < k. So each term of w is
2i th101 = Gi,929i; " " GkGk-1 """ G19k+1" " Gix " Gn—1""" gi.._ltflwx-
If no g1 occurs in ay;, then azit:fwl = tfag,-wl. Suppose
k=1, ig41 # 1,-++,in—1 # 1 for some k. By the formula
9n(gkgk—1-- 91) = (Grgk~1---g1)gn+1 for 1 < h < k, by b(1)
ag,-t:lhlwl =
(gk*** GULE (Giy 419890041+ G * Gin_y 41 ) (G417 Giy *+ Gl -+ * Gin_, JWI
= (e g)t5 (g1 9k)(g5 " -+ g7 w2 where
w2 = (Gi, 419395, 41 " Gk *** Gir 1 +1)(Gkt1 7+ Gip = Gn—1** * Gy W,
=tf+1_1'w3 where wz = (g,'c'1 gy 1)wz. Let’s denote this process (I).
For w3, perform the process (I) as in w.
Eventually, we obtain sums of elements

(tlﬁl)ll(tkz)l2 tt (tkm )lm7 where li € Za ki € {1’ 2s vt 7n} and YE H(An—l)'

Up to this point we did not use that tltl'1 =1.
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Since tit; = t;t; for all ¢, j by (al), the first part (tg, )" (te,)" - - (t,, )"
can be rewritten easily as (¢,)%!(£2)%2:-- (tn)*" for some s; € Z. 0

For the linear independence of #, we need some definitions and lemmas.
Let Hy, = H(An—1), Ha(3) = H,, and A, = k[t¥,... ,t¥1]. H, is known as
a free module over k[g,q~!]. A, is isomorphic to kZ", so it is free. Therefore,
the tensor product A, ® Hy, is a free module with a basis {r @ h} where 7 is a
base element of A and h is a base element of H(A._;).

Let A, ® H, 2, H, be #(T @ h) = Th which is a k[g, g~ !]-module
homomorphism. ¢ is surjective. We show the injectivity of ¢ using the
following procedure modeled on the method for Hecke algebra (see [H]).

Let £, = End,(An. ® H,). We define x : H, — &, so that X is an algebra
homomorphism. There is a subalgebra £ generated by
{Gi, Ti|G: = x(:), Ti = x(t:), }-

Let £ -+ A, ® H, be defined by $(L) = L(1® 1). Then ¢ o x 0 ¢ = id
on A, @ H,. Thus, ¢ is one-to-one and {rh | 7 € A,h € H, is in normal
form } is linearly independent in H. Here is the overall map:

A®@H, % H, X £, % A, @ H,.

First, we want to define and show x is an algebra homomorphism.

A ®x H, is an algebra where multiplication is defined by (a ® b) - (c ® d) =
ac @ bd. The motivation for the following definition is the formulae for left
multiplication by g; and ¢; in H,, i.e., if we replace the symbols G; and T}

by g1 and ¢; and drop all ® symbols, then we get true equations in H,.
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Definition 2.1.6. Define G; € Endi(A, ® H,,) inductively as follows:
Gi(t1 52 -t} e - tr Q )
(1.) =t3't3% - tir @ gia  if 8;=8;41 =0
(2.) =(g— 1'% -+ - t5itiy - tir @ @

+qt:®L) - Gi(t - ti Tt @) if3i=0, 841 >0
(3) =(g ' - 1)t - tF TRt @

+q Mt 1) - Gyt it ®a) ifsi =0, 8541 <0
(4) = (g7 =1 -5yt @

+q M tig1 @ 1) - Gyt - tF M -t @) ifsi>0
(5.) =(g— i} ---t5435 -t @

+q(t7h ® 1) - Gyt - tF IR -t @) ifs; <O

(6.) Define Ty by T(17*t3? -+ - tir @ a) = (¢ @ 1)(¢7't32 -+ - t3» @ ).

Define A;, p; : A = A such that G;(7® a) = A\i(7) ® gia + p;(7) ® o, then
we know that g;7a = A\(7)gia + pi(7)a. The above definition of G; can
be written as Gy(ty' - - -ttt @ )
= At tF I ) @ e+ pa(E] - P 1) @ @
We can, also, write
N(EfE - 50) = B A(0) - 8
pi(t - tin) =]t o py(82e8,) - t3,  since
Gt -ty ©0) = (! -+ LT 13 ©1)- Gt ti ©)
following from the Definition 2.1.2.

Next, we will have inductive formula on the exponents of t;,t;;;.
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Lemma 2.1.7. The following properties hold:
(1) Ti(t3th ® @) = {8 @ o;
(2) Gi(t7* --- 15 i R 0 -t ® @)
=g M i Nty - 5 R 853 - th0) ® gia
g G TRV (AR Pl 220 M SR~
+(gt -V R ] @ o
(3) Gi(t* -+ -ty e i - t3r © @)
= gt Xi(t] - R T 1) @ gice
+[qtama(e]t - 115 080 0055 - 0
+(g— Lttt -t @ o

() Gt - (17013, H55 -t @) = #5120 @ gic

Proof:
For T, it is trivial. As we see that G; acts only on t}* t:;j'l‘, for every 1, G; is
Jjust a copy of the case of i = 1 for n = 2. So we show the case of i = 1 for
n = 2. Let A = Ay, u = p;. Then, the cases (2), (3), and (4) are rewritten as
follows:
(2) Gi(ti+' 1) @) = ¢ M A(t518) ® qra+ (g Hap(t38) + (¢ - 1)t3t5 ) @
(3') Gi(t5t5*! ® a) = qt1 A(t5t5) ® gro + (qtap(t3th) + (¢ — 1)t§tE!) @ a
(4') Gi(t§t3 Q1) = (2 @ 1)G1(1 ® 1)

Now, G1(t8*'3 ® @) = A(t37t8) ® g1 + u(t?'1d) ® o
Fora >0, G, (t‘;“tg ® a)

= (¢! - 1)igt3 @ a+ ¢ 1(t2 ® 1)G1 (£3t5 ® o) by 2.1.6(4),
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= (g7 - 1)egt5t @ a + g7 (82 ® 1)(A(5t]) ® gr + u(t§t3) ® @)
= g A (1)) @ i + ¢ Mapu(tfty) @ a+ (¢ ~ 1)titst @

Thus, A(£3*'t3) = g~z A(£918) and
p(tit1e8) = g tau(t9th) + (¢! — 1)t9t5H for a > 0.
Let a <0, then
G1(t§t8 ® @) = (¢ — 1)t5th ® a + gt ® 1)Gy1(¢5+'25) by 2.1.6(5).
Mt5t8) ® gra + u(t5t}) ® a
=(g-1tit3 @ o+ gtz (Mt 3) @ ra + u(t1'13) @ )
=(g-Dtft; @a+gt; M) @ gra+ gtz u(ti ) @ c

Thus, M(t§13) = gt A(t§+123), w(t§t3) = (q—1)efth +qt5 ' pu(t5*1e}) which
imply A(t77'45) = ¢ t2A(t183), w(t1T']) = (¢71 — 1)egezt! + g7 Man(tit),
respectively.

We show the case (3) inductively.
Let Gy (titot' @ @) = Aottt @ gra + u(tstit) @ a.
Gi(t{t*' ®a), fora=10,b=0,

= (¢— 1)t2t5*! @ a + q(t; ® 1)G1(t¥t ® a) by 2.1.6(2),

= (¢— 1)egt3™ ® a + q(t1 ® 1)(t§t8 ® g1a) by 2.1.6(1),

= g1} ® o + (g1 p(t588) + (¢ - 1)Est5H ] @ @

since p(t$td) = 0.

For the cases a = 0,b > 0, and a = 0,b < 0, similar arguments can be
done through the definition 2.1.6. So, assume the stated formula is true for

1,2,---,a—1,and a > 0.
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Gi(t§t;"! ® a)
= (g7 - 1)ti" 52 @ a) + ¢ (t2 ® 1)G1(t2 712! @ a) by 2.1.6(4),
= (¢t - D)7 @ @) + g7t @ 1)[gt M3 EE) ® g
+ (gt1p(t3713) + (g — 1)t 142%!) @ af, by induction hypothesis,
= t1ta Mt 718) ® gra + t1tapu(t571t3) ® a by cancellation,
= g1 A(t5t8) ® gr + [qt1(t2t]) + (¢ — 1)t @ o
since, by case (2),
A(£8t8) = g M A(t37118), and
p(t§th) = ¢ top(tt ™ 18) + (¢~ — 1)t~ eg+!
give t2A(t71t3) = gA(2¢t), and
tap(t3188) = qu(tftd) + (g — 1)t 18+ respectively.
Thus, M(t§t3"") = g1 A(¢38}) and p(e365%7) = gtip(t3th) + (g — 1)egelt!.
A similar computation solves the a < 0 case.
For a = b, we use induction again.
Let a = 0, then G1(t{t3 ® a) = t{t @ g1 by the definition 2.1.6(1).
Assume a > 1 and the case (4) is true for 1,2,---,a — 1.
G1(t{t5 ® @)
= g M A(t3715) ® g1 + [q M tap(t M) + (¢ — eS| @ @
bt case (2), = ¢ 2(gt:1 A(t3'57)) ® 100
+Ho M2 {gtanti T3 + (g - DTG} + (7T - i3 @ e
by case (3),

=ttt} 57 @ gra+ [~(¢7 = i Tg T + (¢ - T @
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since A(t{7157Y) = 37137 and p(t§'t37!) = 0 by induction
hypothesis,
= t{t3 @ g1a.

