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Abstract

Nonlinear optimization is a critical branch in applied mathematics and has at-

tracted wide attention due to its popularity in practical applications. In this work, we

present two methods which use first-order information to solve two typical classes of non-

linear structured optimization problems.

For a class of unconstrained nonconvex composite optimization problems where the

objective is the sum of a smooth but possibly nonconvex function and a convex but pos-

sibly nonsmooth function, we propose a unified proximal gradient method with extrapo-

lation, which provides unified treatment to convex and nonconvex problems. The method

achieves the best-known convergence rate for first-order methods when solving convex op-

timization problems. In the case that the problem is nonconvex, the method performs as

a proximal gradient method with extrapolation, and a linear convergence rate of the ob-

jective values and the generated iterates is obtained under additional proper assumptions.

The efficiency of the algorithm is shown by numerical experiments.

For a family of nonconvex separable optimization problems with linear constraints

where the objective function is the sum of a smooth but possibly nonconvex function and

a possibly nonsmooth nonconvex function, an inexact alternating direction method of mul-

tipliers is designed. The method solves subproblems to adaptive error criteria. An expan-

sion step and more flexible dual stepsize are exploited to accelerate the convergence of the

algorithm. A linear convergence rate of the generated iterates is guaranteed under proper

conditions. Numerical examples illustrate the better performance of the method compared

with state-of-the-art ADMM algorithms.
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Chapter 1. Introduction

1.1. Nonlinear Structured Optimization Problems

Nonlinear optimization aims to solve the optimization problems where objective

function is nonlinear or some of the constraints are not linear. It is a critical branch of

applied mathematics and science as plenty of practical applications, especially the ones

in the field of machine learning, can be formulated into nonlinear optimization problems.

For example, the objective function can be the logistic loss function for logistic regression,

the hinge loss for support vector machine and the squared loss for least squares regression

[69]. Due to the practical needs of dealing with huge number of samples or data of high

dimensions, it is quite common to add regularization terms to the existing loss functions.

For example, l1 penalty is added to the squared loss to obtain sparse solution. The objec-

tive function therefore becomes the sum of the squared loss and the l1 regularization. This

problem is also known as l1 regularized least squared problem (LASSO). Additionally, such

problems, namely problems which have special structure, are called structured optimiza-

tion problems. For instance, LASSO is a typical example of nonlinear structured optimiza-

tion problems as it has a composite nonlinear objective function. Therefore, many meth-

ods have been proposed to accelerate computation by exploiting the structure of these op-

timization problems.

In this thesis, we focus on two classes of nonlinear structured optimization prob-

lems. One is unconstrained composite optimization problems with objective function being

the sum of a Lipschitz continuously differentiable function but possibly nonconvex and

a proper closed convex but possibly nonsmooth function. The other is a class of linearly
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constrained separable optimization problems where the objective function is given by the

summation of a smooth but possibly nonconvex function and a possibly nonconvex nons-

mooth function.

1.2. Literature Review

These two types of problems attracted wide attention in recent years because of the

rapid development of data science and machine learning. Tremendous work has been made

to solve these nonconvex and nonsmooth optimization problems in the last few decades.

Gradient-based methods have been greatly used to solve general unconstrained op-

timization problems. Gradient descent method was first suggested by Cauchy in 1847 [19].

It is extremely simple and achieves O(1/k) complexity bound in terms of functional op-

timality gap when solving convex smooth optimization problems, where k is the number

of total iterations [49, 102]. Nesterov in 1983 proposed an accelerated gradient method to

further improve the complexity bound to O(1/k2), which exhibits the best-known com-

plexity bound for solving convex smooth problems by only using first-order information

[100, 49]. Ghadimi and Lan in [49] generalized Nesterov’s accelerated gradient method to

nonconvex and possibly stochastic problems by properly specifying a stepsize policy. The

modified accelerated gradient method achieves the optimal convergence rate for convex

problems while possessing the rate of convergence obtained in [101, 18] for solving gen-

eral smooth NLP problems. For solving unconstrained composite problems, this modified

method can employ the stepsize in the accelerated gradient method even when a compo-

nent of the objective function is possibly nonconvex.

Similar to the method in [49], which takes advantage of the composite structure of

2



the objective function and is extended to nonconvex problems and further accelerates con-

vergence, many algorithms were proposed to deal with unconstrained composite problems

of minimizing the sum of possibly nonconvex or nonsmooth components.

In the case that the objective function is the sum of a smooth but possibly noncon-

vex function and a nonsmooth function which is a composition of a proper closed func-

tion and a linear operator, a proximal augmented Lagrangian method was proposed in

[36] which adds an additional optimization variable to replace the linear operator in the

composition and then minimizes a differentiable function (i.e., the introduced proximal

augmented Lagrangian) over one decision variable rather than a joint nonconvex and non-

differentiable subproblem when applying the method of multipliers. An adapted alter-

nating direction method of multipliers in [86] solves this family of composite problems by

adding a proximal term to the second subproblem in the usual ADMM. This modification

allows the cluster point of the generated sequence gives a stationary point of the noncon-

vex problem when choosing a sufficiently large parameter of the augmented Lagrangian.

In a special case where the linear operator is the identity, the proximal gradient method

can be applied and it is shown any cluster point is a stationary point even with a slightly

more flexible constant stepsize [86]. Proximal gradient algorithm with extrapolation in

[123] also solves this special class of problems and the paper shows, by choosing the ex-

trapolation parameter under some given threshold, the sequence generated converges R-

linearly to a stationary point of the problem and the objective values converge R-linearly

as well. There are other variants of proximal gradient method, we refer to [87, 9, 11, 10,

115] and the references therein for details of those algorithms, for example, the fast itera-

tive shrinkage-thresholding algorithm (FISTA) [9]. Ghadimi presented a conditional gra-
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dient type method in [48] to solve composite problems when a component is a (weakly)

smooth term and the other is a (strongly) convex regularization term, which achieves the

best-known complexity results for the first time when the weakly smooth term is noncon-

vex and nearly optimal complexity when it is convex. The work in [50] provides a generic

frame to solve more general nonlinear, possibly nonconvex, optimization problems. A uni-

fied accelerated gradient method was proposed to solve composite optimization problem

where one component is Lipschitz continuous and the other is possibly nonsmooth but

convex. It achieves best-known rate of O(1/k) in terms of the projected gradient and the

optimal rate when the problem is convex. Moreover, a unified prox-level method was also

presented in the work to tackle problems where one component has Hölder continuous

gradient, which obtains the optimal complexity bound and the best-known iteration com-

plexity for both convex and nonconvex optimization. Additionally, problems, where one of

the components in the objective function of composite problems is the finite average of n

functions where n can be extremely large, arise widely in machine learning, statistics, and

operations research, e.g., [141, 15, 142, 113, 28]. This special class of composite optimiza-

tion problems are investigated by variants of proximal-based methods (e.g., primal-dual

proximal algorithm) and stochastic methods (e.g., mini-batch stochastic approximation

method), which can be found in [130, 51, 82, 47].

For the other type of problems we consider in this thesis, i.e., the linearly con-

strained separable optimization problems, the study of algorithms to solve it can date

back to the middle of last century [42, 16, 32]. When the objective function and all con-

straints are linear in a constrained problem, the optimization problem is called a linear

programming problem (also referred as linear optimization), which is the simplest type
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of constrained optimization [42, 97]. Since linear optimization is not the purpose of this

thesis, we refer to [29, 31, 99, 111, 34, 103, 110, 61, 13, 60] and the references therein for

methods of solving linear programming problems, such as the simplex method and the in-

terior point method.

In the case that the objective is separable and nonlinear, and the problem has lin-

ear equality constraints, there have been many Lagrangian-based algorithms to solve this

special class of constrained problems. Augmented Lagrangian method (ALM) (also known

as the method of multipliers) was introduced to obtain convergence under more mild con-

ditions than dual ascent [16]. It first minimizes augmented Lagrangian with respect to pri-

mal variables, then updates the dual variable, see, e.g., [73, 43, 22, 96]. The alternating

direction method of multipliers (ADMM) was proposed to utilize the decomposition struc-

ture of primal variables in the objective function, which results in solving relatively easier

subproblems with respect to each primal variable, see [45, 55, 67, 54, 40] and the refer-

ences therein. However, ALM and ADMM can not solve subproblems in parallel due to

the quadratic term in the augmented Lagrangian function. The predictor corrector prox-

imal multiplier method (PCPM) was proposed to address the shortcoming. PCPM first

introduces a predictor variable, then minimizes the sum of the Lagrangian, evaluated at

the updated predictor rather than the Lagrange multiplier in the original ADMM, and

two proximal terms with respect to the two primal variables separately. The coupling

term in augmented Lagrangian was ignored in such a way, thus parallel computing is en-

abled. Finally it updates the Lagrange multiplier as that in ADMM [25, 27]. Another is-

sue with ADMM is that the convergence of the generated primal iterates is not guaranteed

in general (although the convergence can be shown under additional assumptions [16]).
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The proximal alternating direction method of multipliers (PADMM) introduces proximal

terms into the subproblems in ADMM to overcome it [112, 26]. We also refer to [26, 23]

for other proximal ADMMs.

Many methods on solving separable linearly constrained optimization problems are

directly or closely related to the idea of ADMM as we can observe above. ADMM is in-

deed a benchmark method for solving linearly constrained separable optimization prob-

lems. ADMM was introduced by Glowinski and Marroco in [56] and Gabay and Mercier

in [46] in 1970s. The convergence results of the residual, objective values and dual variable

can be obtained under modest assumptions for 2-block convex optimization. The gener-

ated primal iterates do not necessarily converge to the optimal solution, but the conver-

gence can be shown under additional assumptions (e.g., the strongly convexity or some er-

ror bound conditions) [16, 23, 63]. Comparing to the extensive research made for ADMM

when solving convex problems, there is limited work for nonconvex cases. ADMM was

shown in [75] to converge to the set of stationary points for certain types of nonconvex

problems (the consensus and sharing problems) with a sufficiently large penalty parame-

ter. Li and Pong proved the iterates generated by ADMM converge to a stationary point

with additional assumptions that both components in the objective function are semi-

algebraic, a matrix in the equality constraints is the identity and strongly convexity of

one component or full-rank of the other matrix in the constraints hold [85]. The Bregman

modification of ADMM (BADMM) presented in [120] converges to a stationary point of

the associated augmented Lagrangian with additional assumptions that one matrix in the

constraint is injective or a suitable Bregman distance is chosen.

Note that the dominant computation happens to find solutions of the subproblems
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when applying ADMM, so variants of ADMM were proposed to solve the subproblems in-

exactly to reduce computation cost while still obtaining convergence results. An inexact

ADMM with relative error criteria was proposed which exploits subgradient information

at the candidate solutions and two constant parameters to control the accuracy of inexact

solutions and error tolerance for convex separable problems [128]. Hager and Zhang in-

troduced an inexact ADMM that uses more adaptive stopping criteria based on both cur-

rent and accumulated iteration change in the subproblems [65]. Another inexact proximal

ADMM in [70] allows the proximal and penalty parameters to change at each iteration.

Another drawback of ADMM is that ADMM cannot be directly applied to multiblock

problems [24]. Thus much research has also been made to add additional assumptions to

the objective function and the constraints or propose variants of ADMM in order to show

the convergence of ADMM-type methods for solving multiblock problems, which can be

found in [75, 63, 131, 67, 67, 71, 62]. For the separable problems with constraints involv-

ing coupling terms, we refer to [74, 30, 75] and the references therein.

In this thesis, motivated by the wide appearances of structured problems in prac-

tical applications, we propose two algorithms for nonconvex composite optimization

problems and nonconvex nonsmooth separable problems, respectively. We present a uni-

fied proximal gradient method with extrapolation for nonconvex composite optimization,

which is on the basis of proximal gradient method and extrapolation technique. It is a

unified method to handle both convex and nonconvex composite problems. When the

problem is convex, it is automatically reduced to an optimal gradient method. If the prob-

lem is possibly nonconvex, the algorithm proceeds as a proximal gradient method with

extrapolation technique. We also introduce an inexact ADMM for separable nonconvex
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and nonsmooth linearly constrained optimization problems. The inexact ADMM exploits

an expansion linesearch step and adaptive accuracy while global convergence and a linear

convergence rate is guaranteed under proper conditions.

1.3. Outline of the Thesis

This thesis is organized as follows. In Chapter 2, we review some fundamental def-

initions, properties and significant methods closely related to our algorithms or the opti-

mization problems our proposed methods solve. In Chapter 3, we introduce the unified

gradient method with extrapolation for nonconvex composite optimization and show the

convergence results. Numerical experiments are included as well. In Chapter 4, we present

the inexact ADMM for separable nonconvex and nonsmooth linearly constrained optimiza-

tion problems, the convergence analysis and the numerical examples. In Chapter 5, we

conclude the major work in this thesis and discuss some future work that may be of inter-

ests.
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Chapter 2. Preliminaries

2.1. Some Definitions and Properties

In this section, we review some fundamental definitions and properties of functions.

We refer to [84, 101, 42, 12, 6] for more detail.

Throughout the thesis, R, Rn, and Rn×m denote the sets of real numbers, n dimen-

sional real column vectors, and n×m real matrices, respectively. Let I be the identity ma-

trix and 0 denote zero matrix or vector. The range of a matrix Q is denoted as Range(Q).

We use the notations ‖ · ‖ and 〈·, ·〉 for the standard Euclidean norm in Rn and the associ-

ated inner product respectively, which are defined as

‖x‖ =

√√√√ n∑
i=1

x2
i and 〈x,y〉 =

n∑
i=1

xiyi (2.1)

for x,y ∈ Rn. In addition, the Q-norm is defined as

‖x‖Q =
√

xTQx (2.2)

for x ∈ Rn and Q ∈ Rn×n is a positive semidefinite matrix. The definition of positive

(semi)definite matrix is given in Definition 2.1.14 later.

First, we need following basic definitions to construct our optimization problems.

Definition 2.1.1. A set X ⊂ Rn is closed if for every convergent sequence {xt} taken

from X , we have limt→∞ xt ∈ X as well.

Definition 2.1.2. For a nonempty subset X of Rn, X is convex if and only if (1− λ)x1 +

λx2 ∈ X for any x1,x2 ∈ X and arbitrary λ ∈ [0, 1].

Definition 2.1.3. Let X be s subset of Rn. A real-valued function f is Lipschitz continu-

ous on X with the constant L if

|f(x)− f(y)| ≤ L‖x− y‖ (2.3)

9



for any x, y ∈ X .

The next lemma is an important statement for the geometric interpretation of Lips-

chitz continuously differentiable functions.

Lemma 2.1.1. Suppose a real-valued function f is Lipschitz continuously differentiable on

X ⊂ Rn. Then for any x,y ∈ X , we have

|f(y)− f(x)− 〈∇f(x),y − x〉| ≤ L

2
‖y − x‖2. (2.4)

Remark 2.1.1. Geometrically we can have following illustration on Lipschitz continuously

differentiable functions based on Lemma 2.1.1. Let us define two quadratic functions and

fix some x0 ∈ X :

f1(x) = f(x0) + 〈∇f(x0),x− x0〉+
L

2
‖x− x0‖2,

f2(x) = f(x0) + 〈∇f(x0),x− x0〉 −
L

2
‖x− x0‖2.

Then the graph of f lies between the graphs of f1 and f2, i.e.,

f2(x) ≤ f(x) ≤ f1(x), ∀x ∈ X .

Before giving the definition of proper closed functions, we first introduce the ef-

fective domain and the epigraph of functions. From here, we consider functions f from

X ⊂ Rn to the extended-real-line R = R ∪ {−∞,+∞} unless specified.

Definition 2.1.4. Given a function f , the effective domain (or domain) and epigraph of f

are defined as

dom(f) = {x ∈ X : f(x) < +∞},

epi(f) = {(x, r) ∈ X × R : f(x) ≤ r},

respectively.

10



Definition 2.1.5. For any convex set X in Rn, the interior of X relative to its affine hull

is called the relative interior of X , denoted by int(X ), where the affine hull of X is the

smallest affine set that includes X , which is the intersection of all the affine sets that in-

clude X .

Remark 2.1.2. The relative interior coincides with the true interior when the affine hull

is all of Rn, but is able to serve as a robust substitute for the true interior when the true

interior is empty.

Next, we have the definition of proper functions and a lemma on the closedness of

functions as follows.

Definition 2.1.6. A function f : X → R is called proper if it never takes the value −∞

and there exists at least one x ∈ X such that f(x) < +∞, i.e., dom(f) 6= ∅.

Lemma 2.1.2. A function f is closed if and only if epi(f) is a closed set.

Here are a few definitions to construct some useful properties of functions.

Definition 2.1.7. (Lower semicontinuity.) A function f is called lower semicontinuous at

a vector x ∈ X if

f(x) ≤ lim infk→∞f(xk)

for every sequence {xk} ⊂ X with {xk} → x as k →∞.

Definition 2.1.8. A function f is lower semicontinuous if it is lower semicontinuous at

every point x in its domain.

Definition 2.1.9. For any subset C ⊆ X , the indicator function of C is defined as

δC(x) =


0, x ∈ C

+∞, x /∈ C.

11



For an indicator function, its domain is where the function value is 0, i.e.,

dom(δC) = C.

Definition 2.1.10. For a nonempty closed set X ⊆ Rn, the Euclidean distance from y to

X , denoted as dist(y,X ), is defined by

dist(y,X ) = inf
x∈X
‖x− y‖.

Now let us define convex, strongly and weakly convex functions.

Definition 2.1.11. (Convex functions.) A function f : X → R is called convex if epi(f)

is a convex set.

Remark 2.1.3. Here is another statement for describing convex functions. A proper func-

tion f is convex if and only if

f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y) (2.5)

for all x,y ∈ X and λ ∈ [0, 1]. This inequality is a special case of Jensen’s inequality which

states that for any x1, x2, . . . , xn and
∑n

i=1 λi = 1 where λi ≥ 0 for i = 1, . . . , n, we have

f

(
n∑
i=1

λixi

)
≤

n∑
i=1

λif (xi) .

A geometric interpretation of convex functions in terms of the inequality (2.5) is

that the graph of function f between any two points lies below the line segment between

the two points. Below is another equivalent interpretation of convex functions.

Remark 2.1.4. A differentiable function f : X → R is convex if and only if

f(y) ≥ f(x) +∇f(x)T(y − x) (2.6)

for any x, y ∈ X , where X is an open and convex set.
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Definition 2.1.12. (Strongly convexity.) A function f : X → (−∞,+∞] is called ν-

strongly convex for a given ν > 0 if dom(f) is convex and the following inequality holds for

any x, y ∈ dom(f) and λ ∈ [0, 1]:

f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y)− ν

2
λ(1− λ)‖x− y‖2. (2.7)

Note that the strong convexity parameter ν depends on the underlying norm. The

norm we use here is the Euclidean norm in Definition 2.1. Strongly convexity obviously

indicates convexity.

Definition 2.1.13. [118, weak convexity.] If (2.7) holds for ν < 0, then the function f is

called weakly convex.

Then we define positive semidefinite (and definite) matrix.

Definition 2.1.14. For a symmetric matrix A, A is positive semidefinite if

〈Ax,x〉 ≥ 0, ∀x ∈ Rn.

We use notation A � 0 to indicate a matrix A is positive semidefinite and A � 0

for A is positive definite (meaning the above inequality must be strict for x 6= 0).

Remark 2.1.5. By Definition 2.1.14, for matrices A and B, we say A � B if A − B � 0

and A � B if A−B � 0.

Definition 2.1.15. (Subgradient.) Let f : X → (−∞,∞] be a proper function and let

x ∈ dom(f). Any vector g satisfying

f(y) ≥ f(x) + gT (y − x) for all y ∈ X

is called a subgradient of the function f at x.

