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A B ST R A C T

A polynomial invariant of links in a solid torus is defined through an 

algebra Hn(^). fTn( |)  modulo by an ideal is the type-B Hecke algebra.

This invariant satisfies the 5 3 -skein relation as in the 1-trivial links case of 

dicromatic link invariant discovered by J. Hoste and M. Kidwell.

A link in the solid torus is isotopic to a closed braid which is a braid 

in the braid group of the annulus. We find an invariant of links through a 

represention 7r of the braid group of the annulus to the algebra Hn{\) .

A trace map X  is defined on a basis

& — {(*l)il •'' (in)SnP I s* € 2 , /? e  H (An-i), in normal form }

of Hn(^). Then, there is a map Z  from UBn(Arm) (braid group of annulus) 

to C(q, \/A)[ri]te* defined by Z(a) =  (y/Az)1~n\/AeX(ir(a)). The invariant 

Z(a) is an ambient isotopy invariant for the links in the isotopy class that 

a  represents. Therefore, this is a computational approach to the S3-skein 

module for solid torus.

An invariant of links in a solid torus was discovered by S. Lambropoulou 

through the type-2? Hecke algebra. It can be recovered from Z(a).

v
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C H A P T E R  1. IN TR O D U C TIO N  A N D  BAC K G RO UN D

1.1. Polynom ial invariants o f links

A link in 3-manifold is a smooth submanifold consisting of disjoint simple 

closed curves. A knot is a link with one component. Two link s K and L are 

ambient isotopic if and only if a link diagram of K can be obtained from that 

of L by a sequence of Reidemeister moves (see Figure 1). An ambient isotopy 

invariant of oriented links is an invariant under the Reidemeister moves. Let 

L+, L_, and Lq denote links that are identical except in one crossing of a 

link diagram L, conventionally with L+ a single right handed crossing, as in 

Figure 2.

After the Alexander, the Conway, and the Jones polynomials, a two- 

variable twisted Alexander polynomial invariant of oriented links in 3-space 

was published in 1985. A combined paper due to the coincidence of the 

research announcements by four groups, each describing the same result (see 

[F]) is as follows:

Theorem 1.1.1. [HOMFLY-PT] There is a unique function P Grom the set 

of isotopy classes of tame oriented links to the set of homogeneous Laurent 

polynomials of degree 0 in x, y, z  such that

(1) xPL+ (x, y, z) +  yPL_ (x, y , z) +  zPLo (x, y, z) =  0,

(2) P l (x , y, z ) =  I if L consists of a single unknotted component.

1
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A
Figure 1. Reidemeister moves I, II, and III in an oriented link diagram

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 2. Signed crossings in an oriented link diagram

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4

Then the Jones polynomial can be expressed as a special case by 

Vx,(t) =  Pr,(t, —t~x, t i  — t~ i) .  A relation as in the part(l) in theorem 1.1.1 is 

called a skein relation. For the skein relation given by v~l Pi,+ —vPjJ_ =  zP l 0 , 

the Alexander polynomial and the Jones polynomial V^t)  occur as the 

special cases v =  1, and v =  t, z =  —1~$, respectively (see [HP2]).

To describe a series of further work, we introduce the type-A Hecke 

algebra H(An- i ) .  It is an algebra with generators <7i ,  <72, • • . , gn- i  and 

relations:

(1) 9i9j =  9j9i if I* “  j\  >  1,

(2) gi9i+i9i =  9i+i9i9i+i, for i =  1 • • • n -  2,

(3) gj =  (q— l)gi +  q for all i, and q is a complex number as a parameter. 

A basis for the type-A Hecke algebra is furnished by a system of reduced

words as

{GftiPn-I '' ‘ 17*i— &i )(<7t2 ’' * l?*a— fca) * *" (9im ' ’ ' 17*m-fcm)}

where 1 <  i\ <  %i <  • • • <  <  n — 1. We see that the dimension of

H{An- 1) is n!. Using the basis of the type-A Hecke algebra, V.F.R. Jones 

again constructed the HOMFLY-PT polynomial invariant (see [J]) using 

Ocneanu’s work as follows:
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Theorem  1.1.2. [Ocneanu] For every z e C  there is a linear trace 

tr on Un=i fr(An- i )  uniquely defined by

(1) tr(ab) =  tr(ba) a, b e  H(An- 1) ;

(2) tr(l) =1 ;

(3) tr(agnb) =  z  tr(ab) if a, be H(An- 1).

Theorem  1.1.3. [J] To each oriented link L (up to isotopy) there is a 

Laurent polynomial Xi,{yjq, \ / \ )  satisfying:

( A / ? ) ' 1* ! .  - ( A / 5 ) X i _  = ( V 5 - ^ ) X i . .

This work was done through the representation x  of Artin’s braid group 

to the type-A Hecke algebra. A connection of H(Bn) to Bn(Ann) was 

observed by A. McDaniel and L. Smolinsky (see [MS]), and X. Lin ([LI]).

They noted that the Brieskom braid group of type Bn is the braid group of 

the annulus, Bn(Ann).

S. Lambropoulou produced an invariant for S l x D 2 (see [LA]) by use of 

the braid group Bn(Ann) and the type-B Hecke algebra.

Bn(Ann) has generators t ,a i , . . . ,  crn_i (see Figure 3) and relations:

(1) OiOj =  CjCTi if |i - j  | >  1;

(2) CTiCi+iCTi =  0 i+iOi(ri+i for i =  1 ,2 , . . . ,  n -  2;

(3) t o i t o i  =  oi t o\ t .
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1 2 3 ...................n-1 n

(
V

y y

1 2 3  i i+1........n-1 n

1 2 3  i i+1........n-1 n

Figure 3. Generators of the braid group Bn(Ann)
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A presentation of the type-B Hecke algebra H(Bn) is as follows: 

( t i,g i,g2 ,--- ,9n-i  I <i0i*i5i =  g ih g ih ,

9i9j =  9jgi if I* ~ j \  >  1»

9i9i+l9i — f7t'+l<7v£7t+lj 

9i =  ( q -  l) j i  +  q for all i},

( ? = ( £ ? -  l)t , +  Q) 

and Q may be equal to q.

This work was also done through the representation 7r, where 7r(<7*) =  gi 

and 7r(t) =  ti. y/X is also computed, as did Jones, to satisfy tr{y/X-K{ai)) =  

tr(\/A~17r(o'̂ "1)). Thus the modified representation tt\  is defined as ir\(cri) =  

y/Xgi. U and t'{ are defined by U =  • • • gihgi  • • • and =

gi- 1  • • • gitig^1 • • • g~}^ respectively. In Figure 4, there are illustrated two 

braids, the images of which under ir are t$, and t'3, respectively, in H(Bn) and 

in the algebra Hn( | )  that is introduced in chapter 2. This invariant through 

type-B Hecke algebra will be discussed again in section 1.3.

1.2. Markov moves

We review some background definitions and facts. A fibered knot or link 

in 53 is a collection of disjointly embedded circles L =  L\ U U • • • U Lk such 

that S3 — L is the total space of a fiber bundle over S l , and the meridians 

map to the S 1 by degree 1 maps (see [R]). The unknot is the simplest fibered 

knot in S3 and its fiber is a disk D2. This unknot is called an axis and a 

closed braid in S3 is defined relative to this axis.
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A.

B.

<*i

t
-l

cr i

-l
ff2

Figure 4. (A.) t3 =  7r(cr20itoi<72) (B.) t'3 =

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



9

Alexander showed that every oriented link in S3 is isotopic to a closed 

braid. This closed braid is never unique and the exact non-uniqueness is 

explained by the Markov Theorem. It says two closed braids me equivalent 

as oriented links if and only if one closed braid may be deformed to the 

other through horizontal, H, and stabilizing, W, deformations, which reflect 

Reidemeister moves II and I, respectively. A complete proof of the Markov 

Theorem was published by Birman (see [B]).

A link in M3 is a closed braid in the braid group of the fiber if it 

is transverse to each fiber and its orientation agrees with the transverse 

orientation of the fiber. The height of a piecewise transverse link L with 

decomposition s i , . . . ,  s* is the number of negative oriented segments. In 

other words a piecewise transverse link of height zero is a closed braid.

Using the known fact that every closed 3-manifold contains a fibered 

knot or link (see [A]), Skora showed the generalization of the Alexander 

Theorem that every link in any closed 3-manifold is isotopic to a closed braid 

for a fixed fibered knot or link which is called an axis which we denote A (see 

[S]). Let D  be a disk in M  and let /?,/S' be arcs in dD  with disjoint interior 

and union equal to dD  . Let L, V  be links in M. If /3 =  L fl D, /?' =  L' fl D 

and V  =  (L — (3) U /?', then say L' is obtained from L by an elementary 

deformation through D. Two links are combinatorially equivalent if there is 

a sequence of links L =  L o ,L i , . . . ,L n =  L' such that for each k, Lk+i is 

obtained from Lk by an elementary deformation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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Skora also proved a generalization of the Markov Theorem. Let L, V  be 

closed braids. Then L, JV are equivalent if and only if there is a sequence 

of piecewise transverse links L =  Lq, L \ , . . .  ,Lk =  V , where each L,+i 

results from Li by an H  or W deformation. An H deformation corresponds 

to genuine conjugation. A W deformation is defined as follows. Let L, V  be 

piecewise transverse links. Suppose a disk D  meets the axis A  transversely 

in one point and it meets each fiber transversely except exactly one fiber it 

meets in a saddle. If L' results from L by an elementary deformation through 

D  where dD =  s U s', L fl D =  s, V  fl D  =  s', then say L' results from L by a 

W deformation through D. The Markov theorem is restated in terms of braid 

representative P of a closed braid (3 as a link (see [B]) as follows:

Theorem  1.2.1. Let (3 and. (3' be two closed braids, with braid 

representatives (3, /3'. Then $  is combinatorially equivalent to if and only 

if  there is a deformation chain (3 =  -» • • • (3a =  f3' such that each

braid A'-fi in the chain can be obtained from Pi 6  Bn with n strings by the 

following moves:

H : Pi*-+ a~ l(3ia where a  is a braid word in the same braid group;

W  : Pit-* Pi&n1 where pi € Bn, on € Bn+1 .

A closed braid in a solid torus S l x D 2 can be viewed as follows ([HK], 

[LA]). In S'3, the axis A is an unknot, and its fiber is a disk D 2. A 1-trivial 

dicromatic link in S3 is a link colored with two colors {1,2} where the color 1 

is used only to color a single unknotted component and the color 2 is used to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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color all the remaining of the link. Placing the unknotted component meeting 

every fiber of the axis A transversely in S3, we can obtain a dicromatic closed 

braid. Then, we obtain a solid torus by removing a tubular neighborhood 

of the unknotted component of color 1 from S3. The remaining closed braid 

with color 2 inside the solid torus can be viewed as a monocromatic closed 

braid. Thus, a closed braid in a solid torus is defined relative to the axis A, 

which serves for S3 and which is a longitude with framing zero in the solid 

torus.(See Figure 4. and 5.) Therefore, the Markov moves for a solid torus 

are the same as for S3.

1.3 Invariants through Hecke algebras 

In general, a Hecke algebra is associated with each type of the 

Weyl group. It is known that the type-1? Weyl group W  is generated by 

u/o, u/i,. . . ,  u>i and the relations:

(1) <-? =  i ,

(2) uiiujj =  uijuii if \i — j\ >  1,

(3) =  u>i+iQJiUJi+i for i =  1 , . . . ,  I — 1

(4) U!q(jJiU>qU>i — U)\U1qU1\U)q.

With H(Bn) introduced in section 1.1, if we define 0 by <t>{u>i) =  

gi, <f>(u>o) =  i i , then the images of the reduced words, t \ l t^  • • • a. where 

£i =  0 or 1 and a  is a normal form of type-A, under 0 form a basis of the 

type-1? Hecke algebra H(Bn).
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A(axis: a longitude)

A closed braid in a solid torus

Figure 5. A closed braid in a solid torus
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We restrict the general case of the theorem to the type-i? case.

Theorem 1.3.1. (N. Iwabori[I]) Let W  be the Weyl group for Bn, then

(i) g(cu), u> e  W  form a basis of the free 7L- module H(Bn), the type-B 

Hecke algebra;

(ii) if a; =  u>il • • • ujir is a reduced expression for u; £  W  then 

0(v) = 9 i l ---9ir -

Therefore, the rank of the free Z-module H(Bn) is equal to the cardinal 

number of the Weyl group W  by part (i) of the theorem above. The type-i? 

Weyl group is known to be isomorphic to the semidirect product HQ x £ n, En 

the symmetric group.

Let ti =  • • • cjjiuqojx • • • a/i_2W*_i. Then t \  =  1 and Utj =  tjU, so

(ti, • • • tn) is isomorphic to HQ. Since the type-A Weyl group is generated by 

{wi , . . .  , wn- i }  together with the relations {w? =  1, Uiujj =  VjUi if \i — j\ >  1,

1 for t =  1 , . . . ,  n — 2} and it is isomorphic to the 

symmetric group £ n, a word u> in type-A Weyl group can be used as a word 

in £ n. One can also check that uiitiUi =  (Jiti+iUi =  t,-, and uijtiuij =  ti if 

j  #  i ,i  +  1. Thus W  =  H Q En. A word in the semidirect product HQ~a £ n 

can be written as a;, £i =  0 or 1, Utj =  tjU for all i , j .

Then w G E n acts on HQ as a;(a) =  u>au>~1 in HQ where a  £ H  ̂•

Sofia S.F. Lambropoulou defined an analogue to the HOMFLY-PT 

polynomial for the links in solid torus. By representing the braid group 

of the annulus into type-5 Hecke algebra, H(Bn) (or Hn(q, Q)) in the
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following theorem, the invariant contains one more variable r representing 

the longitude. The representation x  of the braid of a n n u lu s into Hn(q, Q) is 

defined by 7 r ( £ )  =  t \ ,  n fa )  =  gi.

The unique trace function X B was defined as follows.

Theorem  1.3.2. (S. Lambropoulou [LA]) Given z  and s in C, there exists a 

unique linear function X b ' H  U^=1Hn(q, Q) -+ C such that the following 

bold:

(1) X B(ab) =  X B(ba), a,b 6 H

(2) X B(l) =  l  for all Hn(q,Q)

(3) X B(agn) =  z X B(a), a 6  Hn(q,Q)

(4) X B(at'n) =  r X B(a), a € Hn-i(q ,Q ) where 

t'n =  9 n - 1  • • • g i h g i 1 • • • <7tT—1

Then a 4-variable invariant I(q, Q, A, r) was defined as:

/ .  =  /(« , Q, K  r )  =  ( - J ~ ^  )  "  (v^)*JTfl(ir(a ))

where e is the exponent sum of the giS that appear in a. Thus, an invariant I  

was defined that satisfies the skein relations:

=  ( v ^ - a n d  =  ( > / $ -

where acr?6 is a braid presentation for L+ , ab for L_, a<7;6 for Lo, atb for 

L'+ , a£_ l6 for L'_, and ab for L'Q.