Thus, A(t$t3) = t{t$ and u(tftg) =0. 0
Remark:

To summarize cases (2) and (3), for any form A4, A(t14) = ¢ 't3A(4) and
A(t2A) = gt1A\(A) since the power of ¢; in £; A is one higher than that in A,
and similarly for A(t2A4)).

p(t1A) = g tap(A) + (71 — 1)t24, and

u(t2A) = qt1u(A) + (g — 1)tz A, as well.

In fact, A(t§t5) = (¢71)*t5A (%) = (¢71)%t3¢°} = ¢P—°t}13.

Now, we have inductive formulas for T\ = x(t1), G: = x(g:) for all 3.

Lemma 2.1.8. x is an algebra homomorphism, t.e. , the following relations
hold:

(1) G} =(¢—1)Gi+q,

(2) G:G; =G,G; if|i —j| > 2,

(3) GiGi41G;i = Gi41GiGiyq fori=1,...,n—2, and

(4) T1G1T1G1 = G1T1G1T1.

Proof: Case 1.
Without loss of generality, we show G? = (¢ — 1)G; + q. For general cases, we

replace to get G; the subscript index of G; by . Let A\; = A,y = p.
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Gi(tt; @ @)
= G1(A(t5t8) ® g1 + p(t§t}) ® a)
= A3(t§t3) ® gl + pA(t{t]) ® g1
+Au(t5ts) @ gro+ p2(t5t}) @ @
= [(g = DA2(t323) + pA(§3) + Au(t383)] ® gr + [g A2(2585) + p2(¢5t8)] @ @
On the other hand, ((¢ — 1)G1 + ¢)(t$t} ® a)
= (- DA(t§t3) @ gra+ (¢ — Du(t§td) ® a + ¢ifti @ @
= (¢ —DA(t{t3) ® g1 + [(g — Du(t§t}) + ¢t3t3] ®
Therefore, we need to check
(- DA +pd+dp=(g-1)A
g +p?=(g-u+q
We will check (g — 1)A2 + pA +Ap—(g—1)A =0
and gA\24+pu2—(g—1)u—q = 0 by use of induction twice. Induction to show the
formula holds for ¢7!¢3? is done by induction on 8; — 32 € N and s; — s; € N.
Both start with t$t3. We then check 31t} and t2t5+! assuming £2¢5.
Consider [(g — 1)A% + pX + A — (g — 1)AJ(t$t3)
= (g —1)t{t3 + 0+ 0 — (g — 1)t§t3 = 0, by the case (4) in lemma 2.1.3.
And, [g\* + p? — (g — 1)u + g)(t1t5)
= qt{t3 +0—0 - qt{t3
=0
Suppose ((g — 1)A% + pA + Ap — (g — 1)A)(¢¢t8) = O for some a,b € Z.
Then, using the formulas from lemma 2.1.7, (also, see the remark below the

lemma),
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[(g— 1A% + X + g — (g — 1)AJ(e5F1e8)
=((g— DA +p~(g—1)){g7 2M(t323)} + Ma~M2p(325) + (g7 — 1)t3e5H}
= (¢ 1)g7 gt A2 (¢918) + g~ qtapA(t§t8) + g~ 1(q — 1)t2A(t3t3)

+(g7 = Dt (528) + gL gti A(t3t]) + (g7 — 1) gt A(883)
=t((g— )N+ pr+Ap— (g - DA)(§8) =0
by the induction hypothesis.
Similarly, [gA? + p2 — (¢ — 1)p — q(£2+'t3) = 0
For t$t5+1,
[(g— DA%+ pA + Ap — (g — 1AJ(£3e571)
= ((g— DA +p— (g—1))(gt1A(t5t3))

+AM(gt1u(t§t]) + (g — 1)tge5*)
= (g — 1)t222(2$13) + tapA(t5t5)

+q(g™! — 1)tz A(t$13) — (g — L)gt1 A(t513)

+e2Ap(t§t3) + (g — gt A(¢§23)
= [(g — D)t2X? + taud — (g — L)taA — (g — 1)gts A + t2pu + (g — 1)gt1 AJ(£523)
= ta[(g — 1)X% + ph + A — (g — 1)A|(2523)
= 0 by the induction hypothesis.

Similarly,

[a2% + 12 — (g — D — q)(t5151) = 12[g)? + p2 — (g — 1)u — q] (£3t8) = 0.
Case 2.
Recall A;(t7*---t30) =t --- A;(22td,,) -~ t2», and

pi(tt -2 ) =t pi(8t8, ) - - ¢85, Thus, if |i — j| > 2,
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MM - t) = A -+ M{tth) - 80)
=t At ) A (838) et
= (e (e2el, ) -t
= AjAi(trt - 830)-
Similarly, it is also shown that A;uj, pi);, pip; commute.
Then, G;G;(t1' ---t3» ® a)
= A8 - 150) ® gigja + A (87t -+ 0 ) © gix
+radi(8) - to0) @ g + papsi (7 - ) ®
= Nt - 150) @ gigic + A (2] -+ 13 ) ® gjex
+uiAi(t i) @ gio + (i -t ) @ @
= GjG;(t1" -+ - t* ® a), as required.
Case 3. As before, we will show G1G2G; = G2G1G,, without loss of
generality.
G1G2G (8§35 ® @)
= G1Ga(A1(t52585) ® g1 + 1 (£28385) ® @)
= G1(A2 A1 (t52525) ® gagro + Aoy (£31585) ® ga2)
+G1 (2 M (t58585) ® gr0 + pop (E5t5t5) ® @)
= M1 (831585) ® g192g10 + At dopun (£56515) ® grg20x
+p1de A1 (t31385) ® gagrx + w1 o (£51525) ® g
+Arp2 1 (§1525) © gl + Apapsn (152585) © g1

+1p2 M (t51525) @ grox + pypiape (15£585) ® @
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= A A2 A (852525) ® g1g2g1a + Ao (E5525) © g1920
+u1d2 A1 (8515E5) ® g2g1a + p1 Ao (£51585) © gocx
+[(g = DArpe s + Arpapy + papaA](286585) ® g1
+Hgrpz A1 + p1p2p](256565) ® @

And, G2G1G,(t4t3t5 ® a)

= G2G1(M2(t§t5t5) ® gax + p2(t3t3t5) ®

= G2(A12(t1t585) ® g1g20 + A pa(£515E5) ® gr12)
+G2(p122(251585) ® gacx + p1ps2(25525) ® @)

= M A1 A2 (t51525) ® gag1g2ax + A2 A1 pa(291525) ® gogr
+r2 M A2 (t§1585) ® g1920 + p2 i p2(191565) ® g1
+A21 02 (151585) ® ghax + Aapy p2 (£3t585) ® gocx
+pzp A2 (t51385) ® gac + pop pa (158515) ® @

= Ao A1 A2 (E5155) ® g2g1920 + A2 A p2(13515) @ g2gh@
+p2 A A2 (158525) ® g1gee + pa M p2(t§t5t5) ® grox
+[(g = D)A2m1Aa + A2y pia + pop Ao)(£5t585) ® gor
+lgdap Az + pop1pa](t5t5¢5) © @

Therefore, we need to verify the following equalities:

A1A2A1 = A2 A1),

p1A2A1 = A2 A2, Atdzp1 = paA1Ag,

(g — DArp2 A1 + Apiapin + prp2 Ay = p2Aips,

prdepr = (g — D)Azprde + doptr pig + popr g, and

qA1p2 A1 + papopy = glapiAe + pop pa.
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By the previous lemma, we obtain for ¢, d, integers

M (t5t5) = ¢*tits

c~1 d
p(t5e5) = (q— D[=D_ g Hefies ™ + 3 g igHeitd]
=0 j=1

Here we verify two of the six inequalities mentioned above. The others
are similar.
Ao (t52525) = g2 A1 Ao (t52525)
— qb—a+c—a A1(ti’t§t§')
= gb-ate—ate—b(yeibsa)
And, d2A; o (t5255) = ¢°~PAo A (£52525)
= gembeme st
= go~be—atb-a(tcibia)
Thus, AjA2A1 = A2A12.
To verify A1dapuy = paAilg,
A1 Az (2315t5)
= (g = Dhdal{~ Tod P-oHHeg= 4 T, it i)
= (g —1)A[— E::ol qc+b-2a+2it11>+itgtg—i + Z;m qc+b—2jt«1=+b—jt§t.§]
= (q—1)[- Tip Pyt + Yo, e Itgeg i),
On the other hand,
pe A2 (t3t5t5) = g Ppa i (8325t5) = q°~ By (£51518)