13



Definition 2.1.16. (Subdifferential.) The set of all subgradients of f at x is called the

subdifferential of f at x and is denoted by ∂̂f(x):

∂̂f(x) = {g : f(y) ≥ f(x) + gT (y − x) for all y ∈ X}. (2.8)

Definition 2.1.17. [109, Definition 8.3 (b)] For a proper lower semicontinuous function

f , its limiting subdifferential at x ∈ dom(f), denoted as ∂f(x), is defined as

∂f(x) =
{
ν ∈ Rn : ∃xk → x, f(xk)→ f(x),νk → ν with νk ∈ ∂̂f(xk)

}
, (2.9)

where ∂̂f(x) denotes the regular subdifferential of f .

Definition 2.1.18. (Gradient.) The gradient of a function f(x) on Rn is defined as

∇f(x) =

(
∂f(x)

∂x1

, . . . ,
∂f(x)

∂xn

)T
.

Remark 2.1.6. Subgradient gives affine global underestimator of f . If the function f(x)

is differentiable (not necessarily convex) at x, ∂f(x) reduces to a unique vector ∇f(x).

However, if the function is nondifferentiable at the point x, then its subdifferential at x

may contain multiple vectors.

Remark 2.1.7. The limiting subdifferential plays a much wider role in nonsmooth and

nonconvex analysis and optimization. For example, the Fermat’s optimality condition in

Theorem 2.1.5 for nonconvex function, that is, if x is a local minimizer of f , then 0 ∈

∂f(x) [109].

Definition 2.1.19. A point x is a cluster point of sequence {xt} if there is a subsequence

{xtk} that converges to x.

In the following, we state a few important and fundamental facts in optimization.
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Theorem 2.1.1. (First-order optimality condition.) Let x∗ be a local minimizer of a dif-

ferentiable function f(x). Then

∇f(x∗) = 0.

The above theorem is only a necessary condition of a local minimizer for general

unconstrained optimization. The points satisfying such condition are called stationary

points of function f . Such points are not always the local minimizers. For example, if we

look at function f(x) = x3 where x ∈ R, we have x = 0 is a stationary point but not a

local solution.

For general constrained optimization, we also have similar first-order necessary con-

ditions, which are known as the Karush-Kuhn-Tucker conditions or KKT conditions for

short.

Let us first give a general form of constrained optimization

min
x∈Rn

f(x) (2.10)

s.t. ci(x) = 0, i ∈ E ,

ci(x) ≥ 0, i ∈ I,

where f and functions ci are differentiable on a subset of Rn, and E , I are sets of finite

indices. The Lagrangian function associated with the problem (2.10) is defined as

L(x,λ) = f(x)−
∑
i∈E∪I

λici(x).

Definition 2.1.20. (Active set.) The active set A(x) at any feasible x is the union of the

set E with the indices of the active inequality constraints, that is,

A(x) = E ∪ {i ∈ I|ci(x) = 0}. (2.11)
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Definition 2.1.21. (LICQ.) Given the point x∗ and the active set A(x∗) defined by

(2.11), we say that the linear independence constraint qualification (LICQ) holds if the set

of active constraint gradients {∇ci(x∗), i ∈ A(x∗)} is linearly independent.

Definition 2.1.22. A point x∗ is a local solution of the problem (2.10) if x∗ ∈ Ω and there

is a neighborhood N of x∗ such that f(x) ≥ f(x∗) for x ∈ N ∩ Ω, where Ω is the feasible

set of (2.10).

Now we are ready to state the KKT conditions.

Theorem 2.1.2. Suppose that x∗ is a local solution of (2.10) and that the LICQ holds at

x∗. Then there is a Lagrange multiplier vector λ∗, with components λ∗i , i ∈ E ∪I, such that

the following conditions are satisfied at (x∗,λ∗)

∇xL(x∗,λ∗) = 0, (2.12a)

ci(x
∗) = 0, ∀i ∈ E , (2.12b)

ci(x
∗) ≥ 0, ∀i ∈ I, (2.12c)

λ∗i ≥ 0, ∀i ∈ I, (2.12d)

λ∗i ci(x
∗) = 0, ∀i ∈ E ∪ I. (2.12e)

In the KKT conditions, (2.12b) and (2.12c) state that x∗ is primal feasible, (2.12d)

indicates λ∗ is dual feasible, and (2.12e) is called complementarity condition, which can be

rewritten as

λ∗i ci(x
∗) = 0, ∀i ∈ I.

Remark 2.1.8. There might be many vectors λ∗ satisfying the conditions (2.12) for a

given problem of the form (2.10) and solution point x∗. However, when LICQ holds, the

optimal λ∗ is unique.
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Corollary 2.1.1. Let x∗ be a local minimizer of differentiable function f(x) subject to

linear equality constraints

{x ∈ Rn|Ax = b} 6= ∅,

where A ∈ Rm×n and b ∈ Rm, m < n. Then there exists a vector of multipliers λ∗ such

that

∇f(x∗) = ATλ∗.

Theorem 2.1.3. (Second-order optimality condition.) Let x∗ be a local minimizer of twice

differentiable function f(x). Then

∇f(x∗) = 0, Hf (x
∗) � 0,

where Hf (x) is the Hessian of function f at x.

The above theorem is again only a necessary condition of a local minimizer. Now

let us give a sufficient condition.

Theorem 2.1.4. Let function f be twice differentiable function on Rn and x∗ satisfy the

following conditions:

∇f(x∗) = 0, Hf (x
∗) � 0.

Then x∗ is a strict local minimizer of f(x).

The above theorems state the optimality conditions for differentiable functions.

More generally, we have the following theorem which presents an optimality condition for

possibly nondifferentiable functions.

Theorem 2.1.5. Let f : X → (−∞,+∞] be a proper convex function. Then

x∗ ∈ arg min{f(x) : x ∈ X}
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if and only if 0 ∈ ∂̂f(x∗).

Next, let us introduce an important definition, proximal mapping (also called proxi-

mal operator).

Definition 2.1.23. Given a function g : X → (−∞,+∞], the proximal mapping of g is

the operator given by

proxt,g(x) = arg min
u

{
1

2t
‖u− x‖2 + g(u)

}
.

Proximal mapping gives a closed-form solution to problems with a wide choices of

function g. We list a few examples here. For the sake of simplicity, the value of t is set to

1 and is omitted in the subscript of proximal operator.

• When g is affine, i.e., g(u) = aTu + c, where a ∈ Rn and c ∈ R, then

proxg(x) = arg min
u

{
1

2
‖u− x‖2 + aTu + c

}
= x− a.

• If g is convex quadratic given by g(u) = 1
2
uTAu + bTu + c, where A is positive

definite, b ∈ Rn and c ∈ R, then

proxg(x) = arg min
u

{
1

2
‖u− x‖2 +

1

2
uTAu + bTu + c

}
= (A+ I)−1(x− b).

• Let g be the l1 norm with parameter λ > 0, we have

proxg(x) = arg min
u

{
1

2
‖u− x‖2 + λ‖u‖1

}
= Sλ(x),

where Sλ(y) is called soft thresholding function defined as

Sλ(y) =



y − λ, y ≥ λ,

0, |y| < λ,

y + λ, y ≤ −λ.

The following theorem states the nonexpansivity of proximal operator.
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Theorem 2.1.6. Let f be a proper closed and convex function. Then for any x,y ∈ X , we

have

‖proxf (x)− proxf (y)‖ ≤ ‖x− y‖.

In the following, we present some frequently used properties and definitions when

proving convergence of algorithms or convergence rate.

Definition 2.1.24. A sequence {xn} is called Cauchy sequence if for any ε > 0, there

exists an N such that

‖xn − xm‖ < ε

for all m, n ≥ N .

For Cauchy sequence , we have following lemmas.

Lemma 2.1.3. Any Cauchy sequence is bounded.

Lemma 2.1.4. Every convergent sequence is a Cauchy sequence.

Lemma 2.1.5. Every real Cauchy sequence possesses a limit.

We also have an important inequality stated in the theorem below.

Theorem 2.1.7. Suppose x and y are vectors in Rn. The Cauchy-Schwarz inequality says

|〈x,y〉| ≤ ‖x‖ · ‖y‖.

Equality occurs if and only if ‖y‖ is a multiple of ‖x‖ or vice versa.

Convergence rate is one of the key features to measure the performance of an algo-

rithm. We list a few here and refer to [105] for more details. Suppose we have a sequence

{xt} in Rn that converges to x∗, then we have the following definitions on describing the

convergence rate.
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Definition 2.1.25. The convergence is Q-linear if there is a constant r ∈ (0, 1) such that

‖xt+1 − x∗‖
‖xt − x∗‖

≤ r,

for all t sufficiently large.

The above definition states that the distance from current step to the solution x∗

decreases at each iteration by at least a constant factor. The prefix Q stands for “quo-

tient”.

Definition 2.1.26. The convergence is Q-superlinear if

lim
t→∞

‖xt+1 − x∗‖
‖xt − x∗‖

= 0.

for all t sufficiently large.

Definition 2.1.27. The convergence is Q-quadratic if

‖xt+1 − x∗‖
‖xt − x∗‖2

≤M,

for all t sufficiently large, where M is a positive constant and not necessarily less than 1.

Here are a few examples to illustrate what kind of sequence has the above conver-

gence rate:

• The sequence {1 + 0.5t} converges Q-linearly to 1.

• The sequence {1 + t−t} converges Q-superlinearly to 1.

• The sequence {1 + 0.52t} converges Q-quadratically to 1.

The convergence rate of some well-known methods has been established. For

example, quasi-Newton methods converge Q-superlinearly, Newton’s method has Q-

quadratically rate, and steepest descent algorithms converge at a Q-linear rate. There is

also a weaker form of convergence rate, which we state in the next few definitions.
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Definition 2.1.28. The convergence is R-linear if there is a sequence of nonnegative

scalars {νt} such that

‖xt − x∗‖ ≤ νt

for all t, and {νt} converges Q-linearly to zero. The sequence {‖xt − x∗‖} is said to be

dominated by {νt}.

Definition 2.1.29. We say the sequence {xt} converges R-superlinearly to x∗ if {‖xt −

x∗‖} is dominated by a Q-superlinear sequence.

Definition 2.1.30. We say the sequence {xt} converges R-quadratically to x∗ if {‖xt −

x∗‖} is dominated by a Q-quadratic sequence.

Note that the prefix R here stands for “root”. R-rates convergence concerns about

the overall rate of decrease in the error, instead of the decrease at each iteration. For in-

stance, the sequence

xt =


1 + 0.5t, t even,

1, t odd,

(2.13)

converges R-linearly to 1. However, the error does not decrease at every step. It actually

increases at every second iteration.

2.2. Proximal Gradient Methods and Acceleration

In this section, we introduce some methods closely related to our unified proximal

gradient method (UPG) which will be discussed in detail in Chapter 3. UPG is proposed

based on the scheme of proximal gradient method with proper modification. UPG reduces

to an optimal gradient method if the problem is convex and performs as a proximal gradi-

ent method with extrapolation for the nonconvex case. Therefore, we give brief introduc-
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tions to the proximal gradient method and some variants, and an optimal gradient method

in the next few subsections. More details can be found in [101, 49, 9, 6].

2.2.1. Proximal Gradient Method

Considering a general unconstrained optimization problem, gradient descent

method solves it by taking steps towards the negative gradient direction by small step-

sizes. If the gradient does not exist for the objective function, then the subgradient

method can be applied, which has the same idea as the gradient descent method with

simple modification in the update steps, i.e., the subgradient method uses subgradient (see

Definition 2.1.15) instead of gradient to be the descent direction.

Simply taking gradient or subgradient of the objective function as a search direc-

tion does not exploit the structure of the objective function that an optimization problem

may carry. For example, the objective function can be a sum of two components. Thus

proximal gradient method is proposed to leverage such composite structure of the prob-

lem.

Suppose we have following unconstrained composite optimization problem

min
x∈Rn

F (x) := f(x) + p(x), (2.14)

where f(x) is convex and differentiable with dom(f) = Rn and p(x) is convex but possibly

nondifferentiable. Instead of making quadratic approximation of the function F (x), like

that in gradient descent method, the proximal gradient method only approximates the dif-

ferentiable component f(x) of the objective function and keeps the nondifferentiable part

p(x).

By doing so, the proximal gradient method actually tries to find the minimizer of
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the following problem at k-th iteration

xk+1 = arg min
x∈Rn

{
f(xk) + 〈∇f(xk),x− xk〉+

1

2tk
‖x− xk‖2 + p(x)

}
, (2.15)

where tk ∈ R is a positive parameter. We can see from (2.15) the quadratic approximation

of f(x) is in fact the sum of the linearization of f around the previous output xk and a

proximal term.

After some algebraic manipulation and cancellation of some constant terms, by the

definition of proximal mapping in Definition 2.1.23, the minimization (2.15) can be refor-

mulated into

xk+1 = arg min
x∈Rn

{
1

2tk
‖x− (xk − tk∇f(xk))‖2 + p(x)

}
= proxtk,p(xk − tk∇f(xk)). (2.16)

And the above method is called proximal gradient method.

The proximal gradient method can be viewed as two steps. First, it applies gradi-

ent descent method with stepsize of tk to the differentiable part of the objective function,

which is the function f(x) in (2.14). This step corresponds to the input of the proximal

mapping in (2.16). The second step is to evaluate the proximal mapping at the output

from the first step. This stage only needs the information of the nondifferentiable compo-

nent, namely p(x), and does not depend on f(x).

The update step (2.16) in the proximal gradient method can also be compactly

written as

xk+1 = Ttk(xk)
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where Tt(x) is called prox-grad operator defined by

Tt(x) = proxt,p (x− t∇f(x)) .

This compact writing gives an important notion that is frequently used in the con-

vergence analysis of the proximal gradient method and its variants, that is the so-called

gradient mapping. The gradient mapping is defined as

G(x) =
1

t
(x− Tt(x)) . (2.17)

The gradient mapping can be demonstrated as a generalization of the idea of gradi-

ent. When functions f and p are differentiable, the gradient mapping is just the ordinary

gradient. For more general cases, it is shown that the magnitude of the gradient mapping

vanishes as the solution to the proximal subproblem approaches to a stationary point of

the primal problem (2.14).

Remark 2.2.1. The proximal gradient method has close connection to gradient descent

method and projected gradient method. In the case that p is 0, the proximal gradient

method reduces to the gradient descent method. If p is some indicator function, then the

proximal gradient method proceeds as projected gradient method.

The proximal gradient method has an O(1/k) rate of convergence of the generated

function values to the optimal value for the convex case and a linear convergence rate for

strongly convex case.

One of the most popular applications of the proximal gradient method is to solve

LASSO, which is given by

min
x∈Rn

1

2
‖y − Ax‖2 + λ‖x‖1, (2.18)
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where y ∈ Rm, A ∈ Rm×n and λ > 0. It is easy to see the first term and the l1 regular-

ization in (2.18) correspond to the differentiable component f and nonsmooth part p in

(2.14), respectively.

If we directly apply the proximal gradient method, namely making quadratic ap-

proximation of the l2 term around a point z and doing some algebraic manipulation, we

can rewrite (2.18) as

min
x∈Rn

{
1

2
‖y − Az‖2 + 〈−AT(y − Az),x− z〉+

1

2t
‖x− z‖2 + λ‖x‖1

}
,

where t > 0. Then it is equivalent to

min
x∈Rn

{
1

2tλ
‖x− z− tAT(y − Az)‖2 + ‖x‖1

}
, (2.19)

where 1
2
‖y − Az‖2 is dropped since it does not depend on x. We need to point out that

moving λ to the first term does not affect the minimizer, i.e., (2.19) has the same solution

as that of the reformulation of (2.18) without dividing λ in the objective function. An al-

ternative way to obtain (2.19) is to replace ∇f by ∇f(z) = −AT(y − Az) in (2.16) and

divide λ in both terms. Note that here we consider an arbitrary point z ∈ Rn instead of a

specific point, e.g., xk, and ignore the difference of tk and t.

By Definition 2.1.23 of the proximal mapping and letting z be the previous iterate

xk, then (2.19) is equivalent to

xk+1 = proxtλ,‖·‖1(xk + tAT (y − Axk)). (2.20)

The above method is called the iterative shrinkage-thresholding algorithm (ISTA). Then

we can directly see the solution to (2.20) is

xk+1 = Stλ(xk + tAT (y − Axk)),
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where St(x) is the soft thresholding function.

2.2.2. Accelerated Proximal Gradient Method

The proximal gradient method obtains a convergence rate of O(1/k) in terms of

function value gap for general convex nonsmooth optimization. Since the best-known

convergence rate obtained by first-order methods is O(1/k2) for convex smooth problems,

a lot of work has been made to further improve the convergence rate of the proximal

gradient method to reach the optimal rate, among which the fast iterative shrinkage-

thresholding algorithm (FISTA) by Beck and Teboulle in [9] is a typical accelerated

variant of the proximal gradient method.

FISTA can be seen as a generalization of ISTA. Both FISTA and ISTA involve

finding solutions of a proximal subproblem. However, ISTA solves the proximal subprob-

lem which is evaluated at the previous point xk, see the update in (2.20), while the sub-

problem in FISTA is formulated as

xk = proxtk,p(G(tk,yk)), (2.21)

where G(tk,yk) is some gradient step of the smooth part f in (2.14) at a new point yk

with stepsize tk, and yk is given by

θk+1 =
1 +

√
1 + 4θ2

k

2
, (2.22)

yk+1 = xk +

(
θk − 1

θk+1

)
(xk − xk−1). (2.23)

We can see from (2.23) that yk is generated by a linear combination of the two

most recent points and is easy to compute. So the introduction of yk does not add ex-

pensive computational cost compared to ISTA. In addition, two choices of tk in (2.21) are
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presented by the authors. One way sets tk = Lf throughout the iterations where Lf is the

Lipschitz constant of f . The other is to choose it by backtracking. Furthermore, θk does

not have to be that in (2.22). It can be any sequence satisfying (i) θk ≥ k+2
2

; (ii) θ2
k+1 −

θk+1 − θ2
k ≤ 0 for any k ≥ 0. For example, another possible selection of θk is k+2

2
.

With the above structure (2.21) - (2.23) and that tk is chosen to be constant or by

backtracking and θk meets the above criteria, it is proved that FISTA achieves an O(1/k2)

rate of convergence with respect to function value gap, which improves the convergence

rate O(1/k) of ISTA despite ISTA and FISTA have essentially same steps.

2.2.3. Accelerated Gradient Method

In this subsection, we present an accelerated gradient method (AG) proposed by

Ghadimi and Lan in [49], which generalized Nesterov’s accelerated gradient method orig-

inally solving convex smooth optimization to further address both convex and nonconvex

optimization problems by applying some stepsize strategy. Since our unified proximal gra-

dient method in Chapter 3 will reduce to this accelerated gradient method if the optimiza-

tion problem is convex, we only discuss the AG method for convex composite optimization

and skip the details for the nonconvex case.

The AG method considers a class of composite problems given by

min
x∈Rn

f(x) + p(x) + X (x), (2.24)

where f and p are both Lipschitz continuously differentiable and convex, and X is convex

but possibly nonsmooth with bounded domain.

The AG method has three important steps. It first updates a point x̂k+1 at the
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points from previous iteration by

x̂k+1 = (1− αk+1)xk + αk+1x̆k,

where α is preset by some stepsize policy. Then the negative gradient evaluated at the

most recent point x̂k+1 is used to be the search direction of the gradient steps in two prox-

imal subproblems, which are as follows:

x̆k+1 = proxλk+1,X (x̆k − λk+1∇Φ(x̂k+1)),

xk+1 = proxβk+1,X (x̂k+1 − βk+1∇Φ(x̂k+1)),

where Φ(x) := f(x) + p(x) is the smooth part of the objective function in (2.24), λ and β

are chosen by certain stepsize strategy.

Stepsize policy is significant in gradient descent method and its variants. The au-

thors established criteria that α, λ and β should satisfy for the algorithm to converge and

additionally achieve the optimal convergence rate. An example of selecting α, λ and β is

given as

αk =
2

k + 1
, βk =

1

2LΦ

and λk =
kβk
2
, ∀k ≥ 1, (2.25)

where LΦ is the Lipschitz constant of Φ. For convex cases, the choice of λ in (2.25) is

more aggressive than that of nonconvex situations since λ in (2.25) is in the order of

O(k/LΦ) while it is in the order of O(1/LΦ) for general nonconvex problems. For more

selections of stepsize for both cases, we refer to [49].