Skein module Sz(M) has been computed for M  =  S3, M  =  S 1 x D 2, and 

M  =  Hn a handlebody (see [HP2], [P]). For M  =  S 1 x D2, links in a solid
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torus was interpreted as the second colored components where the first one is 

a single unknotted component in dicromatic links (see [HK]). The following 

theorem from [HK] is restated in [P].

Theorem  1.3.3. ( [HK]) Sz(Sl x D2) is a free Z[v± l , z±x] module with 

basis consisting of a trivial circle and families of layered torus links of type 

(fc, 1), k  0 satisfying the following properties: v~xL+ — v L -  =  zL q.

In chapter 2, we define an invariant of links in a solid torus through 

an algebra fln(j)  (we adopted the notation for the algebra in a private 

communication from J. H. Przytycki). Our approach to the invariant is 

similar to the ones by Jones and Lambropoulou. Our invariant is an invariant 

in C(q, VA)[. • •, r_2, r_l5 n  , 72, • * •] while Lambropoulou’s is in C{q, Q, -y/A)[r]. 

In chapter 3, we recover the invariant of links in S3 by Jones and the 

invariant of links in the solid torus by S.F Lambropoulou from this invariant.
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C H A P T E R  2. A POLYNOMIAL IN V A R IA N T OF 
LINKS IN  A SOLID TORUS

Here, we define an algebra Hn{\)  with a trace map. Using the trace, we

define a polynomial invariant of links in S1 x D2.

2.1. A n algebra Hn( |)  as a vector space  

Hn(|)  is an algebra with a presentation:

Hn{\)  =  | h t x l =  *Tlh  =

h 9ih 9 i  =  9ih9iti,

9i9j =  9j9i if \ i - j \  >  1,

9i9i+i9t =  9i+l9x9x+i for * =  15 • • • > 71 2,

9i =  (9 -  l)9i +  9 for i =  1 • • •, n -  1). 

is an algebra over the ring fc[g, ?-1] where A: is a commutative ring 

with 1. We obtain Hn{ \ )  through an exact sequence,

0 —> T\ -¥ Hn(^) —t H(Bn- i )  -> 0 

where Tx is the ideal generated by { £| i =  t\  — (Q — l)ti  — Q}. Let 

p be the map from i7n( | )  to H(Bn- X), then Tx =  ker(p). Furthermore, 

i t : Bn —¥ Hn( | )  defined by 7r(<Ti) =  gi Vi, and 7r(t) =  ti is a representation of 

the braid group of the annulus into i7n( |) .

Note that g ~ l £  H n(^) as g~l =  q~xgi +  (q~x — 1 ) from the relation 

gj =  (q— 1 )g% +  <?• In this section, we define and show a basis for Hn(~) as an 

infinite dimensional vector space.

16
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D efinition 2.1.1. We define t$ b y  =  ( & _ i # _ 2 • • • g i t x g i g 2 • • • gi~29i - i ) k, 

for z =  1, • • •, n, and { t$ h b y  { t$h =  • • • 97- 297- v

for i =  1, • • •, n.

Throughout the sections 2.1 and 2.2, we will make use of the following 

formulas which are derived from the relations in ffn(i) .

Lem ma 2.1.2. For arbitrary n, z, j  < n  and m, k, s € 7L,

(al) t{tj =  tjt i  for any i , j ;

(al') t fg ityg i  =  gxUgxtf;

(al") g it^ g ih  =  g \ tvg it?g^ 1;

(a2) hgxtxgi1 =  gx l txg ih;

(a3) gitfgxtjg^1 = ( q - 1) git$~lg r lt i+L — (9  — 1) gitx+s~lg r lti 

-f 9itx~l 9 itlgx l ti> which is a recursive formula; 

and
Jb-l

Proof:

+  tfgitx +
fc-i

0- ^ i M
»=i

(al): We see t^tj =  t j t i  for any i , j  as following. Assume z <  j , then either

i =  j - 1  or z <  j - 1 .  Since Utj =  U g j~ it j- ig j- i  =  for z <  j - 1 ,

Utj  =  t j t i  if titi+x — ti+xti- For z =  1, t ii2 =  t \g \ txg \  =  gitxgitx  — t2tx by the 

relation in i fn(i) .
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Assuming it is true for 1,2, • • • i — 1,

=9i~i^i—i9*9i~i9i^i—i9i—i9u since 9*—i9i9i—i =  9i9i—i 9ii 

=9i - l 9i t i - l 9i - l U - i g i 9i - l 9i, SUlCe =  g i t i - 1,

=9i—l9i^i—l9i—i^i—l9i—l 9i9i—l 

=9i—l9i^i—l^i9i9i—l

=9i - i 9iU9iti—i9i~i  from induction hypothesis, and =  g iU - i ,

—9\— i 9i—1> since 5*—i^*+i =  l

=U+i9i - i t i - i 9i - i

=U+iU, by definition of £*.

(al'): It holds by (al) since =  £^£2 , and

<7i£i<7i£r =  t 2t f  by definition 2.1.1.

(al"): git^gih  =  g it^ g ih g ig^ 1 

= glhgxt^g^1, by (al').

(a2): h g i h g i 1 =  g^ tig itx ;  

hgih gZ 1 =  q~l tigitigx +  (q~l -  l) tig i t i  

=  q~l9 it\9 it\  +  (q~x -  t y i g i h  

=  [q~19i +  (?_1 -  l)]<i0i*i 

=  g T ^ i h -

(a3):

gi^gxttgr1 =  —

=  g i t i ^ g ^ g i h g i t t g i 1
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=  g i t t ' s T 'n g i h g i g T 1, by (al'),

=  g i t i - 'g T ' t ig ih

=  <rl g i t ^ g i t i g i t i  +  (q~l -  1) g iti~ lt{giti since q f1 =  q~xgi +  (q-1 -  1), 

=  g~l (g - 1) g i t ^ g i t f h  +  g_1g g i t ^ g i t f g ^ t i  

+(q~l -  1 ) ( q -  1) giti~H {ti  +  (q-1 -  1 )q g i t^ H lg ^ t i  

since g1 =  (q -  1) +  q g f1,

=  g-1 (g - 1)2 +  g-1 (g - i)g  g i t ^ g i h i t i

+ g -1 g gi*?_1gi*f g f l<i +  (g-1 -  i)(g  - 1) g i^ -1 ti«i 

+ (g“ l - 1 )q g i t ,T 1t \g Z 1t\

since gx =  (q -  1) +  qg^1,

=  (q - 1) g i t \ ~ l gZ1̂  -  (q - 1) g i^ +s-1g f 1ii  

+gi*i-1 gi£!grl i i

(a3'): Applying (a3) repeatedly to the last part of the recursive formula (a3)

itself , we obtain

gitig itigT 1

=  { q - 1) g i t i ^ g T 1*3* 1 - ( q - 1) g i t f + ^ g r ' h  

+ ( q - 1) g i t i ~ 2gTltSi+2 -  ( q - i) g ^ ^ g r ' t l  +  g i t i^ g i t ig iH l  

+  • • •

=  (q - 1) 0 i* i" 1s r 1tj+1 -  (q - 1) g i t i ^ ^ g ^ h  

+(g  - 1) g i t ^ g Z 1*3* 2 -  (g - 1)

+(g - 1) 0i<f“ 3$ r ltJ+3 -  (g - x) ^ i4 +*“3^ r1<i 

+  • • •
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+(? ~  i) 91*1 (fc

+ 9it \g i t igr l4 ~ 1
Jfc-1

( 9 - 1) 5 3 ^ <i “i^ r1<i+t
1=1

=  < +  t\gyt\  +  ►

a  -«)
i=i

since gitxgit\gx l t \~ l =  t \g i txgigx l t \~ l =  t{gxt $. □

Lemma 2.1.3. For arbitrary n,

(61) (£n_i • • • g j ) g f 1 =  gf2i(gn - 1  • • • 9j) for j  +  1 <  * <  n -  1 .

(61') (9n- i '' • 9 j l )9?1 =  P & fon -i •' • 071) for j  +  1 < i  < n  — l.

(62) (gx ■ ■ ■ gn- i ) g f 1 =  g ^ x(gi  • • • gn- i) for 1 <  z <  n -  2 .

(62;) ( g r 1 • • • 9 n i i ) ^ ? 1 =  ^ i ^ r 1 • • • ^n-i) for 1 <  z <  n -  2 .

(63) 9i(g~ + 1 • • • 9n—l)(9i~^ ■ ■ • 0n -2) =  • • • t fn - lK s r 1 * * ‘ 9 n U ) 9 n - l

for 1 <  i <  n — 2 .

Proof:

The formulas are derived from the relations: in Hn{\) ,

9x9j  =  9j9i if I* — j | >  1; 

9i9i+i9i =  9i+i9t9t+i hir z =  1, • • •, zz 2.

Also, we have 5i^+i5t_I =  Pi+i5i5i+i since gigi+ig^1 =  

q ' l9i9i+i9i +  (g-1 -  l)^i^i+i =  q~l9i+i9i9i+i +  (g-1 -  l ) ^ i + i

=  [g_1gi+i +  (g-1 -  i)]gi-gi+i =  9r+i9i9i+1-
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Here, we will show only (61), and (63). The proofs for the others are 

similar.

(61): (£„_i • • • gj)gf l =  gn- i  • • • Pt+iPiP»-ip?:lgi-2  • • •py 

=  gn-l • ' • Pt+lP^ifl,t<7t-lP*-2 •••9j  

=  9t- i9n-l  • * • 9i+i9i • • •9 j =  9?M9n - 1  • • * 9j)

(63): 9i{g~+x • • • g~lx){9~1 • • • g~i2)

=  9 i9 Z ix 9 7 l 97+2  • • • P » - i ( 0 i + i  • • • 5 n - 2 )

=  P i+ iP i 1^ t+ l^ t+ 2  ■' * Pn—l( P t + l  • • • P n - 2 )

=  P *+ lP i 19 i+ l9 i+ 2 9 i+ l9 i+ 3  ’ ’ ■ P n - l(P t+ 2  ■ ' ■ Pn—2)

=  Pf+lP* 1^t+12^t+1l^ *+ 2^t+13 • • * P n - l ( P i .f 2  ' ■' P n—2)

=  (9r+i9r+2)9r19r+i9i+29~+3 • • • p«-i(pi+ 2 • • • 97- 2) 

repeating this process,

=  (97+i • • • Sn-iX s*"1 • • • 9 7 -2 )9 n - l  □

We will make use of the following formula for existence part of theorem 

2.1.9, and theorem 2.2.2 in next section.

Lemma 2.1.4. For i < n — 1 , m positive

( c l )  ( £ ) " * <  =  *';(*'n)m

~(9~l ~  1 )(*<)"%,_l • • • 97-2)9n-i(9n-2• • • pO M pf1 • • ■ gTlx)

+ ( 9 ~ l  -  • • • P n - 2 ) P n - l ( p n - 2  * * • P l H r ^ P f 1 ’ ' ’ P t^ l)

(c2 ) O T “ l =  (i'i) - 1^ ) ”1

- ( p ' 1 -  • • * P n - 2 ) P n - l ( P n - 2  * ''  9 l ) t ? ( g Z l  • • • ^ l )

+ ( P ' 1 “  1 ) ( t i ) m - 1 (P*7’ 1 •' * P n - 2 ) ( P n - l  * • * Pt)
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(c3) ( O ' ^ ' i )  =  (^)(<n)"m

- ( g - 1  -  i)(<<)"m(grI • • • 9n-2)9n-i(gn-2 • • • g iK ite f1 • • • f c i )

+ (g -1  -  l j ^ r 1 ' * • 9 n -a)5n-l(ffn -2  * • • ’ * ^ l ) )

(o4) K ) “ m ( ^ ) - 1  =

~ ( g _I -  l ) ( ^ ) _1(g,r l  • • • 9n -2 )9 n - \(9 n -2  ' ' '  9 1 ) ^ ^  ' * * 9 i - \ )

+ (g -1  -  1 W i ) ~ l ~m {gTl  • • * 9n-2)9n- 1 • • • Pi.

Proof:

Here is a computation for the case (cl), and computations for the rest are 

similar. Commutativity relations are used without comment.