= (¢ = D= T Pty + o, oottt ).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



36

Case 4.
If we suppose G1T1G1(t3t2 ® o) = (t‘l‘tg"' le a) for any a,b € Z, then,
TiG\T1G1(t3t5 ® @) = Ty (t§t5! ® a)
=31 @ o = GIT1GL (131 S ® )
=G TGt 1 ® @) = GiTIGi1 T (15t ® a)
Claim: we claim G1TiG1(t3t} ® a) = (t3t5*! @ a) for any a,b € Z.
Proof of claim:
Case 1: we want to show G1T1G1(t8 ® o) = (t5*! ® @) for b > 0 inductively.
Let b = 0, then we expect G1T1G1(1 ® a) = (tz ® a). Recall that all these
calculations follow from definition 2.1.6 and lemma 2.1.7. Lemma 2.1.7(2)
and (3) are rewritten in a slightly different form as follows. With these, we
use the remark following the proof of lemma 2.1.7 without further comment.
For any a, be Z,
2.1.7(i1) G1(ti*'t3 @ @) = ¢ N2 @ 1)Gu (£33 ® @) + (¢! — 1)t¢tE @ @
2.1.7(ii1) G1(t2t57 @ @) = q(t: ® 1)G1(t$t8 ® a) + (¢ — 1)ttt @ o
G1T1G1(1 @ a)= G1Ti(1 ® g1) by the definition 2.1.6(1),

= G1(t1 ® g1a) by the definition 2.1.6(6),

=(g 1 - 1)(t2® g10) + ¢ H{t2©1)G1 (1 ® g1)

by the definition 2.1.6(4),
= (g7 - 1)(t2 ® 1) + ¢ (t2 ® 1)(1 ® g}a)

by 2.1.6(1) and ¢? = (¢~ 1)g1 + ¢,
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=(q' = 1)(t2@ q10) + g7 g~ )22 ® g10) + (2 ® @)
=(t2®a)

Assume G1Ti1G1(t2"! ® a) = (3 ® @). Then,
G1TiG1 (3 ® a)
=G1Ti((g - 1)(t} ® @) + q(t1 ® 1)G1 (2™ ® )) by 2.1.6(2),
=Gi((g — 1)(t1t3 ® @) + q(t} ® 1)G1(t3" ® 2)) by 2.1.6(6),
= (-1 -t ®a) + g7 g - 1)@ 1)Gi(E @ a)
+9(g7 = 1)(t1tz @ 1)G1 (13 @ @) +gg7 2 (t2 ® 1)G1((t1 ® 1)G1 (82! ® )
using 2.1.6(4) for the first term and 2.1.7(i) for the second term,
=(g-1)(g -1 ®a)
~(g7t = 1)(t2 ® 1)[(g ~ 1)(t3 ® @) + q(t1 ® 1)G (57" ® )]
—(g—1)(t1t2 @ 1)G1(ts™ @ @) + (12 ® 1)G1((t1 ® 1)G1 (157! ® @)
by 2.1.6(2),
=(g-g -t ea)~ (¢ - 1)(g- 1) ®a)
+Hg=-1(t1t ®1)G1(te7 1 ® @) —(g—1)(t1t2 @ 1)G1 (15! @ )
+t: @ V)GITI(G1(57! ® a))
= (t2® 1)GiT1(G1(t5! ® @)
= (t2 ® 1)(t3 ® @) by the induction hypothesis,

= (5 @ a).
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Case2: a=0,b<0

G1TiG1(t5 ® a)

=G Ti((¢7 - DT @ a) + ¢~ (T @ 1)Gi (5 ® @)
by the definition 2.1.6(3),

=Gi((¢' - (3 ® @) + ¢ 1Gy (5! ® a)) by 2.1.6(6),

=@ -Gtz ®a) +¢7'G(t5* @ a)

=@ -Gtz @) +¢7H (g~ DG ® ) + a7 (15T ® @)
by 2.1.8(1),

= t2*! ® @, as required.

Case 3: We first examine a computation for all a, b. G;(t{t57! @ a)

I

(7' =172 @ a + gLtz ® 1)G1 (1718 © a) by 2.1.7(i4),

Cae Ve A T

+q7 (22 ® 1)[g(t1 ® 1)G1 (175 ® ) + (¢ — 1)t§ 15+ ® ] by 2.1.7(s4),

(¢t -1 @

He @)t @ )Gt @) ~ (¢ ~ 1)t @ a
= (t1it2 ® 1)G1 (5 't5 @ @)
Now for a > 0, and for all b,
Gi1T1G(tt: ® o)
= G1Ti((titz ® 1)G1(t§ 157! ® a) by (H),
= G1((3t: ® 1)G1(t> 2~ ® @) by 2.1.6(6),
= (t1t2 ® 1)G1((t1 ® 1)G1(¢{ ™57 @ a)) by (H),

= (t122 ® 1)G1 TG (271571 @ @) by 2.1.6(6),
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= (t1t2 ® 1)(t{"'t2 ® ) by induction hypothesis,
= (¢t§t5*! ® a) as required.
Case 4: For the last, let a < 0.
G1T1G1(t§t} ® )
= G1Ti((g~ 1)(¢§13 ® o) + q(t5" ® 1)G1(t17't} @ a)) by 2.1.6(5),
= (¢ - 1)G1(t{""13 ® a) +¢G1((t1t5 ® 1)G1 (1185 ® a)) by 2.1.6(6),
=(¢-1)Gi(t1*'; @ a)
+997 1 (t2 ® 1)G1((t3! ® 1)G1(t2%1 ® a))
+q(g7! = 1)G1(£§1t2 ® @) by 2.1.7(i4),
= (2@ 1)G1((t;1 ® 1)Gy (t3*1t3 ® a)) by cancellation,
Multiplying 2.1.7(ii) by ¢;' and applying G;, we obtain the following,
G1((t3' ® 1)Gu ({28 @ a))
=¢~'Gi(tft3 ® @) + (¢! — 1)G1(t{t; ® a).
So, continuing the computation using this identity,
= (t2 ® 1)[q71Gi(t§t} ® @) + (¢7 — 1)Gy(t§t} © )]
=(2®1)[g7 (g - 1)G1(t{ ® @) + ¢ gtft3 ® a + (g7 — 1)G1 (8518 ® )]
by 2.1.8(1),
= (t2 ® 1)(t$t2 ® a) by cancellation,
= (t3t8*1 ® )

This completes the proof of the claim.
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Now, we return to the proof of the theorem. The map ¢: A, @ H, — H,
is well defined since it is a map from a free module defined on a basis. The
map ¥ : End,(A, ® H,) =& A, ® H, is the evaluation map. The map
x : Hp — End,(An, ® H,) was defined on the generators of H, and
shown to extend to a well-defined map in Lemma 2.1.8. Since 1 is defined by
¥(G;) = Gi(181) = 1Qg;, if @ € H(Ap-1), then ¥(x(a)) = x(a)(181) = 1®c.
If o =w(g1:--gn-1) is a word, then let G4 = w(G1,Ga2,---,Gn—1). Now,
Yoxod(t! -ty a)
=Y ox(é(t -3 @ a))
=Pox(t' -t a)
=Y(I7" - T3 Ga)
=t{‘ -t Qa
Thus 1 o x o ¢ is the identity on A, ® H,. Therefore, ¢ is injective as
required. Hence H is a basis of Hn(3). a
Let B be the set of elements of the form (2])*!(¢5)%2--- (¢,)*"c, where
si € Z for all i, t} = gi_1gi—3- - git1g] -+ giz9ir1, 30d @ € H(An—1) is in

normal form. Then we claim that B is a basis of Hu(3).

Theorem 2.1.9. Let B be the set of elements of the form
(81)°1(t5)°2 - - (t,)*~ o, where t; = gi_1gi—2 -+~ q1t197 -+ 9291,
for arbitrary i and a is a word in normal form in H(A,—,;) and s; € Z.