The AG method with stepsize selection in (2.25) is proved to converge at the rate

of O(1/k2) in terms of function value gap, which is the optimal rate for first-order meth-

ods. Recall the definition of the gradient mapping in (2.17), then the gradient mapping for
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this particular method (i.e., the AG method) is given by

G(x̂k) =
1

βk
(x̂k − Tβk,X (x̂k)) =

1

βk
(x̂k − xk).

It is shown that the norm square of the gradient mapping converges at the rate of

O(L2
Φ/k

3 + LΦLf/k) for this AG method.

2.3. Alternating Direction Method of Multipliers and Related Methods

In this section, we review two well-known algorithms, the augmented Lagrangian

method (ALM, also called the method of multipliers) and alternating direction proximal

method of multipliers (AD-PMM), that solve optimization with a separable objective func-

tion and linear equality constraints. Alternating direction method of multipliers (ADMM)

is a special case of AD-PMM. Here we only give brief introductions of ALM and AD-PMM

here. We refer to [16, 6] for more details.

2.3.1. Augmented Lagrangian Method

Consider the following optimization problem

min
(x,y)∈Rn1×Rn2

f(x) + g(y) (2.26)

s.t. Ax +By = b,

where f and g are proper closed convex functions, A ∈ Rm×n1 , B ∈ Rm×n2 and b ∈ Rm.

Then the Lagrangian function associated with problem (2.26), denoted as

L(x,y,λ), is defined by

L(x,y,λ) = f(x) + g(y)− λT(Ax +By − b), (2.27)

where λ is called Lagrange multiplier. In addition, the augmented Lagrangian with
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penalty parameter β > 0, denoted as Lβ(x,y,λ), is given by

Lβ(x,y,λ) = L(x,y,λ) +
β

2
‖Ax +By − b‖2. (2.28)

The augmented Lagrangian can be viewed as the Lagrangian of the following problem

min
(x,y)∈Rn1×Rn2

f(x) + g(y) +
β

2
‖Ax +By − b‖2 (2.29)

s.t. Ax +By = b.

Then we have the associated dual function of the problem (2.29)

hβ(λ) = inf
x,y
Lβ(x,y,λ) (2.30)

and the dual problem at k-th iteration

λk+1 = arg max
λ

hβ(λ). (2.31)

By Theorem 2.1.5, we have λk+1 satisfies

0 ∈ ∂hβ(λk+1)

if and only if λ is updated as

λk+1 = λk − β(Axk+1 +Byk+1 − b), (2.32)

where

xk+1 ∈ arg min {f(x)− 〈ATλk+1,x〉}, (2.33)

yk+1 ∈ arg min {g(y)− 〈BTλk+1,y〉}. (2.34)

By applying (2.32) and Theorem 2.1.5, (2.33) and (2.34) are equivalent to

(xk+1,yk+1) ∈ arg min
x,y

{
f(x) + g(y) +

β

2

∥∥∥∥Ax +By − b− 1

β
λk

∥∥∥∥2
}
. (2.35)

30



Note that if we expand the quadratic term in (2.35) and drop one of the resulting

terms 1
2β
‖λk‖2 as it does not depend on x or y, then the objective function will be exactly

Lβ(x,y,λk). Now we are ready to give the augmented Lagrangian method, which contains

two stages:

(xk+1,yk+1) ∈ arg min
x,y
Lβ(x,y,λk), (2.36)

λk+1 = λk − β(Axk+1 +Byk+1 − b). (2.37)

The name of ALM comes from the minimization of the augmented Lagrangian function in

the first step.

2.3.2. Alternating Direction Proximal Method of Multipliers

If we look closely at the subproblem (2.36), it is easy to observe that finding the

solution of the joint subproblem is difficult due to the coupling terms of x and y in the

quadratic term of the augmented Lagrangian. A practical way to handle the challenge is

to decompose the subproblem into two minimization problems, i.e., we first minimize the

objective function with respect to x, then minimize it with respect to y. This modifica-

tion allows the minimization to proceed over only one variable each time instead of a pair

in the original subproblem. Besides, a proximity term is added to each resulting subprob-

lem to further generalize this method. Thus, we have the following alternating direction

proximal method of multipliers (AD-PMM):

xk+1 ∈ arg min
x

{
Lβ(x,yk,λk) +

1

2
‖x− xk‖2

Dx

}
, (2.38)

yk+1 ∈ arg min
y

{
Lβ(xk+1,y,λk) +

1

2
‖y − yk‖2

Dy

}
, (2.39)

λk+1 = λk − β(Axk+1 +Byk+1 − b), (2.40)
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where Dx ∈ Rn1×n1 and Dy ∈ Rn2×n2 are positive semidefinite (see Definition 2.1.14).

Adding the proximity term can lead to various algorithms. For example, in the case

that Dx and Dy are both zero matrices, the proximity terms in (2.38) and (2.39) are ac-

tually dropped. AD-PMM reduces to a method named alternating direction method of

multipliers (ADMM). ADMM can also be viewed as a direct generalization of ALM with

solving the subproblem in ALM coordinate-wise.

When Dx = α1I − βATA and Dy = α2I − βBTB with α1 ≥ βσmax(ATA) and

α2 ≥ βσmax(BTB) where σmax(W ) denotes the largest eigenvalue of a matrix W , then it

still holds Dx and Dy are positive semidefinite. Recall that (2.35) is equivalent to (2.36).

The objective function in (2.38) can be reformulated as

f(x)− λT
k (Ax +Byk − b) +

β

2
‖Ax +Byk − b‖2 +

1

2
‖x− xk‖2

Dx

= f(x) +
β

2

∥∥∥∥Ax +Byk − b− 1

β
λk

∥∥∥∥2

+
1

2
‖x− xk‖2

Dx

= f(x) +
β

2

∥∥∥∥A(x− xk) + Axk +Byk − b− 1

β
λk

∥∥∥∥2

+
1

2
‖x− xk‖2

Dx

= f(x) +
β

2
‖A(x− xk)‖2 + β〈A(x− xk), Axk +Byk − b− 1

β
λk〉+

1

2
‖x− xk‖2

Dx

= f(x) + β〈Ax, Axk +Byk − b− 1

β
λk〉+

α1

2
‖x− xk‖2, (2.41)

where the equalities hold up to a constant which does not depend on x. Therefore (2.38)

can be written as

xk+1 ∈ arg min
x

{
f(x) + β〈Ax, Axk +Byk − b− 1

β
λk〉+

α1

2
‖x− xk‖2

}
. (2.42)

Similarly, we have the y-subproblem (2.39) as

yk+1 ∈ arg min
y

{
g(y) + β〈By, Axk+1 +Byk − b− 1

β
λk〉+

α2

2
‖y − yk‖2

}
. (2.43)
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Note that the second term in (2.42), namely the inner product, in fact comes from

the linearization of β
2

∥∥∥Ax +Byk − b− 1
β
λk

∥∥∥2

around the point xk. Same observation

holds for that in (2.43). Thus, the steps (2.42) and (2.43), together with the dual variable

update (2.40) are called alternating direction linearized proximal method of multipliers

(AD-LPMM).

Since both ADMM and AD-LPMM are variants of AD-PMM by choosing different

matrices in the proximal terms, we only state the convergence results of AD-PMM. Under

mild assumptions, AD-PMM is shown to converge at a rate of O(1/k) in terms of function

value and residual of the equality constraints.
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Chapter 3. Unified Proximal Gradient Method for Composite
Problems

In this chapter, we propose a unified algorithm that is based on the proximal gradi-

ent method and is equipped with extrapolation and linesearch techniques. The algorithm

deals with composite optimization problems that are possibly nonsmooth and nonconvex.

It gives a unified way to solve convex and nonconvex problems. If the composite prob-

lems are convex, the algorithm reduces to an accelerated gradient method similar to Algo-

rithm 2 in [49] for convex cases and obtains the best-known convergence rate of first-order

methods. When the problems are nonconvex, a linesearch technique is activated which im-

proves the efficiency of the method, and the algorithm performs as a proximal gradient

method with extrapolation.

3.1. Composite Problems

Let us consider the composite optimization problem

min
x∈X

F (x) := f(x) + p(x), (3.1)

where X ⊂ Rn is a closed convex set, f is Lipschitz continuously differentiable on an open

set containing X , but possibly nonconvex and p : X → R is a proper closed convex, but

possibly nonsmooth, function. The constraint x ∈ X can also be formulated as an indica-

tor function of X into the function p. Applications in the form of (3.1) appear frequently

in machine learning, statistical inference, and image processing (e.g., [83, 78, 69, 58]).

Motivated by the wide practical applications of problems in the form of (3.1), the

advantage of extrapolation and the need of more efficient methods to handle both convex

and nonconvex problems, a unified proximal gradient method with extrapolation is pro-

posed in Algorithm 3.1. The contribution of the work mainly lies in the following aspects.
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First, the proposed method gives unified treatment to the problem (3.1) for which

the problem may be convex or not. Much work has been done to solve the problem (3.1).

When both f and p are convex, the accelerated gradient methods are proved to achieve

an optimal convergence rate of O(1/k2). However, the convergence for the nonconvex case

is not fully clear [8, 9]. In the case that f is nonconvex but g is convex, the convergence

results are shown for methods like general iterative shrinkage and thresholding in [59], gra-

dient descent with proximal average in [139]. However, the convergence rate of these meth-

ods for the convex situations are not analyzed. The analysis of a generalized accelerated

gradient method in [49] provides convergence in terms of gradient mapping for the case

only when f is possibly nonconvex. If both f and p are nonconvex, APG-like algorithms

are proposed in [87] to solve the problems. The algorithms have accelerated convergence

rate for convex problems and a linear rate of function values is achieved when the prob-

lems are nonconvex. Therefore, the study of unified methods to tackle both convex and

nonconvex problems is still limited. The proposed method in Algorithm 3.1 admits unified

analysis for both situations. The algorithm obtains the optimal convergence rate for con-

vex optimization problems. When the problems are nonconvex, a linear convergence rate

of the generated iterates and function values is presented under additional proper assump-

tions.

Second, the proposed algorithm is equipped with an extrapolation step where the

extrapolation parameter is determined by a linesearch technique. Extrapolation can date

back to the extragradient method of Korpelevich in [81] and the heavy ball method by

Polyak in [106]. It is now greatly used in optimization methods to accelerate convergence,

e.g., [20, 126, 88, 124], while not significantly increasing the computational cost. The ex-
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trapolation involves a linear combination of points from previous iteration. Then the gra-

dients in the subproblems in Algorithm 3.1 are evaluated at the extrapolated point. The

extrapolation parameter is adaptively chosen by a linesearch technique, so that the extrap-

olation parameter is not of a fixed form, for example, 1
t+1

.

Third, a stochastic accelerated gradient method with variance reduction is pre-

sented in Algorithm 3.6, which is a generalization of the unified proximal gradient method

in Algorithm 3.1 to solve stochastic optimization problems that can be possibly noncon-

vex. Stochastic methods are exceptionally useful when dealing with datasets which have

huge number of samples, in other words, n in problem (3.70) is extremely large. A vari-

ance reduction step is implemented such that the expectation of the stochastic gradients

used in the subproblems is within some range of the gradient in the deterministic case.

Numerical experiments illustrate the efficiency of the proposed stochastic method, though

the theoretical results are still a work in progress.

3.2. Algorithm Description

We would like to apply Algorithm 3.1 to solve problem (3.1). Algorithm 3.1 is an

extension of the accelerated gradient method for solving convex composite optimization to

the case that f is not necessarily convex.

Note that, if the problem is convex, the inequality in Step 2 of Algorithm 3.1 is au-

tomatically satisfied with µt = 0 for any t ≥ 0 (see Remark 2.1.4). In this way, the line-

search technique is inactivated. Then τ t, τ t, τt are all reduced to 0. Therefore, we have

βt = βt and Step 2 is just an extrapolation step with parameter βt = 2
t+1

. In addition, the

parameters in Step 3 are also set to be γt = 2L
t

and ηt = L+ 1
t
. It is easy to verify that the
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Initialization: Given x1 ∈ X, ρ > 1, λ ∈ [0, 1] and L > L;
Set x̆1 = x1 and µ0 = 0.

For t = 1, 2, 3, . . .

1. Set βt = 2/(t+ 1).
2. Choose the smallest integer j ≥ 0 such that µt = min{µt−1 + ρj − 1, L}

and x̂t = βtx̆t + (1− βt)xt satisfy

f(xt)− f(x̂t)− 〈∇f(x̂t),xt − x̂t〉 ≥ −µt
2
‖xt − x̂t‖2, where βt = max{βt, τt}

with τt = λτ t + (1− λ)τ t, τ t = 1
2

(
1−

√
L−µt
L+µt

)
and τ t = µt

L+µt
.

3. Set γt = βtηt, where ηt = 2L/(2− βt).
4. x̆t+1 = argminx∈X

{
〈∇f(x̂t),x〉+ γt

2
‖x− x̆t‖2 + p(x)

}
.

5. If βt = 1, let xt+1 = x̆t+1;

6. Else xt+1 = argminx∈X
{
〈∇f(x̂t),x〉+ ηt

2
‖x− x̂t‖2 + p(x)

}
.

end

Algorithm 3.1. A unified algorithm for nonconvex composite optimization with extrapola-
tion

subproblem in Step 4 is equivalent to

x̆t+1 = prox 1
γt
,p+δX

(
x̆t −

1

γt
∇f(x̂t)

)
, (3.2)

where δX is an indicator function of X . Observe that the stepsize sequence
{

1
γt

}
in the

subproblem (3.2) is in the order of O( t
L

), which is an aggressive stepsize policy since the

stepsize gets larger as iteration goes on. Furthermore, Lipschitz constants of nonlinear

functions are usually difficult to get or it takes much computational effort to obtain. So,

no knowledge of Lipschitz constant is required throughout the proposed algorithm for both

convex and nonconvex cases. Instead, we only need a constant L such that L > L where L

is the Lipschitz constant of the function f .

3.3. Global Convergence Analysis

In this section, we discuss the global convergence of Algorithm 3.1. We have the

following assumptions throughout the chapter.

Assumption 3.3.1. The gradient of f is Lipschitz continuous, i.e., there exists a constant
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L > 0 such that

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖ (3.3)

for any x,y ∈ X .

Assumption 3.3.2. Assume p has a strongly convex modulus ν ≥ 0, i.e., for any x ∈ X ,

y ∈ X and p ∈ ∂̂p(x), it has

p(y)− p(x)− 〈p,y − x〉 ≥ ν

2
‖x− y‖2, (3.4)

where ∂̂p(x) is the subdifferential of the proper closed convex function p at x.

Assumption 3.3.3. Assume the function value of F on X is bounded below, i.e., we have

F > −∞, where F := infx∈X F (x).

Note that based on Assumption 3.3.1, there exists a constant µ ∈ [0,L] such that

−µ
2
‖x− y‖2 ≤ f(y)− f(x)− 〈∇f(x),y − x〉 ≤ L

2
‖x− y‖2, (3.5)

for any x,y ∈ X .

When f is a convex function, Algorithm 3.1 will be just reduced to an accelerated

gradient method for solving convex composite optimization. In this case the convergence

properties of Algorithm 3.1 is standard and had been established in the literature [49].

Hence, we just state the following convergence theorem and only provide a sketch of its

proof.

Theorem 3.3.1. Suppose the Assumptions 3.3.1 and 3.3.2 hold, and f is a convex func-

tion. If the solution set of problem (3.1) is not empty, for the iterates generated by Algo-

rithm 3.1, we have

F (xk+1)− F (x∗) ≤ 2L

k(k + 1)
‖x∗ − x1‖2 (3.6)
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and

min
t∈{1,...,k}

‖g(x̂t)‖2 ≤ 24L3

(L− L)k2(k + 1)
‖x∗ − x1‖2, (3.7)

where g(x̂t) = ηt(x̂t − xt+1) and x∗ is any optimal solution of (3.1).

Proof. Since µ0 = 0 and f is a convex function, we can see from Algorithm 3.1 that µt = 0

for all t ≥ 0, which implies τ t = 1
2

(
1−

√
(L− µt)/(L+ µt)

)
= 0 and τ t = µt/(L+ µt) = 0

for all t ≥ 1. Hence, we have τt = 0 and βt = βt for all t ≥ 1. So, in this case, Algo-

rithm 3.1 is just reduced to an accelerated gradient method for solving convex composite

optimization. Then, following the convergence results in the literature, the iterates gener-

ated by Algorithm 3.1 have the following property: for any x ∈ X , we have

F (xt+1)− F (x) ≤ (1− βt)(F (xt)− F (x)) +
βtγt

2

[
‖x− x̆t‖2 − ‖x− x̆t+1‖2

]
−ηt − L

2η2
t

‖g(x̂t)‖2 − ηt
2
‖xt+1 − x̃t+1‖2, (3.8)

where x̃t+1 = βtx̆t+1 + (1− βt)xt, ηt − L = 2L/(2− βt)− L = L(t+ 1)/t− L > L− L > 0

and g(x̂t) = ηt(x̂t − xt+1).

Dividing Γt = 2/(t(t+ 1)), t ≥ 1, on both sides of (3.8), for t ≥ 2, we obtain

1

Γt
(F (xt+1)− F (x)) +

ηt − L
2η2

tΓt
‖g(x̂t)‖2 +

ηt
2Γt
‖xt+1 − x̃t+1‖2

≤ 1

Γt−1

(F (xt)− F (x)) +
βtγt
2Γt

[
‖x− x̆t‖2 − ‖x− x̆t+1‖2

]
,

which by ηt = L(t+ 1)/t, βt = 2/(t+ 1) and γt = 2L/t can be simplified to

1

Γt
(F (xt+1)− F (x)) +

L− L
4L2(t+ 1)/t3

‖g(x̂t)‖2 +
L(t+ 1)2

4
‖xt+1 − x̃t+1‖2

≤ 1

Γt−1

(F (xt)− F (x)) + ‖x− x̆t‖2 − ‖x− x̆t+1‖2. (3.9)
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When t = 1, by (3.8) and β1 = 1, we have

1

Γ1

(F (x2)− F (x)) +
L− L
8L2

‖g(x̂1)‖2 + L‖x2 − x̃t+1‖2

≤ ‖x− x̆1‖2 − ‖x− x̆2‖2. (3.10)

Adding (3.9) and (3.10) for t = 1, . . . , k, we have

k∑
t=1

(
L− L

4L2(t+ 1)/t3
‖g(x̂t)‖2 +

L(t+ 1)2

4
‖xt+1 − x̃t+1‖2

)
+

1

Γk
(F (xk+1)− F (x))

≤ ‖x− x̆1‖2 = ‖x− x1‖2, (3.11)

for any x ∈ X . Then, taking x = x∗ in (3.11), we can derive (3.6) and (3.7) by direct

calculations.

We add a few observations about the results in Theorem 3.3.1. For the convex case,

UPG achieves the convergence rate O(1/k2) in (3.6) in terms of function values, which is

the best-known convergence rate for methods only using first-order information. Addition-

ally, the gradient mapping converges at the rate of O(1/k3) by (3.7). In other words, UPG

can find a solution x such that ‖g(x)‖2 ≤ ε in O(1/ε
1
3 ) iterations.

In the following we focus on studying the convergence of Algorithm 3.1 when f is

not necessarily a convex function. We first have the following lemma.

Lemma 3.3.1. Suppose the Assumptions 3.3.1 and 3.3.2 hold. Then, for the iterates gen-

erated by Algorithm 3.1, we have

F (xt+1) ≤ F (xt) +
µt + γt/βt

2
‖xt − x̂t‖2 − γt/βt

2
‖x̃t+1 − xt‖2

−βtν
2
‖x̆t+1 − xt‖2 − ηt − L

2η2
t

‖g(x̂t)‖2 − ηt + ν

2
‖xt+1 − x̃t+1‖2 , (3.12)
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where

x̃t+1 = βtx̆t+1 + (1− βt)xt. (3.13)

Proof. We first observe that all the iterates xt, x̆t and x̂t are contained in X and βt ∈

(0, 1] for all t ≥ 1. Then, by the definition of x̃t+1 in (3.13), we also have x̃t+1 ∈ X , since

X is a convex set. By (3.5), the following relations hold

f(xt+1) ≤ f(x̂t) + 〈∇f(x̂t),xt+1 − x̂t〉+
L
2
‖xt+1 − x̂t‖2

= f(x̂t) + 〈∇f(x̂t),xt − x̂t〉+ 〈∇f(x̂t),xt+1 − xt〉+
L
2
‖xt+1 − x̂t‖2

≤ f(xt) +
µt
2
‖xt − x̂t‖2 + 〈∇f(x̂t), x̃t+1 − xt〉+

L
2
‖xt+1 − x̂t‖2

+ 〈∇f(x̂t),xt+1 − x̃t+1〉 . (3.14)

Note that ηt = 2L/(2− βt) > L > L. Since

xt+1 = arg min
x∈X

{
〈∇f(x̂t),x〉+

ηt
2
‖x− x̂t‖2 + p(x)

}
(3.15)

and x̃t+1 ∈ X , we obtain

〈∇f(x̂t),xt+1 − x̃t+1〉+ p(xt+1)

≤ ηt
2

(
‖x̃t+1 − x̂t‖2 − ‖xt+1 − x̂t‖2)+ p(x̃t+1)− ηt + ν

2
‖xt+1 − x̃t+1‖2 . (3.16)

By the definition (3.13) of x̃t+1 and x̂t = βtx̆t + (1− βt)xt, we have

βt(x̆t+1 − x̂t) + (1− βt)(xt − x̂t) = x̃t+1 − x̂t = βtst, (3.17)

where st = x̆t+1 − x̆t.

Let us define

g(x̂t) = ηt(x̂t − xt+1). (3.18)
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Then, it follows from (3.16), (3.17) and (3.18) that

〈∇f(x̂t),xt+1 − x̃t+1〉

≤ ηtβ
2
t

2
‖st‖2 − 1

2ηt
‖g(x̂t)‖2 + p(x̃t+1)− p(xt+1)− ηt + ν

2
‖xt+1 − x̃t+1‖2 .

So, by (3.14) and (3.17), x̃t+1 = βtx̆t+1 + (1−βt)xt, and the convexity of the function p, we

have

F (xt+1) = f(xt+1) + p(xt+1)

≤ βt [f(xt) + 〈∇f(x̂t), x̆t+1 − xt〉+ p(x̆t+1)] + (1− βt) [f(xt) + p(xt)]

+
µt
2
‖xt − x̂t‖2 +

ηtβ
2
t

2
‖st‖2 − ηt − L

2η2
t

‖g(x̂t)‖2 − ηt + ν

2
‖xt+1 − x̃t+1‖2

= βt

[
f(xt) + 〈∇f(x̂t), x̆t+1 − xt〉+

γt
2
‖st‖2 + p(x̆t+1)

]
+ (1− βt)F (xt)

+
µt
2
‖xt − x̂t‖2 +

ηtβ
2
t − γtβt

2
‖st‖2 − ηt − L

2η2
t

‖g(x̂t)‖2

−ηt + ν

2
‖xt+1 − x̃t+1‖2

= βt

[
f(xt) + 〈∇f(x̂t), x̆t+1 − xt〉+

γt
2
‖st‖2 + p(x̆t+1)

]
+ (1− βt)F (xt)

+
µt
2
‖xt − x̂t‖2 − ηt − L

2η2
t

‖g(x̂t)‖2 − ηt + ν

2
‖xt+1 − x̃t+1‖2 , (3.19)

where the last equality follows from γtβt − ηtβ2
t = 0. Now, it follows from

x̆t+1 = arg min
x∈X

{
〈∇f(x̂t),x〉+

γt
2
‖x− x̆t‖2 + p(x)

}
,

st = x̆t+1 − x̆t, xt ∈ X and (3.4) that

〈∇f(x̂t), x̆t+1 − xt〉+
γt
2
‖st‖2 + p(x̆t+1)

≤ γt
2

(
‖xt − x̆t‖2 − ‖xt − x̆t+1‖2)+ p(xt)−

ν

2
‖xt − x̆t+1‖2 .
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Hence, by (3.19), we have

F (xt+1) ≤ βt

[
f(xt) +

γt
2

(
‖xt − x̆t‖2 − ‖xt − x̆t+1‖2)+ p(xt)−

ν

2
‖xt − x̆t+1‖2

]
+(1− βt)F (xt) +

µt
2
‖xt − x̂t‖2 − ηt − L

2η2
t

‖g(x̂t)‖2 − ηt + ν

2
‖xt+1 − x̃t+1‖2

≤ F (xt) +
µt
2
‖xt − x̂t‖2 +

βtγt
2

(
‖xt − x̆t‖2 − ‖xt − x̆t+1‖2)

−βtν
2
‖xt − x̆t+1‖2 − ηt − L

2η2
t

‖g(x̂t)‖2 − ηt + ν

2
‖xt+1 − x̃t+1‖2 . (3.20)

Note that

x̆t − xt =
1

βt
(x̂t − xt) and x̆t+1 − xt =

1

βt
(x̃t+1 − xt). (3.21)

Then, we have from (3.20) that (3.12) holds.

Lemma 3.3.1 gives an important relationship on the function value reduction of F .

It provides the results of how the objective function value reduces with respect to iterates.

Based on Lemma 3.3.1, we have the following global convergence results of Algorithm 3.1

for the nonconvex case of problem (3.1).

Theorem 3.3.2. Suppose the Assumptions 3.3.1 and 3.3.2 hold. Then, for the iterates

generated by Algorithm 3.1, there exists an index t0 ≥ 1 such that

Et+1 ≤ Et −
L− L
8L2

‖g(x̂t)‖2 − cηt ‖xt − x̃t‖2 − βtν

2
‖x̆t+1 − xt‖2 (3.22)

for all t ≥ t0, where x̃t is defined in (3.13) and c > 0 is a constant, and

Et = F (xt) +
ηt−1

2
‖x̃t − xt−1‖2 +

ηt−1 + ν

2
‖x̃t − xt‖2 . (3.23)

Furthermore, if Assumption 3.3.3 holds, we have

min
t∈{t0,t0+1,...,T}

‖g(x̂t)‖2 ≤ 8L2(Et0 − F )

L− L
1

T − t0
= O(1/T ), (3.24)

where g(x̂t) = ηt(x̂t − xt+1) defined in (3.18).
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Proof. For t ≥ 2, by (3.21) we obtain

x̂t − xt = βt(x̆t − xt) = βt ((x̆t − xt−1) + (xt−1 − x̃t)) + βt (x̃t − xt)

= βt

(
1

βt−1

(x̃t − xt−1) + (xt−1 − x̃t)

)
+ βt (x̃t − xt)

= θt(x̃t − xt−1) + βt (x̃t − xt) , (3.25)

where θt = βt
βt−1

(1− βt−1). By defining β0 = 1, x0 = x1 and x̃1 = x1, we can see (3.25) also

holds for t = 1. Hence, for t ≥ 1, it follows from (3.12) and L ≤ ηt < 2L that

F (xt+1) ≤ F (xt) +
γt/βt + µt

2
‖θt (x̃t − xt−1) + βt (x̃t − xt) ‖2 − γt/βt

2
‖x̃t+1 − xt‖2

−βtν
2βt
‖x̆t+1 − xt‖2 − ηt − L

2η2
t

‖g(x̂t)‖2 − ηt + ν

2
‖xt+1 − x̃t+1‖2

≤ F (xt) +
γt/βt + µt

2
‖θt (x̃t − xt−1) + βt (x̃t − xt) ‖2 − γt/βt

2
‖x̃t+1 − xt‖2

−βtν
2
‖x̆t+1 − xt‖2 − L− L

8L2
‖g(x̂t)‖2 − ηt + ν

2
‖xt+1 − x̃t+1‖2 . (3.26)

Now, since µt = min{µt−1 + ρj − 1, L} for some ρ > 1 and j ≥ 0, it follows from

L > L ≥ µ and (3.5) that the sequence {µt} is monotonically nondecreasing with upper

bound µup = min{L, ρ(µ + 1)}. Hence, µt can only be increased in finite, in fact at most

dµup/(ρ−1)e, number of times. So, there exist µ ≥ 0 and an integer t ≥ 0 such that µt = µ

for all t ≥ t.

Since βt = max{βt, τt} and µt = µ for all t ≥ t, defining κ = µ/L ∈ [0, 1], we have

from Algorithm 3.1 that

βt = max{βt, τ}, (3.27)

for all t ≥ t, where βt = 2/(t+ 1), and

τ :=
λ

2

(
1−

√
1− κ
1 + κ

)
+

(1− λ)κ

1 + κ
∈
[
0,

1

2

]
. (3.28)
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Hence, for all t ≥ t, we have from (3.27) that βt+1 ≤ βt, which gives

ηt = γt/βt = 2L/(2− βt) ≥ 2L/(2− βt+1) = ηt+1 > L. (3.29)

For all t ≥ t+ 1, it follows from (3.26) that

F (xt+1) +
ηt
2
‖x̃t+1 − xt‖2 +

ηt + ν

2
‖xt+1 − x̃t+1‖2

≤ F (xt) +
ηt−1

2
‖x̃t − xt−1‖2 +

ηt−1 + ν

2
‖xt − x̃t‖2

−L− L
8L2

‖g(x̂t)‖2 − βtν

2
‖x̆t+1 − xt‖2 −Rt, (3.30)

where

Rt =
ηt−1

2
‖x̃t − xt−1‖2 +

ηt−1 + ν

2
‖xt − x̃t‖2

−ηt + µ

2
‖θt (x̃t − xt−1) + βt (x̃t − xt) ‖2

≥ ηt
2
‖x̃t − xt−1‖2 +

ηt
2
‖xt − x̃t‖2

−ηt + µ

2
‖θt (x̃t − xt−1) + βt (x̃t − xt) ‖2

≥ ηt − (ηt + µ)θ2
t

2
‖x̃t − xt−1‖2 +

ηt − (ηt + µ)β2
t

2
‖xt − x̃t‖2

−(ηt + µ)θtβt‖x̃t − xt−1‖ ‖xt − x̃t‖ (3.31)

and the above second inequality follows from (3.29) and ν ≥ 0. We first show that when

t = 1 or t = 2, it holds that

Rt ≥ cηt
(
‖x̃t − xt−1‖2 + ‖xt − x̃t‖2) (3.32)

for c = 1/2. When t = 1, (3.32) holds for any c > 0 simply because our definition of

x0 = x̃1 = x1. When t = 2, (3.32) holds with c = 1/2 since x̃2 = β1x̆2 + (1 − β1)x1 = x2

and θ2 = β2(1− β1)/β1 = 0.
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In the following, we divide our analysis into two cases on whether µ > 0 or whether

µ = 0.

Case 1: µ > 0. Then, for all t ≥ t, we have from κ = µ/L > 0 and βt ≥ τ > 0 by

(3.27) that

κt :=
µ

ηt
=
µ

L

2− βt
2
≤ κ

2− τ
2

= κ− κτ

2
, (3.33)

where τ is defined in (3.28). In addition, for all t ≥ t̃ := max{t + 1, 3}, by (3.27), we have

βt ≤ 1/2 and βt/βt−1 ≥ t/(t+ 1) ≥ 3/4, which give

θt =
βt
βt−1

(1− βt−1) ≥ 3

8
. (3.34)

So, it follows from (3.31), (3.33) and (3.34) that

Rt

ηt
≥ 1− (1 + κt)θ

2
t

2
‖x̃t − xt−1‖2 +

1− (1 + κt)β
2
t

2
‖xt − x̃t‖2

−(1 + κt)θtβt‖x̃t − xt−1‖ ‖xt − x̃t‖

≥ ht +
κτ

4

(
θ2
t ‖x̃t − xt−1‖2 + β2

t ‖xt − x̃t‖2)
≥ ht + c1

(
‖x̃t − xt−1‖2 + ‖xt − x̃t‖2) , (3.35)

for all t ≥ t̃, where

c1 =
κτ

4
min

{
9

64
, τ 2

}
> 0 (3.36)

and

ht =
1− (1 + κ)θ2

t

2
‖x̃t − xt−1‖2 +

1− (1 + κ)β2
t

2
‖xt − x̃t‖2

−(1 + κ)θtβt‖x̃t − xt−1‖ ‖xt − x̃t‖ . (3.37)

We now show ht ≥ 0 for all t ≥ t̃. By Cauchy-Schwarz inequality and (3.37), to show

ht ≥ t̃, it is sufficient to show

[
1− (1 + κ) θ2

t

] [
1− (1 + κ) β2

t

]
≥ (1 + κ)2 θ2

t β
2
t , (3.38)

46



which is equivalent to

1− (1 + κ)
(
θ2
t + β2

t

)
≥ 0. (3.39)

Notice that for all t ≥ t̃, we have βt ≤ βt−1. Hence, for all t ≥ t̃, we have

θt =
βt
βt−1

(1− βt−1) ≤ 1− βt, (3.40)

which gives

1− (1 + κ)
(
θ2
t + β2

t

)
≥ 1− (1 + κ)

(
(1− βt)2 + β2

t

)
. (3.41)

By the choice of βt, we have 1
2
≥ βt ≥ τ ≥ τ̃ > 0 for all t ≥ t̃ ≥ 3, where τ is defined in

(3.28) and τ̃ = 1
2

(
1−

√
(1− κ)/(1 + κ)

)
, which implies

(1− βt)2 + β2
t ≤ (1− τ̃)2 + τ̃ 2

for all t ≥ t̃. So, for all t ≥ t̃, we have from (3.41) and (3.28) that

1− (1 + κ)
(
θ2
t + β2

t

)
≥ 1− (1 + κ)

(
(1− τ̃)2 + τ̃ 2

)
= 0.

Hence, (3.39) holds, which shows ht ≥ 0 and therefore (3.32) holds for all t ≥ t̃ with c = c1

defined in (3.36). Since c1 < 1/2, by (3.32), we have in fact (3.32) holds for all t ≥ t + 1

with c = c1. Then, (3.30) implies (3.22) holds with c = c1 for all t ≥ t+ 1.

Case 2: µ = 0. Then, we have µt = 0 and τt = 0 for all t ≥ 1. So, t = 1 and for

all t ≥ 1, we have βt = βt = 2/(t + 1), γt/βt = ηt and ηt = 2L/(2 − βt) = L(t + 1)/t. In

addition, we have θt = βt
βt−1

(1− βt−1) = t−2
t+1

< 1− βt. So, it follows that

‖θt (x̃t − xt−1) + βt (x̃t − xt) ‖2

≤ (θt‖x̃t − xt−1‖+ βt‖x̃t − xt‖)2

≤ ((1− βt)‖x̃t − xt−1‖+ βt‖x̃t − xt‖)2

≤ (1− βt)‖x̃t − xt−1‖2 + βt‖x̃t − xt‖2.
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Hence, for all t ≥ 2, we have from (3.31) and ν ≥ 0 that

2Rt

ηt
=

t2

t2 − 1
‖x̃t − xt−1‖2 +

t2

t2 − 1
‖xt − x̃t‖2 − ‖θt (x̃t − xt−1) + βt (x̃t − xt) ‖2

≥
(

t2

t2 − 1
− t− 1

t+ 1

)
‖x̃t − xt−1‖2 +

(
t2

t2 − 1
− 2

t+ 1

)
‖xt − x̃t‖2

=
2t− 1

t2 − 1
‖x̃t − xt−1‖2 +

t− 1

t+ 1
‖xt − x̃t‖2 ,

which implies for all t ≥ 3,

Rt ≥
L

t
‖x̃t − xt−1‖2 +

ηt
4
‖xt − x̃t‖2 . (3.42)

Then, we have from (3.30), (3.32) and (3.42) that (3.22) holds with c = 1/4 for all t ≥ 1.

Combing the above two cases, Case 1 and Case 2, we have (3.22) holds with c =

min{c1, 1/4} = c1 for all t ≥ t0 := t+1, where c1 is defined in (3.36). Finally, (3.24) follows

from (3.22) and Assumption 3.3.3.

There are a few remarks we would like to add here. In the results of Theorem 3.3.2,

the inequality (3.22) provides a descent property of the potential function Et, i.e., the

function Et is monotonically decreasing, which is a key relation for the global convergence

of Algorithm 3.1. In addition, (3.24) gives the convergence rate O(1/T ) of the square of

the gradient mapping. Therefore, in at most O(1/ε) iterations, we can find an ε-solution of

the problem (3.1).

We say x∗ is a stationary point of problem (3.1) if there exists a constant η > 0

such that

x∗ = arg min
x∈X

{
〈∇f(x∗),x〉+

η

2
‖x− x∗‖2 + p(x)

}
. (3.43)

Note that if (3.43) holds for some η > 0, then (3.43) holds for all η > 0. The following

corollary follows directly from Theorem 3.3.2.

48



Corollary 3.3.1. Suppose the Assumptions 3.3.1, 3.3.2 and 3.3.3 hold. Then, for the iter-

ates generated by Algorithm 3.1, we have (i)

lim
t→∞
‖g(x̂t)‖ = 0, (3.44)

where g(x̂t) = ηt(x̂t − xt+1) defined in (3.18) and (ii) the sequences {x̂t}, {xt} and {x̃t}

have the same set of cluster points, which are all stationary points of problem (3.1).

Proof. By (3.27), we have limt→∞ = βt = τ , which implies

lim
t→∞

ηt = lim
t→∞

2L/(2− βt) = 2L/(2− τ) =: η ≥ L. (3.45)

Hence, by Theorem 3.3.2 and Assumption 3.3.3, we have

∞∑
t=t0

(‖g(x̂t)‖+ ‖xt − x̃t‖) <∞,

where g(x̂t) and x̃t are defined in (3.18) and (3.13), respectively. So, (3.44) holds and it

follows from (3.45) and g(x̂t) = ηt(x̂t − xt+1) that

lim
t→∞

(‖xt+1 − x̂t‖+ ‖xt − x̃t‖) = 0. (3.46)

Thus, the sequences {x̂t}, {xt} and {x̃t} have the same set of cluster points. Now, given

any cluster point x̂∗ of {x̂t}, we can have from (3.15) (3.45), (3.46) and the closedness of p

that

x̂∗ = arg min
x∈X

{
〈∇f(x̂∗),x〉+

η

2
‖x− x̂∗‖2 + p(x)

}
, (3.47)

which by (3.43) implies x̂∗ is a stationary point of problem (3.1). Hence, the statement (ii)

holds.

In terms of the convergence of the objective function value of problem (3.1), we

have the following corollary.
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Corollary 3.3.2. Suppose the Assumptions 3.3.1, 3.3.2 and 3.3.3 hold.

(i) If any of the following conditions holds:

(a) f is a convex function;

(b) µ > 0, where µ = limt→∞ µt;

(c) ν > 0, where ν is defined in (3.4);

(d) {xt} and {x̆t} are bounded, e.g., when X is a bounded set,

we have limt→∞ F (xt) exists.

(ii) If F ∗ = limt→∞ F (xt), then for any cluster point x of {xt}, we have F (x) = F ∗.

Proof. We first show (i) by considering the cases (a), (b), (c) and (d) separately.

Case (a): By Assumption 3.3.3, there exists an F ∗ such that F ∗ = lim inft→∞ F (xt).

Then, when f is a convex function, it follows from (3.11) that for any ε > 0 and xε such

that F (xε) ≤ F ∗ + ε, we have limt→∞ F (xt) ≤ F ∗ + ε, which implies limt→∞ F (xt) ≤ F ∗.

Hence, limt→∞ F (xt) = F ∗.

Case (b): Since µt is monotonically nondescreasing and has upper bound L, we

have µ = limt→∞ µt exists. If µ > 0, we have from (3.30), (3.32) and (3.35) that

Et+1 ≤ Et −
L− L
8L2

‖g(x̂t)‖2 − c1ηt
(
‖xt−1 − x̃t‖2 + ‖xt − x̃t‖2)

−βtν
2
‖x̆t+1 − xt‖2 (3.48)

for all t ≥ t + 1, where Et is defined in (3.23) and c1 > 0 is a constant given in (3.36).

Then, by (3.48), Assumption 3.3.3 and ηt ∈ [L, 2L], we have

lim
t→∞

(‖x̃t − xt−1‖+ ‖xt − x̃t‖) = 0 (3.49)
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and there exists an F ∗ such that

lim
t→∞

F (xt) = lim
t→∞

Et = F ∗. (3.50)

Case (c): If ν > 0, it follows from Theorem 3.3.2 and Assumption 3.3.3 that

lim
t→∞

(‖x̃t − xt−1‖+ ‖xt − x̆t+1‖) = 0.

Then, by (3.21), (3.49) also holds and hence (3.50) holds by Theorem 3.3.2.

Case (d): Suppose the sequences {xt} and {x̆t} are bounded. If µ > 0, the result

follows from Case (b). So, we only consider the case when µ = 0, which gives βt = 2/(t +

1) and therefore limt→∞ βt = 0. By (3.13), x̃t+1 − xt = βt(x̆t+1 − xt). Hence, we have

limt→∞ ‖x̃t+1− xt‖ = 0 from the boundedness of {xt} and {x̆t}, which together with (3.46)

implies (3.49) holds. Hence, (3.50) also holds.

Now, we show (ii) holds. By (3.15), for any z ∈ X , we have

〈∇f(x̂t),xt+1 − z〉+ p(xt+1)

≤ ηt
2

(
‖z− x̂t‖2 − ‖xt+1 − x̂t‖2)+ p(z)− ηt + ν

2
‖xt+1 − z‖2 ,

which by ν ≥ 0 gives

f(x̂t) + 〈∇f(x̂t),xt+1 − x̂t〉+
ηt
2
‖xt+1 − x̂t‖2 + p(xt+1)

≤ ηt
2
‖z− x̂t‖2 + f(x̂t) + 〈∇f(x̂t), z− x̂t〉+ p(z). (3.51)

For any z ∈ X , it follows from Assumption 3.3.1 that

|f(z)− f(x̂t)− 〈∇f(x̂t), z− x̂t〉| ≤
L
2
‖z− x̂t‖2.
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Hence, by (3.51), ηt ∈ [L, 2L] and L > L, for any z ∈ X , we have

F (xt+1) = f(xt+1) + p(xt+1) ≤ F (z) +
3L

2
‖z− x̂t‖2

≤ F (z) + 3L ‖z− xt+1‖2 + 3L ‖xt+1 − x̂t‖2 . (3.52)

Then, for any subsequence {xti+1} of {xt} converging to x ∈ X , we have from (3.52) that

F (xti+1) ≤ F (x) + 3L ‖x− xti+1‖2 + 3L ‖xti+1 − x̂ti‖
2 .

Taking i to infinity in the above inequality, we have from limi→∞ xti+1 = x, (3.46) and

part (i) that F ∗ = limi→∞ F (xti+1) ≤ F (x). In addition, by the lower semicontinuity of F ,

we have F (x) ≤ limi→∞ F (xti+1) = F ∗. Hence, we have F (x) = F ∗.

3.4. Linear Convergence

In this section, we discuss the linear convergence of {xt} and {F (xt)}. Let us de-

fine h(x) = p(x) + δX (x), where δX (x) is the indicator function on the set X . Let Ω be the

set of all stationary points of problem (3.1), i.e.,

Ω = {x∗ ∈ X : −∇f(x∗) ∈ ∂h(x∗)} = {x∗ ∈ X : x∗ satisfies (3.43)}. (3.53)

Note that Ω is a closed set. Recall the definition of proximal operator in Definition 2.1.23

in Chapter 2. Then we have from Algorithm 3.1 that

xt+1 = prox 1
ηt
,h

(
x̂t −

1

ηt
∇f(x̂t)

)
. (3.54)

For studying linear convergence, we need the following further assumptions in this

section.

Assumption 3.4.1. (a) For any ξ ≥ infx∈XF (x), there exist ε > 0 and σ > 0 such that

dist(x,Ω) ≤ σ

∥∥∥∥prox 1
η
,h

(
x− 1

η
∇f(x)

)
− x

∥∥∥∥ , (3.55)
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whenever
∥∥∥prox 1

η
,h

(
x− 1

η
∇f(x)

)
− x

∥∥∥ < ε, F (x) < ξ and η ∈ [L, 2L].

(b) Ω is nonempty and there exists ω > 0 such that ‖x− y‖ ≥ ω whenever x, y ∈ Ω

and F (x) 6= F (y).

Assumption 3.4.1 (a) provides a local error bound condition. The distance from a

point x, which is in the neighborhood of the solutions of the proximal minimization prob-

lem, to the solution set Ω can be bounded by its gradient mapping up to a multiplicative

factor. Assumption 3.4.1 can be satisfied when (i) f(x) = φ(Ax) with strongly convex φ or

f is quadratic (possibly nonconvex); (ii) h is a polyhedral function.

According to the assumption, we have the following lemma.

Lemma 3.4.1. Suppose the Assumptions 3.3.1, 3.3.2, 3.3.3 and 3.4.1 hold. We have

(i) limt→∞ dist(xt,Ω) = 0;

(ii) in addition, if there exists a constant c̃ > 0 such that for all t sufficiently large,

we have

Ẽt+1 ≤ Ẽt − c̃dt, (3.56)

where

Ẽt = F (xt) +
ηt−1

2
‖x̃t − xt−1‖2 +

ηt−1 + ν

2
‖x̃t − xt‖2

+
L− L

8
‖xt − x̂t−1‖2 +

βt−1ν

2
‖x̆t − xt−1‖2 (3.57)

and

dt = ‖xt − x̂t−1‖2 + ‖xt−1 − x̃t‖2 + ‖xt − x̃t‖2

+βt−1ν‖x̆t − xt−1‖2, (3.58)
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then for t sufficiently large, we have

|F (xt)− F ∗| ≤ θ‖xt − x̂t−1‖2 (3.59)

and

0 ≤ Ẽt+1 − F ∗ ≤ θ(Ẽt − F ∗), (3.60)

where θ > 0 and θ ∈ (0, 1) are constants and F ∗ = limt→∞ F (xt) = limt→∞ Ẽt.

Proof. By Theorem 3.3.2, there exists a ξ > 0 such that Et ≤ ξ for all t ≥ 1, which implies

F (xt) ≤ ξ for all t ≥ 1. In addition, by (3.44) and (3.54), we have

0 = lim
t→∞
‖g(x̂t)‖ = lim

t→∞
‖xt+1 − x̂t‖

= lim
t→∞

∥∥∥∥prox 1
ηt
,h

(
x̂t −

1

ηt
∇f(x̂t)

)
− x̂t

∥∥∥∥ . (3.61)

By the nonexpansion property of the proximal operator, (3.54), ηt > L > L and Assump-

tion 3.3.1, we have

∥∥∥∥prox 1
ηt
,h

(
xt+1 −

1

ηt
∇f(xt+1)

)
− xt+1

∥∥∥∥
=

∥∥∥∥prox 1
ηt
,h

(
xt+1 −

1

ηt
∇f(xt+1)

)
− prox 1

ηt
,h

(
x̂t −

1

ηt
∇f(x̂t)

)∥∥∥∥
≤

∥∥∥∥(xt+1 −
1

ηt
∇f(xt+1)

)
−
(

x̂t −
1

ηt
∇f(x̂t)

)∥∥∥∥
≤

(
1 +
L
ηt

)
‖xt+1 − x̂t‖ ≤ 2‖xt+1 − x̂t‖.

Hence, it follows from ηt ∈ [L, 2L] and Assumption 3.4.1 (a) and (3.61) that

dist(xt+1,Ω) ≤ σ

∥∥∥∥prox 1
ηt
,h

(
xt+1 −

1

ηt
∇f(xt+1)

)
− xt+1

∥∥∥∥
≤ 2σ‖xt+1 − x̂t‖, (3.62)

for t sufficiently large. So, we have (i) holds by (3.61).
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Now, we prove (ii). Let us define xt ∈ Ω such that dist(xt,Ω) = ‖xt−xt‖. By (3.56)

and Assumption 3.3.3, we have limt→∞ dt = 0, which gives

lim
t→∞
‖xt − xt−1‖ ≤ lim

t→∞
(‖xt − x̃t‖+ ‖x̃t − xt−1‖) ≤ lim

t→∞

√
2dt = 0.

Hence, we have from property (i) that

lim
t→∞
‖xt − xt−1‖ ≤ lim

t→∞
‖xt − xt‖+ ‖xt − xt−1‖+ ‖xt−1 − xt−1‖ = 0.

This together with the Assumption 3.4.1 (b) implies that F (xt) = F ∗ for all t sufficiently

large, where F ∗ is some constant. Hence, for t sufficiently large, replacing t + 1 by t and

taking z = xt in (3.52), we have

F (xt)− F ∗ ≤ 3L ‖xt − xt‖2 + 3L ‖xt − x̂t−1‖2

= 3Ldist(xt,Ω)2 + 3L ‖xt − x̂t−1‖2

≤ (12σ2 + 3)L ‖xt − x̂t−1‖2 , (3.63)

where the last inequality follows from (3.62). On the other hand, since xt ∈ Ω, we have

from (3.43) that

〈∇f(xt),xt〉+ p(xt) ≤ 〈∇f(xt),xt〉+
η

2
‖xt − xt‖2 + p(xt)

for some η > 0, which by Assumption 3.3.1 and (3.62) gives

F ∗ = F (xt) = f(xt) + p(xt)

≤ f(xt) + 〈∇f(xt),xt − xt〉+
η

2
‖xt − xt‖2 + p(xt)

≤ f(xt) + p(xt) +
L+ η

2
‖xt − xt‖2

= F (xt) +
L+ η

2
dist(xt,Ω)2

≤ F (xt) + 2(L+ η)σ2 ‖xt − x̂t−1‖2 . (3.64)
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So, by (3.63) and (3.64), we have (3.59) holds. In addition, it follows from (3.56),

limt→∞ dt = 0, (3.61) and (3.59) that

lim
t→∞

Ẽt = lim
t→∞

F (xt) = F ∗

and Ẽt ≥ F ∗ for all t sufficiently large. So, by (3.63) and the definitions of Ẽt and dt in

(3.57) and (3.58), there exists a constant c > 0 such that 0 ≤ (Ẽt − F ∗) ≤ cdt for t

sufficiently large. Therefore, by (3.56) we have (3.60) holds with θ = (c− 1)/c ∈ (0, 1).

From the above lemma, we see that (3.56) shows that the new energy function Ẽt

is monotonically decreasing, and by (3.60), the sequence {Ẽt} converges Q-linearly to F ∗.

Furthermore, (3.59) gives a bound on the objective function value gap.

Based on the Lemma 3.4.1, we can have the following linear convergence result.

Theorem 3.4.1. Suppose the Assumptions 3.3.1, 3.3.2, 3.3.3 and 3.4.1 hold. If any of the

following conditions holds:

(a) µ > 0, where µ = limµt;

(b) ν > 0, where ν is defined in (3.5);

(c) restart Algorithm 3.1 after every k0 > 0 iterations,

we have

(i) the sequence {F (xt)} converges R-linearly;

(ii) the sequence {xt} converges R-linearly to a stationary point of problem (3.1).

Proof. If µ > 0, we have (3.48) holds, which together with g(x̂t) = ηt(x̂t−xt+1) and ηt ≥ L
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gives

Et+1 ≤ Et −
L− L

8
‖x̂t − xt+1‖2 − c1L

(
‖xt−1 − x̃t‖2 + ‖xt − x̃t‖2)

−βtν
2
‖x̆t+1 − xt‖2

for all t ≥ t0 = t + 1, where c1 is defined in (3.36). By rearranging the above inequality

with the definition of Ẽt in (3.57), we have

Ẽt+1 ≤ Ẽt −
L− L

8
‖xt − x̂t−1‖2 − c1L

(
‖xt−1 − x̃t‖2 + ‖xt − x̃t‖2)

−βt−1ν

2
‖x̆t − xt−1‖2,

which implies (3.56) holds with c̃ = min{(L− L)/8, c1L, 1/2} when t ≥ t+ 1.

Similarly, if ν > 0, it follows from (3.22) that

Et+1 ≤ Et −
L− L

8
‖x̂t − xt+1‖2 − c1L ‖xt − x̃t‖2 − βtν

2
‖x̆t+1 − xt‖2

for all t ≥ t0 = t + 1. By rearranging this inequality with the definition of Ẽt in (3.57), we

have

Ẽt+1 ≤ Ẽt −
L− L

8
‖xt − x̂t−1‖2 − c1L ‖xt−1 − x̃t‖2 − βt−1ν

2
‖x̆t − xt−1‖2,

which together with βt ∈ (0, 1] and x̆t − xt−1 = 1/βt−1(x̃t − xt−1) implies

Ẽt+1 ≤ Ẽt −
L− L

8
‖xt − x̂t−1‖2 − c1L ‖xt−1 − x̃t‖2 − βt−1ν

4
‖x̆t − xt−1‖2

−ν
4
‖x̃t − xt−1‖2.

Hence, we have from ν > 0 that (3.56) holds with c̃ = min{(L − L)/8, c1L, 1/4, ν/4} > 0

when t ≥ t+ 1.

By the previous analysis, under condition (a), we have (3.56) holds for sufficiently

large t. So, by Lemma 3.4.1, we have (3.59) and (3.60) hold for t sufficiently large. Hence,
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by (3.56), (3.59), (3.60) and the definition of dt, for t sufficiently large, we have

|F (xt)− F ∗| ≤ θ‖xt+1 − x̂t‖2 ≤ θdt ≤
θ

c̃
(Ẽt − Ẽt+1) ≤ θ

c̃
(Ẽt − F ∗),

which together with (3.60) implies the R-linear convergence of F (xt) to F ∗, i.e., conclusion

(i) holds. By (3.56), (3.60) and the definition of dt, we also have

‖xt − xt−1‖2 ≤ 2(‖xt−1 − x̃t‖2 + ‖xt − x̃t‖2) ≤ 2dt ≤
2

c̃
(Ẽt − F ∗),

for t sufficiently large. This inequality and (3.60) show R-linear convergence of ‖xt−xt−1‖,

which implies there exists an x∗ such that the sequence {xt} converges to x∗ R-linearly.

Finally, the conclusion (i) of Lemma 3.4.1 shows x∗ is a stationary point of problem (3.1).

Hence, conclusion (ii) holds. Under condition (c), we have µ > 0, then the conclusion (i)

and (ii) follow from the previous analysis.

3.5. Numerical Experiments

In this section, we evaluate the performance of the unified proximal gradient

method (UPG) in Algorithm 3.1 by solving two nonconvex optimization problems: the

smoothly clipped absolute deviation (SCAD) penalty problems and nonconvex quadratic

programming with simplex constraints. Note that, depending on the selection of the

matrix G, the latter problem can be convex if G is chosen to be positive semidefinite.

We compare UPG with three other algorithms: proximal gradient method (PG), FISTA

and proximal gradient algorithm with extrapolation (PGE), where the proximal gradient

method comes from the proximal gradient algorithm with extrapolation by setting the

parameter βk = 0 in Algorithm 1 in [123]. The complete description of these algorithms

can be found in the literature as well.

58



3.5.1. The Smoothly Clipped Absolute Deviation Penalty Problem

In this subsection, we apply Algorithm 3.1 to solve the smoothly clipped absolute

deviation (SCAD) penalty problem, which is defined as

min
x∈Rn

1

2
‖Ax− b‖2 +

n∑
i=1

gκ(|xi|), (3.65)

where A ∈ Rm×n, b ∈ Rm and gκ is the SCAD penalty given by

gκ(θ) =


κθ, θ ≤ κ,

−θ2+2cκθ−κ2
2(c−1)

, κ < θ ≤ cκ,

(c+1)κ2

2
, θ > cκ,

(3.66)

with parameters c > 2 and κ > 0. The SCAD penalty corresponds to a quadratic spline

function with knots at κ and cκ, and combines the benefits of using l1 penalty and hard

thresholding penalty. We refer to [41] for more details about SCAD penalty. The SCAD

penalty is used in statistics and applications involving regularization, especially for penal-

ization when the noise level in data is low [41] and doing variable selection [138, 127].

The SCAD problem (3.65) is nonconvex as the SCAD penalty is a nonconvex func-

tion. However, it is required in the problem (3.1) that the function p is convex. Fortu-

nately, it is proved in [64] that gκ(·) + ω
2
| · |2 with ω ≥ 1

c−1
is convex. Therefore, we can

rewrite problem (3.65) into the form of (3.1) with

f(x) :=
1

2
‖Ax− b‖2 − 1

2(c− 1)
‖x‖2 and p(x) :=

n∑
i=1

gκ(|xi|) +
1

2(c− 1)
‖x‖2.

Hence, f is Lipschitz continuously differentiable but possibly nonconvex and p is a convex

function, which satisfy the problem settings of (3.1). Then, we can apply UPG, PG, PGE

and FISTA to solve this reformulated problem. We have to point out here FISTA does not
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guarantee convergence since the objective function is nonconvex. We apply FISTA here

simply for practical numerical comparison purpose.

When applying Algorithm 3.1, the two subproblems in Step 4 and 6 can be rewrit-

ten as

x̆t+1 = arg minx∈Rn

{
1

2ν1

‖x− ν1 (γtx̆t −∇f(x̂t))‖2 +
n∑
i=1

gκ(|xi|)

}
,

and

xt+1 = arg minx∈Rn

{
1

2ν2

‖x− ν2 (ηtx̂t −∇f(x̂t))‖2 +
n∑
i=1

gκ(|xi|)

}
,

where ν1 = c−1
γt(c−1)+1

and ν2 = c−1
ηt(c−1)+1

. In addition, it can be easily verified that 1 + νi ≤ c

holds for i = 1, 2 and it is given in [125] that the solution of the following minimization

problem

min
x∈Rn

1

2ν
‖x− q‖2 +

n∑
i=1

gκ(|xi|) (3.67)

with 1 + ν ≤ c and known q has closed form. Hence, the subproblems for finding x̆t+1

and xt+1 in Algorithm 3.1 can be solved trivially. Also note that the subproblems in PG,

PGE and FISTA can be also converted into the form of (3.67) and therefore, closed form

solutions are guaranteed as well.

In our experiment, the dimension is set to be m = 100 and n = 500. We randomly

generate A ∈ Rm×n with entries from standard normal distribution and then normalize

its columns. Then, the vector b is obtained as b = Ab∗ + ε where b∗ is a sparse uni-

formly distributed random vector in Rn being generated with density of 0.02 and ε is a

noise vector in Rm with entries from N (0, 0.01). The parameters c and κ can be chosen by

cross-validation in practice. Here, we simply choose c = 3.7 and κ = 0.1 since the pur-

pose of this numerical example is to show the efficiency of the unified proximal gradient
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(a) Function value gap against iterations (b) Minimizer gap against iterations

Figure 3.1. Comparison of UPG, PG, PGE and FISTA for the SCAD problem

algorithm. We also specify L = max(|λH |), where λH corresponds to all the eigenvalues of

matrix H and H is the Hessian of f(x), for PG, FISTA, PGE and UPG. As suggested in

[123], we set l = |min(λH)| and βt = 0.85
√

L
L+l

for PGE. Additionally, we choose ρ = 1.5

and λ = 0.5 for UPG. The initialization of x ∈ Rn for all the algorithms is randomly

selected from standard uniform distribution in (0, 1). The stopping condition for all four

algorithms is

‖xt+1 − xt‖
max(‖xt+1‖, 1)

≤ 10−4, (3.68)

and the maximal iteration number is set to 1000.

The results are presented in Figure 3.1. The plot on the left is the gap of the ob-

jective function values |Ft − Fmin| versus iterations, where Fmin is the minimum of the se-

quence {Ft} generated by each algorithm and Ft is the abbreviation of F (xt). We also plot

‖xt−x∗‖ against iterations in Figure 3.1 (b), where x∗ is the solution corresponding to the

minimum Fmin of each algorithm. We can see from Figure 3.1 that UPG greatly outper-

forms the other algorithms. UPG converges in much fewer iterations and approaches the
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desired solution rapidly. One can also find that FISTA does not converge as we mentioned

previously FISTA is not proved to be convergent for nonconvex problems. Additionally, we

can observe the R-linearly convergence of {xt} in Figure 3.1 (b), which matches the theo-

retical result in Theorem 3.4.1.

3.5.2. Nonconvex Quadratic Programming with Simplex Constraints

In this subsection, we consider the following possibly nonconvex problem

min
x∈Rn

1

2
xTGx− gTx (3.69)

s.t. eTx = c, x ≥ 0,

where G ∈ Rn×n is not necessarily positive semidefinite, g ∈ Rn, e is a vector of ones in Rn

and c is a positive number. We can easily rewrite (3.69) in the form of (3.1) with

f(x) :=
1

2
xTGx− gTx and p(x) := δC(x),

where C = {x ∈ Rn : eTx = c, x ≥ 0} and δC(·) is the indicator function of the simplex

C. Note that p is convex as C is a convex set. Nonconvex quadratic programming prob-

lems (NQP) appear in many practical applications, e.g., resource allocation [77], portfolio

selection [95] and the maximal clique problem [52]. However, problem (3.69) is not easy to

solve since it involves projections onto the simplex. Furthermore, when g is 0, the problem

is NP-hard (see [98]).

In the initialization of the experiment, we first generate the matrix G. We ran-

domly generate entries of a matrix D ∈ Rn×n from i.i.d. standard Gaussian distribution

and then let G = D + DT so that G is symmetric. The vector g is also generated with

i.i.d. standard Gaussian entries. The constant c is selected as max{1, 10 ∗ t}, where t is
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(a) Function value gap against iterations (b) Minimizer gap against iterations

Figure 3.2. Comparison of UPG, PG, PGE and FISTA for the NQP problem

a random scalar uniformly generated on [0, 1]. For the parameters required in PG, PGE

and FISTA, we set L = max{σmax(G), |σmin(G)|} where σmax(G) and σmin(G) denote the

largest eigenvalue and the smallest eigenvalue of the matrix G, respectively. We choose

l = |σmin(G)|. The selection of L is used for UPG as well. Additionally, we let n = 2000

and terminate the algorithm when the maximal iteration reaches 5000 or the condition in

(3.68) is satisfied.

We plot |Ft − Fmin| against iterations and ‖xt − x∗‖ versus iterations in Figure 3.2,

where Fmin is the minimum function value of each algorithm and x∗ is the corresponding

solution of the Fmin for every algorithm. We can see from Figure 3.2 UPG outperforms

all other methods in terms of the convergence of the sequences {Ft} and {xt}. Specifi-

cally, UPG uses much less iterations to achieve the required accuracy than PG, PGE and

FISTA.
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3.6. Stochastic Unified Proximal Gradient Method

In this section, we extend the proposed unified gradient method in Algorithm 3.1

in Section 3.2 to solve stochastic optimization problems. More specifically, the stochastic

unified proximal gradient method (SUPG) inherits the advantages of UPG that it solves

both convex and nonconvex composite problems by unified treatment. The main difference

between UPG and SUPG in terms of the algorithmic form is that UPG exploits determin-

istic gradients while SUPG uses stochastic gradients and a variance reduction technique is

applied. The variance reduction technique in SUPG is to reduce the variance effect of the

stochastic gradient, that may slow down the convergence of the method [104].

3.6.1. Stochastic Composite Optimization Problem

Let us consider the following composite optimization problem

min
x∈X

F (x) := f(x) + p(x), (3.70)

where X ⊂ Rd is a closed convex set, f is the average of the Lipschitz continuously differ-

entiable functions f1, . . . , fn on an open set containing X , i.e., f = 1
n

∑n
i=1 fi, but possibly

nonconvex and p : X → R is a proper closed convex, but possibly nonsmooth, function.

Problems in the form of (3.70) arise in many fields, such as machine learning,

statistics and operation research. This kind of problems are also known as regularized

empirical minimization problems (e.g., [104, 1, 121]). For example, given n samples in a

dataset, we can fit a general ridge regression model if each fi is the divergence of a linear

combination of features and the desired dependent variable, and p is an l2 regularization.

When the penalty term is l1 norm, then the problem becomes LASSO. In the case fi is a

logistic loss function and p is l1 penalty, we can obtain regularized logistic regression.
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Initialization: Given iteration numbers K, m, x1
m ∈ X, λ ∈ [0, 1] and L > L;

Set x̆1
m = x1

m.

For k = 1, 2, 3, . . . , K
1. ∇f(xkm) = 1

n

∑n
i=1∇fi(xkm).

For t = 1, 2, . . . ,m

2. Set βt = 2/(t+ 1).
3. Randomly choose subset It ⊂ {1, 2, . . . , n} of size b, such that the

probability of each index being selected is b
n
.

4. Choose µt ∈ [0,L] and x̂kt = βtx̆
k
t + (1− βt)xkt satisfy

fIt(x
k
t )− fIt(x̂kt )− 〈∇fIt(x̂kt ),xkt − x̂kt 〉 ≥ −

µt
2
‖xkt − x̂kt ‖2, where

βt = max{βt, τt} with τt = λτ t + (1− λ)τ t, τ t = 1
2

(
1−

√
L−µt
L+µt

)
, τ t = µt

L+µt
.

5. Set γt = βtηt, where ηt = 2L/(2− βt).
6. vkt = ∇fIt(x̂kt )−∇fIt(xkm) +∇f(xkm).

7. x̆kt+1 = argminx∈X

{
〈vkt ,x〉+ γt

2

∥∥x− x̆kt
∥∥2

+ p(x)
}
.

8. If βt = 1, let xkt+1 = x̆kt+1;

9. Else xkt+1 = argminx∈X

{
〈vkt ,x〉+ ηt

2

∥∥x− x̂kt
∥∥2

+ p(x)
}
.

end

10. x̆k+1
1 = x̆km and xk+1

1 = xkm.
end

Algorithm 3.2. A stochastic unified proximal algorithm for nonconvex composite optimiza-
tion

3.6.2. Algorithm Description

We propose Algorithm 3.2 to solve problem (3.70). Algorithm 3.2 is a stochastic

mini-batch accelerated gradient method with variance reduction technique for solving com-

posite optimization where f is not necessarily convex. At each stage, the algorithm per-

forms m iterations with directions of mini-batch gradient

vt = ∇fIt(x̂t)−∇fIt(xm) +∇f(xm)

where It is a randomly picked subset of size b from {1, 2, . . . , n} and ∇fIt(x) =

1
b

∑b
i=1∇fi(x) for i ∈ It.

There are two loops in Algorithm 3.2. At every iteration of the outer loop, we eval-
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uate the full gradient of f at the most recent point xm obtained from the inner loop. This

full gradient is used to calculate the stochastic gradient vt in Step 6. The steps in the in-

ner loop are almost the same as that in UPG, except the choice of µt and the gradients in

the subproblems. In Algorithm 3.2, we assume µt is given such that the conditions in Step

4 are satisfied. The details of how we choose µt will be discussed in Section 3.6.3 when

presenting the numerical experiments. Furthermore, we compute the stochastic gradient vt

in Step 6, which is equipped with the variance reduction technique. The variance bound is

given in Lemma 3.6.1. In addition, the stochastic gradient vt is used rather than the gra-

dient ∇f(x̂t), since it is easy to see E[vt] = ∇f(x̂t).

We give the bound of the variance in the following lemma. Lemma 3.6.1 shows the

mini-batch size b can help reduce the variance. We can observe if b = n, the bound given

in (3.71) becomes 0, then the algorithm reduces to one for the deterministic case.

Lemma 3.6.1. Suppose the gradient of f is Lipschitz continuous with constant L. For the

iterates generated by Algorithm 3.2, we have

EIt
[
‖vt −∇f(x̂t)‖2

]
≤ L2(n− b)

b(n− 1)
‖xt − x̂t‖2. (3.71)
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Proof. By the definition of vt, we have

EIt
[
‖vt −∇f(x̂t)‖2

]
= EIt

[
‖∇fIt(x̂t)−∇fIt(xt) +∇f(xt)−∇f(x̂t)‖2

]
= EIt

[
‖∇fIt(x̂t)−∇fIt(xt)− (∇f(x̂t)−∇f(xt))‖2

]
=

1

b2
EIt

∥∥∥∥∥∑
i∈It

(∇fi(xt)−∇fi(x̂t)− (∇f(xt)−∇f(x̂t)))

∥∥∥∥∥
2


=
n− b
b(n− 1)

E
[
‖∇fi(xt)−∇fi(x̂t)− (∇f(xt)−∇f(x̂t))‖2

]
≤ n− b

b(n− 1)
E
[
‖∇fi(xt)−∇fi(x̂t)‖2

]
≤ L2(n− b)

b(n− 1)
‖xt − x̂t‖2, (3.72)

where the fourth equality follows from Lemma 4 in [80], the first inequality comes from

E‖ξ − Eξ‖2 ≤ E‖ξ‖2, and the last inequality is obtained from the Lipschitz continuity of

∇fi.

3.6.3. Numerical Experiments

Though the theoretical results are still a work in progress, we would like to show

the potential of the proposed stochastic proximal gradient method in practical applica-

tions. In this subsection, we examine the empirical performance of SUPG on the regular-

ized empirical risk minimization (ERM) on regression and classification.

Given a dataset of n samples, {(a1, b1), (a2, b2), · · · , (an, bn)}, where ai ∈ Rd for

i = 1, · · · , n, and b is a constant which is the value of dependent variable for regression

problems or label for classification. We consider the following composite optimization

problem in [136]

min
x∈Rd

1

n

n∑
i=1

fi(x) + λ1‖x‖1 +
λ2

2
‖x‖2

2, (3.73)
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where λ1, λ2 > 0 are penalty parameters. Different models in machine learning can be

obtained by choosing fi to be various loss functions. Here, we consider fi being sigmoid

loss 1
1+exp(biaT

i x)
and logistic loss log(1 + exp(−biaT

i x)).

In this experiment, we compare SUPG with proximal stochastic variance-reduced

gradient (prox-SVRG) for nonconvex composite objectives in Algorithm 1 in [136] on three

publicly available datasets: abalone from [37], letter and shuttle in [21]. Abalone dataset is

used to find a regression model to predict the age of abalone from physical measurements

while datasets shuttle and letter are for classification problems that classify classes of shut-

tles by attributes and identify black-and-white rectangular pixel displays as one of the 26

capital letters in the English alphabet, respectively.

On the other hand, the initialization of x ∈ Rd for all the algorithms is randomly

selected from standard uniform distribution in (0, 1) and the maximum iteration number

for inner loop is m = 150. The termination iteration for the outer loop K is set to be 100

for plotting with respect to epoch and the stopping condition of the outer loop for figures

with respect to time is

|Ft − F c
min|

|F c
min + 1|

≤ 10−4,

where F c
min denotes the minimum of current sequence {Ft} at the t-th iteration. Addition-

ally, the penalty parameters λ1 and λ2 are set to 10−5. Note that they are usually selected

by cross-validation in practice. Moreover, as we mentioned in previous subsection, instead

of estimating µt in the way of Step 2 in Algorithm 3.1, here we monotonically increase µt

by 0.01L in the range [0, L] until the requirement in Step 4 is satisfied. Then, we have the

experimental results in the following.
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(a) Abalone (b) Letter (c) Shuttle

(d) Abalone (e) Letter (f) Shuttle

Figure 3.3. Comparison on execution time and epoch of SUPG and prox-SVRG for logistic
loss

Figure 3.3 and Figure 3.4 show the results of applying SUPG and prox-SVRG on

solving problem (3.70) when fi are logistic loss and sigmoid loss. We plot |Ft − Fmin|

against execution time in (a), (b) and (c) and |Ft − Fmin| versus epoch in (d), (e) and

(f) for both Figure 3.3 and Figure 3.4, where Fmin is the minimum of the sequence {Ft}

generated by each algorithm. We can observe from Figure 3.3 (a), (b) and (c) that both

methods converge shortly to the preset accuracy. However, SUPG terminates much faster

than prox-SVRG. In other words, prox-SVRG takes more than three times of the time

that SUPG needs to reach a solution. On the other hand, we can see from Figure 3.3 (d),

(e) and (f) that, when using the same amount of epochs, SUPG obtains an objective func-

69



(a) Abalone (b) Letter (c) Shuttle

(d) Abalone (e) Letter (f) Shuttle

Figure 3.4. Comparison on execution time and epoch of SUPG and prox-SVRG for sig-
moid loss

tion value with smaller function value gap than that of prox-SVRG. Overall, SUPG out-

performs prox-SVRG from the aspects of less running time and higher accuracy with same

epochs. Similar conclusions can be obtained from Figure 3.4. SUPG uses much less time

to reach a desired accuracy than prox-SVRG and SUPG can find an x such that the gap

between current function value and the minimum of the generated sequence of objective

function values is smaller than that of prox-SVRG.
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Chapter 4. An Inexact ADMM for Separable Nonconvex and
Nonsmooth Optimization

In this chapter, we present an algorithm that is a variant of the alternating direc-

tion proximal method of multiplier and is equipped with linesearch. The method solves a

family of separable minimization optimization problems with linear equality constraints,

where the objective function is the sum of a smooth but possibly nonconvex function and

a possibly nonsmooth nonconvex function. Since most of the computational effort is spent

on finding the minimizers to the subproblems in such methods, inexact solutions are used

in the proposed method. An expansion step is applied to x-iterates to further improve the

performance of the algorithm.

4.1. Separable Nonconvex and Nonsmooth Optimization Problems

Throughout the chapter, we consider the following separable nonconvex and nons-

mooth linearly constrained optimization problem

min
(x,y)∈Rnx×Rny

F (x,y) := f(x) + g(y) (4.1)

s.t. Ax +By = b,

where f : Rnx → R is Lipschitz continuously differentiable, but possibly nonconvex, g :

Rny → R is a proper, lower semicontinuous, possibly nonconvex and nonsmooth function

and A ∈ Rm×nx , B ∈ Rm×ny and b ∈ Rm are given. Note that constraints of the form

y ∈ Y for a closed set Y ⊂ Rny can be incorporated in the objective by using g(y) as an

indicator function of Y .

As we have mentioned in Section 2.3 in Chapter 2, ADMMs have obtained great

success in both theory and numerical efficiency for solving linearly constrained separa-
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ble convex optimization. The original ADMM [46, 53] and its variants for solving convex

problems have been further extended to solve the nonconvex structured optimization prob-

lem (4.1). With proper choice of β, the excellent performance of ADMM on nonconvex

cases has been observed in recent applications [122]. Note that the dominant computation

in each iteration of ADMM is to solve its subproblems. Hence, how to solve these sub-

problems inexactly while still maintaining nice convergence properties will be critical for

the overall success of ADMM, especially when no closed form solution of the subproblem

exists [65, 66, 132].

Motivated by the recent surged interests of the applications of ADMM on noncon-

vex cases and the adaptive relative error strategy used in ALM and convex ADMM (e.g.,

[65]), we propose an inexact ADMM (I-ADMM) framework with an expansion linesearch

step (see Algorithm 4.1) to solve the nonconvex problem (4.1). Our contribution mainly

lies in the following aspects.

First, the proposed I-ADMM solves the subproblems inexactly to adaptive accu-

racy while global convergence and a linear convergence rate are guaranteed under proper

conditions. Solving subproblems in ADMMs inexactly has been widely used for convex op-

timization problems. One common way is to solve the subproblems to the accuracy based

on some absolute summable error criteria, but the guidance on how to adaptively select

the error tolerance is absent except requiring it to be summable. Moreover, ADMM is

a splitting version of the augmented Lagrangian method, for which nice theoretical con-

vergence results and numerical experiments have been obtained [39, 114] using adaptive

relative subproblem stopping criteria. Hence, ideally we should also be able to solve the

subproblems of I-ADMM to an adaptive accuracy while maintaining desirable convergence
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properties. Here we establish global convergence and a linear convergence rate of I-ADMM

under a local error bound condition and a weakly convex property of g.

Second, the proposed I-ADMM allows a more flexible range of the stepsize, s ∈

(0, 2), in the update step of dual variable and applies an expansion linesearch step to ac-

celerate the convergence. The commonly known dual stepsize s of ADMM for solving con-

vex optimization can be arbitrarily chosen from the interval (0, (
√

5 + 1)/2) (see [44, 4]).

However, only the unit stepsize was discussed in almost all current ADMMs for noncon-

vex problems [5, 75, 86, 122], except the methods in [133, 135] that allow s ∈ (0, (
√

5 +

1)/2) for an image recovery problem as the original ADMM and s ∈ (0, 2) for a linearized

ADMM. On the other hand, both methods find exact solutions of the subproblems or the

linearized subproblems. Therefore, by constructing different potential energy functions,

we extend the dual stepsize interval to (0, 2) even with inexact subproblem solutions. In

addition, an expansion linesearch step (see step 6 of Algorithm 4.1) is applied in the pro-

posed I-ADMM, which improves the numerical performance and reduces the sensitivity of

algorithm parameters as well.

Third, we propose a generalized accelerated gradient method (G-AGM) with mo-

mentum acceleration to solve the nonconvex smooth x-subproblem. Our G-AGM method

is motivated by the extrapolation technique for solving both convex and nonconvex opti-

mization [9, 123]. G-AGM is particularly designed for solving x-subproblem arising in our

I-ADMM. It can be viewed as a special case of Algorithm 3.1 in Chapter 3. This method

guarantees global convergence for solving the smooth possibly nonconvex subproblem and

will automatically reduce to an optimal gradient method when the function f in the objec-

tive is convex.
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Additionally, the framework of I-ADMM is more general and flexible than most

of existing ADMMs. When no expansion step (Step 6 of Algorithm 4.1) is used, this I-

ADMM will just reduce to a particular inexact version of nonconvex ADMM. But our line-

search expansion step often allows a much larger stepsize than the fixed relaxation stepsize

used in [38, 68, 72]. We also have more general problem settings and different assumptions

for establishing global convergence and the linear convergence rate than that in [14, 86]

which require B = I, b = 0 and the Kurdyka- Lojasiewicz property. Although the over-

relaxation step was adopted in [57], the involved subproblems were also solved exactly.

Moreover, our numerical experiments show that our proposed I-ADMM is very effective

compared with other state-of-the-art ADMM algorithms in the literature and can obtain

more accurate solution.

4.2. Algorithm Description

We propose an inexact ADMM (I-ADMM, i.e., Algorithm 4.1) with an expansion

linesearch step to solve the possibly nonsmooth and nonconvex problem (4.1). At each

iteration, both the y-subproblem, i.e.,

min
y∈Rny

Lky(y) := Lβ(xk,y,λk) +
β

2
‖y − yk‖2

Dky , (4.2)

and the x-subproblem, i.e.,

min
x∈Rnx

Lkx(x) := Lβ(x,yk+1,λk) +
β

2
‖x− xk‖2

Dkx , (4.3)

are allowed to be solved inexactly, where Dkx � 0 and Dky � 0 can be two uniformly up-

per bounded positive semidefinite matrices that are adaptively chosen. More precisely, in

Algorithm 4.1, it requires the yk+1 generated at the k-th iteration satisfies

β

2
‖yk+1 − yk‖2

Dy + Lβ(xk,yk+1,λk) ≤ Lβ(xk,yk,λk) (4.4)
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for some positive definite matrix Dy � 0, and there exist a positive constant cy and some

ξk+1
y ∈ ∂yLβ(xk,yk+1,λk) such that

‖ξk+1
y ‖ ≤ cyβ‖yk+1 − yk‖. (4.5)

For the inexact solution of x-subproblem, it requires the x̂k generated at the k-th iteration

of Algorithm 4.1 satisfies

β

2
‖x̂k − xk‖2

Dx + Lβ(x̂k,yk+1,λk) ≤ Lβ(xk,yk+1,λk) (4.6)

for some positive definite matrix Dx � 0, and there exists a positive constant cx > 0 such

that ξk+1
x = ∇xLβ(x̂k,yk+1,λk) satisfies

‖ξk+1
x ‖ ≤ cxβ

(
‖x̂k − xk‖+ ‖yk+1 − yk‖

)
. (4.7)

The algorithm stops when Rk+1 is sufficiently small, where

Rk+1 = ‖x̂k − xk‖+ ‖yk+1 − yk‖+ ‖r̂k+1‖, (4.8)

and r̂k+1 = Ax̂k +Byk+1 − b.

Furthermore, we see that an expansion linesearch step for x-iterates is applied in

Step 6 of Algorithm 4.1. From this expansion step, we have φ(αk) = Lβ(xk+1,yk+1,λk+1),

φ(1) = Lβ(x̂k,yk+1,λk+1) and the stepsize αk ≥ 1 is chosen such that ξ
k+1

x =

∇xLβ(xk+1,yk+1,λk) satisfies

‖ξk+1

x ‖ ≤ cxβ
(
‖x̂k − xk‖+ ‖yk+1 − yk‖

)
, (4.9)

and

Lβ(xk+1,yk+1,λk+1) ≤ Lβ(x̂k,yk+1,λk+1)− δβ‖xk+1 − x̂k‖2, (4.10)
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Initialization: parameters β > 0, s ∈ (0, 2), δ ∈ (0, 1) and η > 1,
starting point w0 = (x0,y0,λ0);

For k = 0, 1, 2, . . .
1. Choose uniformly upper bounded matrices Dky � 0 and Dkx � 0.

2. Solve yk+1 ≈ argminy∈Rny Lβ(xk,y,λk) + β
2
‖y − yk‖2

Dky
inexactly such

that (4.4) and (4.5) are satisfied.

3. Solve x̂k ≈ argminx∈Rnx Lβ(x,yk+1,λk) + β
2
‖x− xk‖2

Dkx
inexactly such

that (4.6) and (4.7) are satisfied.

4. If Rk+1 defined in (4.8) is sufficiently small, stop.

5. Update the Lagrange Multiplier:

λk+1 = λk − sβ(Ax̂k +Byk+1 − b).
6. Expansion step for the x-iterate:

xk+1 = xk + αkd̂
k
x, where d̂k = x̂k − xk and αk = ηj with j ≥ 0

being the largest integer such that

φ(αk) ≤ φ(1)− δβ‖xk+1 − x̂k‖2 and (4.9) are satisfied,

where φ(α) = Lβ(xk + αd̂kx,y
k+1,λk+1).

end

Algorithm 4.1. An inexact ADMM (I-ADMM) for separable nonconvex optimization

where δ ∈ (0, 1) is a preset parameter. As standard linesearch techniques in optimiza-

tion, this Armijo-type linesearch step can significantly improve the performance of the al-

gorithm and reduce the sensitivity of the choices of the parameters in the algorithm.

We now have the following comments regarding the conditions (4.4), (4.5), (4.6)

and (4.7) for the subproblem solutions. First, since {Dkx} and {Dky} are chosen uniformly

upper bounded, supposing functions Lkx(·) and Lky(·) are bounded from below, we can find

yk+1 and x̂k such that conditions (4.5) and (4.7) are satisfied. In addition, if Rk+1 = 0, we

can derive wk := (xk,yk,λk) is a stationary point of problem (4.1) (see definition (4.35)).

On the other hand, if {Dkx} and {Dky} are chosen such that

‖x̂k − xk‖2
Dkx ≥ ηx‖x̂k − xk‖2 and ‖yk+1 − yk‖2

Dky ≥ ηy‖yk+1 − yk‖2 (4.11)

for some constants ηx > 0 and ηy > 0, then for any x̂k satisfying Lkx(x̂k) ≤ Lkx(xk) and any
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yk+1 satisfying Lky(yk+1) ≤ Lky(yk), the conditions (4.4) and (4.6) will hold with Dx = ηxI

and Dy = ηyI.

Therefore, obviously one simple choice of matrices Dkx and Dky can be Dkx = ηxI and

Dky = ηyI for all k ≥ 0. However, under certain circumstances, it is not even necessary to

require positive definiteness of {Dkx} or {Dky} in order to satisfy the conditions (4.4) and

(4.6). For instance, denoting L > 0 as the Lipschitz constant of ∇f , if ATA + Dkx � 0

and the parameter β is sufficiently large such that β(ATA + Dkx) � (L + 2ηβ)I for some

η > 0, the objective function Lkx(·) of the x-subproblem (4.3) will be uniformly strongly

convex with modulus greater than 2ηβ > 0. In this case, all points sufficiently close to the

minimizer of the x-subproblem (4.3) will satisfy (4.6) with Dx = ηI. Hence, in the rest

of the chapter, we assume that we can solve the subproblems (4.2) and (4.3) inexactly to

meet conditions (4.4), (4.5), (4.6) and (4.7).

4.3. Convergence Analysis

In this section, we study the convergence properties of Algorithm 4.1. For the con-

vergence analysis, we need the following assumptions throughout the chapter.

Assumption 4.3.1. The gradient of f is Lipschitz continuous, i.e., there exists a constant

L > 0 such that

‖∇f(z1)−∇f(z2)‖ ≤ L‖z1 − z2‖ (4.12)

for any z1, z2 ∈ Rnx.

Assumption 4.3.2. (Range(B) ∪ b) ⊆ Range(A).

Based on Assumption 4.3.2, we have λk+1 − λk = −sβr̂k+1 ∈ Range(A), which
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implies

‖λk+1 − λk‖ ≤ σ
− 1

2
A ‖A

T(λk+1 − λk)‖, (4.13)

where σA is the smallest positive eigenvalue of ATA (or equivalently the smallest positive

eigenvalue of AAT). Certainly, Assumption 4.3.2 holds if A is nonsingular or has full col-

umn or full row rank.

4.3.1. Preliminary Lemmas

For the convenience of analysis, let us denote

d̂kx = x̂k − xk, dky = yk+1 − yk and dkλ = λk+1 − λk

and define

ψ1(s) = max

{
1,

s2

(2− s)2

}
and ψ2(s) = max

{
1− s
s

,
s− 1

2− s

}
. (4.14)

It is easy to see that ψ1(s) > 0 and ψ2(s) ≥ 0 for any s ∈ (0, 2). Then, we have the

following lemma.

Lemma 4.3.1. Suppose the Assumption 4.3.1 holds and the iterates {wk} generated by

Algorithm 4.1 satisfy the condition (4.7). Then, we have

‖ATdkλ‖2 ≤ ψ2(s)
(
‖ATdk−1

λ ‖
2 − ‖ATdkλ‖2

)
+ 2ψ1(s)(L+ cxβ)2‖d̂kx‖2

+6ψ1(s)c2
xβ

2
(
‖d̂k−1

x ‖2 + ‖dky‖2 + ‖dk−1
y ‖2

)
. (4.15)

Proof. By the definition of ξk+1
x = ∇xLβ(x̂k,yk+1,λk), we have

ξk+1
x = ∇f(x̂k) + AT

[
−λk + βr̂k+1

]
,

where r̂k+1 = Ax̂k +Byk+1 − b. Hence, we have

ATλk = ∇f(x̂k)− ξk+1
x + βATr̂k+1,
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which follows from λk+1 = λk − sβr̂k+1 that

sATλk = s
(
∇f(x̂k)− ξk+1

x

)
+ AT

(
λk − λk+1

)
.

So, we have

ATλk+1 = s
(
∇f(x̂k)− ξk+1

x

)
+ (1− s)ATλk. (4.16)

Similarly, by the definitions of ξ
k+1

x , r̂k+1 and λk+1 = λk − sβr̂k+1, we have

ATλk+1 = s
(
∇f(xk+1)− ξk+1

x

)
+ (1− s)ATλk. (4.17)

Then, by replacing k+ 1 by k in (4.17) and subtracting it from (4.16) and dkλ = λk+1−λk,

it gives

ATdkλ = sδk + (1− s)ATdk−1
λ , (4.18)

where

δk = ∇f(x̂k)−∇f(xk)− ξk+1
x + ξ

k

x. (4.19)

In the following we consider two cases, s ∈ (0, 1] and s ∈ (1, 2).

Case 1: s ∈ (0, 1]. Then, it follows from (4.18) and the convexity of ‖ · ‖2 that

‖ATdkλ‖2 ≤ s‖δk‖2 + (1− s)‖ATdk−1
λ ‖

2.

By subtracting (1 − s)‖ATdkλ‖2 and dividing s from both sides of the above inequality, we

derive

‖ATdkλ‖2 ≤ ‖δk‖2 +
1− s
s

(
‖ATdk−1

λ ‖
2 − ‖ATdkλ‖2

)
. (4.20)

Case 2: s ∈ (1, 2). It follows from (4.18) that

‖ATdkλ‖2 = (1− s)2‖ATdk−1
λ ‖

2 + s2‖δk‖2 + 2s(1− s)〈ATdk−1
λ , δk〉. (4.21)
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Then, by (4.21) and Cauchy-Schwartz inequality, for an ν > 0 we have

‖ATdkλ‖2 ≤ (1− s)2‖ATdk−1
λ ‖

2 + s2‖δk‖2 + s(s− 1)

(
ν‖ATdk−1

λ ‖
2 +

1

ν
‖δk‖2

)
=

(
(1− s)2 + s(s− 1)ν

)
‖ATdk−1

λ ‖
2 +

(
s2 +

s(s− 1)

ν

)
‖δk‖2. (4.22)

By choosing ν = (2− s)/s, we have

(1− s)2 + s(s− 1)ν = s− 1 and s2 +
s(s− 1)

ν
=

s2

2− s
.

So, we have from (4.22) that

‖ATdkλ‖2 ≤ (s− 1)‖ATdk−1
λ ‖

2 +
s2

2− s
‖δk‖2.

By subtracting (s− 1)‖ATdkλ‖2 and dividing 2− s from both sides of the above inequality,

we derive

‖ATdkλ‖2 ≤ s2

(2− s)2
‖δk‖2 +

s− 1

2− s
(
‖ATdk−1

λ ‖
2 − ‖ATdkλ‖2

)
. (4.23)

Now, combining (4.20) and (4.23) and the definition of functions ψ1 and ψ2 in

(4.14), we have

‖ATdkλ‖2 ≤ ψ1(s)‖δk‖2 + ψ2(s)
(
‖ATdk−1

λ ‖
2 − ‖ATdkλ‖2

)
. (4.24)

In addition, by (4.7), (4.12) and the definition of δk in (4.19), we have

‖δk‖2 = ‖∇f(x̂k)−∇f(xk)− ξk+1
x + ξ

k

x‖2

≤
(
L‖d̂kx‖+ cxβ(‖d̂kx‖+ ‖d̂k−1

x ‖+ ‖dky‖+ ‖dk−1
y ‖)

)2

(4.25)

=
(

(L+ cxβ)‖d̂kx‖+ cxβ
(
‖d̂k−1

x ‖+ ‖dky‖+ ‖dk−1
y ‖

))2

≤ 2(L+ cxβ)2‖d̂kx‖2 + 6c2
xβ

2
(
‖d̂k−1

x ‖2 + ‖dky‖2 + ‖dk−1
y ‖2

)
.

Therefore, (4.15) follows from the above inequality and (4.24).
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Now, let us denote wk = (xk,yk,λk), ŵk = (x̂k−1,yk,λk) and define the potential

energy functions as

Ek+1 = Lβ(wk+1) + Γk and Êk+1 = Lβ(ŵk+1) + Γk, (4.26)

where

Γk =
6(1 + τ)ψ1(s)c2

xβ

sσA

(
‖d̂kx‖2 + ‖dky‖2

)
+

(1 + τ)ψ2(s)

sβσA
‖ATdkλ‖2 (4.27)

and τ can be any constant in (0, 1). Then, based on the previous lemma, we can derive

the following potential energy reduction theorem.

Theorem 4.3.1. Suppose the Assumptions 4.3.1 and 4.3.2 hold and the iterates {wk}

generated by Algorithm 4.1 satisfy the conditions (4.4), (4.6) and (4.7). Let τ ∈ (0, 1) be

the constant in the potential energies Ek and Êk defined in (4.26). If the parameters in

Algorithm 4.1 are chosen such that

Dx :=
1− τ

2(1 + τ)
Dx −

ψ1(s) [2(L/β + cx)
2 + 6c2

x]

sσA
I � 0, (4.28)

and

Dy :=
1− τ

24(1 + τ)
Dy −

ψ1(s)c2
x

sσA
I � 0. (4.29)

Then, denoting d̃kx = xk − x̂k−1, we have

Ek+1 ≤ Ek − τβ

2
‖d̂kx‖2

Dx −
τβ

2
‖dky‖2

Dy −
τ

sβ
‖dkλ‖2 − δβ‖d̃k+1

x ‖2 (4.30)

and

Êk+1 ≤ Êk − τβ

2
‖d̂kx‖2

Dx −
τβ

2
‖dky‖2

Dy −
τ

sβ
‖dkλ‖2 − δβ‖d̃kx‖2, (4.31)

where δ ∈ (0, 1) is the parameter given in Algorithm 4.1.

81



Proof. First, by (4.4), (4.6) and (4.13), we have

Lβ(ŵk+1)− Lβ(wk)

= Lβ(x̂k,yk+1,λk+1)− Lβ(x̂k,yk+1,λk) + Lβ(x̂k,yk+1,λk)

−Lβ(xk,yk+1,λk) + Lβ(xk,yk+1,λk)− Lβ(xk,yk,λk)

≤ 1 + τ

sβ
‖dkλ‖2 − β

2
‖d̂kx‖2

Dx −
β

2
‖dky‖2

Dy −
τ

sβ
‖dkλ‖2

≤ 1 + τ

sβσA
‖ATdkλ‖2 − β

2
‖d̂kx‖2

Dx −
β

2
‖dky‖2

Dy −
τ

sβ
‖dkλ‖2. (4.32)

In addition, by (4.15), we obtain

1 + τ

sβσA
‖ATdkλ‖2

≤ (1 + τ)ψ1(s)

sβσA

[
2(L+ cxβ)2‖d̂kx‖2 + 6c2

xβ
2
(
‖d̂k−1

x ‖2 + ‖dky‖2 + ‖dk−1
y ‖2

)]
+

(1 + τ)ψ2(s)

sβσA

(
‖ATdk−1

λ ‖
2 − ‖ATdkλ‖2

)
. (4.33)

Then, plugging (4.33) into (4.32), by (4.10) and d̃k+1
x = xk+1 − x̂k, we have

Lβ(wk+1)− Lβ(wk)

≤ Lβ(ŵk+1)− Lβ(wk)− δβ‖xk+1 − x̂k‖2

≤ 6(1 + τ)ψ1(s)c2
xβ

sσA

(
‖d̂k−1

x ‖2 − ‖d̂kx‖2 + ‖dk−1
y ‖2 − ‖dky‖2

)
−τβ

2
‖d̂kx‖2

Dx −
τβ

2
‖dky‖2

Dy −
τ

sβ
‖dkλ‖2 − (1 + τ)β

(
‖dkx‖2

Dx + 12‖dky‖2
Dy

)
+

(1 + τ)ψ2(s)

sβσA

(
‖ATdk−1

λ ‖
2 − ‖ATdkλ‖2

)
− δβ‖d̃k+1

x ‖2, (4.34)

where δ ∈ (0, 1), Dx � 0 and Dy � 0 are defined in (4.28) and (4.29), respectively. Thus,

(4.30) follows from (4.34) and the definition of Ek+1 in (4.26). Similarly, by (4.10) and
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d̃kx = xk − x̂k−1, we have

Lβ(ŵk+1)− Lβ(ŵk) ≤ Lβ(ŵk+1)− Lβ(wk)− δβ‖xk − x̂k−1‖2

= Lβ(ŵk+1)− Lβ(wk)− δβ‖d̃kx‖2.

So, plugging (4.33) into (4.32), we can similarly derive by the definition of Êk+1 in (4.26)

that (4.31) holds.

4.3.2. Global Convergence and Sublinear Convergence Rate

We say w∗ = (x∗,y∗,λ∗) is a stationary point of problem (4.1) if 0 ∈ ∂L(w∗),

namely,

0 = ∇f(x∗)− ATλ∗, 0 ∈ ∂g(y∗)−BTλ∗ and Ax∗ +By∗ = b. (4.35)

Then, it is obvious that wk = (xk,yk,λk) is a stationary point of problem (4.1) if Rk+1 =

0, where Rk is defined in (4.8). Hence, in the following global convergence theorem, we

assume Rk 6= 0 for all k and an infinite sequence {wk} is generated by Algorithm 4.1.

Theorem 4.3.2. Suppose the Assumptions 4.3.1 and 4.3.2 hold and the iterates {wk}

generated by Algorithm 4.1 satisfy the conditions (4.4), (4.5), (4.6) and (4.7). If the pa-

rameters in Algorithm 4.1 are chosen such that (4.28) and (4.29) hold, and {Ek} or {Êk}

defined in (4.26) are bounded from below, then there exists an F ∗ such that

lim
k→∞
L(xk,yk,λk) = lim

k→∞
Lβ(xk,yk,λk) = lim

k→∞
Ek = F ∗. (4.36)

In addition, we have

lim
k→∞

dist(0, ∂L(wk)) = lim
k→∞

dist(0, ∂Lβ(wk)) = 0 (4.37)

and any limit point w∗ of {wk} is a stationary point of problem (4.1).
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Proof. Without loss of generality, let us assume {Ek} are bounded from below, since the

proof is almost identical if {Êk} are bounded from below. Then, we obtain from (4.30)

that

c
K∑
k=0

{
‖d̂kx‖2

Dx + ‖dky‖2
Dy + ‖dkλ‖2 + ‖d̃k+1

x ‖2
}

≤ E0 − EK+1 ≤ E0 − P , (4.38)

where c = min{ τβ
2
, τ
sβ
, δβ} and P is the lower bound of Ek. Then, (4.38), Dx � 0 and

Dy � 0 imply that

lim
k→∞
‖d̃kx‖ = 0, lim

k→∞
‖d̂kx‖ = 0, lim

k→∞
‖dky‖ = 0 and lim

k→∞
‖dkλ‖ = 0. (4.39)

In addition, by (4.39), dkλ = −sβr̂k+1 and the definition of Rk in (4.8), we have

lim
k→∞
‖r̂k‖ = 0 and lim

k→∞
Rk = lim

k→∞
(‖d̂k−1

x ‖+ ‖dk−1
y ‖+ ‖r̂k‖) = 0. (4.40)

So, denoting rk = Axk + Byk − b and dkx = xk+1 − xk, we have from rk = r̂k + Ad̃kx,

‖dkx‖ ≤ ‖xk+1 − x̂k‖+ ‖x̂k − xk‖ = ‖d̃k+1
x ‖+ ‖d̂kx‖, (4.39) and (4.40) that

lim
k→∞
‖rk‖ = 0 and lim

k→∞
‖dkx‖ = 0. (4.41)

By (4.30), we have {Ek} is a monotonically nonincreasing sequence, which together with

{Ek} being bounded from below implies limk→∞E
k = F ∗ for some F ∗. Then, it follows

from the definition of Ek, (4.39) and (4.41) that (4.36) holds.
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On the other hand, we have by direct calculation

∂xLβ(wk) = ∂xL(wk) + βATrk = ∇f(xk)− ATλk + βATrk

= ∇xLβ(x̂k−1,yk,λk−1)− ATdk−1
λ + (∇f(xk)−∇f(x̂k−1)),

∂yLβ(wk) = ∂yL(wk) + βBTrk = ∂yg(yk)−BTλk + βBTrk

= ∂yLβ(xk−1,yk,λk−1)−BT(dk−1
λ − βAdk−1

x ),

∂λLβ(wk) = ∂λL(wk) = −rk. (4.42)

Then, it follows from (4.5), (4.7), (4.39) and (4.41) that (4.37) holds. In addition, for any

limiting point w∗ of {wk}, it follows from (4.37) and the definition of the limiting subd-

ifferential ∂L(w∗) that (4.35) holds. Hence, w∗ of {wk} is a stationary point of problem

(4.1).

From Theorem 4.3.2 and (4.40), we can see that for any limiting point w∗ of {wk},

we have L(x∗,y∗,λ∗) = F (x∗,y∗) = f(x∗) + g(y∗) = F ∗. In addition, we can observe from

(4.38) that

min
k∈{1,...,K}

{
‖d̃k+1

x ‖2 + ‖d̂kx‖2 + ‖dky‖2 + ‖r̂k+1‖2
}

= O(1/K),

which together with (4.5) and (4.7) implies

min
k∈{1,...,K}

{
dist(0, ∂L(wk))

}
= O(1/

√
K).

In Theorem 4.3.2, we assume the parameters in Algorithm 4.1 are chosen such that the

potential energy sequence {Ek} or {Êk} is uniformly bounded from below. The following

theorem gives a sufficient condition to ensure the uniform lower bound of {Êk}, which in

turn implies the the uniform lower bound of {Ek} since limk→∞ ‖d̂kx‖ = 0.
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Theorem 4.3.3. Suppose there exists a β > 0 such that

inf

{
f(x̂k−1) + g(yk) +

β

2
‖Ax̂k−1 +Byk − b‖2

}
=: P > −∞. (4.43)

Then, under the conditions of Theorem 4.3.1 and β ≥ β, we have Êk ≥ P for all k.

Proof. Since β ≥ β, it follows from λk = λk−1 − sβ(Ax̂k−1 +Byk − b) and (4.43) that

Lβ(ŵk) = Lβ(x̂k−1,yk,λk)

≥ f(x̂k−1) + g(yk)− (λk)T(Ax̂k−1 +Byk − b) +
β

2
‖Ax̂k−1 +Byk − b‖2

≥ P +
1

sβ
(λk)T(λk − λk−1)

= P +
1

2sβ

(
‖λk‖2 − ‖λk−1‖2 + ‖λk − λk−1‖2

)
.

Hence, by the definition of Êk in (4.26) and the above inequality, we have

∞∑
k=1

(
Êk − P

)
≥

∞∑
k=1

(
Lβ(ŵk)− P

)
≥ − 1

sβ
‖λ0‖2. (4.44)

By Theorem 4.3.1, Êk is monotonically decreasing. So, if there exists a k such that Êk <

P , we will have Êk < P for all k > k, which implies
∑∞

k=1

(
Êk − P

)
= −∞, which is a

contradiction to (4.44). Hence, we have Êk ≥ P for all k.

Remark 4.3.1. The condition (4.43) in Theorem 4.3.3 is obviously satisfied if

inf

{
f(x) + g(y) +

β

2
‖Ax +By − b‖2

}
> −∞ (4.45)

for all x and y. And in many applications, the function F (x,y) = f(x)+g(y) is uniformly

bounded from below, for example, in statistical learning both the graph-guided fused lasso

model [76] and the smoothly clipped absolute deviation (SCAD) model [129] have nonnega-

tive objective function value. Therefore, (4.45) holds.
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4.3.3. Linear Convergence Rate

In this subsection, we discuss the linear convergence of {Ek} and {wk} under

proper conditions. Let Ω∗ be the set of all stationary points of problem (4.1) satisfying

(4.35), i.e.,

Ω∗ = {(x∗,y∗,λ∗) : ATλ∗ = ∇f(x∗), BTλ∗ ∈ ∂g(y∗), Ax∗ +By∗ = b}. (4.46)

Note that Ω∗ is a closed set. In the following, let us denote w∗ = (x∗,y∗,λ∗) ∈ Ω∗. We

need the following additional assumption to show the linear convergence.

Assumption 4.3.3. (a) For any ξ ≥ infw Lβ(w), there exist ε > 0 and τ > 0 such that

dist(w,Ω∗) ≤ τdist(0, ∂Lβ(w)), (4.47)

whenever dist(0, ∂Lβ(w)) ≤ ε and Lβ(w) ≤ ξ.

(b) Ω∗ is nonempty and there exists ω∗ > 0 such that ‖w1−w2‖ ≥ ω∗ whenever w1,

w2 ∈ Ω∗ and F (x1,y1) 6= F (x2,y2).

(c) Function g is locally weakly convex near

Ω∗y := {y : there exist x and λ such that (x,y,λ) ∈ Ω∗},

that is, there exist ε, σ, δ > 0 such that for any y1,y2 with dist(y1,Ω
∗
y) ≤ ε, dist(y2,Ω

∗
y) ≤ ε

and ‖y1 − y2‖ ≤ δ and for any ν ∈ ∂g(y2), it has

g(y1) ≥ g(y2) + 〈ν,y1 − y2〉 − σ‖y1 − y2‖2. (4.48)

We have the following comments on Assumption 4.3.3. Assumption 4.3.3 (a) is a

local error bound condition. Similar local error bound conditions have been often used in

the convergence rate analysis of many algorithms [7, 93, 94, 117, 123]. Assumption 4.3.3
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(b) essentially requires that the isocost surface of F restricted on Ω∗ is properly separated.

For more examples and discussions on functions satisfying the error bound conditions and

the isocost properties, one may refer to references [116, 117, 140, 123]. Assumption 4.3.3

(c) requires function g is locally weakly convex near the projection of the set Ω∗ of sta-

tionary points onto the y-coordinates. Convex functions and Lipschitz continuously differ-

ential functions obviously satisfy this requirement. For more properties on weakly convex

functions as well as its relations to lower-C2 functions, one may refer to references [2, 108].

We now give the following theorem on the linear convergence of the energy se-

quence {Ek}. The linear convergence of energy sequence {Êk} can be similarly proved.

Theorem 4.3.4. Suppose the conditions in Theorem 4.3.2 and Assumption 4.3.3 hold.

Then, for the iterates {wk} generated by Algorithm 4.1, the following holds:

(i) limk→∞ dist(wk,Ω∗) = 0;

(ii) if {wk} has at least one cluster point, then for all k sufficiently large,

0 ≤ Ek+1 − F ∗ ≤ θ(Ek − F ∗), (4.49)

where θ ∈ (0, 1) is some constant, Ek is defined in (4.26) and F ∗ = limk→∞E
k

is defined in (4.36).

Proof. By (4.36) and (4.37), there exists a ζ ≥ infw Lβ(w) such that Lβ(wk) ≤ ζ for all k

and limk→∞ dist(0, ∂Lβ(wk)) = 0. Hence, conclusion (i) follows from Assumption 4.3.3 (a)

with ξ = ζ.

We now prove conclusion (ii). For any iterate wk, let us define a wk ∈ Ω∗ such that

dist(wk,Ω∗) = ‖wk −wk‖. Since Ω∗ is closed, the existence of wk is guaranteed. Then, by
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conclusion (i), we have

lim
k→∞
‖wk −wk‖ = 0. (4.50)

In addition, we have from (4.39) and ‖wk −wk−1‖ ≤ ‖dk−1
x ‖+ ‖dk−1

y ‖+ ‖dk−1
λ ‖ that

lim
k→∞
‖wk −wk−1‖ = 0. (4.51)

Therefore, we have from ‖wk−wk−1‖ ≤ ‖wk−wk‖+‖wk−wk−1‖+‖wk−1−wk−1‖, (4.50)

and (4.51) that

lim
k→∞
‖wk −wk−1‖ = 0. (4.52)

So, by Assumption 4.3.3 (b) and wk ∈ Ω∗, there exists a constant F
∗

such that

Lβ(wk) = Lβ(xk,yk,λ
k
) = F (xk,yk) = F

∗
(4.53)

for all k sufficiently large. Now, by our assumption, {wk} has a cluster point w∗, i.e.,

there exists a subsequence {wki} converging to w∗. Then, we have from Theorem 4.3.2

that w∗ ∈ Ω∗, and in addition, by (4.50), we have

lim
i→∞
‖wki −w∗‖ ≤ lim

i→∞
(‖wki −wki‖+ ‖wki −w∗‖) = 0.

Hence, we have from (4.53), w∗ ∈ Ω∗ and Assumption 4.3.3 (b) again that Lβ(w∗) = F
∗
.

So, by the lower semicontinuity of the function Lβ(·), we have

F
∗

= Lβ(w∗) ≤ lim
i→∞
Lβ(wki) = F ∗, (4.54)

where F ∗ = limk→∞E
k = limk→∞ Lβ(wk) is given in Theorem 4.3.2.

By the definition of Lβ(x,y,λ) in (2.28) and the update of λk in Algorithm 4.1, we

have

Lβ(x̂k−1,yk,λk)− Lβ(x̂k−1,yk,λ) =
1

sβ
(λ− λk)T(λk−1 − λk), (4.55)
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and

Lβ(x̂k−1,yk,λ)− Lβ(x̂k−1,y,λ) = g(yk)− g(y) + λTB(y − yk) (4.56)

+
β

2

(
‖Ax̂k−1 +Byk − b‖2 − ‖Ax̂k−1 +By − b‖2

)
,

and

Lβ(x̂k−1,y,λ)− Lβ(x,y,λ) = f(x̂k−1)− f(x) + λTA(x− x̂k−1) (4.57)

+
β

2

(
‖Ax̂k−1 +By − b‖2 − ‖Ax +By − b‖2

)
.

Then, by setting (x,y,λ) = wk in (4.55), (4.56) and (4.57), for all k sufficiently large, we

have from (4.53) and (4.54) that

Lβ(x̂k−1,yk,λk)− F ∗

≤ Lβ(x̂k−1,yk,λk)− F ∗ = Lβ(x̂k−1,yk,λk)− Lβ(xk,yk,λ
k
)

≤ 1

sβ
(λ

k − λk)T(λk−1 − λk) +
L

2
‖xk − x̂k−1‖2

+
1

2s2β
‖dk−1

λ ‖
2 + g(yk)− g(yk) + 〈BTλ

k
,yk − yk〉, (4.58)

where the inequality comes from Lipschitz continuity of f , ATλ
k

= ∇f(xk), Axk + Byk =

b and dk−1
λ = −sβr̂k. From (4.5), there exists a ξky ∈ ∂yLβ(xk−1,yk,λk−1), i.e.,

νk := ξky +BTλk−1 − βBT(Axk−1 +Byk − b) ∈ ∂g(yk) (4.59)

with ‖ξky‖ ≤ cyβ‖dk−1
y ‖. So, we have

‖νk −BTλ
k‖ ≤ ‖ξky‖+ ‖BT(λk−1 − λ

k
)‖+ β‖BT(Axk−1 +Byk − b)‖

≤ cyβ‖dk−1
y ‖+ ‖B‖(‖dk−1

λ ‖+ ‖λk − λ
k‖)

+β‖B‖(‖r̂k‖+ ‖Ad̂k−1
x ‖). (4.60)
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Now, by (4.50), we have limk→∞ ‖yk − yk‖ = 0 and limk→∞ dist(yk,Ω∗y) = 0. Hence, it

follows from Assumption 4.3.3 (c) that

g(yk) ≥ g(yk) + 〈νk,yk − yk〉 − σ‖yk − yk‖2

for all k sufficiently large, where σ > 0 is a constant, which implies

g(yk)− g(yk) + 〈BTλ
k
,yk − yk〉

= g(yk)− g(yk) + 〈νk,yk − yk〉+ 〈BTλ
k − νk,yk − yk〉

≤ σ‖yk − yk‖2 + ‖BTλ
k − νk‖‖yk − yk‖.

Hence, by (4.58), (4.60), ‖xk − x̂k−1‖2 ≤ 2(‖xk − xk‖2 + ‖d̃kx‖2) and dk−1
λ = −sβr̂k, there

exist two constants c1 > 0 and c2 > 0 such that

Lβ(x̂k−1,yk,λk)− F ∗

≤ 1

sβ
(λ

k − λk)T(λk−1 − λk) +
L

2
‖xk − x̂k−1‖2

+
1

2s2β
‖dk−1

λ ‖
2 + σ‖yk − yk‖2 + ‖BTλ

k − νk‖‖yk − yk‖

≤ c1(‖d̂k−1
x ‖2 + ‖dk−1

y ‖2 + ‖dk−1
λ ‖

2 + ‖d̃kx‖2) + c2‖wk −wk‖2 (4.61)

for all k sufficiently large, where d̃kx = xk − x̂k−1. By (4.5), (4.7), (4.42), dk−1
λ = −sβr̂k,
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rk = r̂k + Ad̃kx, and dk−1
x = d̃kx + d̂k−1

x , we have

dist(0, ∂Lβ(wk))

≤ ‖∇xLβ(x̂k−1,yk,λk−1)− ATdk−1
λ ‖+ ‖∇f(xk)−∇f(x̂k−1)‖+ ‖rk‖

+dist
(
BT(dk−1

λ − βAdk−1
x ), ∂yLβ(xk−1,yk,λk−1)

)
≤ cxβ(‖d̂k−1

x ‖+ ‖dk−1
y ‖) + ‖ATdk−1

λ ‖+ cyβ‖dk−1
y ‖+ ‖BT(dk−1

λ − βAdk−1
x )‖

+L‖d̃kx‖+
1

sβ
‖dk−1

λ ‖+ ‖Ad̃kx‖

≤ c3(‖d̂k−1
x ‖+ ‖dk−1

y ‖+ ‖dk−1
λ ‖+ ‖d̃kx‖),

where c3 = max{(cx + ‖BTA‖)β, (cx + cy)β, 1/(sβ) + ‖A‖+ ‖B‖, L+ ‖A‖+ β‖BTA‖} > 0.

So, by Assumption 4.3.3 (a), we have

‖wk −wk‖ = dist(wk,Ω) ≤ τdist(0, ∂Lβ(wk)) ≤ τc3(‖d̂k−1
x ‖+ ‖dk−1

y ‖+ ‖dk−1
λ ‖+ ‖d̃kx‖)

for all k sufficiently large, which together with (4.61) gives

Lβ(x̂k−1,yk,λk)− F ∗ ≤ c(‖d̂k−1
x ‖2 + ‖dk−1

y ‖2 + ‖dk−1
λ ‖

2 + ‖d̃kx‖2), (4.62)

where c = c1 + 4c2c
2
3τ

2. Hence, let dk = ‖d̂kx‖2 + ‖dky‖2 + ‖dkλ‖2 + ‖d̃k+1
x ‖2, it follows from

the definition of Ek in (4.26), (4.10) and (4.62) that

Ek+1 − F ∗ ≤ Lβ(x̂k,yk+1,λk+1)− δβ‖xk+1 − x̂k‖2 − F ∗

+
6(1 + τ)ψ1(s)c2

xβ

sσA

(
‖d̂kx‖2 + ‖dky‖2

)
+

(1 + τ)ψ2(s)

sβσA
‖ATdkλ‖2

≤ γ dk, (4.63)

where γ = c+ max{6(1 + τ)ψ1(s)c2
xβ

2, (1 + τ)‖A‖2ψ2(s)}/(sβσA). Additionally, we have by

(4.30), Dx � 0 and Dy � 0 that Ek ≥ F ∗ and

Ek+1 ≤ Ek − γdk, (4.64)
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where γ = min{ τβ
2
σDx ,

τβ
2
σDy ,

τ
sβ
, δβ} > 0, σDx > 0 and σDy > 0 are the smallest eigenvalue

of Dx and Dy, respectively. Thus, by (4.63) and (4.64), for k sufficiently large, we have

0 ≤ Ek+1 − F ∗ ≤ θ(Ek − F ∗), where θ = γ/(γ + γ) ∈ (0, 1).

Based on the linear convergence result in the previous theorem, we can establish

the following linear convergence of the iterates {wk}.

Theorem 4.3.5. Suppose the conditions in Theorem 4.3.2 and Assumption 4.3.3 hold. If

the sequence {wk} generated by Algorithm 4.1 has one cluster point, then {wk} converges

R-linearly to a stationary point of problem (4.1).

Proof. We have from Dx, Dy � 0, (4.30) and Ek ≥ F ∗ for all k ≥ 0 that

‖d̂kx‖2 ≤ 2

τβσDx
(Ek − Ek+1) ≤M1(Ek − F ∗),

‖dky‖2 ≤ 2

τβσDy
(Ek − Ek+1) ≤M1(Ek − F ∗),

‖dkλ‖2 ≤ sβ

τ
(Ek − Ek+1) ≤M1(Ek − F ∗), and

‖d̃k+1
x ‖2 ≤ 1

δβ
(Ek − Ek+1) ≤M1(Ek − F ∗) (4.65)

where M1 = max{2/(τβσDx), 2/(τβσDy), sβ/τ, 1/(δβ)}. In addition, by Theorem 4.3.4,

there exists a constant M2 > 0 such that 0 ≤ Ek − F ∗ ≤ M2θ
k for all k ≥ 0, where

θ ∈ (0, 1) is the constant in (4.49). Hence, it follows from (4.65) that

‖d̂kx‖ ≤Mqk, ‖dky‖ ≤Mqk, ‖dkλ‖ ≤Mqk and ‖d̃k+1
x ‖ ≤Mqk,

where M =
√
M1M2 and q =

√
θ ∈ (0, 1). Therefore, we have

‖wk+1 −wk‖ ≤ ‖d̂kx‖+ ‖d̃k+1
x ‖+ ‖dky‖+ ‖dkλ‖ ≤ 4Mqk.
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Then, for any m2 > m1 ≥ 1, we have

‖wm2 −wm1‖ ≤
m2−1∑
k=m1

‖wk+1 −wk‖ ≤ 4M

1− q
qm1 ,

which implies the sequence {wk} is a Cauchy sequence and hence convergent. Suppose

{wk} converges to w∗. Letting m2 →∞ in the above inequality, we have

‖w∗ −wm1‖ ≤ 4M

1− q
qm1 ,

which shows {wk} converges R-linearly to w∗. Finally, Theorem 4.3.2 ensures w∗ is a sta-

tionary point of (4.1).

4.4. Inexact Subproblem Solution

Depending on various (e.g., smooth, convex or sparse) properties of the function

g, one can design different algorithms to solve the y-subproblem (4.2) inexactly to find

yk+1 satisfying the conditions (4.4) and (4.5). Here, in this subsection, we just propose a

generalized accelerated gradient method to find an inexact solution satisfying (4.6) and

(4.7) of the x-subproblem. Note that the x-subproblem (4.3) is equivalent to

min
x∈Rnx

Φk(x) := f(x) +
β

2
‖x− xk‖2

Dkx + xTpk +
β

2
‖x− xk‖2

ATA

= hk(x) + φk(x), (4.66)

where pk = −AT
[
λk − β(Axk +Byk+1 − b)

]
, φk(x) = xTpk + β

2
‖x− xk‖2

ATA
and

hk(x) = f(x) +
β

2
‖x− xk‖2

Dkx . (4.67)

We also need the following assumptions in the subsection.

Assumption 4.4.1. (a) The optimal value of x-subproblem is bounded from below, i.e.,

Φ∗ = minx∈Rnx Φk(x) > −∞, where the function Φk is defined in (4.66).
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(b) There exist constants L1 > 0 and L2 > 0 such that for any z1, z2 ∈ Rnx, it holds

−L1

2
‖z1 − z2‖2 ≤ f(z2)− f(z1)− 〈∇f(z1), z2 − z1〉 ≤

L2

2
‖z1 − z2‖2.

Obviously, we have max{L1, L2} ≤ L by (4.12).

Assumption 4.4.2. We assume the proximal matrix Dkx chosen in the x-subproblem is

positive definite and upper bounded, i.e.,

ηI � Dkx � ηI for some η ≥ η > 0. (4.68)

Under Assumptions 4.4.1 and 4.4.2, it follows from the definition hk in (4.67) that

−µ
2
‖z1 − z2‖2 ≤ hk(z2)− hk(z1)− 〈∇hk(z1), z2 − z1〉 ≤

Λ

2
‖z1 − z2‖2 (4.69)

for any z1, z2 ∈ Rnx , where µ = max{L1 − βη, 0} and Λ = L2 + βη.

Since we focus on solving the x-subproblem where the outer iteration number k

is fixed, for the simplicity of notation, in the following of this subsection we simply write

Φ, h, φ and Λ for Φk, hk, φk and Λk, respectively. Then, our algorithm for solving (4.66) is

described in Algorithm 4.2, which is a generalization of the accelerated gradient method

proposed in [65] for solving convex subproblems of ADMM to the case when f is not nec-

essarily convex.

Theorem 4.4.1. