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Abstract 

A nonlinear stabilizing control scheme based on Lyapunov theory is proposed for a grid-

connected hybrid photovoltaic (PV)/ battery/supercapacitor (SC) system. The system dynamics is 

developed in the stationary reference frame, and the state-space model of the system is derived 

and used to formulate the Lyapunov function (LF) candidate. The global asymptotic stability of 

the LF-based controller is discussed in detail. The real-time implementation feasibility of the 

proposed control scheme is validated through hardware-in-the-loop (HIL) studies of a grid-

connected hybrid system under solar energy generation and grid load variations. To address the 

issue of digital computational time that leads to delays in the grid-connected systems control, a 

novel delay-compensating stabilizing feedback is provided. The proposed control is based on 

delay-compensating chain predictors for bilinear systems, and it features real-time implementation 

feasibility and global asymptotic stability to desired reference trajectories. Real-time simulation 

results of a grid-connected PV/battery/SC verify the efficacy of our method in controlling its 

dynamics in the presence of digital implementation delays while ensuring the delivery of desired 

power to the grid. 
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Chapter 1. Introduction 

The adversary effects of fossil fuel-based conventional power systems on the environment 

have caused a global shift in research toward grid integration of renewable energy sources (RESs). 

These RESs have become the beacon of hope for a sustainable future because of their resilience, 

sustainability, energy security, economic feasibility, and environmental benefits. Owing to 

technological advancements in the field of power electronics and semiconductor devices, grid 

integration of RESs has become increasingly feasible in recent years. RESs, such as solar, wind, 

and ocean power, contribute to a significant amount of energy generation and act as an alternative 

to fossil fuels. Power electronic converters act as the bridge for interfacing RESs with the grid [1]. 

Due to the stochastic and intermittent nature of RESs, there is an inevitable need to utilize energy 

storage systems (ESS). These ESSs are needed to compensate for the intermittency and variability 

of RESs that may lead to grid instability and affect reliability.  

The main purpose of ESSs is to aid RESs in enhancing reliability. Battery energy storage, 

pumped storage, flywheel-based energy storage, compressed air energy storage, thermal energy 

storage, and supercapacitor-based energy storage are some of the most commonly used ESSs in 

the present-day market. Table 1 summarizes different types of ESSs, their advantages, 

disadvantages, and applications. 

The battery-supercapacitor (SC) HESS is increasingly becoming popular as it features high 

energy and power density thanks to the battery and SC, respectively. In addition, an efficient 

energy management strategy can provide a smooth power profile for the battery, leading to its 

extended lifetime. 

 



2 
 

Table 1.1. Summary of different energy storage systems 

Type of ESS Applications Advantages Disadvantages 

 

 

Battery 

Portable devices like 

mobile, laptop 

charges, regulate grid 

fluctuations, electric 

vehicles 

High energy density, 

high efficiency, proven 

technology, easy 

accessibility, wide 

range of energy 

capacities 

Low power 

density, high 

maintenance, slow 

response times, 

high costs, limited 

resources, heating 

issues 

 

 

Supercapacitors 

Regulate peak load 

grid fluctuations, rapid 

energy applications, 

supplements to 

batteries in electric 

vehicles 

High power density, 

high efficiency, low 

maintenance, easy to 

integrate with other 

storage systems 

Low energy 

density, low 

energy capacity, 

high discharge 

rates 

 

Pump storage 

Large scale energy 

storage, during peak 

demands 

High efficiency, energy 

trading, reliability, high 

energy capacity 

High maintenance, 

geographical 

requirements, high 

costs 

 

Flywheel 

Electric vehicles, 

regulate power supply 

in semiconductor 

manufacturing 

Low cost, high power 

density, easy and fast 

access, reliability 

High maintenance, 

problems with 

self-discharge, 

limited energy 

storage 

 

Compressed-air 

storage 

Peak shaving, grid 

stability 

Low operating costs, 

long life span 

High losses, low 

efficiency, 

complex to 

integrate with 

RESs 

 

Thermal storage 

Solar thermal power 

plants, thermo 

chemical storage 

systems 

Peak demands, 

robustness 

Hazardous, high 

maintenance, high 

costs, high losses 

 

It can be seen from Table 1 that none of the ESSs possesses all the desirable qualities of an 

ideal ESS. Therefore, a hybrid energy storage system (HESS) comprised of a battery that has high 

energy density and a supercapacitor (SC) that has high power density can be a viable solution to 

energy storage [2]. 

Voltage source inverters (VSI) are the enabling technology for integrating and interfacing 

RESs with the grid. Control of VSI has been the topic of interest for researchers in the field of 
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power electronics in the past few decades and has been extensively studied in the literature. Grid-

connected photovoltaic VSI with HESS comprising battery and supercapacitor can be a promising 

solution to meet energy demands, extend battery life, and maintain grid stability. In these systems, 

the control objective is to regulate current, voltage, and power.  

Different topologies with new strategies have been proposed to control VSI and HESS in the 

literature. The most popular controllers used are conventional proportional integral-based 

controllers, sliding mode controllers [3], model predictive controllers [4], and observer-based 

controllers [5]. While most of these controllers focus on the system performance, very few present 

a detailed stability analysis. Motivated by this lack of studies, chapter 2 presents a Lyapunov 

function-based control scheme for a grid-connected hybrid PV/batter/supercapacitor system. 

Control schemes of grid-connected VSIs/HESS are implemented on digital signal processors 

(DSPs). The analog current and voltage measurements are sent into DSP. After being processed 

following the control algorithm, control inputs are generated in the form of switching pulses 

through a pulse width modulator. The time for analog-to-digital conversion and control signal 

generation, which is known as digital implementation time, will lead to time delays that can cause 

stability issues in the system [6]. The complexity of the control algorithm directly affects the 

control signal generation time, i.e., computational time. Digital implementation delays in power 

electronics converter control due to computational complexity can have a detrimental effect on 

stability and system performance. In the literature, various works have been proposed that can 

compensate for arbitrarily long input delays. Still, these control techniques can pose a problem 

because of their complexity which can, in turn, increase the computational time delay. This 

motivated the development of the concept of sequential predictors for delay compensation. 
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 Chapter 3 presents a novel control technique based on sequential predictors for delay 

compensation in bilinear systems with uncertainties. Chapter 4 presents the application of the 

theory developed in Chapter 3 for constructing a delay-compensating stabilizing feedback 

controller for a grid-connected PV/hybrid energy storage system. Conclusions and future study 

plans are presented in Chapter 5. 
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Chapter 2. Lyapunov Function-Based Stabilizing Control Scheme for a Grid-

Connected Hybrid PV/Battery/Supercapacitor System 

 

2.1. Introduction 

Although renewable energy sources (RESs), such as photovoltaic (PV) and wind energy 

conversion systems, offer significant environmental benefits, they are associated with the 

disadvantage of non-uniform and fluctuating energy and voltage outputs due to uncertainties and 

variations in the environmental conditions [7]. With higher penetration of RESs, energy storage 

systems (ESSs) are needed to ensure power backup and enhance power flexibility in the power 

grid. A hybrid energy storage system (HESS), a combination of two or more ESSs with 

complementary characteristics, is an environmentally friendly alternative suited to address drastic 

load fluctuations, thus leading to efficient management of power. The battery-supercapacitor (SC) 

HESS is increasingly becoming popular as it features high energy and power density thanks to the 

battery and SC, respectively. In addition, an efficient energy management strategy can provide a 

smooth power profile for the battery, leading to its extended lifetime.  

To improve the grid current quality at mid- and high-power applications, an inductor-capacitor-

inductor (LCL) filter must be placed between the grid and the inverter. Therefore, this work 

considers such a filter at the output of the three-phase grid-connected PV inverter. In grid-

connected converters, the common control objective is to regulate voltage, current, or power. 

Several works in the literature propose different approaches to achieve this goal. The sliding-mode 

control (SMC) has shown features such as simple implementation and robustness against external 

disturbances and system parameter variations. In [8], a linearized model of the three-phase inverter 

with an LCL filter is used to design a pulse width modulation (PWM) based SMC. Thanks to 

linearization, simplified switching is achieved, and determining a stability region based on 
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classical control theory is made possible. However, the frequent change in sliding gain results in 

weak dynamic response during load variations. In addition, PWM-based-SMC suffers from steady-

state errors in voltage output. In [9], a modified SMC that eliminates the need for filter capacitor 

voltage and grid current sensing is proposed. The proposed method also eliminates an additional 

term in the sliding surface function, commonly used to reduce the grid current error. However, a 

complete stability analysis that ensures global asymptotic stability needs to be provided. Another 

promising control strategy for grid-connected converters that has been extensively studied in the 

literature is model predictive control (MPC) [4].  

In [10], the issues that arise with the use of voltage sensors in conventional control techniques 

like direct-power control, grid voltage-oriented control, and direct current control is discussed, and 

an MPC strategy for grid-connected inverters without using ac voltage sensors is proposed. To 

achieve sensor less control, L. Guo et al. designed a sliding-mode observer to estimate the grid 

voltages, thereby mitigating costs associated with voltage sensors. Despite these advantages, one 

major drawback of the MPC is the computational burden, which becomes a significant problem in 

duty ratio modulated, multiple-vector MPC, and multilevel converters. To overcome this issue, E. 

T. Andrew et al. proposed a duty ratio modulated model predictive current controller that reduces 

the computational burden by half using an extended complex Kalman filter (ECKF) [11]. In 

addition to computational complexity, other disadvantages of MPC-based strategies are sensitivity 

to system parameter variations and degraded dynamic performance in case of load variations. 

Disturbance observer-based controllers are commonly used to improve dynamic performance [5]. 

In [12], a disturbance observer combined with a state feedback controller is proposed to 

compensate for the current disturbances caused by the variations in load resistance and inductance. 

However, the controller is designed only to compensate for sinusoidal disturbances with a known 
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frequency. A disturbance observer based robust MPC is proposed in [13] to minimize voltage 

sensors and improve dynamic performance. In summary, control strategies based on disturbance 

observers require accurate modeling, and their efficacy is highly dependent on the accurate 

knowledge of the parameters. Also, constructing a disturbance observer adds to the control 

complexity, leading to additional computational time delay. Very few works can be found in the 

literature that can ensure system stability, ease of implementation, and enhanced performance 

while offering robustness to parameter variations. 

 The Lyapunov function (LF)-based control methods have been implemented in various works 

in the literature due to features such as asymptotic stability of the equilibrium, robustness against 

load and parameter variations, and ease of implementation. Due to these advantages, LF-based 

approaches are used to regulate single-phase [14], [15] and three-phase ac/dc rectifiers [16], 

multilevel inverters [17], neutral point clamped converters [18], dc/dc converters [19], grid-

connected inverters and shunt active power filters [20], [21]. Ref [22] is one of the first works 

where an LF-based control strategy is implemented for power electronics systems, i.e., a 

buck/boost dc/dc converter. An LF-based control is implemented for single-phase grid-connected 

PV inverters in [15] that not only ensures the global stability of the closed loop system but also 

provides robustness against solar irradiance uncertainties. However, the robustness of the proposed 

LF-based strategies in [15], [17]-[19] is only against small ranges, and large disturbances can still 

affect the system's stability. To address this issue, [16] proposed a control technique based on 

Lyapunov's stability theory and applied it to three-phase rectifiers. The proposed method provides 

global asymptotic stability (GAS) and robustness against large-scale disturbances.  

The majority of the LF-based approaches for three-phase inverters are single-loop control 

systems, where current is controlled by placing the system poles near the imaginary axis. This 
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leads to system instability with a slight margin for robustness against disturbances or parameter 

variations. To overcome this drawback, [22] presented an enhanced LF-based control, where a 

second loop with filter capacitor voltage feedback is added to improve the damping performance. 

The addition of the second loop improves reference tracking of the grid currents. However, the 

non-strictness of the Lyapunov function, which is the major factor in guaranteeing GAS, is not 

addressed. In [23], an LF-based control for a grid-connected three-phase inverter with a battery 

energy storage system is presented. However, the battery reference current is obtained as the output 

of a proportional-integral (PI) controller, which is a time-varying quantity. At the same time, the 

presented analysis considers references as constant values. An LF-based method is proposed in 

[24] for controlling the distrusted energy resources in a hybrid ac/dc microgrid. However, like 

[22], the non-strictness of the Lyapunov function is not addressed. Ref [25], where an LF-based 

controller is proposed for wireless charging of electric vehicles, is one of the very few works that 

addressed the issue of achieving GAS with a non-strict Lyapunov function.  

To address the abovementioned drawbacks, in this work, we propose a stabilizing feedback 

controller for a grid-connected hybrid PV/battery/SC system. As shown in Figure. 2.1, the PV 

system is interfaced with the grid using a three-phase inverter with an LCL filter at its output. The 

battery and SC are interfaced with the dc-link capacitor of the inverter using individual 

bidirectional buck/boost dc/dc converters. The major contributions of this work are twofold: 

• Global asymptotic stability of the feedback controller for a grid-connected hybrid 

PV/battery/SC system is guaranteed. The controller is designed based on Lyapunov 

theory, and the non-strictness of the Lyapunov function is discussed and addressed in 

detail using LaSalle's invariance argument.  
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• The real-time implementation feasibility of the proposed controller is verified through 

hardware-in-the-loop (HIL) studies, where the PV, battery, SC, dc/dc converters and 

their control, and the inverter are modeled on an OP4510 real-time simulator from 

Opal-RT Technologies, and the inverter's control is implemented on a TMS320F28335 

digital signal processor (DSP). 

The paper is organized as follows. The hybrid PV/battery/SC system model is presented in 

Section II. The feedback controller with stability analysis based on Lyapunov theory is discussed 

in Section III. HIL results and discussions are provided in Section IV, and conclusions are drawn 

in Section V. 

2.2. Hybrid PV/battery/SC system model 

2.2.1. System Description 

Figure. 2.1 shows the schematic of a typical Three-phase grid-connected PV inverter with 

HESS. The PV source is modeled as a controlled current source and is connected to the three-

phase inverter via a dc-link capacitor. An LCL filter connects the three-phase inverter to the grid. 

The control signals are the PWM signals for the three-phase inverter and both the battery and SC 

bi-directional dc/dc converters. 
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Figure. 2.1. PV/HESS system circuit diagram and control scheme.   

 

2.2.2. System Dynamics 

The dynamics of the system in Figure. 2.1 are expressed as, 

𝐿
𝑑𝑖1𝑑
𝑑𝑡

=  
1

2
𝑑𝑑𝑉𝑑𝑐 − 𝑉𝐶𝑑 + 𝜔𝐿𝑖1𝑞 − 𝑅𝑖1𝑑 

𝐿
𝑑𝑖1𝑞
𝑑𝑡

=  
1

2
𝑑𝑞𝑉𝑑𝑐 − 𝑉𝐶𝑞 − 𝜔𝐿𝑖1𝑑 − 𝑅𝑖1𝑞 

𝐿
𝑑𝑖2𝑑
𝑑𝑡

=  𝑉𝐶𝑑 − 𝑉𝑔𝑑 + 𝜔𝐿𝑖2𝑞 − 𝑅𝑖2𝑑 

𝐿
𝑑𝑖2𝑞
𝑑𝑡

=  𝑉𝐶𝑞 − 𝑉𝑔𝑞 − 𝜔𝐿𝑖2𝑑 − 𝑅𝑖2𝑞 

𝐶𝑑𝑐
𝑑𝑉𝑑𝑐

𝑑𝑡
= 𝑖𝑝𝑣 −

3

4
𝑑𝑑𝑖1𝑑 −

3

4
𝑑𝑞𝑖1𝑞 − 𝑑𝑏𝑎𝑡𝑖𝑏𝑎𝑡 − 𝑑𝑆𝐶𝑖𝑆𝐶              
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𝐿𝑏𝑎𝑡
𝑑𝑖𝑏𝑎𝑡
𝑑𝑡

=  𝑑𝑏𝑎𝑡𝑉𝑑𝑐 − 𝑉𝑏𝑎𝑡 − 𝑅𝑏𝑎𝑡𝑖𝑏𝑎𝑡 

𝐿𝑆𝐶
𝑑𝑖𝑆𝐶
𝑑𝑡

=  𝑑𝑆𝐶𝑉𝑑𝑐 − 𝑉𝑆𝐶 − 𝑅𝑆𝐶𝑖𝑆𝐶 

𝐶𝑓
𝑑𝑉𝐶𝑑
𝑑𝑡

=  𝑖1𝑑 − 𝑖2𝑑 + 𝜔𝐶𝑓𝑉𝐶𝑞 

𝐶𝑓
𝑑𝑉𝐶𝑞

𝑑𝑡
= 𝑖1𝑞 − 𝑖2𝑞 −𝜔𝐶𝑓𝑉𝐶𝑑                                                                                                     (1) 

whose derivation and notation are as follows.  

The dynamics (1) are obtained using Kirchhoff’s voltage and current laws and are expressed 

in the synchronously rotating dq0 reference frame, which are dc quantities, using Park’s 

transformation [26, Appendix 3]. The reference q-component of the grid voltage and current, as 

well as the grid reactive power, can be set to 0. The battery and SC can be modeled as voltage 

sources with series resistances for mathematical analysis. The inverter currents in the dq0 frame, 

grid currents in dq0 frame, filter capacitor voltages in dq0 frame, dc-link voltage, and battery and 

SC currents are selected as state variables for the control system design. Here, 𝑖𝑝𝑣  denotes the 

current value of the PV source, and 𝑑𝑎, 𝑑𝑏, and 𝑑𝑐 are inverter switching functions in the abc frame 

and are transformed into 𝑑𝑑 and 𝑑𝑞 using Park’s transformation. 𝑉𝑔𝑎, 𝑉𝑔𝑏, and 𝑉𝑔𝑐 are the grid 

three-phase voltages and 𝑉𝑔𝑑, and 𝑉𝑔𝑞  are the dq components of the grid voltage, 𝑖2𝑎, 𝑖2𝑏, and 𝑖2𝑐 

are the grid three-phase currents and 𝑖2𝑑 and 𝑖2𝑞 are the dq components of the grid current, 𝑖1𝑎, 

𝑖1𝑏, and 𝑖1𝑐 are the inverter three-phase currents and 𝑖1𝑑 and 𝑖1𝑞 are the dq components of the 

inverter current, 𝑉𝐶𝑎, 𝑉𝐶𝑏, and 𝑉𝐶𝑐 are the capacitor filter three-phase voltages and 𝑉𝐶𝑑 and 𝑉𝐶𝑞 are 

the dq components of the capacitor filter voltage. 𝑑𝑏𝑎𝑡 and 𝑑𝑆𝐶 are duty ratios of the dc/dc 

converters of the battery and SC, respectively. Real valued 𝑉𝑏𝑎𝑡, 𝑉𝑆𝐶, 𝑖𝑏𝑎𝑡 , 𝑖𝑆𝐶, and 𝑉𝑑𝑐 are the 
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battery voltage, SC voltage, battery current, SC current, and dc-link voltage, respectively, and are 

expressed using the following relations: 

𝑉𝑏𝑎𝑡 =  𝑉𝑜𝑏 − 𝑖𝑏𝑎𝑡𝑅𝑏   and  𝑉𝑆𝐶 =  𝑉𝑜𝑠 − 𝑖𝑆𝐶𝑅𝑠                        (2) 

Here, 𝑉𝑜𝑏and 𝑅𝑏 are the internal voltage and resistance of the battery, respectively, and 𝑉𝑜𝑠 and 

𝑅𝑠are the internal voltage and resistance of the SC, respectively. The constants 𝐿and 𝑅 and are the 

line resistance and inductance and are real valued. The known real valued constants 𝐿𝑏𝑎𝑡and 𝑅𝑏𝑎𝑡 

are the battery inductance and resistance, respectively, the known real valued constants 𝐿𝑆𝐶and 

𝑅𝑆𝐶 are the SC inductance and resistance, respectively, the known real valued constants 𝐶𝑑𝑐 and 

𝐶𝑓 are the dc-link and filter capacitance, respectively, and the known constant 𝜔 is the grid angular 

frequency. The constants 𝐿𝑏𝑎𝑡 , 𝑅𝑏𝑎𝑡 , 𝑅𝑆𝐶 , 𝐿𝑆𝐶 , 𝐶𝑑𝑐, 𝑖𝑃𝑉, 𝑉𝑜𝑏, 𝑉𝑜𝑠, 𝐶𝑓, 𝐿, 𝑅, and 𝜔 are positive, and the 

constants 𝑉𝑔𝑑, 𝑉𝑔𝑞 , 𝑅𝑠, and 𝑅𝑏are non-negative. 