Then B is a basis of Hn(}).
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Proof:
The first part of the proof that B is a generating set is similar to that of the
normal form ¥ in theorem 2.1.5. Let w be a word and let t; occur in w, then
w = a;tflw; where @y = Zfef; nite oo: and ay; is written in normal form of
H(An-1), i-e., @2i = gi,g2Gi, """ Gn—1-"" Gi,_, Where 1 <ix < k.
So each term of w is
api tF w1 = gi,920i, - GkGko1" " GLGk+1 " Giy *** Gl - Gt W
If no g; occurs in as;, then az,-t:f'wl = t:lhag,-wl. By the formula
9n(grgk—1---91) = (gkGk~1--- g1)gn+1 for 1 < h < k by b(1),
ag,-t:flwl =
(gk -~ - 1)t (9i, 4108Gia+1 ** Gk ** Gi—y#1) (Gt 1 - Gi *+* Grim = - Gins_1 J W1
= (ge--- 917 (97" g5 Mok~ g1)wz  where
W2 = (9, 4+193Gi3+1 " Gk *** Fina 41 )(Gh41°** Gix ** * Gne1 " " * Gin_, )WL
=(t341) ¥ ws where wy = (g -+ - g1)ws.
Let’s denote this process (I').
For w3, perform the process (I') as in w. Eventually, we obtain sums
of elements (¢} )" (¢, )2+ (t; )™~ where ; € Z,, k; € {1,2,---,n}
and vy € H(Ap—1)-

Now we reorder the indices of t. To do this, we will make use of the

formulas in lemma 2.1.4.
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For (cl), if we let by ; = gn—1-- -g,-.,.lg,-g;_‘*.ll e g;ll fori<n-—1,
the formula (cl) can be written into the following form, say (cl’):
(cl) (tn)™t; = 6i(tn)™ — (@71 — ()™ trbn—ri + (g1 — 1)(t7) ™ bn1 s,

by repeated use of formula (bl), commutativity and cancellation on the
formula (cl), where
(1) (L™t = ti(e)m

—(a7 = )(E)™97 " -+~ 97 12)9n-1(gn—2 - g1)t1 (g7 -+~ 97)

+(@™ =10t 9nto)9n—1(gn—2 - g )T (gTt - - 9h)

Similarly, the other formulas in Lemma 2.1.4 can be written as below.
(c2) ()™~ = ()~ )™

~(g7t = 1)) ~H(tn)™bn—1i + (g7 — ()™ Tbp1 s
(c3) ()™ () = (#)(E) ™™

—(g7" = 1)) ™™t pbnri + (¢ = 1)(80) ™ b
(') (8p)™™() ™ = (&)~ ()™

~(g7h = D) T ER) T bamr + (a7 = 1)) T ™bnor e

We use induction on n to show that the first part (¢ )" (t},)" - (¢ )™
can be deformed by a finite number of applications of the formulas involved
in Hn(3) into a sum of the form (¢{)% --- (¢}, _;)%—3(t},_;)**~(t,)'*" B with
coefficients in k, where 3 is an element of the given basis in H(A,_;).

Let F be F = (t; )'*(tf,)"--- (t;_)'™. The case n = 1 is trivial since
ki = kj = 1for alli,j in F. Assume it is true for F € Hn_1(3). Suppose

F € Hyp(%), then let i be the smallest index such that k;—;= n.
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We assume [;, l;; are positive to use (cl) in this demonstration. The
cases where [;,l;;; are not positive, require one of (c2),(c3), or (c4) from
lemma 2.1.4. In F = (¢ )" (t},)"2 - (th)5-2(t},)5 - - (tk_ )', the absolute
exponent sum e = Y77, |/;| of ¢/ in the right hand part of the tw~lin F is
finite. Applying (c1’) on (t;)“-l(t;ﬁ)"‘, we have
F = (th, )1 (8,)" -+ (8, )2t ()™ (8, )57 - (8, )
=(q™ = 1)(8,)" (25,2 -+ - (8, ) =2 (b ™ tnbnr i (B )51 - (B, )
G = 1)(E) () - (Hhy )53 (8™ b (8 ) - (8, )i

In each term of F, the absolute exponent sum of ¢/ in the corresponding
part is strictly less than e. Thus a finite number of applications of
process (I'), and (c1), (c2), (c3), and (c4) will ultimately reduces the
corresponding exponent sum to (. Therefore, each term of F can be written
as a sum of words F'(t,)’a wheres € Z,F' € H,_1(3),anda €
H(Aq—1). By the induction hypothesis, F' = (t)*'(t5)**--- (t,_;)* -ty
wherey € H(Ap—2)ands; € Z. Sincey € H(An-2),
T, = thy. Therefore, F'(t})*a=(t)" ()% - (th_,)*-*1(th)*a =
(L)1 (t5)%2 - - - (th_; )1 (¢])*va. va will be deformed into a sum of words
in normal form in H(A,_;). Letting s,, = s, we have each term in the form of
(t)* (tg)*2 -+ - (th,_)*~-1(¢,,)* B as required to be in B.

Now, we return to the uniqueness of the normal form B in the theorem.
We consider Hn(3) as a free module with basis H = {t{!£32---t;"7'tsr o} for

n—-1

all s; € Z.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



44

Suppose that w(g1, -, gn—1,t1,""*,tn) isaword in g1,---,gn—_1,
t1,- -+ ,tn- Let P(w) be the sum of the positive exponents of the ¢; and
N(w) be the sum of the negative exponents of the t;. Note that P and N
are not defined on monomials of H,(1) as tit7! = 1is a relation, it is
only defined on abstract words. If w(gy,--,gn-1,%},---,t,) is a word in
g1, " y9n—1,t1,- -+, th, let P(w) be the sum of the positive exponents of the
t: and N(w) be the sum of the negative exponents of the t.. Also note that
(P + N)(w) is well-defined on monomials of Hn(%), it is the exponential sum
of t; (if the monomial is written in gy,---, gn—1,%1)-

Let M. = {3 a;w; | (P + N)(w:i) = e}. This is a submodule as
the relations that define H,(%) all preserve the submodule. We also have
Ha(3) = ®cczMe.

ForpeZt, meZ,
let H(p,m) = (w = t3'¢32 - t; tira € H | Pw) <pandp+m = 3 s;).
Let B(p,m) = (w =1t .- -t!*"a € B| P(w) < pand p+m =3 s;). Note that

H(p,m) and B(p,m) are finitely generated free k[g, g~}]-modules.
Lemma 2.1.10. H(p,m) = B(p,m) .

Proof: We first show that B(p,m) C H(p,m).

Let B; = gi—1i—2 "~ 920192 - - Gi—20i—1, 50 t; = tR;.

Let p+ m = M. Take t}" .- - ti3~q, a generator of B(p,m), so ¥ s; = M.
Now, t{% -+ tlina = t1(taR;!)* -+ (tnR;!)*  a. These words have the

same P values and N values. We now apply the rewriting process used in
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the beginning of the proof of Theorem 2.1.5. Let | = p —m = Y |si|.
This process yields a sum of words of the form t,flltf: ‘o tf‘la’ where the k;
may have repetitions and again the P and N values are unchanged. Now use
commutativity to rearrange the ¢;'s and relabel, so k; < ky; < --- < k.
Cancelling adjacent t,-*1 when possible may reduce the P value but leaves
M = P + N unchanged. We have that each term is in H(p,m) and so we
have rewritten a generator of B(p, m) in elements in H(p, m).

We now show that H(p,m) C B(p, m).

Take t7't3% - - - t,"3't3r c, a generator of H(p,m), so 3 s; = M. Now
(152 -t tira = 7 (thRp)%3 - - - (tL, Rp)* . These words have the same
P values and N values. We now apply the rewriting process used in the
beginning of the proof of theorem 2.1.9. Let I = p —m = 3 |s;|. This
process yields a sum of elements of the form t;=1t;E! ... /*1o/ where the k;
may have repetitions and again the P and N values are unchanged. Since the
t;’s do not commute, we use the relations (c1’), (¢2), (c3'), (c4'), and combine
the exponents to get a sum of elements of the form ¢]™ - - -/’ a" where the
P value is less than or equal to p and M = P + N is unchanged. We have
each term in B(p,m) and so we have rewritten a generator of H(p, m) into
elements in B(p, m). a

We now complete the proof of 2.1.9. We saw that H,( %) = QeczMe.

Also note that M. = {J 4 = H(p,m), a nested union.
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By the lemma, S = {w = (¢})**(t5)*2--- (t.)*~a | @ is in normal form,
P(w) < p, P(w)+ N(w) = p + m} is a generating set for #(p, m) which has
the same order as the basis {w = t{*¢J>-..t;"'ti"a | ais in normal form,
P(w) < p, P(w) + N(w) = p+m}.

Since k[g,g™!] is a commutative ring with unit and H(p,m) is a finitely
generated free module over k[g,q™!], a generating set with the same order
as a basis is a basis (Corollary 4.4 in [E]). Therefore, S is a basis of H(p, m),
{w € B | P(w) + N(w) = €} is a basis of M. and B is a basis of H,(%). O

2.2 A trace map on the algebra H,(3)

In the previous section we have a basis B of Hn(3),
B={(t1)* - (tnoa)*(tn)* " (tn)"B | s: € Z}

where [ is a basis element of H(A,~;) . Recall the basis of H(A,_;) is
inductively constructed as agp,—19n—2---gn—r Wherel < k < n-—1l,a €
H(An—2) (see J). Now we want to find a trace function uniquely defined
on the infinite union of H,(%) for all n. Let X, be the restriction of X on

H,(3) throughout this section.

Definition 2.2.1. There is a linear map X,

X: U?;°=1Hn(%) - k[Z, 2-19 q, 9_1, trey T=2,T~1,T1, T2, '] defined by
1 X.(1) =1

2 Xu((8)" -+ (thg) =2 (th_y) ™1 (a)*B)
= 1 Xnea ()7 () (toi)16),

if B is a basis element of H(An—3)
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3. Xa(t -+ 223 (th1)*"= (t0)* Bn-17)
=2z Xn1((81)" -~ (fn2) "2 (tn 1) "2 B(tn 1) 7)
if Bgn—17 is a basis element of H(A,_;).
We see the map X is well-defined since it is defined on the basis of the
algebra. In the following theorem we have some properties that will make

computations of X easier.

Theorem 2.2.2. The linear map X on H = U3, H,(}) satisfies the

following properities:

(1) X(1)=1

(2) X(agn-18) = zX(af), where a8 € Hn_1(%)

(3) X(a(t7)*(t)™B) = X(a(t})"(t7)*B) where oS € Hn-1(3), s, r any
integers,and i <n—1.

(4) X(a(t,)* B) = 7. X(aB), where aff € Hn_y (1)

(5) X|u(A._,) is Ocneanu trace function.

Proof:

Since the first case is just one of the definition, we consider only the other
cases. For S € H _1(%), there exist ry,79,: - rp~1, for r; € Z,

B; € H(An—2)suchthat§ = 3 .a;(t])™ - (tn_1)™"0; , a linear
combination of elements in B where a; € k[g,q~!]. Therefore, we may begin
with # a basis element of Hn—l(%) with b € H(Ap—2).

X (agnot (E) -+ (#_y)"-2b)

= X(o(ty)™ - gn-1(tp_;)™-b), since gn—1, (£1)™ --- (t;,_3)™~2? commutes,
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= X(a(t])™ -+ gn-1(th_;)™"~1g 1, gn-1b) since g7l 9.1 =1
= X(aft])™ - (t,_2)™2(t,)™—gn-1b) by defintion of ¢/,
= X(o(t])"™ -+ - (tn_2)™"~2(t;,) ™~ b1gn—195_2b2)

since b is a basis element of H(A,_2) where b = b1g},_,b2, 7 =0, 1,
by € H(An—3), and if r =0, then by = 1, i.e., b= by,
= X(e(t1)™ -+ (tnag)™201(85) ™~ gn—197_2b2),
= Yom emX((£1)*0 -« (7 —3)*" 2™ Y (85) ™~ gn 19}, _2b2)
since there exist $1.m, -, Sn—2,m such that a(t])™--- (t,_,)™-2b; =
2om Cm ()™ o (8, _2) """ Ymy  Ym € H(An-3).

Continuing the calculation,
= 2om em X ((81)7m -+ (tn2) 2™ (£1) ™  YmGn 197, ~2b2)
=2 Yo em X ((t1) "™ -+ (b g) ™2™ Ym (tn 1)1 R _2b2)

by definition of X since vyngn—195_ob2 is a basis element of H(A,—1)
=2z 3 em X((t1)*m -+ (fg)® 2™ m(tn_y) "= g —2b2)
=z X(a(t)™ - (tnz)™~2b1(tn_1) "1 g} _2b2)
=z X(a(ty)™ - (tn_g) ™2 (tn_1) "1 b1g} _ob2)
=z X(a(t])™ - (tn_3)™2(tn—1)™'b) as required.

We claim that X (a(t,)*(t})*'8) = X (a(t))*! (¢, )*5) where
af € Ha_1(}), s any integer, and i <n — 1.
Consequently, we can conclude X (a(t,)™(t;)"8) = X(a(t))"(t,)™B) for
any 7 € Z by applying that property r times. Applying the equality (c1),

assuming m > 0, of lemma 2.1.4 to a(t))™t.3,
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we have X (a(t])™t.5)
= —(¢7' — D)X (a(t)™(9: " - 9nZ2)(gn-1)gn—2 -~ g2g1)t1 (97" - - - 9:71)B)

+X(a(t) ()™ B)

+g™ = 1)X(a(g:" - 9222) (9n—1)(gn—2 - 291 )67 (g7 - -~ 9:74)B)
=—(¢7t =Dz X(alt))™(g;" -+ 9725)(gn~2 -~ g291)t1 (97 - - 974)B)

g™t = 1)z X(alg7 "+ 97 la)(gn—2 - g2@1 )t (g7 -+ 954)B)

+X (e(t:)(tL)™B) , by the second property of this theorem,
= —(g7! = 1)z X(a(t})™(giw1 - - g2g1)t1 {97 - - - 9:74)B)

+g™t - Dz X(a(gy -+ 201t (o1 -+ 974)B)

+X (a(ty)(:)™B)
=—~(¢7' = 1)z X(aft;)™(t})B) + (¢7* — L)zX(a(t})™+1B) + X (a(ti)(t,)™B)
= —~(g7! = 1)z X(at;)™'8) + (¢7! — 1)2X(a(t)™ 1) + X (a(t})(t,)™B)
= X(a(t))(t,)™B) as we claimed.

The next property is a consequence of the third property as follows:
Since [ is a finite sum of the basis elements, we may begin with a basis
element in place of .

X(a(ty)*(t1)™ - (tn—1)™-1b) where b € H(An-2),
= X(a(t])™ - (th—;)™-1b(t,)*) by the third property of this theorem,
= 2ok aR X ((81)%0 - - (tny)*n =1+ bie(t,)°)

where a(81)™ -~ (t,_1)™=1b = 3 ar(t])* k- (1) *n~1* bk and

bk € H(An—2)1

= D e ek X ((27)70% - - (B 1) "=+ (27,)*bx)
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=Ty 3 be X ((8])%1% - - - (t7,—1)*"—1*b) by definition 2.2.1,
= 7o X (e(t])™ -+ - (tn1)™"b)
= 1, X (a(t})™ - - (t],_;)™~'b), which shows property (4) of the theorem.
Property (5) follows from (1) and (2) (see [J]). O

Now, we claim X is indeed a trace map in the following theorem.

Theorem 2.2.3. The function X defined above is a trace map on

H = U Ha(3), that is, it satisfies the property, X (ab) = X(ba).

Proof:

We will show this inductively on n of Ha(). For n =1, X(t¥t:) = X (t1t%) is
obviously true since ¢, is the only generator in H 1(%) Assume the assertion
is true for a, b € Hn-1(%).

We show the assertion for a, b € H,(}). For a monomial a in Hn(}), each
factor of a is either ¢; or g; for¢ = 1,...,n — 1. bis a sum of the form
()5t - (@t p)n—2 (8l _y )1 (tL)* B, and B € H(A,—1) contains at most
one gp—1. So we consider the following cases as:
Casel)a=g;fori<n—2and f € H(An-2)

Case 2) a = g; for t <n —2 and g, occurs in §

Case 3) a =t;, and § € H(Ap—-2)

Case 4) a = t;, and g, occurs in 8

Case 5) a = gp,—1 and § € H(An—2)

Case 6) a = g,— and g,—; occurs in 3

For the cases 1) and 3), and we use the preceding theorem as follows.
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X(ab) = X (aty -+ t325 (tn—1)*= (tn)*F)
=1, X (at? - -t g2 (¢ ;)51 B)

by theorem 2.2.2(4),
=T X (2" -+ 275" (tn—1)*"~* Ba)

by the induction hypothesis,
= X (857 - tn23* (th-1) ™ (t1)*Ba) by 2.2.2(4),
= X (ba).

For the cases 2) and 4), B can be written as # = ag,_—17 in normal form
in H(An_1).
X (ab) = X(aty" -+ tpn3* (tho1)*=* (th)*" @gn-17)
= X(atf™ - - t273 (tny) ™ a(t)*" gn-17)
= X(at -+t 32 (1)1 Agno1 (th1)*Y) 88 thgno1 = gn_1ts_,
= z X(at* - ton32(th _1)*—ta(t!, _,)**v) by theorem 2.2.2.,

= 2 X (¢ - tan3?(th_ )% a(t,,_;)*"va) by the inductive assumption,

n—-2

= X (£ - tnn 32 () )* =1 agn_1(t,_,)*"va) by theorem 2.2.2.

tn2
= X (7" -+ ta"5* (tho1)*"~ (th)*" gn—170)
= X (ba)
Therefore, we need only show the last two cases, (5) and (6).
Case(5) 5 € H(A,—2). We want to show
X (gnoat?™ -+ t325% (thoy)*=2 (81)*B)