For m >  1 , (tn)m î

=  {9n~ i • • • ^ r f o r 1 • • • g n - i) (# - i  • • * 9 ih g r l ■ • • 97- 1)

by the definition of t'n ,

=  (gn- i  • • • giXTteT1 • • • g,_ 1 ) ( # - 1 • • • gihgZ1 • • • fc iK s i+ i • • • 0 « -i)

=  ( g n - i  •  • • gi)t?(gi  •  • • n i t e r 1  •  •  •  g r a t e r 1 • • • 97-i)te7+i • • • S n - i )

by (62'),

=  (g*-i • • • gi)ten-i  ■ • • s o r t e r 1 • • • ff,r l )*i(prl • • • • • • &T-i)

by repeated use of (61),

=  te*-i  •  • • 9i)9n-i ■ •  * 929xt?gTlt l {grl •  •  • ’  97-i )(97+i  • •  * 0 » - i )

=  q~l te*-i • • • 9i)9n-i  • • • g2gitT9iti(grl • • • gt- 1)(g f l • • • 97-i)te7+i ■ • • $n-i) 

+(g_1  -  i)(g t-i • • • gi)gn- i  • • • n g i t ^ t e T 1 • • ■ 971) 

<9T1"-9r~i)(9r+i-"9n-i)  

since g f 1 =  g-1 gi +  (g_ 1  -  1 ),
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=  0- 1(0i- 1  • • • 9i)9n-i • • • 929ih9i tT9rl * * * 9 ^ ( 9 ^  *' • 0il1i0»:+i * * * 9 7 - l)

+ ( ? _ 1  -  i)(5 i - i  • • • 9i)(9n-i  • • • 02 )0 1  tor1 ’ • • 0 r 1)*r+1tor1 • • • 97- 1)

'tetfi •••£»-1) by (al"),

=  ~ ( l~ 1 ~  l ) ( 5 * - i  • •  •  9i)9n—i  •  -  •  f l l t i f l i W 1  ‘  * * •  • * 97-i97+i  •  •  •  9 n - 1 )

+to<-i • • • 0 i)ton—l * • • 9 2) t ig i t?g i1(g21 • • • S ^ t o r 1 ' ‘ * 97-i)(97+i • • * 5n-l) 

+ t o -1  -  i ) t o » - i  • • • fl2$i)(& +i • • • 0 ;r.ii)*r+1to r 1 • • • 0 il1i)

by expanding gf , repeated use of (61), and cancellation,

=  “ to-1  -  l ) ( & - i  • " 9 i ) ( 9 n - i  • • * 9 2 ) tT 9 ih ( 9 2 1 • * * 9 7 1)

+ ( 9 i - l  • • • 9 l ) t l ( g n - l  • • • 9 2 ) 9 i t T ( 9 2 l  • • • ^ _ 1 ) ( 5 f 1 • • • 9 7 - 1 ) 9 ^ ( 9 7 + 1  * • • 3 n - i )

+(9 - 1  -  i)(^»-i • • • 929i)(gr+i • • • &rii )*r+1  far1 • • • 97- 1)

by (al') in the first term and (63),

=  “ t o - 1  -  l ) to x —1 • • • 01 ) * r t o f l  • • * 0*"1! t o n - 1  • • • $1*1 t o f 1 • • • 9i-^ l9 i+X  ■ • • 0 ^ - l )

+ to i-i • • • 0 i)titor 1 • • • 0 ii1i)ton -i • • • 0 2 )0 itr to r 1 • • • 0 i i t o r 1 toi+i • • • 0 ^ -1)

+ t o _ 1  -  i ) t o n - i  • • • 0 2 0 i ) t o t > i  • • • 0 ^ -1  ) * r +1 t o r 1 • • • 9 7 - 1 ) 

by repeated use of (61) in the first two terms,

=  - t o -1  -  l ) (^ )mto r 1 • • * 0n—2 )(0n—1)ton—2 • • • 9 2 9 l ) t l ( g f 1 * * • 9 7 -1) 

+ W K ) m

+ (0 _1 -  l ) t o r L • • • 0n—2 )(0n—l)(^ n —2  * * * 0 2 0 l)C +1(0 r 1 * * ’ 9 i - l )  

by use of (61) and the definition of 17

This completes the demonstration of formula (cl).
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T h e o r e m  2 .1 .5 .  Let % be the set of elements of the form 

(ti)ai{t2)s* - - ( t n)3"a, where (ti)Si =  (&_i&_2 --- g i h g m  • • • gi-29i 

fori =  \ , ‘ -- ,n, otis a. word in normal form in H(An- 1) and Si G TL. 

Then % is a basis of Hn(^).

Proof:

Let w be a word and let ti  occur in w, then w =  a i t ^ w i  where oti 

Y^iiinXte a 2i and a2* is written in normal form of iT(An_x), i.e., a2i 

9ii9igi2 • • • 9 n - 1 • * • 9in—i where 1 <  *fc <  k. So each term of w is 

a2i t ^ w i  =  g i ^ g i z  • • • gk9k- i  • • • 9x9k+x • • • 9ik • • • gn-x  • • • 0«n_1f f lwi.

If no gi occurs in a 2i, then a 2itoi. Suppose

it =  1, ik+i 7̂  1> ■' • 5 in -i j= 1 for some k. By the formula 

9h(9k9k-x " ' 9 i) =  (9 k g k - i  • • • 9 i )gh+ i  for 1 <  h <  k,  by 6 (1 ) 

a2i t f 1wi =

(9k •  • • 9 i ) t t l (9ii+x939i2+x '■•9k'" 9ik-i+l)(9k+i " '  9ik "'  9n- 1  • • • 9in_ 

=  (9k'"9x )t t l (9 i" '  9k)(gkl " ' 9 i l )™2 where

w2 =  (gil+ig39i2+ l " ' 9 k ' " 9 i k- i+ l ) ( g k + l" '9 ik -••0 n- l "- < 7*n_1)wi, 

= ifc+iw 3 where W3 =  ( ^ x • • • l )w2. Let’s denote this process (I).

For w3 , perform the process (/) as in w.

Eventually, we obtain stuns of elements

" '( tk m ) lm7  where Z* 6  2 , fcj 6  ( 1 , 2 , ••• ,n} and 7  e  LT(A, 

Up to this point we did not use that t \ t ~[1 =  1.
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Since £*£/ =  tjU for all i , j  by (al), the first part (£fcj)il(*fca)*2 • • * (£fcm)im 

can be rewritten easily as (£i)ai (£2 )** • • • (£«)*" for some s* € Z. □

For the linear independence of H, we need some definitions and lemmas. 

Let Hn =  H(An- i ) ,  Hn{ \ )  =  Fm and An =  fcftf1, . . . , £^1]- Hn is known as 

a free module over fc[q, g-1 ]. An is isomorphic to k7Ln, so it is free. Therefore, 

the tensor product An ® Hn is a free module with a basis (r  ® h} where r  is a 

base element of A and h is a base element of H(An- 1).

Let An ® Hn Hn be 0(r ® h) =  rh  which is a k[q, g-1]-module 

homomorphism. <f> is surjective. We show the injectivity of <j> using the 

following procedure modeled on the method for Hecke algebra (see [H]).

Let £n =  Endn(An ® Hn)- We define x  • Hn -> Sn so that x  is an algebra 

homomorphism. There is a subalgebra C generated by

{G i ,T i \Gi =  x{9 i),T i =  X{U) , } .

Let C An ® Hn be defined by ip(L) =  L( 1 ® 1 ). Then <j> =  id

on A„ ® Hn- Thus, <f> is one-to-one and [rh  | r  € A, h e  Hn is in normal
A

form } is linearly independent in H. Here is the overall map:

A n Z H n ^ H n ^ S n ^  An ® Hn.

First, we want to define and show x  is an algebra homomorphism.

A ®fc Hn is an algebra where multiplication is defined by (a ® 6 ) • (c ® d) =  

ac ® bd. The motivation for the following definition is the formulae for left 

multiplication by gi and £1 in Hn, i.e., if we replace the symbols G, and Ti 

by <71 and t\ and drop all ® symbols, then we get true equations in Hn-
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D e fin it io n  2 .1 .6 . Define G,- €  Endk(An ® f l ”n ) inductively as follows: 

- - - t t ?  ® a )

(1.) =  t \ n s2* • • • ® if S i =  si+1 =  0

(2J  =  (? -  • • • t f t& Y  •. • ® a

+ q(ti ® 1) • Gi(t\ l ■ ■ ■ t^ 1" 1 • • •t'" 0  a) if Si =  0, s i+ 1  >  0

a

+  ® 1) * Gi(*i • • • il+ 1  • • • C  ® a) i f  Si =  0, s i+1 <  0

(4 . )  =  ( g - 1 -  1 ) ^  . • • t r  xt ‘; Y + 1 . . .  t s -  ®  a

+ g-1 (<*+i ® 1) • <?i(tjl • • • ■■■f t ® a)  i f S i > Q

(5.) = ( q -  l)tjl • • • t f t g i 1 ■■■t%'®a

+  q(!7+l ® 1) • ° i ( ^ l • • • tSi i + l t i+i l • • • *nn ® « ) i f  Si <  0

(fi.) DefineTi by ® a) =  (ti ® l)(tj lt22 •••*„" 0  a )-

Define A,-, ̂  : A -4 A such that G,-(r ® a) =  Ai(r) ® (^a +  ^,(r) ® a, then 

we know that g»ra =  Ai{r)giOt +  m{r)a.  The above definition of Gi can 

be written as Gi(tjl • • • ti^i+i ’' * *nn 0  ° 0

= Ai(t31 ■ ■ • t ? t & 1 ■■•t*T? ) ® g ia +  . t*«) ® a

We can, also, write 

A i ( ^ . . . ^ )  =  ^ . . - A i ( ^ +1) . - . ^  

w W 1 • • • *« ) =  C  • • • (Hitftl+i) • • • #*, since 

Gi{t{' • • • t*- ® a) =  (t?1 • • • • • • #  ® 1) • ® a)

following from the Definition 2.1.2.

Next, we will have inductive formula on the exponents of U,ti+1.
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Lemma 2.1.7. The following properties hold:

(1) ® a)  =  t?+ 1 4  ® a;

(2) Gift? ■ ■ ■ •••<;■ ® °o

=  r lt i+ iM tV  ■ ■ ■ ■■■%')»s.q

+  fc r V i/w W * • • ■ CV*?<i+i«*+2 ■■■%")

+  ( r l - 1 K  ■ ■ ■ C r t f t g l t Z g  ■ ■ ■ ( ' - ]  ® a;

(3) G if t f  ■ ■ • •••<»" ® “ )

=  gi.A.W  • • ■ ‘i+ l ‘ *+2 • ■ • t‘n") ® 9i“

+  fa iw W  • • • £-Y*?‘‘+i*'+2’ •••<;■)

+  (? -  l ) if ‘ • • • C T ^ S i C j’ • • • (*■] ® a;

(4) G W  ■ ■ ■ C-i'tfff+ji*;? t*- ® a) *«;*•• • C i ‘W + i* * ?  •••«;■ ® » «•

Proof:

For Ti, it is trivial. As we see that G* acts only on t * t ^ 1, for every i, Gi is

just a copy of the case of i =  1 for n =  2. So we show the case of i =  1 for

n =  2. Let A =  Ai,/z =  /xi. Then, the cases (2), (3), and (4) are rewritten as 

follows:

( 2 0  G !(^+1^ )® a ) =  q-H2\ ( t t 4 ) ® g la  +  (q-1t2H{tt4) +  (q -1- l ) t t t * - 1)® a  

(30 Gi(t*t2+1  ® a ) =  ® 7i<* +  (<7*iM*i*2) +  (? - ® «

(40 C?i(tftf 0  1) =  (t?tf ® l)G i(l ® 1)

Now. Gi{t*+14  ® a) =  A(t?+1*£) ® +  /x(t“+1t£) ® <*•

For a >  0, Gi(£“+1t2 ® a)

=  (g" 1 -  l ) ^ ^ 1 <g> a +  q~l {t2 ® l)G i(t?^ <g> a) by 2.1.6(4),
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=  (q~l -  I )* ? * !* 1 ® a  +  q - ' f a  ® l)(A(tft£) ® gia  +  f i(tf4)  ® a)

=  q-H2\{ty%) ® gia  +  q~H2n{tlt^) ® a  +  (g_ 1  -  lj fftj* 1 ® a.

Thus, A(t“+1i2 ) =  q~lt2X(ti4)  and

=  q - lt2ti(tf%) +  (q- 1 -  for a >  0 .

Let a <  0, then

Gx{tl tb2 ® a) =  (g -  1 )tft§ ® a  +  g (tj l ® l)G i(^ +1t£) by 2.1.6(5).

A(ii^) ® 0 i a  +  M*i*2 ) ® a

=  (g -  l)tft§ ® a +  g t ^ M ^ D  ® +  /i(tj+1t |)  ® a)

=  ( q -  1 ) ^ 2  ® a  +  <$2lX{tl+l4 )  ® 9i<x +  qt2 l li(ti+1t2) ® a.

Thus, A(tft%) =  qt2 x\ (4 + H b2), =  ( q - l ) t f 4 + q t 2 l fi(tf+14 )  which

imply A(t?+1^ ) =  g - lt2 A(<?^), K 4 +14 )  =  (<TX -  l ) ^ 1 +  q - H ^ t p h ) ,  

respectively.

We show the case (3) inductively.

Let Gl ( t p ? ' 1 ® a) =  A ^ ft^ 1) ® pia +  ® a.

® a) , for a =  0 , b =  0 ,

=  (g -  lj t ft j*-1 ® a  +  g(tx ® l)Gi(*?^ ® a) by 2 .1 .6 (2 ),

=  (g -  l ) ^ 1 ® a  +  q(h ® 1 ) ( t f4  ® glQ) by 2 .1 .6 (1 ),

=  gt?+1t£ ® +  (g -  l ) ^ 1] ® a

since ^ ( 4 4 )  =  0 .

For the cases a =  0, b >  0, and a =  0, b <  0, similar arguments can be 

done through the definition 2.1.6. So, assume the stated formula is true for 

1 , 2 , • • •, a — 1 , and a >  0 .
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® a)

=  (q -1 -  I )*®” 1* * -2 ® a) +  q ' \ t 2 ® ® a) by 2.1.6(4),

=  (9_ 1  — l )*®” 1^ 2 ® a) +  g- 1 (*2 ® l)[^ i^ (^ _ 1<2 ) ® 9i<*

+  (gtiM^i-1*!) +  (? — l)t“~ 1ta+1) ® a], by induction hypothesis,

=  ® 9ia  +  M 2£t(*i~l*2) ® a  by cancellation,

=  9iiA(tit2) ® 9i<* +  [9*iM<i*2) +  (9  “  I)*?*!*1] ® a

since, by case (2 ),

A(£“<2 ) =  9~1^2A(tJ~1t2) 5 and

/*(*?«§)=9 - i«2^(<r1«2)+ (9_1 -  l j t r 1̂ 1

give £2A(£®~̂ 2 ) =  qHtftfy, and

— WttV-i) +  (9 — l)^i—1 2̂+1> respectively.

Thus, A ^ ft^ 1) =  qti\{tlt%) and n i t f t ^ 1) =  qtifi.(t$t%) +  ( q -  ljtftj*1.

A similar computation solves the a <  0 case.

For a =  6, we use induction again.

Let a =  0, then ® a ) =  *1*2 ® 9 i a  by the definition 2.1.6 (1 ).

Assume a >  1 and the case (4) is true for 1,2, • • •, a — 1.

<8 > a)

=  q~lt2\ { t l ~ lt^) ® gxa  +  [9 - 1*2M*i- 1<2 ) +  (9 - 1  ~  l)£?_ 1£f+1] ® a  

bt case (2 ), =  q~lt2(q t i \ ( t \~ lt%~1)) ® gxa

+[9 - it2 {9 M * r 1* r 1) + ( 9  -  i ^ r 1^ } + (9 - 1 - 1 ) t r l%+1] ® «

by case (3),

=  h t t f - ' t r 1 ® 9i«  +  H ? " 1 -  l ) £ r ^ 2a+1  +  (9- 1  -  l)*i_ 1ta+1] ® a
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since A(f“- 1t2 -1 ) =  1£2 ~ 1 ^ d  m(*i_ 1*2_1) =  0  by induction

hypothesis,

=  tft% <8» gxa.

Thus, A(t“tf) =  £?i2 and P-{txt2) =  0- □

Remark:

To summarize cases (2) and (3), for any form A, A(tiA) =  g_ 1t2A(A) and

A(t2A) =  ?*iA(A) since the power of ti in tjA is one higher than that in A,

and similarly for A(t2A)).

p{txA) =  q~lt2p(A) +  (g- 1  — l)*2-d, and

p(t2A) =  qtifi(A) +  (q — 1 )t2A, as well.

In fact, A(tftb2) =  (g_ 1)a<2 A(t6) =  (q - l )at$qbt\  =  qb~at\t%.

Now, we have inductive formulas for Tx =  x(*i)> Gi =  x(di) f°r ®dl *’•

Lem ma 2.1.8. x  iS ^  algebra homomorphism, i.e. , the following relations 

hold:

(1) G% =  (q — 1 )Gi +  q,

(2) GiGj =  GjGi if\i  — j\ >  2 ,

(3) GiGi+xGi =  for 2 =  1 , . . . ,  n — 2 , and

(4) TXGXTXGX =  GXTXGXTX.

Proof: Case 1 .

Without loss of generality, we show Gf =  (q — 1)GX -f q- For general cases, we 

replace to get GX the subscript index of Gx by i. Let \ x =  \ , p x =  p.
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® a )

=  Gi(A(tf^) ® a  +  pt(*i*2 ) ® a )

=  A2 (t?t|) ® g fc  +  ^ ( * 1*2 ) ® 9 ia  

+A/i(<?*£) ® ^xa  -f  /x2 ( t f i | )  ® a

=  [(? ~  l)A2 (titS) +  i*X(t\t\) +  A/*(tft§)] ® gia +  [g A2 (tJ*|) +  ® a

On the other hand, ((g — l)G i +  g)(t“t2 ® a )

=  (g -  l)A(tft^) ® gia  +  (g -  l)jx(*i*2 ) ® a +  9*1*2 ® a  

=  (g -  l)A(tft§) ® g ia  +  [(g -  l)/i(tf*J) +  gtft§] ® a

Therefore, we need to check

(g -  1 ) A2 +  jx\ +  Xfi =  (g -  1 )A

gA2 +  /i2 =  (g -  l)/x +  g 

We will check (g — 1)A2 +  (jlX +  Apt — (g — 1)A =  0 

and qX2+g,2—(q—l)n —q =  0 by use of induction twice. Induction to show the 

formula holds for is done by induction on si — S2 £  N  and s2 — ^i € N. 

Both start with tjtf. We then check tj+ lt2 and t^ t^ 1 assuming tft^- 

Consider [(g — 1 )A2 +  g,X +  A/z — (g — l)A](tJt£)

=  (g — ljtftf  +  0 +  0 — (g — l ) t i <2 =  0> by the case (4) in lemma 2.1.3.

And, [gA2 +  y? -  (g -  l)/z +  g](*ftf)

=  g£ ft^ +  0  — 0  — gtftf 

=  0

Suppose ((g — 1 )A2 +  fiX +  Xg, — (g — lJAXt®^) =  0 for some a, 6 6  TL. 

Then, using the formulas from lemma 2.1.7, (also, see the remark below the 

lemma),
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[(g -  1)A2 + f i \  +  \fi  — (q — l)A](t?+1t*)

=  ((? “  1)A +  {J. -  (g -  l)){g_ 1<2A ( ^ ) }  +  \ { q ~ lt2li{tlt%) +  (q_ 1  -  l)t? 

=  (? -  l )g -V iA 2 (t?t*) +  q-'qtujLXfttl) +  q - ' iq  -  l)t2A(t?t£)

+ ( < r x -  i ) t 2H n 4 ) +  +  (< rx ~

=  *i((? — l )^ 2 +  A*A +  A// -  (q — l)A)(t?t£) =  0 

by the induction hypothesis.

Similarly, [gA2 +(J? - ( q  — 1 )/z -  g](t?+1*2) =  0  

For

[(g -  1 )A2 +  /xA +  XfM -  (g -  l)A](*ftJ*1)

=  ((? -  1)A +  ^ -  (g -  l))(g*iA(tf^))

+A(gti//(t“t2) +  (g — lj t it l4"1)

=  (q -  l ) t2X2( t t 4 )  + t 2{jLX(tf4)

+g(g - 1  -  l)*2A(t?t|) -  ( g -  l)gtiA(tj^)

+ t 2\n(t$t%) +  ( q -  l)gtiA(tJ^)

=  [(? — l) i2A2 4- t2fz\ — (g — 1)£2A — (g — l)gtiA +  t2\fi  +  (g — l)gti A](tJ 

=  h[(q ~  1)A2 + /J.X +  Xfi -  (q -  l)A](«ft§)

=  0  by the induction hypothesis.

Similarly,

[gA2 +  fi2 -  (g -  l)fi -  gK tft^1) =  t2 [gA2 +  n2 -  (g -  1 )fi -  g](t?t|) =  0. 

Case 2.

Recall Ai(til •••<*")= t \ l • • • A<(t*fj+j) • • • , and

/*(*? ^  * /*(*“ *i+i) •••<«-. Thus, if |t -  j\ >  2,
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' '' *n" ) =  At(tJl •' • ^j{tjtj+l)  * * ' n̂" )

= * r  ••• a<(<?^+1) • • • *3< t p bj+ l ) • • • #

=  Ai ( ^ . . .A i ( < ^ +1) . . . ^

=  AjA<(tjl • ••£*").

Similarly, it is also shown that Aj/Zj, fJ-ifJ-j commute.

Then, GiGj (£*1 • • • tj* ® a)

=  AfAy(ti* • • • £*") ® g ^ a  +  XiHj(t{1 • • • ££*) ®

• • • £*») <2> gja  +  • • • £*") ® a

=  AjA*(tJl • • • **») 0  g3gi<x +  Ajm ( t \x • • • £*») ®

+/zJAi(£jl • • • t*») ® •••£*") ® a

=  GjGi(t*1 ■••£*" ® a), as required.

Case 3. As before, we will show G1G2G1 =  G2G1G2, without loss of 

generality.

(-riG^Cn^^fl ® a)

=  G i G 2 ( \ i { t i t% t§ )  ® g i a  +  fMi(tft%tl) ® a )

=  Gi(A2A i(t^t§) ® g2gia  +  A2jui(tft^|) ® g2a)

+G i(^2A i(t^t§) ® pxa +  frUii tpfyi)  ® ° 0  

=  AxA2A i(t^ t |)  ® 0 x0 2 0 ia  +  Xi\2Hi{tlt%tQ ®gig2a 

+/iiA2A i ®  2̂5 ia  +  AiiA2/ui(tj4 t§) ® g2a  

+Ai/i2 A1(tf<^£f) ® +  \i(J.2(ii(tft%t%) ®

+/*iA‘2 Ax(tft|i§) ® Sia  +  M1M2M1 ® a
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=  A1A2A1( ^ 2 i3) ® 0 i0 2 0 i<* +  AiA2/zi(*?*£*§) ® gig2a  

+MiX2Ai(tft$t§) ® g2g\a  -f ® g2a

+[(? -  lJAi^Ai +  AifjL2fii +  H\H2Xi](tlt\tl)  <g> gta  

+[qXm2Xi +  fii(i2fii](tft%t%) ® a  

And, G2GiG2(tft2t% 0  a)

=  G2Gi(X2(tft%t%) ® g2a  +  (*2(tft%t%) <g> a  

=  G2 (AiA2 (<f^tf) ® gig2a  +  Xi(i2(tft%t%) ® gia) 

+G2 (/iiA2 ( if t^ |)  ® g2a  +  <g> a)

=  A2AiA2(tft%t$) <g> g2gig2a  +  A2Aifi2(tft%t%) ® 020 1a 

+M2 AiA2 (tft|t§) <g> gig2a  +  p 2Xiii2(t\t\t%) ® 51a  

+A2/iiX2(tlt\t%) ® 0^q +  X2fxifji2(tp%t%) ® 02a  

+̂ 2MiX2{ t l t \ t l )  ® 02a + fjL2ftm2(t$t%t%) ® a 

=  A2AiA2 (<ft£<§) <g> 0 20 i0 2a  +  X2\ m 2(tft%t%) ® 0201a  

+/i2AiA2 ( t ^ t | )  ® gig2a  +  /^Ai/z^f ?<£<§) <g> 01a 

+[(? ~ 1)A2/*iA2 + X2nm2 + H2liiX2](tlt%t%) ® 02a 

+[?A2^iA2 + / i2 /ii^2](ti<2<|) ® a

Therefore, we need to verify the following equalities: 

AiA2Ai =  A2 AiA2,

g-\X2Xi =  A2 Ai/x2, Xi \ 2hi =  g.2XiX2,

(q — 1 )Ai/z2Ai +  Xi/j.2fii +  fj,ifi2Xi =  f*2Xi g.2, 

g-\X2iii =  (q — 1)A2/xiA2 +  X2fJ’ifJ.2 +  ^2/^1 A2 , and 

qXi^Xi  +  HiH2fJ.i =  0A2/iiiA2 +  fi.2ftiiJ.2.
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By the previous lemma, we obtain for c, d, integers

M t t 4 ) = ( ? -  i ) [ - E ? ,'-':+it r ' * r i + E ? ‘' ' ,>rH,~i <32]
i=0 y= 1

Here we verify two of the six inequalities mentioned above. The others 

are similar.

AiA2A =  <zb- 0 AiA2 (t$^i!)

=  g6-a+c-aA i(^ * f )

=  qb- a+c- a+c- b(tcl t%t%)

And, A2 AiA2 (tft^ |) =  gc-6A2Ai(t?tf*£)

_  q c - b + c - a + b - a ( t c t bt a j

Thus, AiA2 Ai =  A2AiA2.

To verify AiA2£ii =  ^2 AiA2,

A1A2^l (tft5 !|)

=  (? -  1 )AiA2[ { -  q t - '+ U ^ t r 1 +  E j= ,

=  (? -  l)Aa[ -  E “-0‘ +  £ ‘ =1

=  (« - 1 )[- E .“=o 92e- 2«+iiS(26+‘e r i +  E5=1

On the other hand,

At2 AlA2 (iftgtS) =

=  (9 -  i n -  E S  + £ ‘= l 91' —
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Case 4.

If we suppose GxTxGx{ tp 2 <S> a) =  1 ® a) for any a, 6 e  7L, then,

TxGxTxGx(tft\  ® a) =  Tx( t p ^ 1 <g> a)

=  ® a =  GiT1G1(t?+1^  0  a)

=  G 1rx G i(tJ+ l^  0  a )  =  G i T i G i T i ( t f %  0  a )

Claim: we claim. GxTxGx{t\ t2 ® a) =  ® a) for any a, 6 €  Z.

P r o o f  o f  cla im :

Case 1: we want to show GxTxGx{t2 ® a) =  (t^ 1 <g> a) for 6 >  0 inductively. 

Let 6 =  0, then we expect G iT iG i(l ® a) =  ® a). Recall that ail these

calculations follow from definition 2.1.6 and lemma 2.1.7. Lemma 2.1.7(2) 

and (3) are rewritten in a slightly different form as follows. With these, we 

use the remark following the proof of lemma 2.1.7 without further comment. 

For any a, b G ZZ,

2.1.7(«) Gx{tl+H\ ® a ) =  q~x(t2 0  1 )Gx{ tp b2 0  a) +  (q ' l -  1 ) t p ^ x 0  a  

2.1.7(m) G p t p ^ 1 0  a) =  9 (tx ® l)G i(tJ^ »<*) +  ( « -  ® a

G iTiG i(1  ® a )=  G iTi(l ® ^ a )  by the definition 2 .1 .6 (1 ),

=  G i(ti ® gxa) by the definition 2 .1 .6 (6 ),

=  (9_1  ~  1)(<2 ® 9i<*) +  q~l {t2 ® l)G i(l <g> ^ia) 

by the definition 2.1.6(4),

=  ( ? - 1  ~  1)(*2 ® 9 iot) +  q~l (t2 ® 1 )(1  0  cfta) 

by 2 .1 .6 (1 ) and g{ =  { q -  l)pi +  q,
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=  ( ? —1 ~  l)(t2 0  9i<*) +  q~l {q -  1)(*2 0  tfia) +  (£2 0  a)

=  (£2 0  a)

Assume GiTiGXtj" 1 0  a) =  (t| ® a). Then,

GiTiGi(t2 0

=  GiTi((g -  l)(t§ 0  a) +  ?(*! ® lJG i^ - 1 0  a)) by 2 .1 .6 (2 ),

=  Gi((q -  l)(£i£§ ® a) +  q{t\ ® l)G i(^ -x 0  a)) by 2 .1.6 (6 ),

=  { q - 1 )(9 _ 1  -  lX # - 1 0  a) +  q~x{q ~  1)(«2  0  l)Gi(«5 ® a)

+<7(9 “ 1 -  l ) ^  ® 1 )G1{ t t 1 0  a) +  99_1(*2 0  l)G i((t! 0  lJG^ * - 1 ® a)) 

using 2.1.6(4) for the first term and 2.1.7(u) for the second term,

=  (q - 1 )(q~x ~  IX* ^ 1 0  <*)

- ( g - 1  -  !)(^ 2  0  i)[(g - 1)(^2 0  a ) +  q(h 0  i)Gi(£2_ 1  ® a)]

- { q -  l ) (h t2 0  lJG^ " 1 ® a) +  (t2 ® l)G i((t! 0  1 )G1{tb2~1 ® a)) 

by 2 .1 .6 (2 ),

=  (q ~  1 )(<TX ~  1X 4*1 0  a ) -  ( q - 1 -  1 ){q -  1 ) ( ^ 1 ® a)

+(<Z -  l)(«it2 0  VGii t* '1 0  a)) - i q -  l ) { t i t2 ® lJGi^ - 1 ® a)

+ (£ 2  0  1 )G;iTi(Gi(£2 ~ 1 0  a))

=  (£2 0 l)C?ir1(Gi(£5- l ® a))

=  (£2 ® 1 ) ( 4  0  a) by the induction hypothesis,

=  (4 + 1 ® a).
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Case 2: a =  0 , 6  <  0 

G\TxGx{t2 0  ot)

=  G x T ^ q - 1 -  i)(*r1*2+1 ® cl) + g - ^ r 1 ® i ) ^ * ^ 1 0  «)) 

by the definition 2.1.6(3),

=  Gxdq-1 -  lXtJ* 1 ® a) +  q - xGx( t ? 1 0  a)) by 2 .1 .6 (6 ),

=  (q-1 -  l ^ t * * 1 0 a ) +  ® ol)

=  (g" 1 -  l)G i(t^+1  0 a) +  g - ^ g -  lJGit* ^ 1 0  a) +  gg" 1 ^ 1 0  a) 

by 2 .1 .8 (1 ),

=  <£+1 0  a, as required.

Case 3: We first examine a computation for all a, 6 . G i( t f tp '1 0  a)

=  (g" 1 -  ljfj" 1# * - 2 ® a +  q~l (t2 0  lJGiftJ- 1^ 1 ® a) by 2.1.7(*«), 

=  (g -l - l ) « ? - lt2+ 2® “  

+g_ 1 (^2 ® l)[q(ti 0  l)C?x(*i_1*§ 0  a) +  (g -  lj t j - 1^ 1 0  a] by 2.1.7(m), 

=  (g- 1 -  Dt? - 1^ 2 ® « 

+ (* 2  ® l)(*i ® l)Gi(*J_1*§ 0  a) -  (g- 1 -  I )* ® '1* * -2 ® a

=  (t1t2 0 1 )G i(t?-1<2 ® «) (ti)

Now for a >  0, and for all b,

GxTiGi( t f4  0  a)

=  GxTxdtfo ® l J G ^ r 1^ 1 ® «) by (8),

=  Gx{{t\t2 ® l)G i(tJ” 4S“ l ® a) by 2.1.6(6),

=  (*i*2 ® l)Gi((*i 0  1 )G1(*J- 1*2- 1  0  a)) by (8), 

=  (*i*2 ® lJ G iT iG i^ -1*?-1 ® ^ )  by 2 .1 .6 (6 ),
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=  (£i<2 ® l)(^i_ 1 ^2 ® a ) by induction hypothesis,

=  (ti< |+1 0  a) as required.

Case 4: For the last, let a <  0.

GiTiG\(tit2  0 a)

=  GxTx({q -  0  a) +  q i tz1 0  l)G 1(tJ+1t |  0  a)) by 2.1.6(5),

=  (q -  l)Gi(tJ+It§ 0  a) + qG l ((ti t 0  l)G i(i?+1t£ 0  a)) by 2.1.6(6),

=  (9 - l ) G i ( t “+1t^0 Q:)

+qq-H*2 ® ® l)Gl(«?+ 1t2 ® “ ))

+<z(?_ l ~  l)G i(t“+1t2 ® a) by 2.1.7(«),

=  (*2 ® 1 )^ 1  ((̂ a"1 ® 1 )^ 1  (t“+1t2 0  <*)) by cancellation,

Multiplying 2.1.7(ii) by t j 1 and applying Gi, we obtain the following, 

Gi((t5'1 ®l)Gx(t?+1t§ 0 a ))

= 5 _1Gf 0  a) +  ( ? - 1  — l)Gi(tft§ 0  a).

So, continuing the computation using this identity,

=  (t2 ® 1 Hq-'GfCtpl  ® <*) +  (q -1 -  1 )Gx(tftZ 0  a)]

=  (*a ® 1)[?- 1 (9 -  1 )G i(* i*2 ® a ) +  9 " V i* a  ® a  +  (tf- 1  -  l)Gi(«ft§ 0  a)] 

by 2 .1 .8 (1 ),

=  (*2 ® l) ( t i^2 ® a ) by cancellation,

=  (*x*2+1 ® «)

This completes the proof of the claim.
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Now, we return to the proof of the theorem. The map <p: An ® H n —► Hn 

is well defined since it is a map from a free module defined on a basis. The 

map ip : Endn(An ® H n) —► A Hn is the evaluation map. The map 

X : Hn -¥ Endn(An ® .ffn) was defined on the generators of iTn and 

shown to extend to a well-defined map in Lemma 2.1.8. Since tp is defined by 

1p(Gi) =  <7,(101) =  1®#, if a  € H (A n- i ) ,  then ip(x(<*)) =  x(at)(l®l) =

If a  =  w(gx • • • gn- i )  is a word, then let Ga =  to(Gx, G%, • • •, Gn-i)- Now, 

ip o x o  (p(t\l • • • t*" ® a)

=  ipox(<P(t{1 ••■t3nn ® a))

=  4>(T;'---T?Ga)

=  t {1 ® a

Thus ip o x °  <pis the identity on An ® An. Therefore, <p is injective as 

required. Hence H is a basis of Hn(^). □

Let B be the set of elements of the form ( t iY 1^ ) 3* ' • • (in)3na’ where 

Si e  7L for all i, • • • gihg^1 ' * • 97-297-1’ 3111(1 a  e  H(An- i )  is in

normal form. Then we claim that B is a basis of Hn(^).

Theorem  2.1.9. Let B be the set of elements of the form

(ti)3'(t'2)s> • • • (t'JSna , where =  gi-ig i-2 • • • 9 ih g f 1 • • • g7l297-v

for arbitrary i and a  is a word in normal form in H(An~i) and E TL.

Then B is a basis of
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P r o o f:

The first part of the proof that B is a generating set is similar to that of the 

normal form % in theorem 2.1.5. Let to be a word and let t\  occur in to, then 

to =  a i t ^ ltoi where a i =  a2i a<2i *8 written in normal form of

f f (An- 1), i.e., a2i =  gitg29h * • '9n-i  * * • 9in where 1 <  ik <  k.

So each term of to is

CLzi t f xw 1 =  9^929^ • • * 9k9k-i '' • 9l9k+i ' " 9ik• • • 0n-i • • •

If no 51 occurs in 0 2 *, then a^it^toi =  tfa^ftoi. By the formula 

9h(9k9k- 1 " '9 i)  =  (9k9k-i ' • • 9i)9h+i for 1 <  h <  fc by 6(1), 

a 2, t f ltoi =

{9k  ' * * ^ l ) t f  1(p*l + l5 3 ^ i3+ l  " ’ 9 k ’ "  fl,i* _ i+ l) (^ fc + l  —  AT** —  0 n - l  ' • *

=  {9 k - -  9 i ) t f  l {gZ1'•• 9Zl){9k•• ■ gi)v}2 where

™2 =  (9ii+l939i2+l " ' 9 k ' "  9ik-i+l)(9k+l '" 9 ik "' 9n- 1 • • • 9in-i)w l

=(tfc+i) ± l w 3 where to3 =  {gk '"  gi)w2.

Let’s denote this process (I').

For to3, perform the process (I7) as in to. Eventually, we obtain sums 

of elements (t’ki )i l )**••• (t'fcm )*" 7  where 6  2Z,, fc* e  (1,2, • • •, n} 

and 7  € H(An-i) .

Now we reorder the indices of t1. To do this, we will make use of the 

formulas in lemma 2.1.4.
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For (cl), if we let 6„_M =  gn„i  • • • • ■ ■ 9n-i  for i < n — 1,

the formula (cl) can be written into the following form, say (cl7):

(cl7) (t7n) ^  =  t7i(t7n) -  -  (q~l -  1 )(t7i)mt7n6n-l,i +  (q - 1 ~  l)(t7nr + 16n_ M, 

by repeated use of formula (bl), commutativity and cancellation on the 

formula (cl), where 

(ci) ( t ; r t 7 =  t7(t7nr

- ( g - 1  -  i)(^ )m(gtr l • • • 9n-2)9n-i{gn-2 •• ■ g i M g Z 1 • • • gz l i)

+ (g -1 -  i)(g t_1 • • • 9n-2)9n-i(gn-2 • • • g i ) C +1(g r1 • • • f c i )

Similarly, the other formulas in Lemma 2.1.4 can be written as below.

(c2 '> t o - w ) - 1 =  (tsr n c r  

- ( < r ‘ -  m d - ' K r t n - u t  +  (<r‘ -

(c3') ( t i ) - ”-(tS) =  (tS)(ti)-”

-(< T ‘ -  l)(tS)-~t'n4»-W +  (9- 1 -  l ) ( ( i ) - ’"+1i.„-i,i 

(c4') ( t i ) - m(tj) - 1 =  (t'j) - 1(t!J-m

- ( < r ‘ -  +  ( r 1 -  i)(tS )-I- mi>»-i,<.

We use induction on n to show that the first part {t'kiYl (tk3Y2 • • • (t kmYm 

can be deformed by a finite number of applications of the formulas involved 

in Hn( | )  into a sum of the form (t'x)* 1 • • • (£/„ - 2 )3n"a(in -i)an-l(*n),an/? with 

coefficients in fc, where /3 is an element of the given basis in H{An^i).

Let F  be F =  (t^ ) * 1^ , ) * 2 ••• (t'kmYm• The case n =  1 is trivial since 

fc, =  kj =  1 for all i, j  in F. Assume it is true for F G Hn~i(^). Suppose 

F G 17n( |) ,  then let i be the smallest index such that fc*_i= n.
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We assume U, li+ i are positive to use (cl) in this demonstration. The 

cases where h,li+ 1  are not positive, require one of (c2),(c3), or (c4) from 

lemma 2.1.4. In F =  (t'ki )*1 • • • (t'n ) if- 1 (tk.)l{ • • • (tkm )lm, the absolute

exponent sum e =  Ŷ ijLki Kil ^ ^  the right hand part of the t»’“l in F  is 

finite. Applying (cl') on (*n)*i_l (**,•)**’> we have

F =  («i, )'■ Mb,)'1 ■ • • M b , M , ) mMb, • • ■ (fkm )'»

-(< T l -  u M L ,)'-1 "  • M U '”

+ ( r ‘ -  • • • M b j'”

In each term of F, the absolute exponent stun of t' in the corresponding 

part is strictly less than e. Thus a finite number of applications of 

process (I1), and (cl), (c2), (c3), and (c4) will ultimately reduces the 

corresponding exponent stun to 0. Therefore, each term of F  can be written 

as a sum of words Ff(t'n)aa  where s € 2Z, F' 6  and a  €

H(An-i ) .  By the induction hypothesis, F' =  (t'l)31 (t^)*2 • • • (t'n_ 1) 3 b -1 7  

where 7  € H(An- 2 ) and st- 6  22. Since 7  € fi'(An_2),

7 *n =  < 7 - Therefore, F'{t‘n)a a={t!x)Sl (t'2)S2 • • • (<n_1)a'*- l 7 (tJl)ao: =  

M )Jl(*2 )4a ‘ ’ ‘ (in - i)an-l(^n)a7 a * 7 a  whl be deformed into a stun of words 

in normal form in H(An_i). Letting sn =  s, we have each term in the form of 

( * i ) 3 l (*2 )3a • • ' ( * n - i )Sn~l ( t n Y nP  as required to be in B.

Now, we return to the uniqueness of the normal form B in the theorem. 

We consider # n( | )  as a free module with basis W. =  <n"a } f°r

all Si € ZZ.
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Suppose that w(gu • • • ,gn- i , h ,  • • • ,£n) is a word in gu  • • • , 0 n_ i ,

£1, • • • , tn. Let P(w)  be the sum of the positive exponents of the t* and 

N(w)  be the stun of the negative exponents of the U. Note that P  and N  

are not defined on monomials of Hn{\ )  as t i t f 1 =  1 is a relation, it is 

only defined on abstract words. If w(gi, • • • ,gn- i , , t ' n) is a word in 

9h * • *»9n-i, i'l-, * * • > *», let P(w ) be the sum of the positive exponents of the 

t'i and N(w)  be the sum of the negative exponents of the £(. Also note that 

(P  +  N)(w ) is well-defined on monomials of it is the exponential sum

of t i  (if the monomial is written in g\, • • •, gn- i ,  h).

Let M.e =  {Y^aiwi I (P  +  N)(wi) =  e}. This is a submodule as 

the relations that define Hn(^) all preserve the submodule. We also have 

Hn{ 2 ) ~  ©cgZ^de*

For p € 2Z+, m  e  2Z~, 

let W(p, m) =  (w =  t \ l t% • • • t^Si tnna S H | P{w) <  p and p m  =  53 s*)- 

Let B(p, m) =  (w =  t1*1 • • • t!£na € B \ P{w) <  p and p +  m =  53 s»)- Note that 

Hip, m ) and B(p, to) are finitely generated free k[q, g- 1]-modules.

Lemma 2 .1 .1 0 . =  B(p,m) .

Proof: We first show that B(p, m) C H(p,m).

Let Ri =  9i-i9i-2 • • • 020102  • • • 0 t—20t—1> so £* =  t^Ri.

Let p +  m =  M. Take t'*1 • • • t!£na ,  a generator of B(p, to), so 5) Sj =  M .

Now, • • • t'£na  =  fjl fa R ^ 1)32 • • • (£ni2“ 1)aBa. These words have the 

same P  values and N  values. We now apply the rewriting process used in
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the beginning of the proof of Theorem 2.1.5. Let I =  p — m =  |si|.

This process yields a sum of words of the form • • • t^ a !  where the fc*

may have repetitions and again the P  and N  values are unchanged. Now use 

commutativity to rearrange the V s and relabel, so Ari <  <  • • • <  fcj.

Cancelling adjacent t f 1 when possible may reduce the P  value but leaves 

M  =  P  +  N  unchanged. We have that each term is in H(p, m) and so we 

have rewritten a generator of B(p, m) in elements in H{p, m).

We now show that H(p,m) C B(p,m).

Take a generator of H(p,m ), so ^  s* =  M. Now

t \ lt% • • • V”a  =  t1*1 (t^Ra)3* • • • (t ,nRn)3na . These words have the same 

P  values and N  values. We now apply the rewriting process used in the 

beginning of the proof of theorem 2.1.9. Let I =  p — m =  £  |s»|. This 

process yields a sum of elements of the form • • • t'^la! where the

may have repetitions and again the P  and N  values are unchanged. Since the 

V s do not commute, we use the relations (c l7), (c27), (c3;), (c47), and combine 

the exponents to get a sum of elements of the form t'f1 • • • t%n a." where the 

P  value is less than or equal to p and M  =  P  +  N  is unchanged. We have 

each term in J3(p, m)  and so we have rewritten a generator of H(p, m) into 

elements in B(p,m). □

We now complete the proof of 2.1.9. We saw that Hn{ j)  =  ®e^ z M e. 

Also note that M e =  U p + m = e  R(Pim )i a nested union.
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By the lemma, S =  {w =  (t'i)Sl (t?)3* • • • (t,n)Sna  \ a  is in normal form, 

P(w) <  p, P(w) +  N(w) =  p +  m}  is a generating set for %{p, m) which has 

the same order as the basis {w =  t \ lt £  • • • | a  is in normal form,

P(w) <  p , P{w) +  N ( vj) =  p +  m}.

Since k[q, g-1] is a commutative ring with unit and %(jp, m) is a finitely 

generated free module over &[<?, <Z-1 ], a generating set with the same order 

as a basis is a basis (Corollary 4.4 in [E]). Therefore, S  is a basis of 

{w e  B | P(w) +  N(w) =  e} is a basis of M e and B is a basis of Hn( |) .  □ 

2.2 A trace m ap on the algebra Hn{ |)

In the previous section we have a basis B of Hn(^),

B =  {(*i)ai • • • ( ^ - 2 )an- a( C i ) a”- l («n)an/? I *  € TL}

where /? is a basis element of flr(An_ 1) . Recall the basis of H(An- i )  is 

inductively constructed as otgn- i 9n-2  • * * 9n-k where I < k <  n — I, a  £  

H(An- 2) (see J). Now we want to find a trace function uniquely defined 

on the infinite union of Hn{^) for all n. Let X n be the restriction of X  on 

Hn{\ )  throughout this section.

Definition 2 .2 .1 . There is a linear map X,

x  : u2 Li-#n(|) -*• k[z,z~l ,q , q - 1, • • • ,t_ 2 , t _ i , t i , t 2, • • •] defined hy

1. X n(l) =  1

2 . Xn( ( * ! ) ' 1 • • • ( t U ) J"-3 ( « U ) 3"-l ( W )

= ra x „ - ! ( (n )ai • • •

if 0  is a basis element of IT(An-2)
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=  z  X n_ i ( ( t i ) ' ‘ • • • ( tU a )'" " 8 W »-i)*"“ l 0 ( t n - i ) '" 7 )  

if pgn - 1 7  is a basis element of H(An- i) .

We see the map X  is well-defined since it is defined on the basis of the 

algebra. In the following theorem we have some properties that will make 

computations of X  easier.

Theorem  2.2.2. The linear map X  on H  =  U^:15 n( |)  satisGes the 

following properities:

(1) X{1) =  1

(2) X (agn-if3) =  zX(a(3), where a/3 £ Hn- 1( | )

(3) X i a P J ' f t r P )  =  X i r f j ' i Y W P )  where oJ3 £ Hn-x{\) , s, r any 

integers, and i <  n — 1 .

(4) X{<x{t'n)a (3) =  ra X(a(3), where a(3 €  ffn- 1(£)

(5) X |/f(^ii_1) is Ocneann trace function.

Proof:

Since the first case is just one of the definition, we consider only the other 

cases. For (3 £ fTn_ i ( |) ,  there exist r1?r2, • • • rn_ i, for r* £ TL,

(3j £ H(An- 2) such that (3 =  S y aj(i i ) ri "' (tn - i )r'1' 1 Pj > a linear 

combination of elements in B where ay £ Therefore, we may begin

with (3 a basis element of Hn-\i , \ )  with b £ H(An- 2).

i K _ 1(t'1r ‘ - ( c 1)r- i> )

=  X (a (ti)r‘ • • • s„_i(i'n_ i)rn- I&), since gn- 1, (t'1)n  • • • (t'n_2) r"~2 commutes,
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=  * ( a ( * ' i ) r i  • • • 9 n - i( t 'n_ 1)rn- 1g~L1gn- i b )  since g ~ l xgn- i  =  1 

=  X ( a ( t ' x)ri ••• (tfn_ 2)r"-3(t'n )rn- l gn_ib)  by defintion of t'n

=  X ( a ( t [ r  • * • (<n-2)rn- 2(^ )r"-l6 l^ n -l^ _ 262)

since 6  is a basis element of H ( A n-2 )  where b =  & i < £ _ 2 & 2 , r =  0 , 1 ,  

bx E H { A n~z),  and if r =  0 ,  then 6 2  =  1,  i.e., b =  bx,

=  X (a M )ri ■ • ■ (C -2)’'"->i>l(«'„)r"-'Sn- lS ; - 2^ ).

=  Em  Cm*((<t)“ -  •'' (C -2 )'”- I'"1m(‘'„)r—‘9n-lS ;_242)

since there exist si,m, • • •, sn_2,m such that a(t'1)ri • • • (t/n_ 2)rn~2bx =

Em  Cm(*i)*l>m • • • (̂ n—2),n~*’m7mi 7m G # (A n_3).

Continuing the calculation,

=  Em  Cm*((4)a,-m • • • (tn-2)an“3-m(<n)rn_l7m ^n-l5;-262)

=  2 Em  cm*((*/l)3l,m * * * (in -2 )an- a m7m(t/n_ i)r- l^ _ 262)

by definition of X  since 7 m<7n - i < £ _ 2&2 is a basis element of H ( A n- X)

=  z   (<n-2)3n- a>m7m(tn-l)rn- l£U2&2)

=  z *(a(t'1)ri • •. {t'n_2Y ^ b x{t‘n_ xY ^ grn_2b2)

=  z x ( a ( f xr  ■ • • ( * u ) r"-a(C - i) r"-i&i<7;-2&2)

=  z X (a(ti)ri • • • (t/n-2)rn~a(tn - i)rn_lfcl) 33 required.

We claim that X (a(t/n)a^ ) ±V ) =  A'(a(^)±1( O a£) where 

a/3 € H n- X( £), s any integer, and i  <  n — 1.

Consequently, we can conclude X ( a ( t ,n )m (t,i )rP)  =  X ( a ( t li )r ( t ,n )rn/3) for 

any r E Z by applying that property r times. Applying the equality (cl), 

assuming m >  0 ,  of lemma 2.1.4 to a(t(Jmt(-/3,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



49

we have X(a(t'n)Tnt'iP)

=  - ( ? _1 ~  1 ) X ( a { t $ m { g r l • • • g~L2K 9 n - i) (9 n -2  * • • f la tf i^ ito f1 • * • 9 T - M  

+ X ( a ( W nr p )

+ ( ? - 1  -  1 W a t e r 1 • • • 0 n - i2 ) ( 0 n - l )  t o n - 2  • ' • 0 2 0 l ) C +1 t o f *  *' * 9 i - i ) P )

=  -to " 1 - 1)* •X(a(t/i)mtor1 • • • 0 ^ 2 ) ton- 2  • • • g29i)t i(gTl  • • • ̂ i ) / 3)

+ ( ? ~ 1 -  1 )zX {a{g~ x • • • 0 “- 2 )ton—2 * • • AM iJfr^tor1 • • • 9T-i)P) 

+X(a(t'i )(t,n)mP) , by the second property of this theorem,

=  “ to" 1 ~  l ) 2 ^ t o ( < i ) mto*-i • • -f lW iJ fito f1 * " 9 i - \ ) P )

+(?"1 -1)2  ̂ to to il1! • • • S20i)*r+1 tor1 • • • 97-i)P)

+ X ( a ( W ' nr P )

=  - ( r 1 -  1 )zX(a{t'ir ( t lpp )  +  O r1 -  l ) z X ( a ( t ^ P )  +  X i a & x c r p )

=  - ( r 1 -  1 )zX (a ( t lir + ip)  +  (q~l -  1 )zX(a(t'ir + lP) +  X (a ( tfi)(t'nr p )

=  X (a(t/i )(t,n)mP) as we claimed.

The next property is a consequence of the third property as follows:

Since P  is a finite sum of the basis elements, we may begin with a basis 

element in place of p.

») where b €  H(An. 2),

=  X (a ( t i) ri • • • (tn -i)rn-l&(*n)a) by the third property of this theorem,

=  Efc ^ ( t o l ) ' 1'* • * • ton- 1  ̂ ‘^feton)')

where c*toi)ri * • • tol- i ) r"~l& =  Efc Ofctoi)51** * • • (*«-i)a"-l-kbk and 

6* 6 H(An- 2)i

=  Efc a**(toi)ai ‘ •' • to»)-6*)
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=  T» X)fc hX {(t'1)a'-k ■ • • (^ _ 1)3n' l fc6jb) by definition 2.2.1,

=  rsX {u{t'i r - - - ( t ln_ i r ^ b )

=  TsX (a (t' l )ri • • • (t'n_ l )rn~1b), which shows property (4) of the theorem.

Property (5) follows from (1) and (2) (see [J]). □

Now, we claim X  is indeed a trace map in the following theorem.

T h e o r e m  2 .2 .3 . The function X  defined above is a trace map on 

H  =  U^L1fTn ( | ) ,  that is, i t  satisfies the property, X(ab) =  X(ba).

P ro o f:

We will show this inductively on n of Hn{ |) . For n =  1, is

obviously true since t \  is the only generator in Assume the assertion

is true for a, b E Hn- 1( |) .

We show the assertion for a, b E Hn{\) .  For a monomial a in Hn(^), each

factor of a is either t x or gi for i =  1, . . . , n — 1. b is a sum of the form

(*i)a i''' (tn -2 )an-2 (fn -i)an-I(*n)a e  S (A n- 1) contains at most

one gn- i -  So we consider the following cases as:

Case 1) a =  gi for i < n  — 2 and 0  E H(An- 2 )

Case 2) a =  gi for i <  n — 2 and gn- i  occurs in 0  

Case 3) a =  t x, and 0  E H(An- 2)

Case 4) a =  t x, and gn- i  occurs in 0  

Case 5) a =  gn- X and 0  E H(An- 2 )

Case 6 ) a =  gn- i  and gn-x occurs in 0

For the cases 1 ) and 3), and we use the preceding theorem as follows.
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X(ab) =  X(at[*'

by theorem 2.2.2(4),

by the induction hypothesis,

=  * « * '  by 2.2.2(4),

=  JT(6o).

For the cases 2) and 4), /3 can be written as /3 =  agn- i j  in normal form 

in H(An- 1).

X (a6 ) =  X « ‘ • • • f c aK - i ) a"-‘ (</n)a" ^ n -iT )

=  X(ati31 • • • i £ a a(fU i)* --ia (t;)*n3B_i7)

=  X (a ^ 1 • • • C - i 2(C -l)Jn- l« ^ n - l(^ - l)an7) as C S n - ^ J n —! ( _ !

=  z X (a t r{ 1 • • •C -22 (in -i)5"'lQ!(C - i ) 5n7 ) by theorem 2.2.2.,

=  z X ( t ± x • • • £nl2a(*n-i)an-lQ!(*n-i)3n7a) inductive assmnption,

=  X (t'{x •’ •C - 2 2 (in -i) , "~lQ:̂ n-i(<n-i)'n7 a) by theorem 2.2.2.

=  X(ba)

Therefore, we need only show the last two cases, (5) and (6 ).

Case(5) (3 E H(An- 2 ). We want to show

X (  <,n- , c  ■ • • f c ?  (C l)* —  ( O V )

=*<«;*■ ■ ■ < i ? K - i ) ’- ' K y p < h . - i )  <*)
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Since (3 e  H(An_2), P =  axgn- 2a.2 or P =  cti with oci,a2 €  H{An- 3). 

We will use induction on sn_ i for (3 =  ot\gn- 2ci2.

The proof for (3 == a x 6  H(An- 2) is similar.

LHS and RHS denote the left and right hand sides of (*).

If sn_ i =  0, then LHS =  X{gn- i t x l • • • tnZ22(t,n_ l )0(t,n)sa ign—2a2)

=  ( q - l ) X ( t ^  ■•■t,‘l-?{t'ny a lgn„2a2)

+ qX (t ,a1 • • • f e 2 ( t ^ y g - ^ g ^ a ^

since £n—i K ) a =  ( q -  l)(*(Ja +  g « _ i)^ n -i>

=  ( V  ~  l ) T 3X { t ? 1 • • • t ' “l 2 3(X i g n - 2 < X 2 )

+qq~lX (t'f l • • • t'*l23( tn -l)S9n-iOtign- 2a2 )

+q(q~l -  l )X ( t [a‘ • • • f c J( C i ) ^ l ? n - 2a2) 

by 2.2.2(4) and expanding g^lu  

=  z(q -  1 )^  X ( t f l • • • t'aZ27otia2)

+ 2  X ( t [a1 • • • C i 2<*l(*'n-l)a<7n-2C*2)

+(1 -  q)X(t‘ • • • C i aa i ^ - 2 (t,„_2 ), a 2 ) 

by 2.2.1(3) and 2.2.2.(2),

=  * ( q - l ) r 3 X { t '^ .- - t 'Z l? a xcc2)

+ r 2 J T ^ - C r o i C ^ a J - a a )

- * ( 9 - 1 )  * ( * l Jl • • • C i s a i ( t U ) ^ 2 )

as t'n_ xgn - 2 =  gn-2t 'n-2  “ d by use of 2.2.2(3) and (2),

RHS =  X ( ^ 1 - f e s« L i(C ), a i j„ - 2a2<?„-1)

= ^(t'i31 • • • C i 2«i5n-2a2^ - 1^ _ 1)i )
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X ( t? ‘ ■ ■ • t e ’“ iS»-2“2(‘n-l)*) by 2.2.2(2),

= 2  X {t’‘ ‘ • • • «._,)*<•»)

=  2 ( 9  -  1 ) X(t?* • • • t£ i*otl (t '_ i) , aj)

+ 9 2  X{t'{' ■ ■ • •» 9— 2 =  ( « - ! ) +  99—2.

=2(9 -  1 ) *(*?■ ■ • • t'‘l ?

+ 2 9 9 " 1 X ( t i "  • • ' C - 2 ’ a l ( l — 2 )‘ 9— 2a 2>

+ 2 9 (9 - '  - 1 )  X (t’i l ■ ■ ■ t“;;*ai(«i_,)*aa) 

by expanding <7~.i2 and using 2 .2 .2 (2 ),

=  z(q -  1 )ra X t f ?  • • - C i sa ia2)

+ z 2 X ( t ^ . . . f c aa i (^ _ 2 )a«2 )

-z (?  -  1) X { t '{1 • • • t j l5 aa i(^ _ 2 )*aa) by 2.2.2(4) and (2).

Thus, the assertion is true for sn_i =  0.

Assume it is true for sn_i < A: — 1.

What we now want to show is

? 9 — if**— i)*(*'.)*ai9»-j«a)

=  X(,t[" 2, K _ l ) ‘ (tn)*“ 19~-2C>29»-l) (*)

Again LHS and RHS are the left and right hand sides of (*).

LHS =

=  X { t '{1 •••tn"i2o 1^n_1(t/n_1)fĉ n-2 (t/„)aa!2 ) by using ax € H(An- 2),

=  X ( t ^  • • • C"22«l5n-1 • • • 91 t^gZ1 ■ • • 9nUWnY<*i) 

by definition of
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=  . . • C -2 2«ltfn-2ten-l • • • 1 • ‘ * ̂ T ^ n - l^ n - - l ai)

by using 0n-l(£n-l)*0n-l = (<n)J ^  (̂ 1),

=  X ( t [ ai • • - t'*Zj 2® 10n—2 ( 9 n - l  • * • 01 )*f o f 1 • • • 9~ l39n-2  ' * * 01*? 0 f 1 • * •

by definition of (tn -i)a>

=  X (% 1 • • • C -2 J«lSn-2(£n-l • • • 0l)£i0„_2 • * • 01 (0^* ‘ ' * ^ n i^ t o f 1 *

0n—1^2 ) by (61),

= X ( t5 * 1 • • • C - 2 2Q:l^ n - 2  • • * 01 ( £ n - l  • * • 0 l ) £ l0 l(0 2 " 1 ‘ * * g Z U ) * * ^ 1 " ‘ 9  

by (61),

=  X (t '{1 • • • t^25aa i0n_2 • • • 0 1  to n - 1  • • • 0 l ) * i 0 l t f  tor1 • • * 0 n - l ) 0 iT 1 • • * i 

by (62').

Since, by (o3'), t o n - i  •  •  •  0i)*i0i*itof1 •  •  •  gZi i )  is 

'  fc-i

(0n-l •••02) <

t o - 1) 5^01*1 i^ 1*i+<
*=i

+  £a0i*i 4-
fc-1

t=l

=  to -  1) Ei=lL 0n—1 • • • 0201^"t0 r102~1 • • • 0n-l*l+<

+ £|0n-l • * • 020102"* * • ’ 0n-l*l

+ ( 1 - 0 )  E i Z l  0n—1 * * • 020l£f+S~t0 r 102'1 • * * 0n-lt l

=  (9  ~  1) E S  t f - * * l + i +  W 1 • • • 0 n —20n—1 • • • 0 l t j

+  d - 9 ) E i = l t n +S~ %

by the definition of t'n  and using (bl).

9n- l a 2)

'»-l«2)

?n-3a2)
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Therefore, continuing the computation of LHS, we obtain 

=  ( ? - ! )  E fai1 T k - i X ( t I 1 • • • C -2SQ:l(^n-2 • • • g i K + ' i g T 1 • • •

+  z • • • C l5 aai(ffn-2 • • • 5l)*l+fc(^r1 ' ’ * 5n-3)a2)

- ( ?  -  1) E f e l1 T -fc+ a-iX ^ 1 • • • C l5 * a i(^ „ _ 2  • • * 9 l ) t \ g Z l  • • • 9 n - 3^2) 

by 2.2.2(4) and (2), and the above,

=  Z(Q -  1) E t i  Tk- i X ( t ' { 1 • • • f e ’ o n te n -a  • • • • • • g ~ l3)0:2)

+  Z 2  X ( t ' xa i  • • • C - 2 2 a l ( 0 n - 3  • •  • ^ l ) t i + f c ( 5 r l  • • • 9n-3)a*)

~ z ( q  -  1 )  E t l 1 T k + s - i X ( t ? 1 ■ • • C - 2 2 a l ( ^ n - 3  • • • S l f e f 1 • • • 9 n - 3 a l )  

by 2 .2 .2 (2 ),

=  -  1) E S  ^ ( t f 1 • • • C -5aoiC^fl?a)

+  z2

- * ( 9  -  1 )  E f e i  T k + s - i X t f 1 ■ • • t ' * z l 2 a i t « _ 2 a 2 ) 

by definition of t 'n _ 2 .

RHS =  • • • t e 2 (</n -i)fc(C )^ i9 n -2 a 25n-i) in (*)

=  • • ■ t n - 22 a i ( t n - i ) k 9n - 2 ( t n ) s 9 n - i < X 2 )  by commutativity,

=  X ( t ^  • • • C - 2 2Q!l ( 9 n - 2  • • • 9 l)< l  ( ^ f 1 • • • 9 ^ i 2)9 n - 2 ( « /n ) 39 n -lQ :2 )  

by definition of t(fLl5

=  X ( t f l • • • C l 2 2o!1 0 n - 2  • * • 9 x t \ g ^  • • • 5 n - 3 9 n - l ( < n - l ) 3Q!2 }  

by cancellation and (t'n)a =  gn-i(t'n- i ) sg~li,

=  zX (t' i l ■ ■ ■ t'*Z2'<Xl9n-2 • • * flitfo -1 • • • 9n-39n-2 * * ■ 01 ’ ‘ ‘ 0»-2a2)

by 2 .2 .2 (2 ),
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=  z X ( t ' { 1 • • • C - 2 Sq:1 £ " - 2  * • • 9 l t i9 n -2  • • • 9 l ( 9 2 l  ' *' 9^-2^191 1 * • * 9n~2a l )  

by (61),

=  zX { t '? 1 ■ • • t'na"22a:i0n-3 * • * 9 i(9n -2  • • ■ 9 i ) t \ 9 i t \ g ^  • • • g ~ l 2g y l • • • g~L3a 2) 

by (61) and (62').

By (a3'), (gn - 2 • • • g2) g i • • • 0 ^-2 ) is

(pn- 2  • • • g2) <

fc-i

i=l

* (^2 1 ‘ ’ 9 n —2)'
fc-1

t=l

RHS

=  Z(Q -  1 )  E j L l 1  T f c _ i X ( ( < i ) a i  •  •  •  ( ^ _ 2 ) a " _ 2 a l ( 0 n - 3  • •  •  5 l ) t i + < ( 5 l  1  • • * 9n-s)a2)

+  Z2 X ( ( t ' ) ai • • • ( t ,n _ 2 ) J' - 2« l ( ^ n - 3  • • • < 7 l) t f ' ‘'(Pi’ 1 • • * ^ ) 0 S )

“ *($ -  1 ) Efeif T U *-i^((«l)Jl • • • (C -2)an_3Q:i(5n-3 • • • P lM te f1 • * ’ 9n-z)a2) 

by 2.2.2(4), or (61) and 2.2.2(2),

=  z(q -  1) T,i=l 7-fc-iX((ii)ai • • • ( tn -2)Sn-*<Xlt'n±2<X2)

+  Z2 X fft)'*  . • • ( C 2), "-S« 1& 2 )

~ z (q -  1) E fe i1 % . - ^ ( ( < i ) 4‘ • • • K - 2)an- 2<Xltn -2<*2)

This completes the case (5 ) .

Case (6 ) gn- i  occurs in /?.

Let (3 — ct\gn-\OL2 where a \ a 2 6  H(An- 2), then we want to show 

the following:

X U h - t f '  • ■ ■ t»*;5’ « . - i ) ‘ ( 0 * < » if t .- io a )

=  X ( t [ "  ( « )
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LHS and RHS denote the left and right hand sides of (**).

LHS =

=  *(<?' • • ■

since on e  H (A „-2), and (O *  =  9 n -i(C -i)* 9 n -i.

=  ( « - l )  X (t\"  - f c V i l C / a i f i - i r a j )

by using a„_t =  (5  -  1 ) +  4s~.ii,

=  z(q -  1) X ( t? ‘ • • •

+ 4  X(i;*' • • • C i V n - i ( C - i ) ‘<»i9 ^i(i'„-i)*c«2 ) (a)

by 2 .2 .2 (2 )

RHS =  X ( t? ‘ ■ ■ • f c ’ ( « U ) ‘ ( 0 ‘,<*xS»-x«2S..-x)

— X ( t f ‘ ■••CZ;I K _ i) i a i9 » -i(i^ _ i)'a 2 9n -i)  by cancellation,

= (4 -  I W  ■ ••t^ ia( < - i ) ‘ « x « U ) , as9 n -i)

by expanding ^n _ l5

=  z(q -  l)X(t["  ■ ■ ■ t ^ r « n - x ) ‘ ax(«;-i)*a2)

+ 4X(t;*' • • ■ C r ( « i - i ) ‘ « i9 ii(C i)* < » J 9 » -x ) (b)

by 2 .2 .2 (2 ),

Since the first terms of (a) and (b) are the same, we reduce 

the assertion to

X(t\"  ■ ■ ■ f c ’S n -x ttU )* —  a iiC iiK .-i)* °» )

=  X  ( t ? 1 ■ • • t'^zf W ,_x  “ iA T - i ( * ! . - i ) ““ 2 9 » - i )
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Since (3 =  c*i <7,1- 10:2 in normal form of H(An- 1), 

oc2 =  9 n - 2 • * • 9 n -P for some p.

We prove here the case in which o-i =  a 3gn_2ct4 and a 2 =  gn- 2<*5 in 

normal form, by induction on sn_i.

LHS and RHS are again the left and right hand sides of (**•).

If sn_ x =  0. 

LHS =  X t f '  ■ • •

=  X ( tJ 1 • • ' t n_2 9n—l <̂3gn—2a49n—l(^n—l)a9n—2a5)

=  X (t /ai • • • t'n-2? azgn-\gv.-2gZ-\a49-n.-2(t'n- 2Y a$) by cancellation,

=  X {t'fl •••C -2aQ!3 ^ I 2^n-l^n-2a4^n-2(<n-2)*Q:5) by (61),

=  2 2  X(t[a1 • • • f c 2 « 3 0 4 K - 2 ) ^ 5 )  ( C )

by repeated use of 2 .2 .2 (2 ).

RHS =  X(t'*' ■■•t'*l?alg - l x{t'n_ iyg n- 2C*s9n-i)

=  X (t£ l ■ • • t'n-22a i 9n - i9n -2{t'n- 2Y 9n-iCC5) by cancellation,

=  X(t[s' •■-t'*ll'algn- 2gn- lg - l 2{t'n_2y a s )  by (61),

=  2  X(t[Sl •■■Cl22a3gn_2a4 (tln_2y a i ) by 2.2.2(2) and ai  

=  z2 X ( t [31 • • • C lS ’^ W C * ) * ^ )  by 2.2.2(2) again. (d)

Thus (c)=(d) proves the case sn- i  =  0. Assume the assertion is true for 

•Sti-i <  k  — 1. Let s n_ i  =  k.  We use an argument similar to the previous case. 

LHS

= X ( £ j  1 • • • t n _2 g n —lCX3{tn—i ) kg n —2&49n L l(^ n —l ) a9 n - 2 a 5)

= X { t ,ai • ■ - t'al 2*CLzgn-.ign- 2t*_.2g~llCL4Lgn- 2{t,n_.2)aas) by cancellation,
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= X ( t? 1 ’ • •C l2 2a39n-29n-ign-2(t,n_2)k)a4gn-2(tn-2)aas) hY (61)>

=  *2 X { t ^  . • • C - i S« 3 (^ -2)&)«4(^ -2 )^ 5)

by repeated use of 2 .2 .2 (2 ) and cancellation.

RHS

=X{t'{'  • • • C -2 2a3(in_l)fc5n-2«4^i.iK -l)^n-2Q :5^n-l)

= X ( t '*1 • ■■t'*2.22oi3gn- 2tn3a4g ~ l1gn- 2(tn-2)agn-i<X5) by cancellation 

= X ( t '{1 • • • C"22a39n-2tnja4^n-29n-iyn-2(tn-2)'5a5) 

since gn_^gn—2gn—i — 9n—29n—i9n—2i 

=  z2 X ( t '*1 ■ • •

by repeated use of 2 .2 .2 (2 ) and cancellation.

This proves the last case (6 ). □

2 .3  A  p o ly n o m ia l in v a r ia n t o f  lin k s  in  a  so lid  to r u s

We define an invariant of links in the solid torus using the trace map 

in section 2.2. We represent an oriented link in 5 1 x D2 as a closed braid 

in Bn(Ann). In order to be well-defined, two braids that differ by a Markov 

move must give the same result. We adjust the representation 7T of the braid 

group into -ffn(§) as did Jones, and S. Lambropoulou.

We can find 6 e  R  such that tr(a(9gn—i)b) =  tr(a((9gn- 1)- 1)6 ) for 

ab 6  Hn~ i ( | )  where 9 6  R, the coefficent ring.

We calculate as follows:

92tr(agn-.x)b) =  t r ia g ^ b )  =  q~Hr(agn-ib)  +  {q~x -  l)tr(a6 )

92ztr(ab) =  q~1ztr(ab) +  (g- 1  — l)£r(a&)
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52 =  (g- 1z + ( 9 - 1 - l ) ) z ~ i

Let X =  02 =  (z +  1 — q)q~l z~l where z =  —

Thus the adjusted representation n \  on cri is ir\{(Ti) =  \ / \g i  and 

n\(t)  =  h ,  while 7r(crf) =  and %(t) =  *i. Thus, 7Ta(q:) =  V X ^ a ) , and 

t is not counted in the exponent sum e of a. Let Bn(Ann) be the braid group 

of annulus.

Theorem 2.3.1. Let Z  : \ jB n(Ann) —► C(\/A, <7)[ri]<ez be deGned by 

Z(a) =  TX(tt\(<x)) =  (—(1 -  Xq)/y/X(l — q))n~ l (y/X)eX(Tr(a)) where 

T  =  (y/Xz)1-n =  (—(1 — Xq)/y/X(l — ?))n_I, e to be the exponential sum of 

(Ti’s in a. If a  € Bn(Ann) is a braid representative of the closed braid a  =  L 

in S 1 x D 2, then Z(L) =  Z{a) is a link invariant of links in S l x D 2.

Proof: Since any two representations in Bn(Ann) of a link differ by 

conjugations and Markov moves (see [LA]), it is enough to see that

(a) Z (o0a“ l ) =  Z(P)

(b) Z(aon) =  Z(a) if a  €  Bn(Ann)

(c) Z(acr~1) =  Z(a) if a  £ Bn(Ann)

(a) follows by X(ab) =  X(ba), Theorem 2.2.3.

Z{aon) =  (\/A2)1-(n+1)v/Ae(0lff")A'(7r(acrn))

=  ( \/Az)1 - ( n + 1 ) X(Tr(a)gn) with 7r(a) 6  Hn- 1( |) ,

=  (y/Xz)l - ( n+Uy/F(a)y/XzX(ir(a)) by 2.2.2(2),

=  ( v / A z ^ x / T ^ M a ) )

=  Z(a) which shows (b).
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Z ( a O  =  ( y / \ z ) 1' l" + 1)y/X *aaZl)X (v(a<rZ1))

=  (y/X.z)l ' l n+l) V ? ia)V r lX (n (a )g ;1))

=  (VA«)l -(»+l) V T (a) VT"1^ - 1* +  (<Tl -  l))X(n(a))  

as g~l =  q~lgn +  (q~l — 1), and 2.2.2(2) applies,

=  (y / \z ) l - W ) V T (a)VXzX(ir(ct))

a, y r '\rl*+ (<r‘ -  0 ) = *$£* = = V I,

where 2 =

=  ( y / X z ^ y / F ^ X ^ a ) )

=  Z(a).

Hence Z  is indeed an invariant of links in solid torus. □

Theorem 2.3.2. The map Z satisfies the skein relation:

Proof:

Let L be an oriented link diagram. For a single crossing in L, let L+, L_ 

and Lq be the three diagrams that are identical except in a ball containing 

only the crossing(see Figure 2). By a sequence of applications of elementary 

deformation (section 1.2), the links turn into closed braids without changing 

inside the ball [S], [LA]. Then, the crossing depending on the sign becomes 

either o'* or er” 1 for some i in the braid representatives of the closed braids.

We may express the braid representatives of the links as aoib, aa~xb, and ab, 

respectively.
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By the relation #  =  (q — 1) +  qg^1 in # „ (|)>  we obtain the following 

identity, X{nr{aaib)) — q X(n(aa^l b)) =  (q — l)X(n(ab)).

Let e be the exponent sum of ab, then that of aafi is e +  1 and that of aa~l b 

is e — 1.

Multiplying the identity by T -^ -, we get 

^ r ( v ' A ) e+1X(7r(a<r<&)) -  J q V \ T y / F ^ X ^ a * ' ^ ) )

=  (y /Q - ^ )T V T x (ir (a b ))

Then’ ~^7 xT X ^ x(<a(Tib̂  ~  y /v f f iX {T r \{a a rxb))

=  ( y / q - ^ ) T X { ^ x(ab)) 

since 7T\(a:) =  7r(a).

By the defintion of Z(a),

- j l j - Z ^ b )  -  =  ( y /q - ^ ) Z ( a b ) .

Thus- ~  y /i 'K Z b -  =  (%/5- - f c Z i , -

This shows that Zl satisfies the skein relation. □
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C H A P T E R  3 . R E C O R V E R IN G  O T H E R  I N V A R I A N T S  

3 .1  R e c o v e r in g  o th e r  in v a r ia n ts  

We take S 1 x D2 to be the standard unknoted torus in S3 and consider 

the map from links in S l x D 2 to links in S3. We first want to recover the 

HOMFLY-PT link polynomials defined by Jones in S3, and Lambropoulou’s 

polynomial invariant of links in S 1 x D 2 from Z l  defined in section 2.3. Recall 

that for t G Bn{Ann), the braid group of annulus, ir : Bn(Ann) -* Hn{\)  

is defined by ir(t) =  t\, ir(cri) =  gt, while ir\ : Bn(Ann) -> fln (j) defined 

by ir\{t) =  ti, ir\(<Ji) =  >/A We denote the trace maps depending on the 

algebras as tr on fiT(An_i), X b  on H(Bn), and X  on 27n(|).

T h e o r e m  3 .1 .1 . Let Z l  =  Ylk **™1* hk('/^,q)vk({Ti}i€'z) where Vk 

is a finite product of Ti’s, then the HOMFLY-PT polynomial X l  in S3 is 

■Yl(‘'/A, q) =  Y ^ ' fxnxte hfc(\/A, q), i.e., X l  is Z l  with Ti =  1 for all i.

P r o o f:

Let cf) : Hn( | )  H(An- i ) be defined by <j>{ti) =  1 and 4>(gi) =gi.

Then (j> is an algebra homomorphism such that ai t \ l,i • • • n̂n iOi)

=  Yli aia i where • • • tnn 'oci is a basis element of Hn(^) and 

is a basis element of H(An^i). Since both trace functions defined on 

Hn(^) and H(An- 1) are linear maps, it suffices to show the following: if 

X((t'i)51 • • • ( t /n_ i ) Jn"l (*n)4nQ!) =  / fc(g,2)ufc, then tr(a) =  £ * /* (? )2) 

where X  is the trace map defined on Hn(^), while tr  is the trace map on 

H{An.  i ) .

63
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We prove it by induction on n.

For n =  1, the algebras are Hi( j)  and H(Aq), it is true since X((t/1)aa) =  ra 

where a  =  1, and tr(a) =  tr( 1) =  1. Assume that the assertion is true for 

every j  <  n — 1. For j  =  n, a  € H(An- 2) or a  =  a:i<7n-io =2 as a basis element 

of iJ(An_ 1).

If a  € H(An—2),

=  • • • (C - i)3"-1*) by 2.2.1(2)

=  r,n E t  /fc(g, z)ufc by the induction hypothesis,

=  T,kfk{q,z)ranvk

By the induction hypothesis, tr(a) =  f k(q, z).

If a  =  aign- i a 2,

=  * ((* l)31 * * • (tn - l )an- l (tnYn<*l9n-ia2)

=  z X ( ( tx)-i • • •

by 2.2.1(3),

=  2 E*: fk{q, *)«* =  Efc2 /*(?> 2K

We have t r (a ia 2) =  Efc/fc(?iz) by the induction hypothesis, thus,

tr(a) =  tr(ai^n_ ia 2) =  ztr(aia2) =  z Efc /*(?>2) =  Efc2/fc(9>2)> “  

required. Therefore,

• • • # » a )  = (v /A2)1- nA/TX(t'1ai • • • # » a )

=  (yAz)1_n\ /E  Efc /fc(?> 2)̂ fc,
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=  12k M  q)vk by letting /ifc(V% q) =  ( f k(q, z).

Since • • • t,3na) =  a, and 

X a=  ( V X t r ( a ) ,  the polynomial of a e  # (A „_ i),

=  { ' / \ z ) l - ny/>?Y,kfk{q,z)

=  12k hk(V l, q) since hk(Vl, q) =  (y / \z ) l~n /̂>2 f k[q, z).

□

Recall, from section 2.1, p : Hn( | )  -> H(Bn) is defined by p(gi) =  gi and 

p(ti)  =  t \ .  Thenp(a<2/?) =  (Q — i)atiP+Qa(3, for any a, (3 (see [LA]). Recall 

from the introduction that =  {^/\z)l~nXB o p o tt\ ( oc) is the invariant of 

Lambropoulou where ir is a representation of Bn{Ann) to H {Bn), the type-B 

Hecke algebra, and n\(a)  =  y/12 ir (a).

Theorem  3.1.2. Suppose L is a link in S l x D 2. Then II  =  Z£,({air +  

£>t}»ez) where a.i,bi € C[Q\, and formulas for a,-, b{ are given below.

Proof: A basis element of Hn{\)  is of the form

A =  ••• (t'n- i )Sn~1 {t'n)an P, for /? a basis element of F ( i n_ i). In

H(Bn), for any integer s, pit'*) =  a3 t'i +  ba, with as,6s as follows:

=  Q3-1 — Qa~2 H 1, 6a =  Qa~l — Qa-2 -1------ (- Q for s >  2 even,

aa =  Qs_1 -  Qs~2 +  • • • +  1, ba =  Q3- 1 -  Qa~2 +  Q for s >  2 odd.

cl\ =  1, b\ — 0 

ao =  Oi =  1

a3 =  Qa — Qa+1 -I — Q~l , b3 =  Qa — Qa+1 H F 1 for s negative even,

a3 =  Qa — Qa+l H h Q-1 , ba =  Qa — Qa+1 H 1 for s negative odd.
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The above formulas are seen for t \  by noting that p(t{)  =  p(tl)p (t{~ 2) =  

((Q  — l)ti +  Q )(aa- 2h  +  ba- 2). One can check that the formulas satisfy the 

recursion. Then note that p(t^) =  p(p* _ 1 • • • • • • gT-i) — p(ast'i +  ba).

Thus, for A =  (ti)-i • • • W &

p(A) =  (a # lt i  +  b3l)(aa3t'2 + & „ ) • • •  (<aaJ 'n +  b3n)P

with aSi, b3. in C(q, Q, V \) .  Thus p(A) is expanded as:

P(A ) =  E (r ie .= i ^ ) ( n ,= o  bai)(t'i)ei • • • (tn )enPI a sum over the set

{(ei, e2 , • • •, en)|e* =  0 or 1, Si 0}. Each term is a basis element of 

H(Bn), the basis of which is {(ti)*1 • • • (t'n)en(3\ei =  0 or 1}, /? is a basis 

element of H(An- i). Suppose L is the closed braid a. Since poir\ =  y/A*po7r, 

(VXz)l ~n(XB op o irx(a)) =  ( ^ z ) l - nV F (X B op  o 7r(o:)) is consequently the 

polynomial invariant I  applied to L.

Below we define a map p«. Consider the diagram below. The two 

maps 7r are different. One is the representation into the other S.

Lambropoulou’s into H(Bn).

B„ -A  H„ C(q, v'AJMig, (,/^ ' "  C{q,V\){r.;]ie2

l i d  p I  p„ !  p* I

Bn -Z* H(B„) ^  C(4, Q, \/X)[r] (v̂ ' "  C(q, Q, v )̂[r]

Let’s define p. : C(g, ■\/A)[rt] <ez “► C(q, >A)[r] by p*(ri)

=  (a,,, t +  &,.). So =  T , ihi( \f t ,q )Y l3i {a3iT +  b3i)mi

for all Si S TL. Except for the common factor of y/A*, the bottom row gives 

the invariant I , and the top row gives the invariant Z.
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Hence the proof of the theorem will be complete when we show the diagram 

commutes. The first square commutes by the definition of the maps.

We show that p* satisties p» o X  =  X B op by induction on n.

For k =  1, p* o X ^ Y )  =  p*(rs) =  a3r  +  b3 and 

X B op((t'x)a) =  X B(a3t x +  b3) =  a3r  +  6,.

Assume it is true for every k <  n — 1. For k =  n, let 

• • • (t,n- i ) an~l (.in)Snac be a basis element with a  E H(An_2) or a  =  

OL\gn—\dt2 as a basis element of H(An- X). If a  E H(An- 2), then 

p* 0 Xiit'x)*' • • • ( t n _ l ) an- l ( tn )3na )

=  P»Cr»n* ( ( t i ) 51 • • • ( C i )Jb' 1“ )) by 2.2.2(4),

=  (a«„r +  6*n)p*(X((ti)31 • • • (tn-i)*n_1«)) 

by definition of r.

On the other hand, X B o p((ti)*1 • • • (t'n_ x)an- 1 (t'n)an a)

=  * B ( p ( ( * n )* n ) p ( ( * i ) ai • • • (* n - l ) * n' , aO)

=  X B({asj ' n +  b3n)p((t[)ai ■ • • K _ i) an"lQ))

=  * * x Bp n p ( W '  • • • ( t U ) * - 1*)) +  bSnx B 0 • . • ( t U ) 5"-‘«))

=  a3nr X B(p((ti)si • • • la))

+bSnX B o p({t'x)a' • • • K _ i ) 3"-la:)) 

by definition of X B,

=  (a*nT +  bsn)^B(p((t'i)Sl • • • (tn_i)3n_la))

=  (asnr  +  b3n)pm(X((t,1)a^ - - ( t ,n_ l )a—^a)) 

by the induction hypothesis.
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If a  =  acign-i<X2, then

P* ° • * • (*'n—i)4n- l (*n)’"a)

=  p.(X((t'1)Sl • • • i)a"-l (*«)4n<*i0»-i<*2))

=  PmizXiit^Y1 ■ ■ • (t/„_i)an- 1a i ( ^ _ 1)a’*a2)) by definition 2.2.1,

=  P *(z)P *(X (( t 'l )ai ( t 'n - l)an- l <*l(t'n - l ) Sn<X2))

=  Z P* O X d t't )*1 • • • (t'n_ i y n- lai(t'n_ l )ana2); since p*(z) =  z.

And X B o p((«i)31 • • • (^ _ i)4n"l (tn)4n«)

=  X B ( p { { t i ) a i  ■ • • (<n—l)4n_l(*n)4n<*10»-ia2)

=  *b(K(*'i)41 • • • ( C - i )an- 1)p((t'n)an)ocign- i a 2)

=  X s ip t t t t i* ' .. • ( f U r ' - O K t 'n  +  ban)a ign^ a 2)

=  asn X B (p( (t'i )31 • • • (t/n_ l)Jn- l )tna l^n-lQ!2)

+6»„^B(p((ti)41 • * * (tn-l)4"-1 )<*lSn-lO:2)

=  aanz X B{p{{t'x)ai ■■■{t,n_ l )â ) a l t ,n_ l cc2)

+bSnz X B(p((t[Yl ' • • (tn-i),n_l)Q!i Q:2 ) by definition of X B,

=  z X s ip d t^ Y 1 ■-■(t,n_ lY n- l )a1(aant 'n_ 1 +  ban)a2)

=  z X s o p ^ Y 1 ■•■{t,n_ lY n- la l t '^ l a 2)]

=  z pm o X ((ti)31 • • • by the induction hypothesis.

Hence, pmo X  =  X B op  as required.

The last rectangle is commutative since the maps from C{y/A, ?)[Ti],gz 

to C(q, Q, >/A)[ri]i€z and C(g,Q, >/A)[r] to C{q,Q, \/A)[t] are just 

multiplication by the constant T  =  (\/Az)1-n. This completes the proof. □
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Remark. The polynomial X(ir\(a)) is a regular isotopy invariant of links in 

a solid torus. Moreover, it  satisSes a skein relation:

H , : ^ * ( 1̂ ( 0 + )) -  V W X X (* x (a - ) )  =  - ■ f r ) X ( * x( c » ) ) .

Proof: The relations , Oi<T~x =  1, and Oi<Xi+iOi =  <ri+i<xi<xi+1, in Bn(Ann) 

and the property X(a~1ba) =  X(b) in Theorem 2.2.5 show that it is a regular 

isotopy. For the skein relation, it is much the same as the case Za proved in 

section 2.3 omitting multiplication by T  := (\/Xz)1-n (see Theorem 2.3.2).

□

Remark. The three trace maps, tr  on H(An- i ) ,  X b on H(Bn), and X  on 

fTn( |) ,  all satisfy the following list of properties:

(1) t r W „ - i)* S » - l)  =  z . tr ' t f )  if/3 6 * ._ ,($ ) ;

(2) (r'(ag„_i) =  ztr'(a) i f  a  €  flW-i(j) and

a  is not of the form P{t'n_ x)5 as in (1).

(3) tr'{a{t'nY) =  l3tr'(a) if  a  € Rn- i ( j ) ;

(4) tr'(l) =  1.

If zs =  z  and l3 =  1, then tr ' =  tr  for type-A Hecke algebra.

If zs =  z  • (asr  +  b3) and l3 =  (a3r  +  b3), then tr' =  X b  for type-5 Hecke 

algebra.

If zs =  z t s and l3 =  r3, then tr’ =  X  for algebra Hn(^).
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