 We next represent the steady state model at a time-varying reference solution to formulate our 

stabilization problem. These reference state currents and voltages are reference values for the state 

variable candidates in (1) and so must satisfy 

𝐿
𝑑𝐼1𝑑
𝑑𝑡

=  
1

2
𝐷𝑑𝑉𝑑𝑐𝑟𝑒𝑓 − 𝑉𝐶𝑑𝑟𝑒𝑓 + 𝜔𝐿𝐼1𝑞 − 𝑅𝐼1𝑑 

𝐿
𝑑𝐼1𝑞
𝑑𝑡

=  
1

2
𝐷𝑞𝑉𝑑𝑐𝑟𝑒𝑓 − 𝑉𝐶𝑞𝑟𝑒𝑓 − 𝜔𝐿𝐼1𝑑 − 𝑅𝐼1𝑞 

𝐿
𝑑𝐼2𝑑
𝑑𝑡

=  𝑉𝐶𝑑𝑟𝑒𝑓 − 𝑉𝑔𝑑 + 𝜔𝐿𝐼2𝑞 − 𝑅𝐼2𝑑 

𝐿
𝑑𝐼2𝑞
𝑑𝑡

=  𝑉𝐶𝑞𝑟𝑒𝑓 − 𝑉𝑔𝑞 − 𝜔𝐿𝐼2𝑑 − 𝑅𝐼2𝑞  

𝐶𝑑𝑐
𝑑𝑉𝑑𝑐𝑟𝑒𝑓

𝑑𝑡
=  𝑖𝑝𝑣 −

3

4
𝐷𝑑𝐼1𝑑 −

3

4
𝐷𝑞𝐼1𝑞 − 𝐷𝑏𝑎𝑡𝐼𝑏𝑎𝑡 − 𝐷𝑆𝐶𝐼𝑆𝐶                     
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𝐿𝑏𝑎𝑡
𝑑𝐼𝑏𝑎𝑡
𝑑𝑡

=  𝐷𝑏𝑎𝑡𝑉𝑑𝑐𝑟𝑒𝑓 − 𝑉𝑏𝑎𝑡_𝑠 − 𝑅𝑏𝑎𝑡𝐼𝑏𝑎𝑡  

𝐿𝑆𝐶
𝑑𝐼𝑆𝐶
𝑑𝑡

=  𝐷𝑆𝐶𝑉𝑑𝑐𝑟𝑒𝑓 − 𝑉𝑆𝐶_𝑠 − 𝑅𝑆𝐶𝐼𝑆𝐶 

𝐶𝑓
𝑑𝑉𝐶𝑑𝑟𝑒𝑓
𝑑𝑡

=  𝐼1𝑑 − 𝐼2𝑑 + 𝜔𝐶𝑓𝑉𝐶𝑞𝑟𝑒𝑓 

𝐶𝑓
𝑑𝑉𝐶𝑞𝑟𝑒𝑓

𝑑𝑡
=  𝐼1𝑞 − 𝐼2𝑞 −𝜔𝐶𝑓𝑉𝐶𝑑𝑟𝑒𝑓                                               (3) 

where capitalization of letters or subscripts ref or_s indicate the corresponding reference values 

that correspond to the variables in (1), so for instance, 

𝑉𝑏𝑎𝑡_𝑠 =  𝑉𝑜𝑏 − 𝐼𝑏𝑎𝑡𝑅𝑏   and  𝑉𝑆𝐶_𝑠 =  𝑉𝑜𝑠 − 𝐼𝑆𝐶𝑅𝑠             (4) 

The state variables are chosen as the errors between the actual measured quantities and their 

reference values 

𝑥1 = 𝑖1𝑑 − 𝐼1𝑑 

𝑥2 = 𝑖1𝑞 − 𝐼1𝑞 

𝑥3 = 𝑖2𝑑 − 𝐼2𝑑 

𝑥4 = 𝑖2𝑞 − 𝐼2𝑞 

𝑥5 = 𝑉𝑑𝑐 − 𝑉𝑑𝑐𝑟𝑒𝑓                              

𝑥6 = 𝑖𝑏𝑎𝑡 − 𝐼𝑏𝑎𝑡  

𝑥7 = 𝑖𝑆𝐶 − 𝐼𝑆𝐶 

𝑥8 = 𝑉𝐶𝑑 − 𝑉𝐶𝑑𝑟𝑒𝑓 
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𝑥9 = 𝑉𝐶𝑞 − 𝑉𝐶𝑞𝑟𝑒𝑓            (5) 

By (1) – (5), we obtain error dynamics as 

𝐿�̇�1 = 
1

2
(∆𝑑𝑑(𝑥5 + 𝑉𝑑𝑐𝑟𝑒𝑓) + 𝐷𝑑𝑥5) − 𝑥8 + 𝜔𝐿𝑥2 − 𝑅𝑥1 

𝐿�̇�2 = 
1

2
(∆𝑑𝑞(𝑥5 + 𝑉𝑑𝑐𝑟𝑒𝑓) + 𝐷𝑞𝑥5) − 𝑥9 −𝜔𝐿𝑥1 − 𝑅𝑥2 

𝐿�̇�3 = 𝑥8 +𝜔𝐿𝑥4 − 𝑅𝑥3 

𝐿�̇�4 = 𝑥8 −𝜔𝐿𝑥3 − 𝑅𝑥4 

𝐶𝑑𝑐�̇�5 = −
3

4
(∆𝑑𝑑(𝑥1 + 𝐼1𝑑) + 𝐷𝑑𝑥1) −

3

4
(∆𝑑𝑞(𝑥2 + 𝐼1𝑞) + 𝐷𝑞𝑥2) − (∆𝑑𝑏𝑎𝑡(𝑥6 + 𝐼𝑏𝑎𝑡) +

𝐷𝑏𝑎𝑡𝑥6) − (∆𝑑𝑆𝐶(𝑥7 + 𝐼𝑆𝐶) + 𝐷𝑆𝐶𝑥7)                                       

𝐿𝑏𝑎𝑡�̇�6 =  (∆𝑑𝑏𝑎𝑡(𝑥5 + 𝑉𝑑𝑐𝑟𝑒𝑓) + 𝐷𝑏𝑎𝑡𝑥5) − ∆𝑉𝑏𝑎𝑡 − 𝑅𝑏𝑎𝑡𝑥6 

𝐿𝑏𝑎𝑡�̇�7 =  (∆𝑑𝑆𝐶(𝑥5 + 𝑉𝑑𝑐𝑟𝑒𝑓) + 𝐷𝑆𝐶𝑥5) − ∆𝑉𝑆𝐶 − 𝑅𝑆𝐶𝑥7 

𝐶𝑓�̇�8 =  𝑥1 − 𝑥3 + 𝜔𝐶𝑓𝑥9 

𝐶𝑓�̇�9 =  𝑥2 − 𝑥4 −𝜔𝐶𝑓𝑥8                (6) 

where  

∆𝑉𝑏𝑎𝑡 = 𝑉𝑏𝑎𝑡 − 𝑉𝑏𝑎𝑡_𝑠   and   ∆𝑉𝑆𝐶 = 𝑉𝑆𝐶 − 𝑉𝑆𝐶_𝑠 

In (6), the control inputs are the switching functions for the three-phase inverter in the dq0 frame, 

and the switching states for the battery and SC’s dc/dc converters. The terms ∆𝑑𝑑, ∆𝑑𝑞, ∆𝑑𝑏𝑎𝑡, 

and ∆𝑑𝑆𝐶 are the differences between control and reference values, i.e., 

𝑢1 = ∆𝑑𝑑 = 𝑑𝑑 −𝐷𝑑 
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𝑢2 = ∆𝑑𝑞 = 𝑑𝑞 −𝐷𝑞  

𝑢𝑏𝑎𝑡 = ∆𝑑𝑏𝑎𝑡 = 𝑑𝑏𝑎𝑡 −𝐷𝑏𝑎𝑡                     

𝑢𝑆𝐶 = ∆𝑑𝑆𝐶 = 𝑑𝑆𝐶 − 𝐷𝑆𝐶               (7) 

where, 

𝑑𝑘 = 𝑆𝑘 − 
𝑆𝑎+𝑆𝑏+𝑆𝑐

3
  for 𝑘 = 𝑎, 𝑏, and 𝑐, 

𝑑𝑏𝑎𝑡  
𝑃𝑊𝑀
→    𝑆𝑏𝑎𝑡  and  𝑑𝑆𝐶  

𝑃𝑊𝑀
→    𝑆𝑆𝐶                             (8) 

The switching states on the right sides of (8) are the gating signals generated by PWM. The 

control inputs 𝑢𝑖 are chosen such that (6) satisfies a global asymptotic stability property in the 

sense of Lyapunov which will be explained in the coming sections.  

2.2.3. HESS 

The surplus or the deficit of the PV power in comparison to constant grid power is absorbed 

or provided by the battery/SC HESS. The sudden changes in the battery power profile adversely 

affect its lifetime. To reduce stress on the battery and lengthen its lifespan, the SC is assigned the 

role of handling sudden variations, while the battery's role is to provide smooth energy flow over 

long time periods. To achieve this, 𝑃𝐻𝐸𝑆𝑆  is passed through a low-pass filter (or LPF). The low-

frequency output component of the LPF is assigned as the reference power that must be 

supplied/absorbed by the battery, 𝑃𝑏𝑎𝑡, and the high-frequency component is assigned as the 

reference power that the SC must supply/absorb, 𝑃𝑆𝐶 . Once the battery and SC reference powers 

are determined, the reference battery and SC currents, which are the reference states in (3), are 

then readily determined by dividing the reference powers by the corresponding voltages. The LPF-

based algorithm shown in Figure 2.1., as described above, is applied to obtain the HESS power 
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and, thereby, battery and SC current references. An LCL filter is chosen to effectively smooth the 

inverter current output and supply filtered harmonic-free current to the grid. It also offers high 

attenuation, good harmonic elimination, improved performance, and cost-effectiveness with low 

inductors and capacitors values.  

The HESS includes a battery and an SC, each with its individual bidirectional dc/dc buck-boost 

converter. The flow of HESS power, 𝑃𝐻𝐸𝑆𝑆, is controlled through the PWM signals that are sent to 

the dc/dc converters interfacing the battery and SC and are obtained by 𝑃𝐻𝐸𝑆𝑆 = 𝑃𝑃𝑉 − 𝑃𝑑𝑐 − 𝑃𝑔, 

where 𝑃𝑃𝑉, 𝑃𝑑𝑐, and 𝑃𝑔 are the PV, dc-link, and grid power, respectively. This relationship is in 

accordance with the power balance principle at the dc link, i.e., the PV power entering the dc link 

is the sum of the powers delivered to the grid, the HESS, and the dc-link capacitor. To achieve 

proper operation of the dc/ac inverter, it is crucial to maintain the dc-link voltage, 𝑉𝑑𝑐, constant at 

a reference value. As seen in Figure. 2.1, this is achieved by employing a PI controller and 

regulating the dc-link power, 𝑃𝑑𝑐. The PWM signals are switching states averaged over one time 

period and defined in (8).  

It can be seen from (1) that the three-phase grid-connected inverter consists of 9 states, 𝑥1-𝑥9. 

Thus, for reference waveform tracking for all the states, a nonlinear control law is derived based 

on the Lyapunov theory. 

2.3. Lyapunov Function-Based Feedback Controller 

This section explains the employment of the Lyapunov function-based control strategy to 

perform multifunctioning objectives, i.e., ensure global stability of the system equilibrium, 

maintain constant DC link voltage, injection of sinusoidal inverter current to the utility grid, and 

improved power quality to the grid. It can reduce the higher switched frequency of inserting LCL 
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(Passive) filter between the inverter and the utility grid. The active currents are controlled to inject 

stable power to utility grid. Consider a system that is defined by 

�̇� = 𝑓(𝑥) ,        𝑥 ∈ ℝ𝑛                                                             (9) 

The Global Asymptotic Stability (GAS) of the equilibrium of the nonlinear system is 

guaranteed if the chosen Lyapunov function candidate, 𝑉(𝑥) satisfies the following conditions, 

𝑉(0) = 0 

𝑉(𝑥) > 0  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ≠ 0 

𝑉(𝑥) → ∞  𝑎𝑠 ||𝑥|| → ∞                                               

�̇�(𝑥) < 0  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ≠ 0               (10) 

Now, consider the following energy-like Lyapunov function for the system in (1) 

𝑉(𝑥) =  
1

2
𝐿𝑥1

2 +
1

2
𝐿𝑥2

2 +
1

2
𝐿𝑥3

2 +
1

2
𝐿𝑥4

2 +
1

2
𝐶𝑑𝑐𝑥5

2 +
1

2
𝐿𝑏𝑎𝑡𝑥6

2 +
1

2
𝐿𝑆𝐶𝑥7

2 +
1

2
𝐶𝑓𝑥8

2 +

1

2
𝐶𝑓𝑥9

2                  (11) 

The preceding conditions, in conjunction with the LaSalle invariance argument [28], will 

ensure GAS of (6) to the origin. It can be seen that 𝑉(𝑥) satisfies the first three conditions in (10). 

The control law is derived by satisfying the last negative definiteness condition. The time 

derivative of (11) along (6) is obtained as follows:   

�̇�(𝑥) = 𝐿𝑥1�̇�1 + 𝐿𝑥2�̇�2 + 𝐿𝑥3�̇�3 + 𝐿𝑥4�̇�4 + 𝐶𝑑𝑐𝑥5�̇�5 + 𝐿𝑏𝑎𝑡𝑥6�̇�6 + 𝐿𝑆𝐶𝑥7�̇�7 + 𝐶𝑓𝑥8�̇�8 + 𝐶𝑓𝑥9�̇�9 

                            (12)         

After some simplifications, Lyapunov function derivative will become, 
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�̇�(𝑥) = (−R𝑥1
2 − R𝑥2

2 − R𝑥3
2 − R𝑥4

2 − 𝑅𝑏𝑎𝑡𝑥6
2 − 𝑅𝑆𝐶𝑥7

2 + ∆𝑉𝑏𝑎𝑡𝑥6 + ∆𝑉𝑆𝐶𝑥7 −

∆𝑑𝑑(𝑥1𝑉𝑑𝑐𝑟𝑒𝑓 − 𝑥5𝐼1𝑑) − ∆𝑑𝑞(𝑥2𝑉𝑑𝑐𝑟𝑒𝑓 − 𝑥5𝐼1𝑞) − ∆𝑑𝑏𝑎𝑡(𝑥6𝑉𝑑𝑐𝑟𝑒𝑓 − 𝑥5𝐼𝑏𝑎𝑡) −

∆𝑑𝑆𝐶(𝑥7𝑉𝑑𝑐𝑟𝑒𝑓 − 𝑥5𝐼𝑆𝐶))              (13) 

For satisfying the negative definiteness condition, i.e., �̇�(𝑥) < 0, the control inputs are chosen as, 

∆𝑑𝑑 = 𝐾d(𝑥1𝑉𝑑𝑐𝑟𝑒𝑓 − 𝑥5𝐼1𝑑) 

∆𝑑𝑞 = 𝐾q(𝑥2𝑉𝑑𝑐𝑟𝑒𝑓 − 𝑥5𝐼1𝑞) 

∆𝑑𝑏𝑎𝑡 = 𝐾bat(𝑥6𝑉𝑑𝑐𝑟𝑒𝑓 − 𝑥5𝐼𝑏𝑎𝑡) 

∆𝑑𝑆𝐶 = 𝐾SC(𝑥7𝑉𝑑𝑐𝑟𝑒𝑓 − 𝑥5𝐼𝑆𝐶)                                      (14) 

where 𝐾d, 𝐾q, 𝐾bat, 𝐾SC > 0  

It is noteworthy to mention that (16) can only achieve �̇�(𝑥) ≤ 0. This is a special case where 

we have a non-strict Lyapunov function (which allows nonzero values of the state 𝑥 where, �̇�(𝑥) =

0) and the analysis involving the control inputs in (16) is insufficient to achieve GAS of the 

equilibrium point of (6).  To prove the dynamical system’s equilibrium is GAS, we employ 

LaSalle’s invariance argument. �̇�(𝑥) = 0, implies that, 𝑥1 = 0, 𝑥2 = 0, 𝑥3 = 0, 𝑥4 = 0, 𝑥6 =

0, 𝑥7 = 0. Substituting these values in (6) will render 𝑥5 = 0, 𝑥8 = 0, and 𝑥9 = 0. As it is shown 

that 𝑥 = 0, the GAS property follows from LaSalle’s invariance principle. 

2.4. Results and Discussion 

Real-time performance of the three-phase grid connected PV inverter working along with the 

HESS is investigated on a HIL setup to verify the effectiveness of the proposed LF-based controller 

in tracking the reference power to be injected to the grid. The HIL setup consists of an OP4510 
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real-time simulator from Opal-RT Technologies, Inc., operating with a Kintex7 field-

programmable gate array (or FPGA) and a TI TMS320F28335 DSP. The entire system, including 

the grid, LCL filter, PV source, and the HESS, and the control for the HESS are modeled on the 

real-time simulator, while the inverter control is implemented on the TI DSP. Table 1 summarizes 

the system and control parameters.  

The grid reference power is initially set at 25 kW. Then, the reference power is increased with 

a step change of 12.5 kW at t=4s, following a step decrease of 18.75 kW at t=7s. Figure. 2.2 depicts 

the PV, battery, SC, and grid power profiles. The PV power profile is obtained by using real solar 

data from the US National Renewable Energy Laboratory (NREL). As can be seen, the grid power 

follows the reference accurately and with fast dynamics at step change instants. It is noteworthy 

to mention that thanks to the LPF, the battery power is smooth and does not contain high surges 

and transients similar to those that are present in the SC’s power profile. 

The dc-link voltage and the three-phase grid currents are depicted in Figure. 2.3. The dc-link 

voltage is maintained at the reference value of 650V, confirming that the power balance is 

maintained. The same changes can be observed in the grid three-phase currents, showing the 

increase and decrease in the power delivered to the grid. The nine state variables are plotted in 

Figure. 2.4. The system states converge to zero in a reasonably short period of time, confirming 

fast convergence of the error dynamics and that all the current and voltage measurements are 

tracking their reference values effectively. 

The entire system, including the grid, LCL filter, PV source, and the HESS, and the control for 

the HESS are modeled on the real-time simulator, while the inverter control is implemented on the 

TI DSP. Table 1 summarizes the system and control parameters.  
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Table 2. System parameters in Real-time simulations 
Parameter Value 

𝑅 [Ω] 0.5 

𝐿 [H] 0.012 

𝑅𝑏𝑎𝑡  [Ω] 0.06 

𝐿𝑏𝑎𝑡[H] 0.005 

𝑅𝑆𝐶 [Ω] 0.08 

𝐿𝑆𝐶[H] 0.001 

𝑉𝑔𝑑 [V] 300 

𝑉𝑔𝑞 [V]  0 

𝑉𝑜𝑏 [V] 300 

𝑉𝑜𝑠 [V] 300 

𝑅𝑏 [Ω] 0.0008 

𝑅𝑠 [Ω] 0.0006 

𝑖𝑝𝑣  [𝑎𝑚𝑝] 42.30 

𝜔 [𝑟𝑎𝑑/ sec] 377 

𝑉𝑑𝑐𝑟𝑒𝑓  [V] 650 

𝐶𝑑𝑐  [𝐹] 0.0047 

𝐶𝑓  [𝐹] 0.000025 

𝐾𝑑 0.0315 

𝐾𝑞 0.4525 

𝐾𝑏𝑎𝑡 2.85 

𝐾𝑆𝐶 0.0015 

𝑓𝑠𝑤[𝐻𝑧] 10000 

 

Figure. 2.2. Real time power profiles of PV, grid, battery, and SC 
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(a) 

 

(b) 

 

(c) 

Figure. 2.3. Real time dc-link voltage and three-phase grid currents. (b) Zoomed in view of the 

first circled area in (a) showing step change at 4 seconds. (c) Zoomed in view of the second 

circled are showing step change at 7 seconds. 



22 
 

 

(a) 

 

(b) 

 

(c) 

Figure. 2.4. Real time state responses. (a) states 1,2,3, and 4. (b) states 6 and 7. (c) states 5,8, 

and 9. 

2.5. Conclusion 

The state-space model of the grid-connected PV/battery/SC system with an LCL filter at the 

PV inverter's output is derived, showing that the hybrid system is bilinear. Therefore, a novel LF-
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based control scheme is designed. Despite a non-strict Lyapunov function candidate, using 

LaSalle's invariance argument, it is shown that the GAS of the system equilibrium can be achieved. 

HIL studies are conducted to show the real-time implementation feasibility and dynamic response 

of the proposed feedback controller. The HIL results verify the effectiveness of the proposed 

controller in providing accurate power reference tracking, ensuring delivery of the desired power 

to the grid under solar source output energy and load variations.  
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Chapter 3. Sequential Predictors for Delay-Compensating Feedback 

Stabilization of Bilinear Systems with Uncertainties 

 

3.1. Introduction 

This chapter continues the development (which started, e.g., in [27–29] and [30]) of sequential 

predictor approaches for compensating for arbitrarily long input delays. Prior results covered 

dynamics whose right sides satisfy a linear growth condition. Here we cover feedback designs for 

dynamics for which this linear growth condition is not needed, and which therefore can be applied 

to important bilinear systems that were beyond the scope of previous sequential predictor methods; 

see [31–33] for the value of bilinear systems. Our method is motivated by the ubiquity of input 

delays in many applications, and the bottlenecks that arise when using standard controllers that 

were not designed to compensate for the input delays; see [34–43].  

A natural method for coping with input delays is emulation, which calls for designing 

stabilizing feedback that can be applied when the input delays are zero, and where one then 

calculates a bound on the input delays under which the resulting closed loop system still enjoys 

desired global asymptotic stability properties; see, e.g., [46].  

These other methods can compensate for arbitrarily long input delays but can be complicated 

to use in practice because their controls are only implicitly defined as solutions of integral 

equations; see, for instance [45,46], and [47]. This motivated [27] and [28] and other papers on 

sequential predictors for delay compensation, which normally express the control using values of 

an auxiliary variable that is viewed as an output of a collection of ordinary differential equations. 

 
This chapter was previously published as I. Bhogaraju, M. Farasat, M. Malisoff, and M. Krstic, “Sequential Predictors 

for Delay-Compensating Feedback Stabilization of Bilinear Systems with uncertainties, “Systems and Control Letters, 

152(104933), 9pp., 2021. 
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This collection of equations includes copies of the original system running on multiple time scales, 

with additional stabilizing terms, making it possible to compensate for arbitrarily long input delays 

without having any distributed terms in the controls. However, these results required that the right 

sides of the systems grow linearly in the input and state, which excludes bilinear systems having 

the form 

ẋ(t)  =  A(t)x(t) + ∑ ui(t − h)(Bi(t)x(t) + Gi(t)) + D(t)δ(t)
c
i=1                                               (1)                                                                                            

with unknown measurable locally essentially bounded functions δ (representing uncertainty), 

constant delays h, controls (u = u1, . . . , uc), and bounded coefficient matrices. Although such 

systems are often stabilizable using bounded controls, knowing a bound on u is not sufficient to 

extend previous sequential predictor results to cover bilinear systems (1). This is because the 

earlier results also need input-to-state stability (or ISS) with respect to measurement uncertainty, 

and since one must find a bound δ̅ on the supremum of δ using a bound on the measurement 

uncertainty; see (7), the third part of the proof of Theorem 1, and [31, Assumption 2]. 

This calls for the innovations of this work, which eliminates the requirement that the right sides 

grow linearly in the input and state. These innovations are made possible by our significantly 

different mathematical analysis, as compared to the study of sequential predictors for linear 

systems. Our key ingredients include (a) our new Lyapunov–Krasovskii functional construction 

involving novel uses of Young’s inequality and (b) a relaxed condition on the measurement 

uncertainties in the control (in Assumption 1). This overcomes a longstanding obstacle to building 

sequential predictors for bilinear systems. See Remarks 1–2 for more on the innovations in our 

work. We provide input delay compensating sequential predictors for bilinear systems having the 

form (1) with continuous coefficient matrices, including ISS with respect to the δ, which were not 
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previously available in the literature. We state and prove a general sequential predictor feedback 

control result in Sections 3–4. Then Section 5 provides sufficient conditions that facilitate checking 

our assumptions of our general result. In Section 6, we apply our method to a key class of bilinear 

systems, which we demonstrate using a power system in Section 7. 

3.2. Definitions and Notations 

Throughout this paper, the dimensions of the Euclidean spaces are arbitrary unless we note 

otherwise, and we omit arguments of functions when they are clear. The usual Euclidean norm in 

ℝ𝑛 and the induced matrix norm are denoted by |. |, and |ϕ|I (resp., |ϕ|∞) is the usual essential 

supremum of a function ϕ over any interval I in its domain (resp., its entire domain). Consider a 

system of the form 

Ẋ(t)  = ℱ(t, X(t), uℱ(t − h), ∆(t))                                  (2)                                 

whose state X, feedback control uℱ, and unknown Lebesgue measurable locally essentially 

bounded function ∆ are valued in ℝn2, and ℝn3, respectively, where h > 0 is a constant delay. 

Owing to the delay, the solutions of (2) are defined for given initial times t0 ≥ 0, initial functions 

that are defined on an initial interval I0 ⊆ (−∞, t0] such as [t0 − h, t0], and functions ∆. We 

assume that (2) is forward complete, i.e., all such solutions are uniquely defined on I0 ∪ [t0, ∞); 

see Section 3 for our assumptions that ensure this forward completeness property. We use the well-

known standard classes 𝒦ℒ  and 𝒦∞of comparison functions from [48, Chapter. 4] and the 

definition of input-to-state stability (or ISS, which we also use to mean input-to-state stable) for 

(2); see [49] and [29] for ISS under delays. We use this definition: 

3.2.1. Definition 1 

Definition 1. For a fixed uℱ, we say that (2) is ISS with respect to a disturbance set D ⊆ ℝn3 

provided there are functions β ∈ 𝒦ℒ  and γ ∈ 𝒦∞such that for all initial times t0, initial functions, 
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and choices of the functions ∆ that are valued in D, the corresponding solutions of (2) all satisfy 

|X(t)| ≤ β(|X|I0 , t − t0) + γ(∆[t0,t]) for all t ≥ t0. 

Let ℕ = {1,2,… }, and ℬR denote the closed ball of any radius R > 0 in Euclidean space 

centered at the origin. For subsets S1 and S2 of Euclidean spaces, a function W:S1 × S2 → ℝ
n is 

called locally Lipschitz in its second variable uniformly in its first variable provided: for each 

constant R > 0, there is a constant LR > 0 such that |W(s1, sa) −W(s1, sb)| ≤ LR|sa − sb| for all 

s1 ∈ S1 and all sa and sb in ℬR. If LR in the preceding property can be chosen independently of R, 

then we use the term globally (instead of locally) Lipschitz. We call a J: [0,∞) × ℝn → [0,∞) 

uniformly proper and positive definite provided there exist functions γ ∈ 𝒦∞ and γ‾ ∈ 𝒦∞ such 

that γ(|x|) ≤ J(t, x) ≤ γ‾(|x|) for all t ≥ 0 and x ∈ ℝn. We set Ψt(s) = Ψ(t + s) for all Ψ, s ≤ 0, 

and t ≥ 0 such that t + s lies in the domain of Ψ. We also use 0ℓ×r (resp., Ir ) to mean the ℓ × r 

matrix whose entries are all 0 (resp., the r × r identity matrix).  

3.3. General Result 

Before turning to our results on bilinear systems, we provide a novel result for a more general 

class of systems 

ẋ(t) = f(t, x(t), u(t − h), δ(t))                                   (3)   

whose state x, control u, and unknown Lebesgue measurable locally essentially bounded function 

δ are valued in ℝn, ℝc, and ℝd respectively, and h > 0 is a constant delay, where we use different 

notation from (2) in part because the Δ in (2) will not coincide with δ in (3) in Assumption 1 to 

follow. One difference between the result of this section and [29. Theorem 1] is that here we 

remove the requirement that the dynamics grow linearly in (x, u), and instead use boundedness 

conditions on u3, on the control set, and on the disturbances ϵ and δ; see Remarks 1-2 for more on 
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the significant differences between this work and [29] and about the value added by this work. We 

assume: 

3.3.1. Assumption 1 

There are a compact neighborhood U ⊆ ℝc of 0ϵ×1, a continuous function Us: [0,∞) × ℝ
n →

U that is globally Lipschitz in its second variable uniformly in its first variable, and a constant ϵ̅ >

0 such that the system 

ẋ(t) = f(t, x(t), us(t, x(t) + ϵ(t)), δ(t))                  (4) 

with disturbance Δ = (ϵ, δ) is ISS with respect to the disturbance set ℬϵ̅ × ℝ
d. Also, us(t, 0n×1) =

0c×1 for all t ∈ ℝ. 

3.3.2. Assumption 2 

The function f is continuous, and is locally Lipschitz in (x, u, δ) uniformly in t, satisfies 

f(t, 0n×1, 0cx1 , 0d×1) = 0n×1 for all t ⩾ 0, and admits a constant k > 0 such that 

|f(t, z1, U, Δ1) − f(t, z2, U, Δ2)| ≤ k|z1 − z2| + k|Δ1 − Δ2|                                   (5)     

holds for all t ≥ 0, z1 ∈ ℝ
n, z2 ∈ ℝ

n, U ∈ 𝒰, Δ1 ∈ ℝ
d, and Δ2 ∈ ℝ

d for the choice of 𝒰 from 

Assumption 1. 

Throughout this paper, we consider any constants m ∈ ℕ, ϵ∗ > 0, h > 0, C1 ∈

(0,2m/h), C2 > 0, and λa > 0, and any k and ϵ̅ satisfying Assumptions 1-2, and then we set                 

p =
m(4k+λa)

2 m−hc1
, ϵ0,ℓ = max {1,

C̅(1+λa)h)

m
} .   

c‾ =
p

C1
max {p2(1 + C2), k

2 (1 +
1

C2
) (1 +

λa

4
)} ,   
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ϵ0 = min {2k (1 −
hC̅

km
(1 + λa)) ,

C̅λam

2(hC̅(1+λa)+m)
}.  

ĉ = max {
2p2

ϵ0
, (1 +

1

c2
)
p3

2C1
λa
#,
ϵ0

2
} ,   

M‾ =
k2

2λa
+ λa

# phk
2

2c1m
(1 +

1

C2
) , λa

# = 1 +
4

λa
.  

ω0 = 1,ωi =
2

ϵ0
(ĉωi−1 + ϵ∗) if 1 ≤ i ≤ m − 1,  and 

ϵ∗̅ =
1

ϵ0,ℓ
m {0.5ϵ0,

ϵ∗

ωm−1
}                              (6) 

which will all be positive constants under condition (8) of our theorem. The integer m will serve 

as the number of sequential predictors, and the constants Ci will serve as weighting functions in 

our Young's inequality applications in our Appendix. In terms of (6) and any constant 

δ̅ ∈ (0,
ϵ‾

m
√

ϵ‾∗

2M‾ ωm−1
)                              (7)                 

(which will serve as our bound on δ ) and the function f0(t, x, u) = f(t, x, u, 0), we prove: 

3.3.3. Theorem 1 

Let k > 0 and ϵ‾ > 0 be constants such that (3) satisfies Assumptions 1-2. Assume that 

 m >
hC‾ (1+λa)

k
                                       (8) 

Consider (3) in closed loop with 

u(t) = us(t + h, zm(t))                      (9) 

where im is the last n components of the state of the system 
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{
 
 
 
 
 

 
 
 
 
 ż1(t) = f0 (t +

h

m
, z1(t),Φ[t, zm, 1)]

 −p [z1 (t −
h

m
) − x(t)]

ż2(t) = f0 (t +
2h

m
, z2(t), Φ(t, zm, 2))

 −p [z2 (t −
h

m
) − z1(t)]

⋮
żm[t) = f0(t + h, zm(t), Φ(t, zm, m))

 −p [zm (t −
k

m
) − zm−1(t)]

                            (10) 

where 

Φ(t, zm, i) = u,(t + h −M(m − i)/m, zm(t − K(m− i)/m)) 

for all t ≥ 0 and i ∈ {1,2,… .m} and z0 = x. Then there are functions β ∈ 𝒦ℒ  and γ ∈ 𝒦∞ such 

that all solutions (x, z) : [b0 − 2h,∞) → ℝ
(m+1)n of the preceding closed loop system, for all 

Lebesgue measurable essentially bounded functions δ: [0,∞) → ℬδ̅ and all initial times t0 ≥ h/m, 

satisfy 

|x(t)|  ≤  βd (|x|[t0−2h,t0+h m⁄ ]
+ |z|

[t0−2h,t0+
h
m⁄ ]
, t − t0) + γd(∣ δ1|0,+1)         (11) 

for all t ≥ t0, where z = (z1, … , zm) 

3.3.4. Remark 1 

Theorem 1 states that it is possible to design a sequence of m predictors such that, when the 

un-delayed closed loop system (4) is LS with respect to the disturbance δ(t) and the uncertainties 

ϵ(t) in the state measurements under the bounds on these functions from Assumption 1, then in 

the presence of delay. The state of the closed loop system with the predictor remains in a ball 

whose radius depends on the initial conditions and the bound on δ(t). 
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It is tempting to surmise that at least in bilinear cases, we can reduce our analysis of (3) to 

systems that are globally Lipschitz in the state (which were covered in [29], by replacing f by the 

new dynamics fruw  that is defined by 

fnew (t, x, u, δ) = {
f(t, x, u, δ),  if |u| ≤ R
f(t, x, uR/|u|, δ),  if |u| > R

                             (12)   

for a bound R on the control us. However, this replacement would not address the problems in this 

work, where there is a restriction on the allowable measurement uncertainties ϵ in Assumption 1 

(which makes our assumption less restrictive than in [29], where the ISS assumption is required 

for all choices of the measurement uncertainties ϵ(t)) and where we must therefore find a bound s‾ 

on the allowable uncertainties δ. 

Our (less restrictive) condition in Assumption 1 that ∈ remains in a bounded set is called for 

in order to produce a theorem whose assumptions we can check for bilinear systems; see Lemmas 

2 − 3. However, the price to pay for only considering ϵ's that stay in a bounded set in Assumption 

1 is that it calls for the third part of our proof of our theorem; see especially (32) and (35). The 

requirement that ua is valued in the compact set u is used to ensure that (5) is satisfied when U is 

a control value; see (A.3)-(A.4). The bound on U in Assumption 2 is needed for the existence of 

the required k when (2) is bilinear; see (41). 

3.3.5. Remark 2 

 Theorem 1 is also new even when δ = 0, because of its less restrictive condition on the 

number m of sequential predictors, as compared with the condition 

m > h(4k + λa)
3/2√(2/k)(1 + λa)                                  (13) 
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from [3]; see Section 7. Our strategy for obtaining our less restrictive lower bound (8) on m is to 

use the degrees of freedom in the Lyapunov-Krasovskii analysis in the Appendix, where the 

constants C1 and C2 arise from using Young's inequality instead of the triangle inequality. This 

leads to a different Lyapunov-Krasovskii functional in our analysis and a different p in the 

sequential predictors, as compared with [31], which used p = 4k + λa. Therefore, although the 

sequential predictors (10) have the same general structure as earlier sequential predictor designs 

(consisting of copies of the original system running on different time scales with additional 

corrective terms), there is considerable novelty in our proof that makes it possible to apply this 

general structure in our novel setting that includes bilinear systems. 

A significant difference between works such as [50] and Theorem 1 is that our theorem yields 

a control having no distributed terms, based on the computationally cheap sequential predictors 

(10). While Lyapunov methods can produce conservativeness, we believe that this is the price to 

pay to compensate for arbitrarily long input delays without using distributed terms that would 

otherwise have occurred from using standard predictive methods while also handling bilinearities. 

We can provide a global exponential ISS estimate for the error vector (14) (in (30)). which we can 

combine with (11) to obtain ISS estimates for the combined variable (𝑥, 𝑧), where 𝑧 = (𝑧1, … , 𝑧m ) 

is the vector of predictors (using the fact that 𝑧𝑖(𝑡) = 𝜀𝑖(𝑡) + 𝜀𝑖−1(𝑡 + ℎ/𝑚) + ⋯+ 𝜀1(𝑡 + (𝑖 −

1)ℎ/𝑚) + 𝑥(𝑡 + 𝑖ℎ/𝑚) for all 𝑡 ≥ 0 and 𝑖 ≥ 2). We leave the formulas for comparison functions 

in the ISS estimate for (𝑥, 𝑧) to the reader. 

3.3.6. Remark 3 

Like in [29], our requirement 𝑡0 ≥ ℎ/𝑚 in Theorem 1 is used in our Lyapunov-Krasovskii 

analysis but can be relaxed. While the main result of Mazenc and Malisoff [29] contains suprema 

over [𝑡0 − ℎ, 𝑡0 + ℎ/𝑚] on the right side of (11) instead of [𝑡0 − 2ℎ, 𝑡0 + ℎ/𝑚], we use 2ℎ instead 
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of ℎ to allow the special case where 𝑚 = 1. Moreover, we can use the method from [31, Section 

V] (with its requirement 𝑈 ∈ ℝ𝑐 replaced by 𝑈 ∈ 𝒰) to replace [𝑡0 − 2ℎ, 𝑡0 + ℎ/𝑚] by 

[𝑡0 − 2ℎ, 𝑡0] in the final estimate (11). 

3.4. Proof of Theorem 

Throughout the proof, all inequalities and equalities should be understood to hold for all 𝑡 ≥

𝑡0 and 𝑡0 ≥ ℎ/𝑚 along all solutions of the closed loop system from the statement of the theorem, 

unless otherwise indicated. Recalling our definition 𝑧0 = 𝑥, we use the error variables 

 ℰ = (𝜀1, … , 𝜀m), where 

𝜀𝑖(𝑡) = 𝑧𝑖(𝑡) − 𝑧𝑖−1(𝑡 + ℎ/𝑚) for 𝑖 = 1,… ,𝑚                      (14) 

The rest of the proof has three parts.   

First Part: Lyapunov-Krasovskii Functionals for 𝜀𝑖. We use 

�̂�(𝜀𝑖,𝑡) =
1

2
|𝜀𝑖(𝑡)|

2 + ∫  
𝑡

𝑡−2h/𝑚
|𝜀𝑖(ℓ)|

2 dℓ                                              (15)  

for 𝑖 = 1,2,… ,𝑚 and the following lemma (which we prove in the Appendix, and where 𝜀𝑖,𝑡 is 

the 𝑖th component of 𝜀t for each i): 

3.4.1 Lemma 1 

Consider the functions 𝑣(𝜀𝑖) =
1

2
|𝜀𝑖|

2 and 

𝜇(𝜀𝑖,𝑡) = 𝑣(𝜀𝑖(𝑡)) + 𝐶‾(1 + 𝜆𝑎) ∫  
𝑡

𝑡−2ℎ/𝑚
 ∫  
t

𝑠
 𝑣(𝜀𝑖(ℓ))dℓd𝑠  and 

𝜇‾(𝜀𝑖,𝑡) = 𝜇(𝜀𝑖,𝑡) + ∫  
t

𝑡−2𝑎/𝑚
  |ℰ𝑖(ℓ)|

2 dℓ                      (16) 

for 𝑖 = 1,2,… ,𝑚. Then, the inequalities 
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�̇�(𝜀1,𝑡) ≤ −𝜖0𝜇(𝜀1,𝑡) +𝑀‾ |𝛿|[𝑡,𝑡+h/m]
2 ,                                    (17) 

�̇�(𝜀1,𝑡) ≤ −
𝜖0

2
𝜇(𝜖𝑖,𝑡) +

𝑝2

𝜖0
|𝜀𝑖−1|

2 + (1 +
1

𝐶2
)
𝑝3

2𝐶1
𝜆𝑎
#
∫ |𝜀𝑖−1(ℓ)|

2 dℓ
𝑡

𝑡−ℎ/𝑚
                    (18) 

hold for all 𝑡 ≥ ℎ/𝑚 and 𝑖 ∈ {2,… ,𝑚}. 

The proof that 𝜖0 from (6) satisfies the requirements from Lemma 1 uses the fact that the 

constant 𝜖0,ℓ from (6) is such that 

𝜇(𝜀𝑖,𝑡) ≤
1

2
|𝜀𝑖(𝑡)|

2

 +𝐶‾(1 + 𝜆𝑎)
2ℎ

𝑚

1

2
∫  
𝑡

t−2ℎ/𝑚
  |𝜀𝑖(ℓ)|

2 dℓ

≤ 𝜖0,𝑖�̂�(𝜀𝑖,𝑡)

                                   (19) 

for 𝑖 = 1, … ,𝑚 and all 𝑡 ≥ ℎ/𝑚. We also use (19) later in the proof below. From our choices (6) 

of our constants, it follows from Lemma 1 that for all 𝑖 ∈ {2,… ,𝑚} and 𝑡 ≥ ℎ/𝑚, we have 

�̇�(𝜀𝑖,𝑡) ≤ −
𝜖0

2
�̂�(𝜀𝑖,𝑡) + �̂��̂�(𝜀𝑖−1,𝑡).                                    (20) 

Second Part: ISS Estimate for 𝜀 Dynamics. We next show that with the constants 𝜔𝑖 from (6), 

the function 

𝜇m
♯ (𝜀t) = ∑  𝑚

𝑗=1 𝜔𝑚−𝑗𝜇(𝜀𝑗,𝑡).                         (21) 

is an ISS Lyapunov-Krasovskii functional for the 𝜀 dynamics with the disturbance 𝛿. We use 

induction and the partial sums. 

𝜇𝑟
♯(ℰt) = 𝜇(ℰm,t) + 𝜔1𝜇(𝜀m−1,𝑡) +⋯+ 𝜔𝑟𝜇(ℰm−𝑟,𝑡)                      (22) 

for 𝑟 = 1,… ,𝑚 − 1 when 𝑚 ≥ 2. Using the fact that 
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𝜇𝑟
♯(ℰt) = 𝜇(ℰm,t) + (2/𝜖0)(�̂� + 𝜖∗)𝜇(𝜀𝑚−1,𝑡)            (23) 

and (20), we get 

�̇�1
# ≤  −

𝜖0

2
�̂�(𝜀m,𝑡) − 𝜖∗�̂�(𝜀m−1,𝑡) + �̂�

2

𝜖0
(�̂� + 𝜖∗)�̂�(𝜀m−2,𝑡)                      (24) 

holds if 𝑚 > 2 and 𝑡 ≥ ℎ/𝑚. On the other hand, for 𝑚 = 2, we can use (17) to verify that 

�̇�1
# ≤ −

𝜖0

2
�̂�(𝜀2,𝑡) − 𝜖∗�̂�(𝜀1,𝑡) +

2

𝜖0
(�̂� + 𝜖∗)𝑀‾ |𝛿|[𝑡,𝑡+ℎ/𝑚]

2            (25) 

for all 𝑡 ≥ ℎ/𝑚. By induction, it follows that. 

�̇�m
# ≤ −

𝜖0

2
�̂�(𝜀m,𝑡) − 𝜖∗∑  𝑚−1

𝑗=1   �̂�(𝜀𝑚−𝑗,𝑡) + 𝜔m−1𝑀‾ |𝛿|[𝑡,𝑡+ℎ/𝑚]
2            (26) 

for all 𝑡 ≥ ℎ/𝑚 and 𝑚 > 1. Moreover, (19) gives. 

𝜔mi−𝑖𝜇(𝜀i,𝑡) ≤ 𝜖0,ℓ𝜔m−i−𝜇�̂�(𝜀i,𝑡)                         (27) 

for 𝑖 = 1, … ,𝑚 and all 𝑡 ≥ ℎ/𝑚, and 1 ≤ 𝜔𝑖 ≤ 𝜔𝑖+1 for 𝑖 = 0, … ,𝑚 − 2 and 𝑚 ≥ 2, since �̂� ≥

𝜖0/2. It follows from (19) and (26) and our choice of 𝜖‾∗ in (6) that we have 

�̇�m
# ≤ −𝜖‾∗𝜇m

# (𝜀t) + 𝜔m−1𝑀‾ |𝛿|[𝑡,𝑡+h/m]
2              (28) 

for all 𝑡 ≥ ℎ/𝑚. Applying the method of variation of parameters to (28) (by multiplying it through 

by 𝑒𝜖‾∗𝑡 and integrating the result on [𝑡0, 𝑡] for any 𝑡0 ≥ ℎ/𝑚), we obtain a constant 𝑐𝑎 > 0 such 

that 

1

2
|ℰ(𝑡)|2 ≤ 𝜇m 

# (𝜀t) ≤ 𝑐𝑎𝑒
𝜖‾∗(𝑡0−𝑡)|𝜀|[𝑡0−2h,t]

2 +
𝜔𝑚−1𝑀‾ ,δ|[𝑡0,𝑡+ℎ/𝑚]

2

𝜖‾∗
          (29) 
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for all 𝑡 ≥ 𝑡0. By multiplying (29) through by 2 and using the subadditivity of the square root (to 

upper bound the square root of the two right side terms), it follows that 

|𝜀(𝑡)| ≤ 𝑒0.5𝜖‾∗(𝑡0−𝑡)√2𝑐𝑎|𝜀|[𝑡0−2ℎ,𝑡0] + √
2𝜔𝑚−1�̅�

𝜖‾∗
|𝛿|[𝑡0,𝑡+ℎ/𝑚]          (30) 

holds for the ℰ dynamics for all 𝑡 ≥ 𝑡0 and 𝑡0 ≥ ℎ/𝑚. 

Third part: ISS-Like Estimate for Closed Loop 𝑥 Dynamics. We show how our new variable. 

𝜀#(𝑡) = ∑  𝑚−1
ℓ=0 𝜀𝑚−ℓ (𝑡 + ℓ

ℎ

𝑚
− ℎ)                         (31) 

can be viewed as a measurement error added to the state 𝑥(𝑡) in the feedback control in the closed 

loop system from the statement of our theorem, which will allow us to apply Assumption 1 with 

𝜖 = 𝜀# 

To this end, we first choose a constant 𝜆∗ ∈ (0,1) that satisfies. 

𝛿̅ = 𝜆∗
�̅�

𝑚
√

𝜖‾∗

2𝜔𝑛−1𝑀‾
,                           (32) 

which exists by (7). Since 1/𝜆∗ > 1, the exponential ISS condition in (30) then yields a constant 

𝒯 > 0 such that. 

|ℰ(𝑡)| ≤
1

𝜆∗
√
2𝜔𝑚−1𝑀‾

𝜖∗
𝛿̅               (33) 

for all 𝑡 ≥ 𝑡0 + ℊ𝛿 and such that we also have 
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|𝜀#(𝑡)| ≤ 𝑚|𝜀|[𝑡−ℎ,𝑡−ℎ/𝑚] ≤
𝑚

𝜆∗
√
2𝜔𝑚−1�̅�

�̅�∗
𝛿̅ = 𝜖 ̅             (34) 

for all 𝑡 ≥ 𝑡0 + ℎ + ℊ𝛿 , where 

ℊ𝛿  = 𝒯(|𝜒|[𝑡0−2ℎ,𝑡0+ℎ/𝑚]) + |𝑧|[𝑡0−2ℎ,𝑡0+ℎ/𝑚]),            (35) 

by (32) and our condition |𝛿|∞ ≤ 𝛿̅; a formula for the required constant 𝒯 can be deduced from 

the fact that ln (1 + 𝑟) ≤ 𝑟 for all 𝑟 ≥ 0. 

On the other hand, using the fact that 

𝑧𝑚(𝑡) = 𝜀𝑚(𝑡) + 𝑧𝑚−1(𝑡 + ℎ/𝑚),  

𝑧m−1(𝑡) = 𝜀𝑚−1(𝑡) + 𝑧𝑚−2(𝑡 + ℎ/𝑚), 

…. and 𝑧1(𝑡) = 𝜀1(𝑡) + 𝑥 (𝑡 +
𝑘

𝑚
)              (36) 

all hold for all 𝑡 ≥ 0, it follows (e.g., by induction on 𝑚 ) that 𝑧𝑚(𝑡) = 𝜀
#(𝑡 + ℎ) + 𝑥(𝑡 + ℎ). 

Hence, (3) in closed loop with (9) is 

 �̇�(𝑡) = 𝑓(𝑡, 𝑥(𝑡), 𝑢𝑠(𝑡, 𝑥(𝑡) + ℰ
♯(𝑡)), 𝛿(𝑡)).            (37)  

Then (34) allows us to use Assumption 1 with 𝜖 = 𝜀#  along all solutions of the closed loop system 

and all 𝑡 ≥ 𝑡0 + ℎ + ℊ𝛿. 

In fact, the last part of the proof of Mazenc and Malisoff [29. Theorem 1] with its initial time 

𝑡0 replaced by 𝑡0
# = 𝑡0 + 𝐺0 allows us to find functions 𝛽𝑏 ∈ 𝒦ℒ  and 𝛾𝑏 ∈ 𝒦∞ such that, for all 

solutions of the closed loop system of our theorem, and for all 𝑡 ≥ 𝑡0
# and 𝑡0 ≥ ℎ/𝑚, we have 

|𝑥(𝑡)| ≤ 𝛽𝑏 (|𝑥
#|
[𝑡0−2ℎ,𝑡0

#+
ℎ

𝑚
]
, 𝑡 − 𝑡0 − 𝐺0) + 𝛾𝑏(|𝛿|[𝑡0,𝑡]),                      (38) 

where 𝐺0 = ℊ𝛿 + ℎ and 𝑥# = (𝑥, 𝑧). On the other hand, Assumptions 1-2 provide a constant �̅� >
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0 (that is independent of the initial condition) such that |�̇�#(𝑡)| ≤ 𝐿‾(|𝑥#|[𝑡−ℎ,𝑡] + |𝛿|[𝑡0,t]) when 

𝑡 ≥ 𝑡0 ≥ 0. Integrating the preceding bound for |�̇�#(𝑡)|, and applying Gronwall's inequality to the 

function |𝑥#|[𝑡−ℎ,𝑡], we get a constant 𝑐b > 0 (which is also independent of the initial condition) 

so that 

|𝑥#(𝑡)| ≤ |𝑥#|[𝑡−ℎ,𝑡]  ≤ 𝑒
𝑐𝑏ℊ𝛿𝑐𝑏�̂�0(|𝑥

#|[𝑡0−ℎ,𝑡0] + |𝛿|[𝑡0,𝑡]) ≤ 𝑒
𝑐𝑏ℊ𝛿𝑐𝑏(�̂�0|𝑥

#|[𝑡0−ℎ,𝑡0] + 𝛿
̅ℊ𝛿 +

2ℎ|𝛿|[𝑡0,𝑡])  ≤  ℳ(|𝑥
#|(𝑡0−2ℎ,𝑡0+ℎ/𝑚]) + ℒ(|𝛿|[𝑡0,𝑡])                                                (39) 

for 𝑡 ∈ [𝑡0, 𝑡0
# + ℎ/𝑚], with �̂�0 = ℊ𝛿 + 2ℎ,𝑀(𝑠) = 2𝑐𝑏𝑠𝑒

2𝑐b𝒯𝑠 (𝒯(𝑠 + 𝛿̅) + 2ℎ(1 + 𝛿‾𝑐𝑏𝒯)), 

and where ℒ(𝑠) = 2𝑐𝑏ℎ𝑠, and where we used 

 2ℎ𝑐𝑏𝑒
2𝑐b𝒯𝑠|𝛿|[𝑡0,𝑡] ≤ 2ℎ𝑐𝑏(𝑐𝑏𝒯𝑠𝑒

2𝑐b𝒯𝑠 + 1)|𝛿|[𝑡0,𝑡] ≤ 2𝛿
̅ℎ𝑐𝑏

2𝒯𝑒2𝑐b𝒯𝑠𝑠 + 2ℎ𝑐𝑏|𝛿|[𝑡0,𝑡] (which 

is a consequence of the bound 𝑒𝑟 ≤ 𝑟𝑒𝑟 + 1 for 𝑟 ≥ 0) and 

|𝑥|[𝑡0−2ℎ,𝑡0+ℎ/𝑚] + |𝑧|[𝑡0−2ℎ,𝑡0+ℎ/𝑚] ≤ 2|𝑥
#|[𝑡0−2ℎ,𝑡0+ℎ/𝑚]           (40) 

and  |𝛿|∞ ≤ 𝛿̅. Using (39) to upper bound the first argument of 𝛽b in (38), and then using the fact 

that 𝛽b(𝑟1 + 𝑟2, 𝑟3) ≤ 𝛽b(2𝑟1, 𝑟3) + 𝛽0(2𝑟2, 0) for all nonnegative 𝑟1, 𝑟2, and 𝑟3, it follows that we 

can upper bound the first right side term of (38) by 

 𝛽𝑏(𝑀
#(|𝑥#|[𝑡0−2ℎ,𝑡0+ℎ/𝑚]), 𝑡 − 𝑡0

#) + 𝛽𝑏(2ℒ(|𝛿|(𝑡0,𝑡]), 0) with 𝑀#(𝑠) = max{𝑠, 2𝑀(𝑠)}. 

Hence, by separately considering times 𝑡 ∈ [𝑡0, 𝑡0
#] and 𝑡 > 𝑡0

#. We conclude that we can satisfy 

the requirements of Theorem 1 with 

 𝛽𝑑(𝑠, 𝑡) = max{ℳ(𝑠)𝑒
2𝒯𝑠+h−𝑡 , 𝛽𝑏(𝑀

#(𝑠),max{𝑡 − 2𝒯𝑠 − ℎ, 0})} and 

𝛾𝑑(𝑠) = max{ℒ(𝑠), 𝛽b(2ℒ(𝑠),0) + 𝛾𝑏(𝑠)}. 
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3.5. Checking our Assumption 

The growth requirement (5) from Assumption 2 holds for our bilinear systems (1) for any 

bounded neighborhood 𝒰 ⊆ ℝc of the origin and any bounded continuous functions 𝐴, 𝐷, 𝐵𝑖, and 

𝐺𝑖 for each 𝑖. This follows by picking 

𝑘 = max{|𝐴|∞ +𝑈‾ ∑  𝑐
𝑖=1   |𝐵𝑖|∞, |𝐷|∞}             (41) 

for any bound 𝑈 on the elements of 𝒰. However, it is less trivial to check Assumption 1, so we 

next present sufficient conditions for Assumptions 1-2 to hold for some 𝑢s . We specialize the 

sufficient conditions from this section to bilinear systems in the next section. We prove the 

following, whose condition (a) differs from a standard Lyapunov decay condition because 𝛼0 is 

not required to be positive definite: 

3.5.1. Lemma 2 

Let 𝑓 in (3) admit a compact neighborhood 𝒰 ⊆ ℝ𝑐 of the origin and a constant 𝑘 > 0 such that 

the requirements from Assimption 2 hold. Let 𝜔‾ > 0 be a constant such that [−𝜔‾ ,𝜔‾ ]𝑐 ⊆ 𝒰 . 

Assume that there are a 𝐶1 function 𝑉:ℝ𝑛+1 → [0,∞), a continuous 𝛼0: ℝ
𝑛 → [0,∞), a function 

𝛾∗ ∈ 𝒦∞, and 𝐶1 functions 𝑀𝑖: ℝ × ℝ
n → ℝ that are locally Lipschitz in the second variable 

uniformly in the first variable for 𝑖 = 1,2,… , 𝑐 such that: 

(a) the inequality, 

�̇� ≤ −𝛼0(𝑥(𝑡)) + ∑  𝑐
𝑖=1 𝑢1𝑀𝑖(𝑡, 𝑥(𝑡)) + 𝛾∗(|𝛿(𝑡)|)                       (42) 

holds along all solutions of �̇�(𝑡) = 𝑓(𝑡, 𝑥(𝑡), 𝑢, 𝛿(𝑡)) for all 𝑡 ≥ 0 and each vector 𝑢 ∈ 𝑈 ; 

(b) the functions, 

𝛼0(𝑥) + ∑  𝑐
i=1 |𝑀𝑖(𝑡, 𝑥)| and 𝑉(𝑡, 𝑥)                         (43) 
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are uniformly proper and positive definite; and 

(c) the functions, 𝑀𝑖
∗(𝑡, 𝑥) = (∂𝑀𝑖/ ∂𝑥)(𝑡, 𝑥)/(1 + 𝑀𝑖

2(𝑡, 𝑥)) are bounded on ℝn+1 for 𝑖 =

1,… , 𝑐. Choose any positive value 

�̅�∗ ≥ sup{|𝑀𝑖
∗(𝑡, 𝑥)|: (𝑡, 𝑥) ∈ ℝ𝑛+1, 1 ≤ 𝑖 ≤ 𝑐}.               (44) 

Then Assumption 1 is satisfied for any constant 

𝜖̅ ∈ (0,
𝜋

2�̅�∗
)                   (45) 

and 𝑢𝑠 = −
2𝜔‾

𝜋
(arctan (𝑀1),… , arctan (𝑀𝑖)). 

3.5.2. Proof 

For each tuple (𝑡, 𝑥) ∈ ℝ × ℝ𝑛, each 𝜖 ∈ ℝ𝑛, and each 𝑖 ∈ {1,2,… , 𝑐}, we can apply the 

Fundamental Theorem of Calculus to the function 

ℳ𝑖
𝑡,𝑥𝜖(𝜆) = arctan (𝑀𝑖(𝑡, 𝑥 + 𝜆𝜖))                  (46)    

on the interval [0,1] to verify that 

|arctan (𝑀𝑖(𝑡, 𝑥 + 𝜖)) − arctan (𝑀𝑖(𝑡, 𝑥))| = |𝑀𝑖
𝑡,𝑥,𝜖(1) − 𝑀𝑖

𝑡,𝑥,𝜖(0)| ≤ ∫  
1

0
  |�̇�𝑖

𝑡,𝑥,ϵ(𝑠)|𝑑𝑠 =

∫  
1

0
  |𝑀𝑖

∗(𝑡, 𝑥 + 𝑠𝜖)𝜖|𝑑𝑠 ≤ �̅�∗|𝜖|              (47) 

and so also 

−arctan (𝑀𝑖(𝑡, 𝑥 + 𝜖)𝑀𝑖(𝑡, 𝑥) ≤ −arctan (𝑀i(𝑡, 𝑥))𝑀i(𝑡, 𝑥) + 𝐿‾∗|𝜖||𝑀1(𝑡, 𝑥)|        (48) 
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Fixing constants 𝑤∗ > 0 and 𝛿∗ ∈ (0,1) such that 𝜖‾ = 𝛿∗𝜋/(2𝐿‾∗) (which exist by (45)) and 

such that arctan(s) ⩾ (𝛿∗ + 1)𝜋/4 for all 𝑠 ≥ 𝑤∗ (which exists because lim𝑠→+∞   arctan(s) = 𝜋/2) 

and any (𝑡, 𝑥) ∈ ℝ𝑛+1, 1 ∈ {1,2,… , 𝑐}, and 𝜖 ∈ ℬ�̅�, we consider two cases: 

Case 1. |𝑀𝑖(𝑡, 𝑥)| ≤ 𝑤∗. To cover this case, we fix a constant 𝑐0 > 0 such that arctan (𝑠) ≥

𝑐0𝑠 for all 𝑠 ∈ [0, 𝑤∗]. Then we can use the fact that arctan is an odd function to upper bound the 

right side of (48) by −𝑐0𝑀𝑖
2(𝑡, 𝑥) + 𝐿‾∗|𝜖||𝑀𝑖(𝑡, 𝑥)| ≤ −

1

2
𝑐0𝑀𝑖

2(𝑡, 𝑥) +
1

2c0
𝐿‾∗
2
|𝜖|2, where we 

used Young's inequality ab ≤ 𝑐0𝑎
2/2 + 𝑏2/(2𝑐0) with 𝑎 = |𝑀i(𝑡, 𝑥)| and 𝑏 = 𝐿‾∗|𝑒| to upper 

bound 𝐿‾∗|𝜖||𝑀𝑖(𝑡, 𝑥)|. 

Case 2. |𝑀𝑖(𝑡, 𝑥)| > 𝑤∗. In this case, we can use the fact that arctan is nondecreasing on 

[0,∞) and odd to upper bound the right side of (48) by −(𝜋/4)(𝛿∗ + 1)|𝑀𝑖(𝑡, 𝑥)| +

𝐿‾∗|𝜖||𝑀i(𝑡, 𝑥)| ≤ −(1 − 𝛿∗)(𝜋/4)𝑀𝑖(𝑡, 𝑥)], by our choices of 𝛿∗, and 𝑤∗. 

Combining the previous two cases, we conclude that for all choices of the functions 𝛿 and 𝜖 

from Assumption 1, the time derivative of 𝑉 along all solutions of (4) satisfies 

�̇� ≤ −{𝛼0(𝑥) + ∑  𝑐
𝑖=1  ℊ𝑖(𝑡, 𝑥)} + 𝛾∗(|𝛿|) +

�̅�

𝑐0𝜋
𝐿‾∗
2
|𝜖|2           (49) 

where 𝑔𝑖(𝑡, 𝑥) =
2�̅�

𝜋
min {(𝑐0/2)𝑀𝑖

2(𝑡, 𝑥), (1 − 𝛿∗)
𝜋

4
|𝑀𝑖(𝑡, 𝑥)|} for each 𝑖 and 𝑡 ≥ 0. Recalling 

our assumption (b), we conclude that the sum in curly braces in (49) is uniformly proper and 

positive definite. Therefore, 𝑉 is an ISS Lyapunov function for this closed loop system (as 

defined, e.g., in [48, Chapter 4]) for disturbances (𝜖, 𝛿) valued in ℬ�̅� × ℝ
𝑑, giving the ISS 

property of Assumption 1. 
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3.5.3. Remark 4 

We can replace the formulas arctan (𝑀𝑖(𝑡, 𝑥)) in Lemma 2 by 𝜎𝑖(𝑀𝑖(𝑡, 𝑥)) for any functions 

𝜎i: ℝ → ℝ that satisfy: 𝜎𝑖 is a bounded 𝐶1 strictly increasing odd function, lims→0  𝜎𝑖(𝑠)/𝑠 > 0, 

and 𝜎𝑖
′(𝑀𝑖(𝑡, 𝑥))(∂𝑀𝑖/ ∂𝑥)(𝑡, 𝑥) is a bounded function for 𝑖 = 1, …., c. Then Lemma 2 remains 

true if we replace 𝜋/2 in (45) by max𝑖  |𝜎𝑖|∞, replace the 𝑀𝑖
∗ formulas by 𝑀𝑖

∗(𝑡, 𝑥) =

𝜎𝑖
′(𝑀𝑖(𝑡, 𝑥))(∂𝑀𝑖/ ∂𝑥)(𝑡, 𝑥), and replace 2/𝜋 in the 𝑢𝑠 formula by 1/sup𝑠  𝜎i(𝑠), by a similar 

proof. 

3.6. Application to Bilinear Systems 

This special case of Lemma 2 covers bilinear systems, and is obtained by specializing 

Lemma 2 to the case where 𝑀i(𝑡, 𝑥) = 2(𝑥⊤𝑃(𝑡)𝐵i(𝑡)𝑥 + 𝑥
⊤𝑃(𝑡)𝐺𝑖(𝑡)) using a quadratic 

Lyapunov function 𝑉(𝑡, 𝑥) = 𝑥⊤𝑃(𝑡)𝑥: 

3.6.1. Lemma 3 

Let 𝐴:ℝ → ℝ𝑛×𝑛, 𝐷: ℝ → ℝ𝑛×𝑑, and 𝐵𝑖: ℝ → ℝ
𝑛×𝑛 and 𝐺𝑖: ℝ → ℝ

𝑛 for 𝑖 = 1, … , 𝑐 be 

bounded matrix valued continuous functions. Assume that there are a function 𝛾∗ ∈ 𝒦∞, constants 

𝑐𝑖 ≥ 0, and a 𝐶1 bounded function 𝑃:ℝ → ℝ𝑛×𝑛 such that 𝑃⊤(𝑡) = 𝑃(𝑡) for all 𝑡 ∈ ℝ and such 

that the following hold with 𝑉(𝑡, 𝑥) = 𝑥⊤𝑃(𝑡)𝑥 : 

(a) along all solutions of �̇� = 𝐴(𝑡)𝑥 + 𝐷(𝑡)𝛿, we have 

�̇� ≤ −∑  𝑛
𝑖=1 𝑐𝑖𝑥𝑖

2(𝑡) + 𝛾∗(|𝛿(𝑡)|)                         (50)   

at all times 𝑡 ≥ 0; 

(b) the functions V(𝑡, 𝑥) and 

∑  𝑛
𝑖=1 𝑐i𝑥𝑖

2 +∑  𝑐
𝑖=1 |𝑥

⊤𝑃(𝑡)𝐵𝑖(𝑡)𝑥 + 𝑥
⊤𝑃(𝑡)𝐺𝑖(𝑡)|            (51) 
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are uniformly proper and positive definite; and 

(c) the functions 

ℋ𝑖(𝑡, 𝑥) =
2(𝑥𝑇(𝑃(𝑡)𝐵𝑖(𝑡)+𝐵𝑖

𝑇(𝑡)𝑃(𝑡))𝐺𝑖
𝑇(𝑡)𝑃(𝑡))

1+4(𝑥𝑇𝑃(𝑡)𝐵𝑖(𝑡)𝑥+𝑥𝑇𝑃(𝑡)𝐺𝑖(𝑡))2
                     (52)  

are bounded for 𝑖 = 1, … , 𝑐. 

Choose a positive value ℋ∗ ≥ sup{|ℋi(𝑡, 𝑥)|: (𝑡, 𝑥) ∈ ℝ
𝑛+1, 1 ≤ 𝑖 ≤ c}. Then, for any constants 

ω̅ > 0 and 𝜖‾ ∈ (0, 𝜋/(2ℋ∗)) and with the feedback 

𝑢𝑠(𝑡, 𝑥) = −𝜔‾(arctan (𝑀1(𝑡, 𝑥)), … , arctan (𝑀𝑐(𝑡, 𝑥)))           (53) 

where 𝑀𝑖(𝑡, 𝑥) = 2(𝑥
⊤𝑃(𝑡)𝐵𝑖(𝑡)𝑥 + 𝑥

⊤𝑃(𝑡)𝐺𝑖(𝑡)),  

the bilinear system (1) satisfies Assumptions 1-2. 

The preceding results are novel, even in the special case where the coefficient matrices in (1) 

are constant. To illustrate Lemma 3 in the constant coefficients case, we consider the case where 

the coefficient matrices in (1) and 𝑃 are        

𝐴 = [
𝐴0 0𝑛𝑎×𝑛𝑏

0𝑛𝑏×𝑛𝑒 0𝑛𝑏×𝑏𝑏
] , 𝑃 = [

𝑃0 0𝑛𝑏×𝑛𝑏
0𝑛𝑏×𝑛𝑎 𝑃1

],                                  (54)  

𝐷 = [
𝐷1
0𝑛𝑏×𝑑

] , 𝐵𝑖 = [
𝐵𝑖1 𝐵𝑖2
𝐵𝑖3 𝐵𝑖4

] , and 𝐺𝑖 = [
𝐺𝑖1
𝐺𝑖2
]                   (55)         

for 𝑖 = 1, … , 𝑐 for any 𝑛𝑎 and 𝑛𝑏 = 𝑛 − 𝑛𝑎, where 𝐴0 is Hurwitz and 𝑃0 ∈ ℝ
𝑛𝑎×𝑛𝑎  and 𝑃1 ∈

ℝ𝑛𝑏×𝑛𝑏 are symmetric positive definite matrices, and 

𝑃0𝐴0 + 𝐴0
⊤𝑃0 = −𝐼n𝑎                  (56) 
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and where the upper sub-matrices in the block matrices 𝐷,𝐵i, and 𝐺𝑖 consist of 𝑛𝑎 rows. Using the 

triangle inequality, it follows that along all solutions of �̇� = 𝐴𝑥 + 𝐷𝛿, we have 

�̇� = −|𝑥𝑎|
2 + 2𝑥𝑎

⊤𝑃0𝐷1𝛿 ≤ −
1

2
|𝑥𝑎|

2 + 2|𝑃0|
2|𝐷1|

2|𝛿|2                      (57) 

where 𝑥𝑎 denotes the first 𝑛𝑎 components of 𝑥. It follows that we can satisfy requirement (a) of 

Lemma 3 using 𝑐i = 0.5 if 1 ≤ 𝑖 ≤ 𝑛𝑎 and 𝑐𝑖 = 0 if 𝑛𝑎 < 𝑖 ≤ 𝑛 and 𝛾𝑜(𝑠) = 2|𝑃0|
2|𝐷1|

2𝑠2. 

Hence, if we let 𝑥𝑏 denote the last 𝑛𝑏 components of 𝑥, then condition (b) of Lemma 3 will also 

be satisfied provided 

𝒩(𝑥𝑏) = ∑  𝑐
𝑖=1 |𝑥𝑏

⊤𝑃1𝐵𝑖4𝑥𝑏 + 𝑥𝑏
⊤𝑃1𝐺i2|             (58) 

is proper and positive definite. This produces the following sufficient condition for condition (b) 

of Lemma 3 to hold when the coefficient matrices are constant: There is an index 𝑖 ∈ {1, . . . , 𝑐} 

such that 𝑃1𝐺i2 = 0 and 𝑃1𝐵𝑖4 such that is either negative definite or positive definite.  

3.7. Conclusions 

We presented a new sequential predictor approach to feedback stabilization under arbitrarily 

long constant input delays which can be applied to bilinear systems that violate the usual linear 

growth conditions. Compared with other delay compensation approaches, potential advantages 

include that the closed loop systems satisfy ISS without using distributed terms in the control that 

were present in exact predictor approaches. This work serves as a basis to explore applications to 

large scale networked systems as in [41] and extensions for reaction–diffusion PDEs as in [42]. 

We will also study cases where there are different delays in different components of the input, 

which may call for bilinear analogs of the predictor structures from [30] having different sets of 

chain predictors corresponding to the different input delays. 
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Chapter 4. Delay-Compensating Stabilizing Feedback Controller for a Grid-

Connected PV/Hybrid Energy Storage System 

 

4.1. Introduction 

Power electronic converters (PECs) are the enabling technology for interfacing and integrating 

renewable energy sources (RESs), such as solar and wind, with the grid. Energy storage systems, 

such as batteries and supercapacitors (SCs), interfaced with the grid by PECs are promising 

solutions for addressing the intermittent nature of RESs and ensuring the delivery of constant 

energy to the grid. Batteries offer higher energy densities, making them suitable for delivering or 

absorbing energy over long time periods, while SCs offer higher power densities, making them 

suitable for delivering or absorbing energy over short-time periods. Therefore, a hybrid energy 

storage system (HESS) comprised of a battery and an SC offers high power and high energy 

density [2]. 

In grid-connected PECs, such as three-phase dc/ac inverters and buck/boost dc/dc converters, 

the control goal is commonly to regulate voltage, current, or power. Analog voltage and current 

measurements are sent to a digital signal processor (DSP), and after being processed according to 

the control algorithm, control inputs are generated in the form of switching signals, which are sent 

to a pulsewidth modulator. Through pulsewidth modulation (PWM), the switching ( ON or OFF ) 

states of the PEC's switching devices are then determined. Due to analog-to-digital conversion 

(ADC) and depending on the computational complexity of the control algorithm, delays will be 

present in the digital implementation of the PEC's control, which could potentially lead to grid 

 
This chapter was previously published as I. bhogaraju, J. N. Forestieri. M. Malisoff, and M. Farasat, “Delay-

Compensating Stabilizing Feedback Controller for a Grid-Connected PV/Hybrid Energy Storage System,” IEEE 

Transactions on Control Systems Technology. 
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stability issues because of frequency and voltage deviations [51]. The work [3] studies the delay 

that is caused in ADC and PWM and its detrimental effect on stability and system performance. 

Several delay compensating techniques for grid-connected PECs have been proposed. In grid-

connected inverters with an inductor-capacitor-inductor (LCL) filter, the inherent resonance in the 

filter is handled by active damping, which often suffers from control delay problems. Capacitor 

current feedback methods are commonly used to reduce the computational delays [52], [53], [54]. 

In [55], delay compensation is achieved by shifting the capacitor current sampling instant toward 

the PWM reference update instant. In [56], the critical delay time to keep system stable is analyzed, 

and a delay time control method is proposed. A stability evaluation method based on developing 

a critical value for the damping coefficient is proposed in [57]. 

In [58], a multistep model predictive voltage control with delay compensation is proposed for 

eliminating undesired oscillations and improving output voltage tracking of a neutral point 

clamped inverter. The work [59] proposes a model predictive control that uses a weighted filter 

predictor to improve time delay compensation in a single-phase grid-connected voltage-source 

inverter. A modified model predictive control is proposed in [60] for PECs in a wind power system. 

A multiple vector model predictive control method is presented in [61], where determining the 

vector sequence and duration is simplified to reduce the computational complexity of the control 

algorithm and, thus, reduce the digital implementation delay. The paper [62] proposes a two-step 

ahead prediction approach to compensate for the adverse effect of such a delay. These papers, 

however, do not provide proof of stability of their model predictive control techniques. A variation 

of Smith's predictor is proposed in [63]. However, the need for a precise system model to design 

the controller is inevitable in standard predictor-based approaches. 
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In [64], a current observer is designed for compensating for voltage distortion of a voltage-

source inverter. However, control performance is compromised due to the conservative 

optimization method that is used. To improve closed-loop robustness, a proportional-type 

Luenberger observer is 

  

Figure. 4.1. PV/HESS system circuit diagram and control scheme with pseudocode based on 

(7)–(10) and (A.11). 

 

implemented in [65]. This, however, poses a great challenge in the form of an offset error on 

the controlled output. 

To eliminate these offset errors, full-state proportional-integral observers are used with an 

adaptation algorithm [66]. A learning algorithm-based control using Luenberger and disturbance 

observers is proposed in [67]. The disturbance observer resolved the problem of offset errors in 

steady state, and the learning algorithm alleviated the computational complexity. However, the 

main drawback of this method is that inaccurate tuning of the parameters can destabilize the overall 

system performance. 
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Lyapunov theory is widely used for the stability analysis of nonlinear systems [68]. In [68], 

upper bounds on the input delays under which an emulation-based control ensures global 

asymptotic stability are computed using Lyapunov–Krasovskii functionals. The main disadvantage 

of this method is in its bounds on the allowable delays, which are not suitable for applications with 

long delays as compared with a system’s total response time. The reduction model approach 

introduced in [69] can compensate for arbitrarily long input delays. 

A disadvantage of a standard reduction model or standard prediction-based approaches is that 

they involve distributed terms, which are undesirable in practical applications. To address this 

problem, sequential predictors (which are also called chain predictors) were introduced in [29], 

where the distributed terms are replaced by dynamical extensions that include copies of the original 

systems running on multiple time scales; see [30], [70], [31], and [32]. The computational 

challenges caused by distributed terms are, thus, eliminated, while still compensating for arbitrarily 

long delays. The linear growth condition in [31] and [32] precluded covering bilinear systems. 

This condition is removed in the work [71] on bilinear systems, where computational time delays 

that arise in a DSP are compensated for in the case of a grid-connected photovoltaic (PV) system 

through a three-phase inverter. The power systems examples in these works did not cover the full 

extent of how energy storage systems are integrated with the PV system and the grid. 

Here, we propose a computationally simple delay compensating global asymptotically 

stabilizing feedback control based on sequential predictors for a grid-connected PV/battery/SC 

system. As shown in Figure. 4.1, the PV system is interfaced with the grid using a three-phase 

dc/ac inverter, and the battery and the SC are interfaced with the dc-link capacitor of the inverter, 

using individual buck/boost dc/dc converters. Due to utilization of PECs, the grid-connected 
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PV/battery/SC system is prone to time delays. This work handles such delays while maintaining 

the system’s stability. 

The major contributions of this brief are threefold. 

1) A state-of-the-art delay compensation method for bilinear systems is proposed that 

features ensured global asymptotic stability in the presence of arbitrary delays and real-

time implementation feasibility. 

2) Efficacy of the proposed method in compensating for delays due to digital 

implementation is verified through real-time simulations of a grid-connected 

PV/battery/SC system. 

3) Effectiveness of the proposed method in reducing the computational complexity 

and the amplitude of the state variables’ oscillations is illustrated through comparative 

real-time simulation studies with a controller designed based on a finite spectrum 

assignment (FSA) approach. 

Also, although we constructed our sequential predictor controller under the assumption of a 

given delay, we found that our control continues to provide desired convergence to the steady state 

even if the delay is increased significantly. This illustrates the robustness of our method to the 

delay value. 

This brief is organized as follows. The model for the PV/battery/SC system is in Section II. 

The procedure to implement the control theory is discussed in Section III. The control theory 

underlying this implementation is reviewed in the Appendix, which derives required formulas for 

our controls. Section IV has our real-time simulations and discussions. This brief is concluded in 

Section V. 
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4.2. PV/BATTERY/SC SYSTEM MODEL 

4.2.1. System Description  

The system circuit diagram is shown in Figure. 4.1, where the PV source is modeled as a 

controlled current source connected to the three-phase inverter via a dc-link capacitor. An L-filter 

connects the three-phase inverter to the grid. The control signals are the PWM signals for the 

inverter and both the battery and SC dc/dc converters. 

4.2.2. System Dynamics 

The dynamics of the system in Figure. 4.1 are expressed as follows:     

𝐿
𝑑𝑖𝑑

𝑑𝑡
= 𝑑𝑑𝑉dc − 𝑉𝑔𝑑 +𝜔𝐿𝑖𝑞 − 𝑅𝑖𝑑      

𝐿
𝑑𝑖𝑞

𝑑𝑡
= 𝑑𝑞𝑉dc − 𝑉𝑔𝑞 −𝜔𝐿𝑖𝑑 − 𝑅𝑖𝑞  

𝐶dc
𝑑𝑉dc

𝑑𝑡
= 𝑖PV − 𝑑𝑑𝑖𝑑 − 𝑑𝑞𝑖𝑞 − 𝑑bat𝑖bat − 𝑑SC𝑖SC  

𝐿bat
𝑑𝑖bat

𝑑𝑡
= 𝑑bat𝑉dc − 𝑅bat𝑖bat + 𝑉bat  

𝐿SC
𝑑𝑖SC

𝑑𝑡
= 𝑑SC𝑉dc − 𝑅SC𝑖SC + 𝑉SC                             (1)  

whose derivation and notation are as follows. The dynamics (1) are obtained using Kirchhoff’s 

voltage and current laws and are expressed in the synchronously rotating dq0 reference frame. 

Park’s transformation [50, Appendix 3] is used for converting three-phase quantities into dq0 

quantities, which are dc. The reference q-component of the grid voltage and current as well as the 

grid reactive power can be set to 0. The battery and SC can be modeled as voltage sources with 

series resistances for the mathematical analysis. The inverter currents in the dq0 frame, dc-link 

voltage, and battery and SC currents are selected as state variables for control system design. 
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Here, iPV denotes the current value of the PV source; da, db, and dc are inverter switching 

functions in the abc frame and are transformed into dd and dq using Park’s transformation; 

Vga, Vgb, and Vgc are the grid three-phase voltages; Vgd and Vgq are the dq components of the grid 

voltage; ia, ib, and ic are the grid three-phase currents; id and iq are the dq components of the grid 

current; and dbat and dSC are the duty ratios of the dc/dc converters of the battery and SC, 

respectively. The constants and variables Vbat, VSC, ibat, iSC, and Vdc are the battery voltage, SC 

voltage, battery current, SC current, and dc-link voltage, respectively, and are written using: 

𝑉bat = 𝑉ob − 𝑖bat𝑅𝑏 and 𝑉SC = 𝑉os − 𝑖SC𝑅𝑆.                         (2) 

Here, Vob and Rb are the internal voltage and resistance of the battery, respectively, and Vos and 

RS are the internal voltage and resistance of the SC, respectively. The constants L and R are the 

line resistance and inductance. The known constants Lbat and Rbat are the battery inductance and 

resistance, respectively, the known constants LSC and RSC are the SC inductance and resistance, 

respectively, the known constant Cdc is the dc-link capacitance, and the known constant ω is the 

grid angular frequency. The constants Cdc, Lbat, Rbat, LSC, RSC, iPV, L, R, Vob, Vos, and ω are positive, 

and the constants Vgd, Vgq, Rb, and 𝑅𝑠 are nonnegative. 

To specify our stabilization problem, we next represent the steady state model at a time-varying 

reference solution. These reference state currents and voltages are reference values for the state 

variable candidates in (1), and so must satisfy 

𝐿
𝑑𝐼𝑑

𝑑𝑡
= 𝐷𝑑𝑉dcref − 𝑉𝑔𝑑 +𝜔𝐿𝐼𝑞 − 𝑅𝐼𝑑   

𝐿
𝑑𝐼𝑞

𝑑𝑡
= 𝐷𝑞𝑉dcref − 𝑉𝑔𝑞 −𝜔𝐿𝐼𝑑 − 𝑅𝐼𝑞   

𝐶dc
𝑑𝑉dcref

𝑑𝑡
= 𝑖PV − 𝐷𝑑𝐼𝑑 −𝐷𝑞𝐼𝑞 −𝐷bat𝐼bat −𝐷SC𝐼SC  
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𝐿bat
𝑑𝐼bat

𝑑𝑡
= 𝐷bat𝑉dcref − 𝑅bat𝐼bat + 𝑉bat _s   

𝐿SC
𝑑𝐼SC

𝑑𝑡
= 𝐷SC𝑉dcref − 𝑅SC𝐼SC + 𝑉SC_s                             (3) 

where capitalization of letters or subscripts ref or _s indicate the corresponding reference values 

that correspond to the variables in (1), so, for instance 

𝑉bat _s = 𝑉ob − 𝐼bat 𝑅𝑏  and  𝑉SC−s = 𝑉os − 𝐼SC𝑅𝑆.                                (4) 

The errors between the actual measured quantities and their reference values will be our state 

variables 

𝑥1 = 𝑖𝑑 − 𝐼𝑑  

𝑥2 = 𝑖𝑞 − 𝐼𝑞  

𝑥3 = 𝑉𝑑𝑐 − 𝑉𝑑𝑐𝑟𝑒𝑓                   

𝑥4 = 𝑖𝑏𝑎𝑡 − 𝐼𝑏𝑎𝑡  

𝑥5 = 𝑖𝑆𝐶 − 𝐼𝑆𝐶                                (5) 

By (1)– (3), we obtain the error dynamic (6) 

�̇�1(𝑡) =
1

𝐿
[𝐷𝑑(𝑡)𝑥3(𝑡) + 𝑢1(𝑡 − ℎ)(𝑥3(𝑡) + 𝑉𝑑𝑐𝑟𝑒𝑓(𝑡)) − 𝑅1𝑥1(𝑡) + 𝜔𝐿𝑥2(𝑡)] 

�̇�2(𝑡) =
1

𝐿
[𝐷𝑞(𝑡)𝑥3(𝑡) + 𝑢2(𝑡 − ℎ)(𝑥3(𝑡) + 𝑉𝑑𝑐𝑟𝑒𝑓(𝑡)) − 𝑅1𝑥3(𝑡) − 𝜔𝐿𝑥1(𝑡)]    



53 
 

�̇�3(𝑡) =
1

𝐶𝑑𝑐
[−𝐷𝑑(𝑡)𝑥1(𝑡) − 𝑢1(𝑡 − ℎ)(𝑥1(𝑡) + 𝐼𝑑(𝑡)) − 𝐷𝑞(𝑡)𝑥2(𝑡) − 𝑢2(𝑡

− ℎ)(𝑥2(𝑡) + 𝐼𝑞(𝑡)) − 𝐷𝑏𝑎𝑡𝑡(𝑡)𝑥4(𝑡) − 𝑢3(𝑡 − ℎ)(𝑥4(𝑡) + 𝐼𝑏𝑎𝑡(𝑡))

− 𝐷𝑆𝐶(𝑡)𝑥5(𝑡) − 𝑢4(𝑡 − ℎ)(𝑥5(𝑡) + 𝐼𝑆𝐶(𝑡))] 

�̇�4(𝑡) =
1

𝐿𝑏𝑎𝑡
[𝐷𝑏𝑎𝑡(𝑡)𝑥3(𝑡) + 𝑢3(𝑡 − ℎ)(𝑥3(𝑡) + 𝑉𝑑𝑐𝑟𝑒𝑓(𝑡)) − 𝑅𝑏𝑎𝑡𝑥4(𝑡) + ∆𝑉𝑏𝑎𝑡]   

�̇�5(𝑡) =
1

𝐿𝑆𝐶
[𝐷𝑆𝐶(𝑡)𝑥3(𝑡) + 𝑢4(𝑡 − ℎ)(𝑥3(𝑡) + 𝑉𝑑𝑐𝑟𝑒𝑓(𝑡)) − 𝑅𝑆𝐶𝑥5(𝑡) + ∆𝑉𝑆𝐶]                       (6) 

where Δ𝑉bat = 𝑉bat − 𝑉bat _s , and Δ𝑉SC = 𝑉SC − 𝑉SC_s . In (6), the control inputs are the switching 

functions for the three-phase inverter in the 𝑑𝑞0 frame, and the switching states for the battery and 

SC's dc/dc converters, and are the differences Δ𝑑𝑑 , Δ𝑑𝑞, Δ𝑑bat , and Δ𝑑SC given by 

𝑢1 = ∆𝑑𝑑 = 𝑑𝑑 −𝐷𝑑  

𝑢2 = ∆𝑑𝑞 = 𝑑𝑞 −𝐷𝑞  

𝑢3 = ∆𝑑𝑏𝑎𝑡 = 𝑑𝑏𝑎𝑡 − 𝐷𝑏𝑎𝑡                   

𝑢4 = ∆𝑑𝑆𝐶 = 𝑑𝑆𝐶 − 𝐷𝑆𝐶                               (7) 

between the control and reference values, where  

𝑑𝑘 = 𝑆𝑘 −
𝑆𝑎+𝑆𝑏+𝑆𝑐

3
,   for 𝑘 = 𝑎, 𝑏, and 𝑐 

 𝑑bat →
PWM

𝑆bat , and 𝑑SC →
PWM

𝑆SC.                     (8) 

The switching states on the right-hand sides of (8) are generated by PWM. The goal is to choose 

the controls ui, so that (6) satisfies a global asymptotic stability property (as explained below), to 
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ensure that the reference trajectory is tracked. Since (6) is bilinear (i.e., its right-hand side has 

products of state and control components), it is outside the scope of linear control systems. 

4.2.3. HESS 

The HESS includes a battery and an SC, each with their individual bidirectional dc/dc buck-

boost converter. The flow of HESS power, 𝑃HESS, , is controlled through the PWM signals that are 

sent to the dc/dc converters interfacing the battery and SC and is obtained by 

𝑃HESS = 𝑃pv − 𝑃dc − 𝑃𝑔                              (9) 

where 𝑃pv, 𝑃dc, and 𝑃𝑔 are the PV, dc link, and grid power, respectively. This relationship follows 

the power balance principle at the dc link; i.e., the PV power entering the dc link is the sum of the 

powers delivered to the grid, the HESS, and the dc-link capacitor. It is noteworthy to mention that 

for proper operation of the dc/ac inverter, the dc-link voltage, 𝑉dc, needs to be maintained constant 

at a reference value. As seen in Figure. 4.1, this is achieved by employing a PI controller and 

regulating the dc-link power, 𝑃dc. The PWM signals are switching states averaged over one time 

period and defined in (8). 

To reduce stress on the battery and lengthen its lifespan, the SC is assigned the role of handling 

sudden surges and changes, while the battery's role is to provide smooth energy flow over long 

time periods. To achieve this, 𝑃HESS  is passed through a low-pass filter (LPF). The low-frequency 

output component of the LPF is assigned as the reference power that must be supplied/absorbed 

by the battery, 𝑃bat , and the high-frequency component is assigned as the reference power that the 

SC must supply/absorb, 𝑃SC. Once the battery and SC reference powers are determined, the 

reference battery and SC currents, which are the reference states in (3), are then readily determined 
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by dividing the reference powers by the corresponding voltages. The pseudocode provided in 

Figure. 4.1 summarizes the steps to the control system design. 

4.3. Controller Design 

We show how the computational time delay of our method can be compensated. We design 

our delay-compensating feedback controller for (6) using a substitute variable in the controls, as 

follows. Instead of the difference variables 𝑥𝑖, the controls are computed in terms of the last chain 

predictor in a chain of predictors. The predictors are 5-D dynamic extensions having the state 

components 𝑧𝑖−𝑗, which denotes the 𝑗 th component of predictor 𝑧𝑖 for each 𝑗 ∈ {1,2,3,4,5} 

Table 4.1. System parameters in Real-time simulations 

Parameter Value 

𝑅 [Ω] 0.1 

𝐿 [H] 0.0025 

𝑅𝑏𝑎𝑡 [Ω] 0.05 

𝐿𝑏𝑎𝑡[H] 0.001 

𝑅𝑆𝐶  [Ω] 0.01 

𝐿𝑆𝐶[H] 0.001 

𝑉𝑔𝑑  [V] 179.629 

𝑉𝑔𝑞 [V]  0 

𝑉𝑜𝑏 [V] 240 

𝑉𝑜𝑠 [V] 240 

𝑅𝑏 [Ω] 0.01 

𝑅𝑠 [Ω] 0.01 

𝑖𝑝𝑣  [𝑎𝑚𝑝] 50 

𝜔 [𝑟𝑎𝑑/ sec] 377 

𝑉𝑑𝑐𝑟𝑒𝑓 [V] 500 

𝐶𝑑𝑐 [𝐹] 0.0063 
 

To reduce stress on the battery and lengthen its lifespan, the SC is assigned the role of handling 

sudden surges and changes, while the battery's role is to provide good energy flow over long time 

periods. 
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Table 4.2. Control parameters in Real-time simulations 

Parameter Value 

𝐶1 6440 

𝐶2 0.15 

𝑘 1981.33 

𝐾𝑏𝑎𝑡 0.005 

𝐾𝑑 0.005 

𝐾𝑞 0.0034 

𝐾𝑆𝐶 0.001 

𝐾𝑢1 1 

𝐾𝑢2 1 

𝐾𝑢3 1 

𝐾𝑢4 1 

𝜆𝑎 0.1 

𝑚 14 

𝑝 5146.37 
 

 

 

Figure. 4.2. Real-time power profiles of PV, grid, battery, and SC. 

Using the method from the Appendix and the parameters from Tables I and II, we use 14 chain 

predictors. Then, the derivation in the Appendix implies that the system is globally asymptotically stabilized 

to the origin on ℝ5 by the controls whose positive constants 𝐾𝑢1, 𝐾𝑢2, 𝐾𝑢3, 𝐾𝑢4, 𝐾𝑑, 𝐾𝑞 , 𝐾bat , and 𝐾SC 

can be chosen arbitrarily. By our choices (5) of the state variables for (6), this ensures tracking of 

the reference states that we specify below. The control inputs have a constant delay ℎ, and they 

use the five scalar valued components 𝑧14_j of the 14th (and therefore last) chain predictor for 𝑗 =
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1,2,3,4,5. For the dynamics of the predictors, see the Appendix. The number of chain predictors 

mainly depends on the chosen delay; see the Appendix. 

 

 

Figure. 4.3. Real-time experimental results. Top: states 1–3 using the FSA method (left) and our 

method (right). Bottom: states 4 and 5 using the FSA method (left) and our method (right). 

𝑢1(𝑡 − ℎ) = −𝐾𝑢1arctan (𝐾𝑑 (𝑧14_1(𝑡 − ℎ)𝑉dcref(𝑡)−𝑧14_3(𝑡 − ℎ)𝐼𝑑(𝑡)))  

𝑢2(𝑡 − ℎ) = −𝐾𝑢2arctan (𝐾𝑞 (𝑧14_2(𝑡 − ℎ)𝑉dcref(𝑡)−𝑧14_3(𝑡 − ℎ)𝐼𝑞(𝑡)))  

𝑢3(𝑡 − ℎ) = −𝐾𝑢3arctan (𝐾 bat (𝑧14_4(𝑡 − ℎ)𝑉dcref(𝑡)−𝑧14_3(𝑡 − ℎ)𝐼bat(𝑡)))  

𝑢4(𝑡 − ℎ) = −𝐾𝑢4arctan (𝐾SC (𝑧14_5(𝑡 − ℎ)𝑉dcref(𝑡)−𝑧14_3(𝑡 − ℎ)𝐼SC(𝑡)))                                     (10) 

In PEC control, it is common to choose a computational time delay close to a sampling period 

[70]. The sampling frequency in real-time simulations is 20kHz, which gives a sampling period 

(and a time delay) of 50𝜇s. When deriving our control formulas, we chose ℎ = 0.0001 s. 

However, to show that our method works with even larger delays, we chose the delay 0.001 s in 

our simulations, which use the controls (10) for values of the constants in Table II, which includes 



58 
 

parameters not appearing in (10) but which are needed to apply the control design from the 

Appendix. 

While small, the delay 0.001 s is significant; see, e.g., [70] for a simpler power electronics 

example where chain predictors stabilize a set point with the delay 0.001 s but where the same 

delay was shown to give large oscillations when no delay compensation is used. We also conducted 

real-time simulations in Section IV to show that without delay compensation, the PV/battery/SC 

system performance is deteriorated, and undesirable oscillations will be present. This motivates 

our use of chain predictors for this system. 

4.4. Real-Time Simulations and Discussions 

We carried out real-time simulations to evaluate the performance of the delay compensation 

technique for our system with the delay 0.001 s. The PV source, three-phase inverter, HESS, dc/dc 

converters, and the grid are modeled on an OP4510 real-time simulator from Opal-RT 

Technologies, Inc., operating with a Kintex7 field-programmable gate array (FPGA). The 

sampling frequency is 20kHz. The system and control parameters are listed in Tables I and II. 

 

Figure. 4.4. Real-time dc-link voltage and three-phase grid currents. 



59 
 

The values in Table II were chosen to satisfy the requirements from (A.6) - (A.9). The PV 

power is obtained by using real solar data from the U.S. National Renewable Energy Laboratory 

(NREL) and is shown in Figure. 4.2 along with the grid, battery, and SC powers. It is noteworthy 

that unlike the SC power, the battery power does not contain high surges and transients. At the 

beginning, the reference grid power is set to 25 kW, and at 𝑡 = 0.3 s, it is stepped up by 12.5 kW. 

This step change is introduced to verify the dynamic performance of our feedback controller in 

addition to its steady-state performance. The reference grid reactive power is set to zero. Figure. 

4.3 plots the state responses using our chain predictor method versus the responses from a FSA 

method, which implemented the control from [71, Equation (3)] on a linearization of our bilinear 

𝑥 dynamics with 𝐷 = 0.001 s and each entry of the 4 × 5 matrix 𝐾 in [30, Equation (3)] being -

0.025. We took all other parameters to be the same when we used both methods, and we used the 

delay 0.001 s. 

Our plots show that under the FSA controller, the state variables have large oscillations before 

converging to zero. Oscillations in battery and SC currents adversely affect HESS lifetime. 

Oscillations in the dc-link voltage reduce the dc-link capacitor lifetime and mandate using 

semiconductor switching devices with higher voltage ratings, which are more expensive. Also, 

oscillations in the grid current inject voltage imbalances across the transformer and transmission 

line into the bulk power system, which, in turn, introduce new issues related to power quality. We 

show the dc-link voltage in Figure. 4.4 with the grid three phase currents. The dc-link voltage is 

kept at the reference value of 500 V, confirming that the power balance is maintained. The same 

step change can be seen in the grid three phase currents, showing an increase in the power 

delivered to the grid. 
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We extracted the execution cycle time of the two methods using monitoring blocks in real-

time simulations and found that our method's implementation time is almost one quarter of that of 

the FSA method. This can be attributed to the computational simplicity of our method, which does 

not rely on distributed terms in the control. 

To show the effect of delay compensation on the system performance, we carried out real-time 

simulations for the same system without delay compensation. Figure. 4.5 has a comparison of the 

state trajectories with and without delay compensation under the delay 0.001 s, where the subscript 

UC labels results when no delay compensation was used, which were generated using the controls 

(10) except with 𝑧14_𝑗 replaced by 𝑥𝑖 for = 1,2,… ,5. In each plot, the system with sequential 

predictors achieved convergence, while the system without sequential predictors has a large 

divergence. It is noteworthy that these results are obtained by designing the chain predictors by 

choosing ℎ = 0.0001 s. This illustrates that the desired convergence is achieved even when the 

digital implementation delay is larger than the ℎ value in the controller equations. 

 

Figure. 4.5. Real-time state trajectories with and without delay compensation 
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4.5. Conclusion 

We provided a novel delay compensating feedback control technique for a grid-connected 

PV/HESS based on delay-compensating chain predictors. It enjoys simplicity and global 

asymptotic stability in the sense of Lyapunov. Real-time simulations at steady-state and during 

transients verify the efficacy of our method in controlling the dynamics of the grid-connected 

PV/HESS and ensuring delivery of the desired power to the grid under digital implementation 

delays.  
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Chapter 5. Conclusions and Future Work 

In this research, the stability issue of grid-connected hybrid PV/Battey/SC system is 

investigated, and a novel feedback controller is proposed to deal with time delays that due to the 

digital implementation of the controller. The proposed controller is based on Lyapunov theory and 

uses chain predictors to compensate for the digital implementation time delays. It is shown that 

the GAS of the system equilibrium and ISS are achieved under the proposed controller. Real-time 

studies are conducted to show the real-time implementation feasibility and dynamic response of 

the proposed feedback controller. The real-time results demonstrate the efficacy of the proposed 

controller in providing accurate power reference tracking and ensuring delivery of the desired 

power to the grid under solar source output energy and grid load variations. Comparative studies 

against a controller designed based on a finite spectrum assignment (FSA) approach reveal the 

effectiveness of our proposed method in reducing the computational complexity and the amplitude 

of the state variables' oscillations in real-time. 

Two limitations of our method are as follows: 1) the need for values of the coefficients in the 

bilinear system model to design the delay compensating chain predictor control and 2) the fact that 

our chain predictors require knowing a value of the delay. Therefore, new theories can be 

developed to handle the coefficient matrices or delay uncertainties. Also, future research could 

study the effects of time-varying delays using generalized sequential predictor methods for time-

varying delays. Last but not least, the real-time implementation feasibility of these methods could 

be verified through HIL or experimental studies. 
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Appendix A. Supporting Materials for Chapter 3 

Using the definition of 𝑓0 gives 

𝜀1(𝑡) = −𝑝𝜀1 (𝑡 −
ℎ

𝑚
) + 𝑓0 (𝑡 +

ℏ

𝑚
, 𝑧1(𝑡), 𝑢 (𝑡 −

ℎ(𝑚−1)

𝑚
)) − 𝑓 (𝑡 +

ℏ

𝑚
, x (𝑡 +

ℏ

𝑚
) , 𝑢 (𝑡 −

ℎ(𝑚−1)

𝑚
) , 𝛿 (𝑡 +

ℎ

𝑚
))                           (A.1) 

and 

𝜀𝑖(𝑡) = −𝑝𝜀𝑖 (𝑡 −
ℎ

𝑚
) + 𝑝𝜀𝑖−1(𝑡) + 𝑓0 (𝑡 + 𝑖

ℏ

𝑚
, 𝑧𝑖(𝑡), 𝑢 (𝑡 −

ℎ(𝑚−i)

𝑚
)) − 𝑓0 (𝑡 +

𝑖
ℏ

𝑚
, 𝑧𝑖−1 (𝑡 +

ℏ

𝑚
) , 𝑢 (𝑡 −

ℎ(𝑚−i)

𝑚
))                           (A.2)    

when 𝑖 > 1. We first study the 𝜀1-subsystem (A.1). The Fundamental Theorem of Calculus 

yields 

𝜀1(𝑡) = −𝑝𝜀1(𝑡) + 𝑝∫  
𝑡

𝑡−
h

𝑚

  𝜀1(ℓ)dℓ + 𝑓0 (𝑡 +
ℏ

𝑚
, 𝑧1(𝑡), 𝑢 (𝑡 −

ℎ(𝑚−1)

𝑚
)) − 𝑓 (𝑡 +

ℎ

𝑚
, 𝑥 (𝑡 +

ℎ

𝑚
) , 𝑢 (𝑡 −

ℎ(𝑚−1)

𝑚
) , 𝛿 (𝑡 +

ℎ

𝑚
)).              (A.3) 

�̇�(𝑡) ≤ −𝑝|𝜀1(𝑡)|
2 + 𝑝∫  

𝑡

𝑡−
ℎ

m

  𝜀1(𝑡)
⊤𝜀1(ℓ)dℓ + |𝜀1(𝑡)|𝑘 (|𝑧1(𝑡) − 𝑥 (𝑡 +

ℎ

𝑚
)| + |𝛿 (𝑡 +

ℎ

𝑚
)|)

 

 +𝑘|𝜀1(𝑡)| |𝛿 (𝑡 +
ℎ

𝑚
)| ≤ (𝑘 − 𝑝)|𝜀1(𝑡)|

2 + 𝑘|𝜀1(𝑡)| |𝛿 (𝑡 +
ℎ

𝑚
)|

+𝑝 ∫  
𝑡

𝑡−
ℎ

𝑚

  [
𝑐1

2
|𝜀1(𝑡)|

2 +
1

2𝐶1
|𝜀1(ℓ)|

2] dℓ
 

 = (𝑘 − 𝑝 +
𝑝ℎ𝐶1

2𝑚
) |𝜀1(𝑡)|

2 +
𝑝

2𝐶1
∫  
𝑡

𝑡−
ℎ

𝑚

  |𝜀1(ℓ)|
2 dℓ+ 𝑘|𝜀1(𝑡)| |𝛿 (𝑡 +

ℎ

𝑚
)| . 

 

   

                                                                                                   (A.4) 

Next, note that (A.1) gives the following for all ℓ ≥ 0 : 
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|𝜀1(ℓ)| ≤ 𝑝 |𝜀1 (ℓ −
ℎ

𝑚
)| + 𝑓0 |

(ℓ +
ℎ

𝑚
, 𝑧1(ℓ), 𝑢 (ℓ −

ℎ(𝑚−1)

𝑚
)) 

−𝑓 (ℓ +
ℎ

𝑚
, 𝑥 (ℓ +

ℎ

𝑚
) , 𝑢 (ℓ −

ℎ(𝑚−1)

𝑚
) , 𝛿 (ℓ +

ℎ

𝑚
))
|

 

 ≤ 𝑝 |𝜀1 (ℓ −
𝑏

𝑚
)| + 𝑘 (|𝜀1(ℓ)| + |𝛿 (ℓ +

ℎ

𝑚
)|) ,

  

by Assumption 2. Hence, Young's Inequality gives 

|𝜀1(ℓ)|
2 ≤ (1 + 𝐶2)p

2 |𝜀1 (ℓ −
ℎ

𝑚
)|
2

 + (1 +
1

𝑐2
)𝑘2(|𝜀1(ℓ)|

2 + |𝛿(ℓ + ℎ/𝑚)|2

+2|𝜀1(ℓ)| |𝛿 (ℓ +
ℎ

𝑚
)|)

  

              

≤ (1 + 𝐶2)𝑝
2|𝜀1(ℓ − ℎ/𝑚)|

2

 + (1 +
1

𝐶2
)𝑘2 ((1 +

𝜆𝑎

4
) |𝜀1(ℓ)|

2

+(1 + 4/𝜆𝑎)]𝛿(ℓ + ℎ/𝑚)|
2)

  

for all 𝑡 ≥ 0. Therefore, ( A. 4) gives 

�̇�(𝑡) ≤ (𝑘 − 𝑝 +
𝑝ℎ𝑐1

2𝜋𝑖
) |𝜀1(𝑡)|

2 + 𝑘|𝜀1(𝑡) ∥|𝛿 (𝑡 +
ℎ

𝑚
) ∣

+
𝑝3(1+𝐶2)

2𝐶1
∫  
𝑡−

h

m

𝑡−
2 h

m

  |𝜀1(ℓ)|
2 dℓ

 +
𝑝𝑘2

2𝐶1
(1 +

1

𝐶2
) (1 +

𝜆a

4
)∫  

𝑡

𝑡−
h

m

  |𝜀1(ℓ)|
2 dℓ

 +
𝑝𝑘2

2𝐶1
(1 +

1

𝑐2
) (1 +

4

𝜆a
) ∫  

1+
ℎ

𝑚
𝑡

  |𝛿(ℓ)|2 dℓ

                      (A.5) 

for all 𝑡 ≥
ℎ

𝑚
. Since Young’s inequality also gives 

𝑘|𝜀1(𝑡)||δ(𝑡 + ℎ/𝑚)| ≤
𝜆𝑎

2
|𝜀1(𝑡)|

2 +
𝑘2

2𝜆𝑎
|𝛿(𝑡 + ℎ/𝑚)|2,                    (A.6) 

we can use (A.6) to upper bound the last term in (A.5) and our choice of 𝑝  and finally our choice 

of 𝑣 to get 
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�̇�(𝑡) ≤ −𝑘|𝜀1(𝑡)|
2 +

𝑝3(1+𝐶2]

2𝐶1
∫  
𝑡−ℎ/𝑚

𝑡−2ℎ/𝑚
  |𝜀1(ℓ)|

2 dℓ

 +
𝑝𝑘2

2𝐶1
(1 +

1

𝐶2
) (1 +

𝜆a

4
)∫  

𝑡

𝑙−ℎ/m
  |𝜀1(ℓ)|

2 dℓ +𝑀‾ |𝛿|2[𝑡,𝑡+ℎ/𝑚]

        (A.7) 

where 𝑀‾  is defined in (6). 

Recalling our choice of 𝜇(𝜀1,t)from (16), it follows that for all 𝑡 ≥ ℎ/𝑚, we have 

𝑑

 dt
𝜇(𝜀1,𝑡) ≤ −2𝑘𝑣(𝜀1(𝑡)) + 𝑀‾ |δ|[t,𝑡+ℎ/m]

2 − 𝐶‾(1 + 𝜆a)∫  
t

t−2ℎ/m
 𝑣(𝜀1(ℓ))dℓ

 +𝐶‾ (∫  
𝑡

𝑡−2h/m
 𝑣(𝜀1(ℓ))dℓ +

2ℎ(1+2𝜆a)

m
𝑣(𝜀1(t)))

                       (A.8) 

This gives 

𝑑

𝑑𝑡
𝜇(ℰ1,𝑡) ≤ 2𝑘 [−1 +

h𝐶̅

𝑘m
(1 + 𝜆𝑎)] 𝑣(ℰ1(𝑡)) − 𝜆𝑎𝐶‾ ∫  

𝑡

𝑡−2 h/m
 𝑣(ℰ1(ℓ))dℓ + 𝑀‾ |𝛿|∣𝑡,𝑡+h/m]

2 .
 

  

 (A.9) 

Therefore, our condition (8 ) from our theorem and our choice of 𝜖0 in (6), combined with the 

bound �̃�(𝜀1,𝑡) ≤ 𝑣(ℰ1(𝑡)) + 2 (1 +
ℎ𝐶‾(1+𝜆𝑎)

𝑚
)∫  

𝑡

t−2 h/m
𝑣(ℰ1(ℓ))dℓ, give controls along all 

trajectories of the 𝜀1 dynamics. Similarly, since there is no 𝛿 in the 𝑧 system, (A.2) and the relation 

2𝑟𝑠 ≤ 𝜆𝑎𝑟
2/4 + 4𝑠2/𝜆0 for all 𝑟 ≥ 0 and 𝑠 ≥ 0 give 

|𝜀�̇�(ℓ)|
2 ≤ (1 + 𝐶2)𝑝

2|ℰ𝑖(ℓ − ℎ/𝑚)|
2

 + (1 +
1

𝐶2
) (𝑘|𝜀𝑖(ℓ)| + 𝑝|𝜀𝑖−1(ℓ)|)

2

≤ (1 + 𝐶2)𝑝
2|ℰ𝑖(ℓ − ℎ/𝑚)|

2

 + (1 +
1

𝐶2
)𝑘2(1 + 𝜆𝑎/4)|𝜀𝑖(ℓ)|

2

 + (1 +
1

𝐶2
)𝑝2(1 + 4/𝜆𝑎)|𝜀𝑖−1(ℓ)|

2

                   (A.10) 

for any 𝑖 ∈ {2,3,… ,𝑚}.  
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This implies that the function 𝜇(ℰ𝑖,𝑡) from (18) satisfies the following for all t ≥ ℎ/𝑚 : 

𝑑

𝑑𝑡
𝜇(ℰ𝑖,𝑡) ≤  −𝜖0�̃�(ℰ𝑖,𝑡) + 𝑝|ℰ𝑖(𝑡)||ℰ𝑖−1(𝑡)|

 +𝐶2
# ∫  

𝑡

𝑡−ℎ/𝑚
  |ℰ𝑖−1(ℓ)|

2 dℓ

≤  −𝜖0�̃�(ℰ𝑖,𝑡) +
𝜖0

4
|ℰ𝑖(𝑡)|

2 +
𝑝2

𝜖0
|ℰ𝑖−1(𝑡)|

2

 +𝐶2
# ∫  

𝑡

𝑡−ℎ/𝑚
  |ℰ𝑖−1(ℓ)|

2 dℓ

≤  −
𝜖0

2
�̃�(ℰ𝑖,𝑡) +

𝑝2

𝜖0
|ℰ𝑖−1(𝑡)|

2

 +𝐶2
# ∫  

𝑡

𝑡−ℎ/𝑚
  |ℰ𝑖−1(ℓ)|

2 dℓ

       (A.11) 

where the second inequality used Young's inequality and 

𝐶2
♯ = (1+

1

𝐶2
)
𝑝3

2𝐶1
(1 + 4/𝜆𝑎),  which proves the lemma. 
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Appendix B. Supporting Materials for Chapter 4 

We explain how to apply the chain predictor approach to derive our controls. Part of the 

derivation involves specializing results of previous works for bilinear systems with arbitrarily long 

constant delays to cases where the uncertainties are not present and so where the conclusion is 

uniform global asymptotic stability instead of the input-to-state stability (ISS). However, as in our 

original work, we express our assumptions in terms of ISS. Therefore, we write system as follows: 

�̇�(𝑡) = 𝐴(𝑡)𝑥(𝑡) + ∑𝑖=1
4  𝑢𝑖(𝑡 − ℎ)(𝐵𝑖𝑥(𝑡) + 𝐺𝑖(𝑡))                    (A.1) 

with the matrices 𝐵𝑖 = [𝐵𝑖𝑗𝑘] having the entries 𝐵113 = 1/𝐿, 𝐵131 = −1/𝐶dc, 𝐵223 = 1/𝐿,𝐵232 =

−1/𝐶dc, 𝐵334 = −1/𝐶dc, 𝐵343 = 1/𝐿bat, 𝐵435 = −1/𝐶dc, and 𝐵453 = 1/𝐿SC, and all other entries 

of the 𝐵𝑖 's being zero, where 𝐵𝑖𝑗𝑘 is the entry in the 𝑗 th row and 𝑘 th column of 𝐵𝑖 for 𝑖 = 1,2,3,4, 

𝑗 = 1,2,3,4,5, 𝑘 = 1,2,3,4,5, and 

𝐴(𝑡)  =

[
 
 
 
 
 
 
 
 −

𝑅

𝐿
ω

𝐷𝑑(𝑡)

𝐿
0 0

−ω −
𝑅

𝐿

𝐷𝑞(𝑡)

𝐿
0 0

−
𝐷𝑑(𝑡)

𝑐𝑑𝑐 
−
𝐷𝑞(𝑡)

𝑐𝑑𝑐
0 −

𝐷𝑏𝑎𝑡(𝑡)

𝑐𝑑𝑐
−
𝐷𝑠𝑐(𝑡)

𝑐𝑑𝑐

0 0
Dbat(t)

Lbat
−

𝑅𝑏
#

𝐿𝑏𝑎𝑡
0

0 0
𝐷𝑠𝑐(𝑡)

𝐿𝑆𝐶
0 −

𝑅𝑠
#

𝐿𝑆𝐶 ]
 
 
 
 
 
 
 
 

                                           (A.2)  

where 𝑅b
# = 𝑅bat + 𝑅𝑏 and 𝑅𝑠

# = 𝑅SC + 𝑅𝑆, and with 
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𝐺1(𝑡) =

[
 
 
 
 
 
𝑉dcref(𝑡)

𝐿

0

−
𝐼𝑑(𝑡)

𝐶dc

0
0 ]

 
 
 
 
 

,  𝐺2(𝑡) =

[
 
 
 
 
 

0
𝑉dcref(𝑡)

𝐿

−
𝐼𝑞(𝑡)

𝐶dc

0
0 ]

 
 
 
 
 

𝐺3(𝑡) =

[
 
 
 
 
 

0
0

−
𝐼bat(𝑡)

𝐶dc
𝑉dcref(𝑡)

𝐿bat

0 ]
 
 
 
 
 

,  𝐺4(𝑡) =

[
 
 
 
 
 
0
0

−
𝐼SC(𝑡)

𝐶dc

0
𝑉dcref(𝑡)

𝐿SC ]
 
 
 
 
 

.

                       (A.3) 

The main requirement for the zero uncertainties case specialized to the bilinear dynamic (A.1) 

is the as follows, where ℬ�̅� ⊆ ℝ
5denotes the closed ball of radius 𝜖‾ > 0 centered at the origin, | ⋅ | 

denotes the usual Euclidean norm and the corresponding matrix operator two norm, 𝑢𝑠𝑖 denotes 

the 𝑖 th component of 𝑢𝑠 for 𝑖 = 1,2,3,4, and 0𝑚×𝑛 denotes the 𝑚 × 𝑛 matrix whose entries are all 

zeros for all 𝑚 and 𝑛. 

Assumption 1: There are a compact neighborhood 𝒰 ⊆ ℝ4 of 04×1, a continuous function 

𝑢𝑠: [0,∞) × ℝ
5 → 𝒰 that is globally Lipschitz in its second variable uniformly in its first variable, 

and a constant 𝜖‾ > 0, such that the system 

�̇�(𝑡) = 𝐴(𝑡)𝑥(𝑡) + ∑  4
𝑖=1 𝑢𝑠𝑖(𝑡, 𝑥(𝑡) + 𝜖(𝑡))(𝐵𝑖𝑥(𝑡) + 𝐺𝑖(𝑡))                                  (A.4)  

with disturbance 𝜖 satisfies the ISS property for all piecewise continuous functions 𝜖 that are 

valued in disturbance set ℬ�̅�. Also, 𝑢𝑠(𝑡, 05×1) = 04×1 for all 𝑡 ≥ 0. 

The preceding assumption means that 𝑢𝑠 ensures the required ISS conditions when there is no 

delay, and, therefore, can act as a preliminary or nominal control that we will transform into our 

delay compensating controller using the sequential predictors that we present below. Later, here, 

we show how to construct 𝑢𝑠 and 𝒰 that satisfy the requirements of Assumption 1. We now set 
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𝑘 = |𝐴|∞ +𝑈‾ ∑  4
𝑖=1 |𝐵𝑖|                          (A.5) 

for any bound 𝑈‾  on the elements of the set 𝒰 from Assumption 1, where | ⋅ |∞ is the sup-norm. 

The statement of the theorem in [70] also requires that the time-varying coefficient matrices (which 

in our case are 𝐴 and the 𝐺𝑖 's) are continuous, but the proof of the previous main result shows that 

this continuity requirement can be replaced by the requirements that all entries of these coefficient 

matrices are bounded and piecewise continuous. This will allow us to apply the method in our 

case, where the jump in 𝑃𝑔 and the relation (3/2)𝑉𝑔𝑑𝐼𝑑 = 𝑃𝑔 produce a discontinuous trajectory 

component 𝐼𝑑; see Figure. 4.2. 

Fixing a positive integer 𝑚 and any constants ℎ > 0, 𝐶1 ∈ (0,2𝑚/ℎ), 𝐶2 > 0, and 𝜆𝑎 > 0, and 

any constant 𝜖 ̅satisfying Assumptions 1, and 

𝑝 =
𝑚(4𝑘+𝜆𝑎)

2𝑚−ℎ𝐶1
                          (A.6) 

𝐶‾ =
𝑝

𝐶1
𝑚𝑎𝑥 {𝑝2(1 + 𝐶2), 𝑘

2 (1 +
1

𝐶2
) (1 +

𝜆𝑎

4
)}                          (A.7) 

which will be positive constants under condition (A.8), we use the following special case of the 

main result, which provides the required chain predictors for our control design, where we use the 

class 𝒦ℒ of functions. |. |𝐽 is the supremum over intervals 𝐽 in the usual Euclidean norm. 

Lemma 1: Let Assumption 1 hold, and assume that 

𝑚 >
ℎ𝐶‾(1+𝜆𝑎)

𝑘
                          (A.8) 

Then, for the control 𝑢𝑠 from Assumption 1, system (A.1), in closed loop with the feedback 

control   
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𝑢(𝑡) = 𝑢𝑠(𝑡 + ℎ, 𝑧𝑚(𝑡))                        (A.9) 

where 𝑧𝑚 is the last 𝑛 components of the state of the system 

�̇�𝑖(𝑡) = 𝐴 (𝑡 +
𝑖ℎ

𝑚
) 𝑧𝑖(𝑡)

 +∑  4
𝑖=1  Φ𝑖(𝑡, 𝑧𝑚 , 𝑖) [𝐵𝑖𝑧𝑖(𝑡) + 𝐺𝑖 (𝑡 +

𝑖ℎ

𝑚
)]    

 −𝑝 [𝑧𝑖 (𝑡 −
ℎ

𝑚
) − 𝑧𝑖−1(𝑡)] ,  1 ≤ 𝑖 ≤ 𝑚

                          (A.10)  

and 𝑧0 = 𝑥 and 

Φ(𝑡, 𝑧𝑚 , 𝑖) = 𝑢𝑠(𝑡 + ℎ − ℎ(𝑚 − 𝑖)/𝑚, 𝑧𝑚(𝑡 − ℎ(𝑚 − 𝑖)/𝑚))                 (A.11)  

admits a function 𝛽𝑑 ∈ 𝒦ℒ, such that all solutions (𝑥, 𝑧) : [𝑡0 − 2ℎ,∞) → ℝ
5(𝑚+1) of the 

preceding closed loop system for all 𝑡0 ≥ ℎ/𝑚 satisfy 

|𝑥(𝑡)| ≤ 𝛽𝑑(|𝑥|[𝑡0−2ℎ,𝑡0+ℎ/𝑚] + |𝑧|[𝑡0−2ℎ,𝑡0+ℎ/𝑚], 𝑡 − 𝑡0)                  (A.12) 

for all 𝑡 ≥ 𝑡0, where 𝑧 = (𝑧1, . . . , 𝑧𝑚). 

The choices of the above parameters, such as 𝐶1, 𝐶2, and 𝜆𝑎, are used to determine 𝛽𝑑 [70], and 

so impact the convergence rate. The dynamics (A.10) are 𝑚 chain predictors, which, in our 

simulations, are 𝑚 = 14 dynamic extension with the state 𝑧𝑖 of the 𝑖 th extension having dimension 

𝑛 = 5 for 𝑖 = 1,… ,14. To find 𝑢𝑠 from Assumption 1 needed to apply Lemma 1, we use Lemma 

2 , which follows from combining [70, Remark 4] with the choices 𝜎𝑖(𝑠) = 𝑐1𝑖arctan (𝑐2𝑖𝑠) for 

𝑖 = 1, … ,4 for positive constants 𝑐𝑗𝑖 for 𝑗 = 1,2, and which uses standard definitions of properness 

and positive definiteness. 
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Lemma 2: Let 𝐴 and the matrix valued functions 𝐵𝑖 and 𝐺𝑖 for 𝑖 = 1,2,3,4 be as above. Assume 

that there are constants 𝑐𝑖 ≥ 0 and a symmetric positive definite matrix 𝑃 ∈ ℝ5×5, such that the 

following hold with 𝑉(𝑥) = 𝑥⊤𝑃𝑥. 

1) Along all solutions of �̇� = 𝐴(𝑡)𝑥, we have 

�̇� ≤ −∑  5
𝑖=1 𝑐𝑖𝑥𝑖

2(𝑡)       at all times 𝑡 ≥ 0.        (A.13)  

      2) The functions 𝑉(𝑥) and 

∑  5
𝑖=1 𝑐𝑖𝑥𝑙

2 +∑  4
𝑖=1 |𝑥

⊤𝑃𝐵𝑖𝑥 + 𝑥
⊤𝑃𝐺𝑖(𝑡)|                       (A.14) 

are uniformly proper and positive definite. 

      3) The functions 

ℋ𝑖(𝑡, 𝑥) =
𝑥⊤(𝑃𝐵𝑖+𝐵𝑖

⊤𝑃)+𝐺𝑖
⊤(𝑡)𝑃

1+4(𝑥⊤𝑃𝐵𝑖𝑥+𝑥⊤𝑃𝐺𝑖(𝑡))
2                       (A.15) 

are bounded for 𝑖 = 1, … ,4. Choose a positive value 

ℋ∗ ≥ 2 s  {|ℋ𝑖(𝑡, 𝑥)|: 𝑥 ∈ ℝ
5, 𝑡 ≥ 0,1 ≤ 𝑖 ≤ 4}.                   (A.16) 

Then, for any constants 𝜔‾ 𝑖 > 0 and 𝑣𝑖 > 0 for 𝑖 = 1,2,… ,4 and 𝜖‾ ∈ (0, 𝜋/(2ℋ∗)), and 

with the choice 

𝑢𝑠(𝑡, 𝑥) = −(𝜔‾1arctan (𝑣1𝑀1(𝑡, 𝑥)), … ,𝜔‾4arctan (𝑣4𝑀4(𝑡, 𝑥)))                  (A.17)  

where 

𝑀𝑖(𝑡, 𝑥) = 𝑥
⊤𝑃𝐵𝑖𝑥 + 𝑥

⊤𝑃𝐺𝑖(𝑡),   for 1 ≤ 𝑖 ≤ 4  
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the system (A.1) satisfies Assumption 1 with the product set 

 𝒰 = [−𝜋𝜔‾1/2, 𝜋𝜔‾2/2] × ⋯× [−𝜋𝜔‾𝑐/2, 𝜋𝜔‾𝑐/2]. 

We next show why the requirements of Lemma 2 are satisfied for our dynamics (A.1), which 

will allow us to conclude that Lemmas 1 and 2 provide the controls (10). We choose the diagonal 

matrix 𝑃 = (1/2)diag {𝐿, 𝐿, 𝐶dc, 𝐿bat, 𝐿SC} for the Lyapunov function 𝑉(𝑥) = 𝑥⊤𝑃𝑥 and the 

constants 𝑐1 = 𝑐2 = 𝑅, 𝑐3 = 0, 𝑐4 = 𝑅bat , and 𝑐5 = 𝑅SC in Lemma 2. Using the facts that 

inf𝑡≥0  |𝐼bat (𝑡)| > 0 and that the entries of 𝐺𝑖 's are bounded and piecewise continuous, we can 

check that the assumptions of Lemma 2 are satisfied when we choose the values from Tables 4.1 

and 4.2. Hence, by choosing the function 𝑢𝑠 from Lemma 2 in Lemma 1, we obtain controls. 

  



73 
 

 

Appendix C. Copyright Information 

 Copyright information for Chapter 3 

 

 



74 
 

 

 

 

Copyright information for Chapter 4 

 

 



75 
 

References 
 

[1] N. Kumar, T. K. Saha and J. Dey, "Sliding-Mode Control of PWM Dual Inverter-Based 

Grid-Connected PV System: Modeling and Performance Analysis," in IEEE Journal of 

Emerging and Selected Topics in Power Electronics, vol. 4, no. 2, pp. 435-444, June 

2016. 

[2] B. Wang, U. Manandhar, X. Zhang, H. B. Gooi and A. Ukil, "Deadbeat Control for 

Hybrid Energy Storage Systems in DC Microgrids," in IEEE Transactions on 

Sustainable Energy, vol. 10, no. 4, pp. 1867-1877, Oct. 2019. 

[3] Z. Afshar, M. M. Zadeh and S. M. T. Bathaee, "Sliding Mode Control of Grid-connected 

Inverters Using Inverter Output Current," 2019 IEEE International Conference on 

Environment and Electrical Engineering and 2019 IEEE Industrial and Commercial 

Power Systems Europe (EEEIC / I&CPS Europe), Genova, Italy, 2019. 

[4] C. Qi, X. Chen, P. Tu and P. Wang, "Cell-by-Cell-Based Finite-Control-Set Model 

Predictive Control for a Single-Phase Cascaded H-Bridge Rectifier," in IEEE 

Transactions on Power Electronics, vol. 33, no. 2, pp. 1654-1665, Feb. 2018. 

[5] Y. Zhu and J. Fei, "Disturbance Observer Based Fuzzy Sliding Mode Control of PV 

Grid Connected Inverter," in IEEE Access, vol. 6, pp. 21202-21211, 2018. 

[6] S. Rojas and A. Gensior, "Prediction of the Average Value of State Variables for 

Modulated Power Converters Considering the Modulation and Measuring Method," 

in IEEE Transactions on Industrial Electronics, vol. 63, no. 8, pp. 5209-5220, Aug. 

2016. 

[7] D. Zhu, S. Zhou, X. Zou, Y. Kang and K. Zou, "Small-Signal Disturbance 

Compensation Control for LCL-Type Grid-Connected Converter in Weak Grid," 

in IEEE Transactions on Industry Applications, vol. 56, no. 3, pp. 2852-2861, May-

June 2020. 

[8] H. Li, W. Wu, M. Huang, H. Shu-hung Chung, M. Liserre and F. Blaabjerg, "Design of 

PWM-SMC Controller Using Linearized Model for Grid-Connected Inverter With LCL 

Filter," in IEEE Transactions on Power Electronics, vol. 35, no. 12, pp. 12773-12786, 

Dec. 2020. 

[9] N. Altin, S. Ozdemir, H. Komurcugil and I. Sefa, "Sliding-Mode Control in Natural 

Frame With Reduced Number of Sensors for Three-Phase Grid-Tied LCL-Interfaced 

Inverters," in IEEE Transactions on Industrial Electronics, vol. 66, no. 4, pp. 2903-

2913, April 2019. 

[10] L. Guo, N. Jin, Y. Li and K. Luo, "A Model Predictive Control Method for Grid-

Connected Power Converters Without AC Voltage Sensors," in IEEE Transactions on 

Industrial Electronics, vol. 68, no. 2, pp. 1299-1310, Feb. 2021. 



76 
 

[11] E. T. Andrew, K. H. Ahmed and D. Holliday, "A New Model Predictive Current 

Controller for Grid-Connected Converters in Unbalanced Grids," in IEEE Transactions 

on Power Electronics, vol. 37, no. 8, pp. 9175-9186, Aug. 2022. 

[12] R. Errouissi, H. Shareef and F. Awwad, "Disturbance Observer-Based Control for 

Three-Phase Grid-Tied Inverter With LCL Filter," in IEEE Transactions on Industry 

Applications, vol. 57, no. 5, pp. 5411-5424, Sept.-Oct. 2021. 

[13] N. N. Nam, N. -D. Nguyen, C. Yoon and Y. I. Lee, "Disturbance Observer-Based 

Robust Model Predictive Control for a Voltage Sensorless Grid-Connected Inverter 

With an LCL Filter," in IEEE Access, vol. 9, pp. 109793-109805, 2021. 

[14] D. Palomares, C. Hernandez, J. vaquero, N. Vazquez and H. Lopez, "Lyapunov-Based 

Control Strategy for a Multi-Function Single-Phase Inverter for Photovoltaic 

Systems," 2018 14th International Conference on Power Electronics (CIEP), Cholula, 

Puebla, Mexico, 2018. 

[15] C. Meza, D. Biel, D. Jeltsema and J. M. A. Scherpen, "Lyapunov-Based Control Scheme 

for Single-Phase Grid-Connected PV Central Inverters," in IEEE Transactions on 

Control Systems Technology, vol. 20, no. 2, pp. 520-529, March 2012. 

[16] H. Komurcugil and O. Kukrer, "Lyapunov-based control for three-phase PWM AC/DC 

voltage-source converters," in IEEE Transactions on Power Electronics, vol. 13, no. 5, 

pp. 801-813, Sept. 1998. 

[17] K. Biju and R. Ramchand, "A Modified Lyapunov Function Based Control Strategy for 

Single Phase Cascaded H-bridge Multilevel Inverter with Nonlinear Loads," 2019 IEEE 

Industry Applications Society Annual Meeting, Baltimore, MD, USA, 2019. 

[18] S. Bayhan, H. Komurcugil, H. Abu-Rub and Y. Liu, "A Lyapunov Stability Theorem 

Based Control Strategy for Single-Phase Neutral-Paint-Clamped Quasi - Impedance 

Source Inverter with LCL Filter," IECON 2018 - 44th Annual Conference of the IEEE 

Industrial Electronics Society, Washington, DC, USA, 2018. 

[19] S. R. Sanders and G. C. Verghese, "Lyapunov-based control for switched power 

converters," in IEEE Transactions on Power Electronics, vol. 7, no. 1, pp. 17-24, Jan. 

1992. 

[20] H. Komurcugil and O. Kukrer, "A new control strategy for single-phase shunt active 

power filters using a Lyapunov function," in IEEE Transactions on Industrial 

Electronics, vol. 53, no. 1, pp. 305-312, Feb. 2006. 

[21] S. Rahmani, A. Hamadi and K. Al-Haddad, "A Lyapunov-Function-Based Control for 

a Three-Phase Shunt Hybrid Active Filter," in IEEE Transactions on Industrial 

Electronics, vol. 59, no. 3, pp. 1418-1429, March 2012. 



77 
 

[22] I. Sefa, S. Ozdemir, H. Komurcugil and N. Altin, "An Enhanced Lyapunov-Function 

Based Control Scheme for Three-Phase Grid-Tied VSI With LCL Filter," in IEEE 

Transactions on Sustainable Energy, vol. 10, no. 2, pp. 504-513, April 2019. 

[23] S. S. Seyedalipour and G. B. Gharehpetian, "A Lyapunov-function-based control 

strategy for stable operation of a grid-connected DC microgrid with variable generations 

and energy storage," 2016 21st Conference on Electrical Power Distribution Networks 

Conference (EPDC), Karaj, Iran, 2016. 

[24] S. Seyedalipour, S. Bayhan and H. Komurcugil, "A Lyapunov-Function-Based Control 

Strategy for Distributed Generations in Hybrid AC/DC Microgrids," 2019 IEEE 28th 

International Symposium on Industrial Electronics (ISIE), Vancouver, BC, Canada, 

2019. 

[25] A. S. Md. Khalid Hasan, I. Bhogaraju, M. Farasat and M. Malisoff, "Lyapunov 

Function-Based Stabilizing Control Scheme for Wireless Power Transfer Systems with 

LCC Compensation Network," 2021 IEEE Applied Power Electronics Conference and 

Exposition (APEC), 2021. 

[26] F. Saccomanno, Electric Power Systems: Analysis and Control. New York, NY, USA: 

Wiley, 2003. 

[27] G. Besançon, D. Georges, Z. Benayache, Asymptotic state prediction for continuous-

time systems with delayed input and application to control, in: Proceedings of the 

European Control Conference, Kos, Greece, 2007, pp. 1786–1791. 

[28] F. Cacace, A. Germani, Output feedback control of linear systems with input, state and 

output delays by chains of predictors, Automatica 85 (2017) 455–461. 

[29] F. Mazenc, M. Malisoff, Stabilization of nonlinear time-varying systems through a new 

prediction-based approach, IEEE Trans. Automat. Control 62 (6) (2017) 2908–2915. 

[30] J. Weston, M. Malisoff, Sequential predictors under time-varying feedback and 

measurement delays and sampling, IEEE Trans. Automat. Control 64 (7) (2019) 2991–

2996. 

[31] D. Elliot, Bilinear Control Systems, Springer Science and Business Media, New York, 

NY, 2009. 

[32] S. Ghosh, J. Ruths, Structural control of single-input rank one bilinear systems, 

Automatica 64 (2016) 8–17. 

[33] R. Mohler, Bilinear Control Processes with Applications to Engineering, Ecology, and 

Medicine, Academic Press, New York, NY, 1973. 

[34] T. Ahmed-Ali, E. Fridman, F. Giri, M. Kahelras, F. Lamnabhi-Lagarrigue, L. Burlion, 

Observer design for a class of parabolic systems with large delays and sampled 

measurements, IEEE Trans. Automat. Control 65 (5) (2020) 2200–2206. 



78 
 

[35] F. Cacace, A. Germani, C. Manes, Exponential stabilization of linear systems with time-

varying delayed state feedback via partial spectrum assignment, Systems Control Lett. 

69 (2014) 47–52. 

[36] F. Cacace, A. Germani, C. Manes, Predictor-based control of linear systems with large 

and variable measurement delays, Internat. J. Control 87 (4) (2014) 704–714. 

[37] F. Cacace, F. Conte, A. Germani, G. Palombo, Delay identification for a class of 

nonlinear systems, Internat. J. Control 89 (1) (2016) 2350–2359. 

[38] F. Cacace, F. Conte, A. Germani, G. Palombo, Optimal control of linear systems with 

large and variable input delays, Systems Control Lett. 89 (2016) 1–7. 

[39] F. Cacace, F. Conte, A. Germani, P. Pepe, Stabilization of strict-feedback nonlinear 

systems with input delay using closed-loop predictors, Internat. J. Robust Nonlinear 

Control 26 (16) (2016) 3524–3540. 

[40] F. Cacace, F. Conte, A. Germani, Output transformations and separation results for 

feedback linearizable delay systems, Internat. J. Control 91 (4) (2018) 797–812. 

[41] A. Selivanov, E. Fridman, Predictor-based networked control under uncertain 

transmission delays, Automatica 70 (2016) 101–108. 

[42] A. Selivanov, E. Fridman, Delayed point control of a reaction-diffusion PDE under 

discrete-time point measurements, Automatica 96 (2018) 224–233. 

[43] Y. Zhu, E. Fridman, Predictor methods for decentralized control of large-scale systems 

with input delays, Automatica 116 (2020) 108903. 

[44] M. Malisoff, F. Zhang, Robustness of adaptive control under time delays for three-

dimensional curve tracking, SIAM J. Control Optim. 35 (4) (2015) 2203–2236. 

[45] N. Bekiaris-Liberis, M. Krstic, Predictor-feedback stabilization of multiinput nonlinear 

systems, IEEE Trans. Automat. Control 62 (2) (2017) 516–531.  

[46] M. Krstic, Delay Compensation for Nonlinear, Adaptive, and PDE Systems, Birkhauser, 

Boston, MA, 2009. 

[47] M. Krstic, Input delay compensation for forward complete and feedforward nonlinear 

systems, IEEE Trans. Automat. Control 55 (2) (2010) 287–303. 

[48] H. Khalil, Nonlinear Systems, third ed., Prentice Hall, Upper Saddle River, NJ, 2002. 

[49] M. Di Ferdinando, P. Pepe, E. Fridman, Exponential input-to-state stability of globally 

Lipschitz time-delay systems under sampled-data noisy output feedback and actuation 

disturbances, Internat. J. Control (2020) in press. 



79 
 

[50] F. Mazenc, M. Malisoff, S.-I. Niculescu, Reduction model approach for linear time-

varying systems with delays, IEEE Trans. Automat. Control 59 (8) (2014) 2068–2082. 

[51] G. Mirzaeva, G. Goodwin, and C. Townsend, “Dealing with linear and nonlinear time 

delays under model predictive control of power electronic inverters,” in Proc. IEEE Int. 

Conf. Automatica (ICA-ACCA), Oct. 2016, pp. 1–8. 

[52] Y. He, X. Wang, X. Ruan, D. Pan, and K. Qin, “Hybrid active damping combining 

capacitor current feedback and point of common coupling voltage feedforward for LCL-

type grid-connected inverter,” IEEE Trans. Power Electron., vol. 36, no. 2, pp. 2373–

2383, Feb. 2021. 

[53] X. Zhang, P. Chen, C. Yu, F. Li, H. T. Do, and R. Cao, “Study of a current control 

strategy based on multisampling for high-power grid connected inverters with an LCL 

filter,” IEEE Trans. Power Electron., vol. 32, no. 7, pp. 5023–5034, Jul. 2017. 

[54] D. Pan, X. Ruan, C. Bao, W. Li, and X. Wang, “Capacitor-currentfeedback active 

damping with reduced computation delay for improving robustness of LCL-type grid-

connected inverter,” IEEE Trans. Power Electron., vol. 29, no. 7, pp. 3414–3427, Jul. 

2014. 

[55] C. Zou, B. Liu, S. Duan, and R. Li, “Influence of delay on system stability and delay 

optimization of grid-connected inverters with LCL filter,” IEEE Trans. Ind. Informat., 

vol. 10, no. 3, pp. 1775–1784, Aug. 2014. 

[56] W. Xia and J. Kang, “Stability of LCL-filtered grid-connected inverters with capacitor 

current feedback active damping considering controller time delays,” J. Modern Power 

Syst. Clean Energy, vol. 5, no. 4, pp. 584–598, Jul. 2017. 

[57] T. Jin, X. Shen, T. Su, and R. C. C. Flesch, “Model predictive voltage control based on 

finite control set with computation time delay compensation for PV systems,” IEEE 

Trans. Energy Convers., vol. 34, no. 1, pp. 330–338, Mar. 2019. 

[58] B. Cao, L. Chang, and R. Shao, “Predictive current controller for singlephase grid-

connected VSIs with compensation for time-delay effect and system uncertainty,” IEEE 

J. Emerg. Sel. Topics Power Electron., vol. 6, no. 4, pp. 1761–1768, Dec. 2018. 

[59] A. Calle-Prado, S. Alepuz, J. Bordonau, P. Cortes, and J. Rodriguez, “Predictive control 

of a back-to-back NPC converter-based wind power system,” IEEE Trans. Ind. 

Electron., vol. 63, no. 7, pp. 4615–4627, Jul. 2016. 

[60] Y. Zhang, J. Liu, H. Yang, and S. Fan, “New insights into model predictive control for 

three-phase power converters,” IEEE Trans. Ind. Appl., vol. 55, no. 2, pp. 1973–1982, 

Apr. 2019. 

[61] P. Cortes, J. Rodriguez, C. Silva, and A. Flores, “Delay compensation in model 

predictive current control of a three-phase inverter,” IEEE Trans. Ind. Electron., vol. 

59, no. 2, pp. 1323–1325, Feb. 2012. 



80 
 

[62] M. Ajmeri and A. Ali, “Modified Smith predictor and controller for unstable first order 

processes,” in Proc. Indian Control Conf. (ICC), Jan. 2017, pp. 397–402. 

[63] Y. Wang, W. Xie, X. Wang, and D. Gerling, “A precise voltage distortion compensation 

strategy for voltage source inverters,” IEEE Trans. Ind. Electron., vol. 65, no. 1, pp. 59–

66, Jan. 2018. 

[64] T. Liu, C. Xia, X. Gu, and T. Shi, “An observer-based finite control set model predictive 

control for three-phase power converters,” Math. Problems Eng., vol. 2014, pp. 1–9, 

Mar. 2014. 

[65] S.-K. Kim and C. K. Ahn, “Learning algorithm-based offset-free onestep time-delay 

compensation for power converter and motor drive system applications,” IEEE Trans. 

Ind. Informat., vol. 16, no. 6, pp. 3789–3796, Jun. 2020. 

[66] S.-K. Kim, “Offset-free one-step ahead state predictor for power electronic applications 

using robust proportional–integral observer,” IEEE Trans. Ind. Electron., vol. 63, no. 3, 

pp. 1763–1770, Mar. 2016. 

[67] F. Mazenc, M. Malisoff, and Z. Lin, “Further results on input-to-state stability for 

nonlinear systems with delayed feedbacks,” Automatica, vol. 44, no. 9, pp. 2415–2421, 

Sep. 2008. 

[68] Z. Artstein, “Linear systems with delayed controls: A reduction,” IEEE Trans. Autom. 

Control, vol. AC-27, no. 4, pp. 869–879, Aug. 1982. 

[69] R. Katz and E. Fridman, “Sub-predictors and classical predictors for finite-dimensional 

observer-based control of parabolic PDEs,” IEEE Control Syst. Lett., vol. 6, pp. 626–

631, 2022. 

[70] I. Bhogaraju, M. Farasat, M. Malisoff, and M. Krstic, “Sequential predictors for delay-

compensating feedback stabilization of bilinear systems with uncertainties,” Syst. 

Control Lett., vol. 152, Jun. 2021, Art. no. 104933. 

[71] M. Krstic, “Compensation of infinite-dimensional actuator and sensor dynamics,” IEEE 

Control Syst. Mag., vol. 30, no. 1, pp. 22–41, Feb. 2010. 

[72] E. D. Sontag, “Input to state stability: Basic concepts and results,” in Nonlinear and 

Optimal Control Theory, P. Nistri and G. Stefani, Eds. 

 

  



81 
 

Vita 

Indra Narayana Sandilya Bhogaraju received his undergraduate degree from GITAM 

University, Visakhapatnam, India, in 2015 and his M.Sc. degree in Electrical Engineering (Power) 

from the University of Houston, TX, USA, in 2017. He is pursuing his Ph.D. degree in Electrical 

Engineering (Power) with the Department of Electrical and Computer Engineering, Louisiana 

State University, LA, USA, with anticipated graduation in May 2023. He has more than five years 

of experience in research, presented talks on multiple occasions, and published several papers as 

a part of his research journey. His research areas include grid integration of renewables, electric 

vehicles, modeling and control of power electronics converters, and nonlinear control theory. After 

completion of his doctoral degree, he plans to become a research scientist in the field of power 

electronics. 

 

 


	Stabilizing Control Schemes for Grid-Connected Hybrid PV-Energy Storage Systems
	Recommended Citation

	Acknowledgements
	Abstract
	Chapter 1. Introduction
	Chapter 2. Lyapunov Function-Based Stabilizing Control Scheme for a Grid-Connected Hybrid PV/Battery/Supercapacitor System
	2.1. Introduction
	2.2. Hybrid PV/battery/SC system model
	2.2.1. System Description
	2.2.2. System Dynamics
	2.2.3. HESS

	2.3. Lyapunov Function-Based Feedback Controller
	2.4. Results and Discussion
	2.5. Conclusion

	Chapter 3. Sequential Predictors for Delay-Compensating Feedback Stabilization of Bilinear Systems with Uncertainties
	3.1. Introduction
	3.2. Definitions and Notations
	3.2.1. Definition 1

	3.3. General Result
	3.3.1. Assumption 1
	3.3.2. Assumption 2
	3.3.3. Theorem 1
	3.3.4. Remark 1
	3.3.5. Remark 2
	3.3.6. Remark 3

	3.4. Proof of Theorem
	3.4.1 Lemma 1

	3.5. Checking our Assumption
	3.5.1. Lemma 2
	3.5.2. Proof
	3.5.3. Remark 4

	3.6. Application to Bilinear Systems
	3.6.1. Lemma 3

	3.7. Conclusions

	Chapter 4. Delay-Compensating Stabilizing Feedback Controller for a Grid-Connected PV/Hybrid Energy Storage System
	4.1. Introduction
	4.2. PV/BATTERY/SC SYSTEM MODEL
	4.2.1. System Description
	4.2.2. System Dynamics
	4.2.3. HESS

	4.3. Controller Design
	4.4. Real-Time Simulations and Discussions
	4.5. Conclusion

	Chapter 5. Conclusions and Future Work
	Appendix A. Supporting Materials for Chapter 3
	Appendix B. Supporting Materials for Chapter 4
	Appendix C. Copyright Information
	Copyright information for Chapter 3
	Copyright information for Chapter 4

	References
	Vita