= X (5 -t ? (th 1)1 (4 )° Bgn1) (*)
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Since § € H(An—2), B = a1gn—202 or = a; with aq,a2 € H(A,_3).
We will use induction on s,,—; for 8 = a;gn-204.
The proof for B = a; € H(An—-2) is similar.
LHS and RHS denote the left and right hand sides of (x).
If 5p—y = 0, then LHS = X(gn_1#7" -~ - £,75" (t,_1)° () 01 gn—202)
= (g— DX - £7057 (8) c1gn—202)
+gX (87 - -t (tae1)’ gt 1 21Gn—202)
since gn—1(t3)* = (¢ — 1)(t;)* + q(tn—1)*9:21,
= (¢— DT X(t - - th23* a1 gn—z02)
+qq T X (877 - 5 (th1)* Gn101 Gn20)
+q(q™t = )X (8 - tm3? (t 1) @1 Gnz02)
by 2.2.2(4) and expanding g},,
=z2(g— 1)1, X(tF -t aras)
+z X(" -t an(th_g)® Gn202)
+H(1 ~ @)X (27 -+ tm 5 argna(th_5)%0)
by 2.2.1(3) and 2.2.2.(2),
=z(g- 1)1 X(t7" a3 i)
+22 X" -t e (th o) ar)
—z(g—1) X(7" -+ tar3 a1 (th_3)*e2)
as t;,_1gn-2 = gn—2t},_, and by use of 2.2.2(3) and (2),
RHS = X (¢ ---t0n5%0 (£ )* 01 gn—2Q2gn—1)

! ISn—
= X(t" -ty A1Gn-2020n-1(th_;)*)
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=z X' ---thr3a1ga-202(t,_;)*) by 2.2.2(2),
=z X(" -t i3’ e1gaa(th_1)az)
=z(g~1) X(t" - to5 @i (th_1)az)
+z X7 targtan(th_p)*9nta02) 8S gno2z = (¢ — 1) + g9 25,
=z(g—1) X ---ton520y(t)_1)%0z)
+2gg7t X(8 - tangt au (b _2)* gn202)
+zq(qt —1) X" - tn an(thp) )
by expanding g1, and using 2.2.2(2),
=z(g—- 1)1, X7 -t araz)
+22 X(8 - tn5 (b g) @2)
—2(¢—1) X(t7" -+ ta23 0n(th_)az) by 2.2.2(4) and (2).
Thus, the assertion is true for s,_; =0.
Assume it is true for s,_; < k-—1.
What we now want to show is
X" - 105" gnot (th ) * () @1 Gn—202)
= X (8" - tn3* (tn1)*(th)*@19a—2020n—1) (%)
Again LHS and RHS are the left and right hand sides of (x).
LHS = X (17 - t5"5 gn1(th_1 )% (8, ) @1 gn—202)
= X(t7" - tar52ongn-1(th_1)*gn—2(t,)*az) by using a1 € H(An—2),
= X(t - tarzta1gn1 - qitkgrt - g5 (th)*an)

by definition of t],_,,
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= X (" -t a1gn—2(gn-1--- g1)tkgrt - g 5t 1) 007t 102)
by using gn—1(th—_1)°gnt; = (t,)® and (b1),
= Xt - thr3 e1gn—2(gn—-1---91)t5 07" - 9 30n—2 - - qitigrt - gl a2)
by definition of (t,,_,)*,
= X[t - tr5? o gn-2(gn-1" - 91)t5Gn—2--- gi1(g5 -+ - gl t0g
“gmiye2) by (1),
=X (" -ttt ign2 1(gnor - q1)tE01 (g5 - g )t gt - gn k)
by (1),
= X(8" - tan3 oignz - 91(gn-1- - g1)tiquti (67 - 971, )T -+ g7tz a2)
by (62').

Since, by (a3'), (gn—-1---91)t5q1t{ (g7 - g L;) is

¢ k—1 Y
(@=1) ) @itf gyt
=1
(gn-1-"-92) $ + tigit¥ + p (g7t 97,
k—~1 )
(1-q) ) gutFt*~ig 't}
L =1 J
= (@~ 1) T2} Gnoto-- G2g1t¥ g7 g5t - gty t3t
+ g1 g2g1g5 - gLtk
k_l -. -— — - .
+(1— @) Si) gn1-- gogutite—igr gt gL th

k—1 — . - -
=(q—-1) 0t + tigrt - glogn—1 - gith
+H(1 - ) T e,

by the definition of ¢;, and using (b1).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Therefore, continuing the computation of LHS, we obtain
= (g- 1) X me s X (2 - 5 er (Gnz -+ - g1)E (Gt - - g7 5) )
+z X tan3%on(gn—2 - 9t (g - - g7 t5)a2)
~(g = 1) Tio] ThtamiX (5 - 3201 (g2 - G1)EL 67" -+ g t302)
by 2.2.2(4) and (2), and the above,
= 2(q— 1) Dr T X (&7 - tar52on(gnms - - g1t (970 - gts) @2)
+22 X( 5o (gnos - gt (ot - gn k) )
—2(g = 1) 5] Tepan i X(E7 - 5201 (gnz -+ 91)tig7 " - - 97 502)
by 2.2.2(2),
=z(qg—1) 21—1 Temi X (87 - tonz2 oyt Hiay)
+ 22 X targtontlitray)
—2(q— 1) T Teaami Xt - - tung? anthi_y00)
by definition of ¢/, _,.
RHS = X (£ - £057 (th1)*(£4)* 01 gn—302n-1) in ()
= X(t7" - - targ @i (th_1)¥gn-2(th)*gn-102) by commutativity,
= X(t" - tarz? @1 (gn—2- - 9185 (97 -+ 9 l2) gn—2(th) gn-102)
by definition of tn_l,
= X(1" - thr5to1gn2 - Githgr ! - g lagn-1(th_1)%02)
by cancellation and (t,)* = gn—1(th_;)*971:,
= 2X (8" -t o gnz - GitFGT - g7 lagn2 - Gitigr - g lp00)

by 2.2.2(2),
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#18n= - - - -
=z Xt ugn—2 - Gitign—2--- 9195t - gt )t gr - gt 00)

by (b1),

#%n— - -1 - -
= zX (" -t 5t e1gnz - - gi(gn—2 - g1 )thq1tigrt - g ogrt - gt 00)

by (b1) and (b2').

By (a3'), (gn—2---g2)o1tfqitigri(g; ! -+ g71,) is

4 k-1 )
(@—1)) qrth~*grteg*
i=1
(gn-2"--92) 4 + ot + (920 gnla)-
1_1 /

RHS
= 2(q— 1) X7 me—iX((#1)" -+ (tpa)**~201(gns - g1)t1H (o7 -+~ g7 2s) x2)
+ 22 X((t1)* - (tho2)*"—2e1(gn—a - @)t (97" - - gnls)a2)
~2(q — 1) SI Tt X((1)* - (thg)** a1 (gn-3- - 91)E (97" -+~ g 15) 2)
by 2.2.2(4), or (b1) and 2.2.2(2),
= 2(g— 1) D157 meiX((81)% -+ (thg) 20 tietias)
+22 X((#])" - (thp)entntien)
~2(q — 1) T Teaai X ()% -+ (th_g)*"—2nth_50)
This completes the case (5).
Case (6) gn—; occurs in S.
Let 8 = a1g9n—109 Where a; ap € H(Ap,_3), then we want to show
the following:
X(ga-181"" + - tan3? (the1)¥(th) 1 gn—102)

—)((t,"l .o ::52“ _1)k(t ) algn—1a29n—l) (**)
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LHS and RHS denote the left and right hand sides of (*x).
LHS = X(t1" -~ a3 gn—1(th-1)*(th) a19n—102
= Xt -tz gn1(th_y)*o1gn1(th_,)%2
since a; € H(An—2), and (t,)* = ga—1(th_1)%9:21;,
=(g—1) X" - 1,75 Gnmr(th1 )Four (81 )% 2)
+q X (81" - tn 3 gn1(th_1)For gyt (8, 1) a2)
by using gn—1 = (¢~ 1) + 99,2,
= 2(g—1) X(&" - tgn3* (thoy)*en(t_)%02)
+q X (85 - 1457 g1 (thor)Fo1 g7 1 (thy)*@2) (a)
by 2.2.2(2)
RHS = X (81" -~ £.25% (tn_1)*(tn)*@19n-102gn—1)
= X5 - £257 (¢ 1) ¥ o g (t_)*a2gn_1) by cancellation,
=(g— )Xt -+ 123 (thy ) ¥ (th,_y ) a2gn—1)
+gX (87" - tan3® (tho1)* 1972 1 (Eho1)*02Gn—1)
by expanding gn_1,
= 2(g— DX -+ 1,75 (tn1) 01 (1) *02)
+gX (7 -+ tan3 (thoy)¥en gty (1) a2gn—1) (b)
by 2.2.2(2),
Since the first terms of (a) and (b) are the same, we reduce
the assertion to
X[t - tar3 1 (tny)*n " 0n g7t (t ) 02)

I n—
=X (0 -ttt )t gt (t 1) a2 gn—1) (%)
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Since 8 = a1gn—1a2 in normal form of H(A,-1),
Q2 = gn—2 " gn-p fOr some p.
We prove here the case in which @; = a3gp-204 and a; = gp,_za5 in
normal form, by induction on s,_;.
LHS and RHS are again the left and right hand sides of (»x).
If s, =0.
LHS = X(t7" -+ tnr32gn-101g72, () )2
= Xt -t 5 Gn103gn—204grt, (th 1) Gn-zas)
= X (" - ta2’ 03gn-10n-207 1 04gn—2(th_2)*as) by cancellation,
= Xt -t 030, s 0n—19n—204gn—a(th_p)*as) by (b1),
=22 X(t" -+ tan3" asaa(th_s)*as) (c)
by repeated use of 2.2.2(2).
RHS = X (17 -+t 5 19721 (th 1) gn—2050n—1)
= X(t7" - tanz o197t 1 gn—2(t,_5)*gn-105) by cancellation,
= X (85 - 105" Q1 gn—20n-107 15 (th3)%as) by (b1),

I&n 2

=z X(t* -t n3’ azgn_zaq(t!,_,)%as) by 2.2.2(2) and oy

22 X (85 -+ tan3 azay(th_2)*as) by 2.2.2(2) again. (d)
Thus (c)=(d) proves the case s,—; = 0. Assume the assertion is true for
Sn—1 < k—1. Let 8,1 = k. We use an argument similar to the previous case.

LHS
=X (" -t  gn10a(th—1)*gn—20497 2, (tny)*n—205)

l n—
—X(twl : :—22a3g‘n-'lgn—2tn—2gn—la4.q'n—2(tn—2) 05) by cancellatlon,
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=X(t1" - tnn5" 0305 29n—19n—2(tn_2)*)tugn-2(th_z)*as) by (b1),
=22 X (87" -+ tan5  aa(tn_)*)au(th2)*as)

by repeated use of 2.2.2(2) and cancellation.
RHS
=X (85" - tant as(th 1) ¥ gn—20agrt (ty_1)* Gn2050n-1)
=Xt -t  a3gn—atit aagyl  gn-2(th_3)*gn—10s5) by cancellation
=X -t 5 a3gn—2tiX, 04 gn—2gn—107 5 (t, _2)* a5)

since g7, gn—20n—1 = Gn-29n—19722,
=22 X(t1" -+ tng? ag(th—o)F) e (th _2) )

by repeated use of 2.2.2(2) and cancellation.

This proves the last case (6). 0O

2.3 A polynomial invariant of links in a solid torus

We define an invariant of links in the solid torus using the trace map
in section 2.2. We represent an oriented link in S x D? as a closed braid
in B,(Ann). In order to be well-defined, two braids that differ by a Markov
move must give the same result. We adjust the representation 7 of the braid
group into H,(3) as did Jones, and S. Lambropoulou.

We can find § € R such that tr(a(8gn—1)b) = tr(a((8gn-1)"1)b) for
ab € H,_1(}) where 6 € R, the coefficent ring.
We calculate as follows:
6%tr(agn-1)b) = tr(ag;2,b) = g~ 'tr(agn-1b) + (¢~ — 1)tr(ab)

82 ztr(ab) = g~ lztr(ab) + (¢! — 1)tr(ab)
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0 =(g7lz+ (g7t - 1))=!
Let \=602 =(2+1—4q)q"'z~! where z = -—f—-_‘fi
Thus the adjusted representation my on o; is 7x(0;) = \/Xgi and
ma(t) = t1, while 7(0;) = g; and 7(t) = ¢;. Thus, my\(a) = \/Xe'zr(a), and

t is not counted in the exponent sum e of a. Let B,(Ann) be the braid group

of annulus.

Theorem 2.3.1. Let Z : |J B.(Ann) - C(VX, q)[7:]icz be defined by

Z(a) = TX(m(a)) = (—(1 = AQ)/VA(1 = q))""H(VN)*X(n()) where

T = (VAz)'™" = (—(1 = Aq)/VA(1 — ¢))*"L, e to be the exponential sum of
o;’s in a. If o € Bn(Ann) is a braid representative of the closed braid & = L

in 8! x D2, then Z(L) = Z(a) is a link invariant of links in S* x D2,

Proof: Since any two representations in B, (Ann) of a link differ by
conjugations and Markov moves (see [LA]), it is enough to see that
(a) Z(ePat) = Z(B)
(b) Z(ao,) = Z(a) if a € B,(Ann)
(c) Z(ao7!) = Z(a) if a € Bn(Ann)
(a) follows by X(ab) = X (ba), Theorem 2.2.3.

Z(aom) = (VAz)= e+ 3 ¥ (r00,))

= (VA2) =D VX X (n(a) gn) with () € Ha1(2),

= (VA=) 3 /X, X (n()) by 2.2.2(2),

= (VX)'="VX 9 X ((a)

= Z(a) which shows (b).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



61

Z(aot) = (VA=) X)) X ((a0T1))
= (VA=) RO R X (n()gz))
= (VA= )y T g 4 (0 - 1) X (n(a)
as g;' =q 'gn+ (g7 — 1), and 2.2.2(2) applies,
= (V)= VX RaX (n(a)

1 - —(1~
as VX (g2 + (g7 - 1) = 2ime = a3,

J1=q
1-Aq?

= (VA2 VA" O X (n(a))

= Z(a).

where 2z = —

Hence Z is indeed an invariant of links in solid torus. a
Theorem 2.3.2. The map Z satisfies the skein relation:

1 1
mzm —VaVAZL_ = (J/3- %)ZLO

Proof:

Let L be an oriented link diagram. For a single crossing in L, let Ly, L_
and Lo be the three diagrams that are identical except in a ball containing
only the crossing(see Figure 2). By a sequence of applications of elementary
deformation (section 1.2), the links turn into closed braids without changing
inside the ball [S], [LA]. Then, the crossing depending on the sign becomes
either o; or 0! for some i in the braid representatives of the closed braids.
We may express the braid representatives of the links as ag;b, ac;” 1p, and ab,

respectively.
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By the relation g; = (¢ — 1) + gg;™* in Hn(1), we obtain the following
identity, X (w(ao:b)) — ¢ X(n(ac;'b)) = (g — 1) X (n(abd)).
Let e be the exponent sum of ab, then that of ao;b is e + 1 and that of ac; b
ise—1.
Multiplying the identity by T%, we get
AART(VR) X (n(a0b) ~ VGVATVX ™ X(m(ao7 b))
= (V3 J)TVX X(n(ab))
Then, T:VXTX(M(aa,-b)) — /AVAT X (ma(ac] b))
= (@~ Z5)T X(mx(ab))
since 7y (a) = \/-)\_ew(a).
By the defintion of Z(a),
\/.WIKZ(aa,-b) — VavAZ(ao7'b) = (/T — 5)Z(ab).
Thus, =221, — VaVAZL_ = (VT — J5) 2L,

This shows that Z; satisfies the skein relation. ]
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CHAPTER 3. RECORVERING OTHER INVARIANTS
3.1 Recovering other invariants

We take S x D? to be the standard unknoted torus in S and consider
the map from links in S! x D? to links in S3. We first want to recover the
HOMFLY-PT link polynomials defined by Jones in S3, and Lambropoulou’s
polynomial invariant of links in S x D? from Zr, defined in section 2.3. Recall
that for 0y,t € Bp(Ann), the braid group of annulus, 7 : B,(Ann) = H,(})
is defined by m(t) = t1, 7(0:) = gi, while 7y : Bp(Ann) — H,(3) defined
by ma(t) = t1, ma(o:) = VX g;. We denote the trace maps depending on the

algebras as tr on H(An-1), Xp on H(By,), and X on Ha(3).

Theorem 3.1.1. Let Z, = Y K" b (VX q)ue({7:}icz) Where ve
is a finite product of 7;’s, then the HOMFLY-PT polynomial Xy, in S° is

XL(VA, q) = e b (VX q), d.e., Xy is Zy, with 7; =1 for all i.

Proof:
Let ¢ : Hp(3) — H(An—1) be defined by ¢(¢1) = 1 and ¢(g:) =g;.
Then ¢ is an algebra homomorphism such that ¢(} . a;t "‘ Ceta™iay)

SLELL L temi o is a basis element of Hn(%) and a;

= Y, a;0; where t]
is a basis element of H(A,,—1). Since both trace functions defined on
H,(3) and H(An_,) are linear maps, it suffices to show the following: if
X((t)** -+ ()™ (£ @) = 5y gy 2)on, then tr(c) = T, fulg,2)
where X is the trace map defined on H,,(-zl-), while ¢r is the trace map on

H(An-1).

63
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We prove it by induction on n.
For n = 1, the algebras are Hy(1) and H(A4p), it is true since X((t})%c) = 7,
where @ = 1, and tr(a) = tr(1) = 1. Assume that the assertion is true for
every j <n—1. For j =n,a € H(A,-2) or a = a;gn-102 as a basis element
of H(An—1).
Ifae H(An-2),
X(()" - (ta-1)*" " (t0)*" )
=71, X((t])%t - (th_1)*"ta) by 2.2.1(2)
= 7y, i fk(q, 2)ui by the induction hypothesis,
=3k fi(q, 2)7s, v
By the induction hypothesis, tr(a) = Y, fx(q, 2).
Ifa=aygn1a,
X((#1)" - (tar) "2 (t0) ")
= X((¢1)" -+ (tn1) ™ (tn) " 1gn—102)
=z X((#1)" -+ (ta1) ™ tou(tn_y) "~ 02)
by 2.2.1(3),
=2z 3 frlg, 2)ve = 30 2 (g, 2)ue
We have tr(a1a2) = 3, fe(g, z) by the induction hypothesis, thus,
tr(a) = tr(aygn-102) = 2tr(c1az) = 25, fil0,2) = Ty 2fular2), as
required. Therefore,
Z(t - tema) = (VAT X(E - thina)

= (VX' VA , felgs 2)ve,
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= 3 he(VX, g)ur by letting he(VX, q) = (VA2)'"VX" fi(g, 2).
Since ¢(ty’* ---t!*a) = a, and
Xo= (VA2)!""V2"tr(a), the polynomial of o € H(An-),
= (VA "VX T, fulg, 2)
= 5 ha(VA,q) since (v, q) = (VR2)VE" felg, 2).
]
Recall, from section 2.1, p : H,(3) = H(B,) is defined by p(g;) = g; and
p(t1) =t1. Then p(atif) = (Q—-1)at18+QaB, for any a, B (see [LA]). Recall
from the introduction that It = (v/Az)1~"X5 o p o 7x(a) is the invariant of
Lambropoulou where 7 is a representation of B,(Ann) to H(B,), the type-B

Hecke algebra, and my(a) = VA~ m(a).

Theorem 3.1.2. Suppose L is a link in S* x D?. Then I, = Zp({a;7 +

b;}icz) where a;,b; € C[Q), and formulas for a;, b; are given below.

Proof: A basis element of Ha(2) is of the form

A = (t1)% - (th_p)®~=1(t},)*~ B, for B a basis element of H(An—1). In
H(B,), for any integer s, p(t}*) = a,t; + by, with a,, b, as follows:

a6, =Q 1 —Q* %+ -1, b,=Q" 1 ~Q* 2+ .-+ Q for s > 2 even,
G =Q* 1 —Q* %+ +1, b, =Q* 1 —Q*24... —Q for s > 2 odd.
a;=1,b6=0

ag=0,b9 =1

s =Q°* ~Q*t 1 +... —Q7L, by =Q* - Q**! +... + 1 for s negative even,

as=Q - Q1+ .+ Q71 by, =Q* —Q**! 4 ... —1 for s negative odd.
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The above formulas are seen for ¢, by noting that p(t{) = p(t3)p(t{~2?) =
((Q — 1)t; + Q)(as—2t1 + bs—2). One can check that the formulas satisfy the
recursion. Then note that p(t*) = p(gi—1--- q1t{g7 -~ 9) = p(ast: + b,).
Thus, for A = (£1)* -+ (tn-1)™~*(£3)* B,
P(A) = (as,t] + bs, )85, +bs,) - -+ (@s, tp, + 05, )8
with a,,, b,, in C(g, @, VA). Thus p(A) is expanded as:
P(4) = S (ITei; @) (TLaomo be: J(E)® -+« (£)°~B, & sum over the set
{(e1,e2,---,en)lei = Oor 1, s; # 0}. Each term is a basis element of
H(B,), the basis of which is {(t])®* ---(¢t,)*"Ble; = 0or 1}, 8 is a basis
element of H(A,_;). Suppose L is the closed braid &. Since pomy = VA~ poT,
(VA2)1="*(Xp o po ma(a)) = (VA2)!™VA (X o po m(e)) is consequently the
polynomial invariant I applied to L.
Below we define 2 map p,. Consider the diagram below. The two
maps 7 are different. One is the representation into Hn(%), the other S.
Lambropoulou’s into H(B,,).
B. 5 H, % CgViinke 7 ClovIinkez
{id pl p. | psd
B. 5 H(B) %3 cge Vi “X7 o e v
Let’s define p. : C(q, VA)[riicz = C(q, Q, VA)[7] by p.(7:)
= (5,7 +bs;). S0 po(L;h(VA, Q) TL,, 7) = L hi(VA, @) T, (a7 + by, )™

for all s; € Z. Except for the common factor of \/—Xe , the bottom row gives

the invariant I, and the top row gives the invariant Z.
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Hence the proof of the theorem will be complete when we show the diagram
commutes. The first square commutes by the definition of the maps.

We show that p. satisties p, 0o X = Xp o p by induction on n.
For k =1, p. 0 X((t])?) = p«(7s) = as7 + b, and
X5 0p((th)*) = Xp(ast) +b,) = a,7 +b,.

Assume it is true forevery k. < n — 1. Fork = n,let
(21)%r - (th—1)*~-1(t;)*~ @ be a basis element with € H(A,_2) ora =
Q1gn—102 3 2 basis element of H(A,~;). If @« € H(A,—3), then
Pe 0 X((21)" -+ - (tno1)*"2 (t2) " @)
= Pa(Ta, X((t1)"* -+ (t-1) "~ @) by 2.2.2(4),
= (@5, T + s, )u (X((21)* - - - (1) "2 )

by definition of 7.
On the other hand, Xp o p((t])* --- (¢, _)**—(t})* )
= Xp(p((ta)") p((t1)** - - - (tp—1)*"—1 )
= Xp((as.tn + bs, ) p((£1)** -+ (1)1 )
= a5, Xp(t, p((t1)" -+~ (tn1)'@)) + b5, X5 0 p((£1)° - - (t_1)*" 1))
= a5, 7XB(p((£1)* - (tn—1)*" "))
+bs, X o p((1)** -+ (tn-1)*"'))

by definition of Xp,
= (0,7 + b ) X3 (B((t)* ++ (thoy)*0)
= (@, 7 + bs, )P (X ((21)"* -+~ (tny) 2 )

by the induction hypothesis.
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If a = a1gp-102, then
Pe 0 X((t1)" -+ - (tp—y)*"2(t3)*" )
=pa(X((£1)* -~ ()2 (82)*" @1 9n-102))
= pe(2X((£1)°" - -+ (1 )*" 1@y (), _)° " a2)) by definition 2.2.1,
= pu(2)pe (X ((£1)"" -+ (1) P ea (Bny) " 2))
=2z pe 0 X((11)" -+ (tn-1)*"*ou(tn_1)*" az); since p.(2) = 2.
And Xpop((t1)" -+ (tn-1)™"(tz) ")
= XB(p((t1)* -~ (tn_1)"1(tn)*" 1 9n—122)
= Xp(p((t1)" - - (ta_1)™=1)p((tn)*" )1 gn-102)
= Xp(p((t1)*" - - (tn_1)™~*)(@s, b7 + bs, Jo1gn—102)
= a,, Xp(p((11)" - - (ta_1) """ )t 01gn—102)
+b:, Xp(p((81)* - - (tn-1)*"* )1 gn—102)
= a,, 2 XB(p((t1)" -+ - (t—1)*m~1)out, 1 02)
+b,,2 Xp(p((t])** -+ (t~1)**')aja2) by definition of Xp,
=z Xp(p((t1)* - - (th_1)*" ) (@sn try + bs, )2)
=z Xpop((t])* -~ (tpo1)*rtant,2 @2);
=z pe 0 X((t1)"* -+ (th—1)*ait", a2); by the induction hypothesis.
Hence, p, 0 X = Xp o p as required.
The last rectangle is commutative since the maps from C (v}, ¢)[7i]iez
to C(q, Q, VA)[riliez and €(q,Q, VA)[r] to C(g,Q, V)[r] are just

multiplication by the constant T' = (v/Az)'~™. This completes the proof. a
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Remark. The polynomial X(mx(a)) is a regular isotopy invariant of links in
a solid torus. Moreover, it satisfies a skein relation:

R, : %{7;X(7r,\(a+)) - VaVAX(m\(a2)) = (VT — 2 )X (mx(a0))-

Proof: The relations , g;07 1 =1, and 0i0i+10i = 0i4+10i0iy1, in B,(Ann)
and the property X(a~!ba) = X(b) in Theorem 2.2.5 show that it is a regular
isotopy. For the skein relation, it is much the same as the case Z, proved in

section 2.3 omitting multiplication by T := (v/Az)1~" (see Theorem 2.3.2).

Remark. The three trace maps, tr on H(An—1), Xp on H(B,), and X on
H, (1), all satisfy the following list of properties:
(1) tr'(B(th-1)*gn-1) = 25tr'(B) if B € Hna(3);
(2) tr'(agn—1) = ztr'(a) if @ € Hn—1(3) and
« is not of the form B(t,, _,)* as in (1).
(3) tr'(a(t,)?) = lstr'(a) if a € Hay(2);

(4) tr'(1) = 1.

If z, = z and I, = 1, then tr’ = tr for type-A Hecke algebra.
If z, = z- (as7 + b,) and Iy = (a7 + b,), then tr' = Xp for type-B Hecke
algebra.

If 2z, = 27, and [, = 7, then tr' = X for algebra H,(3).
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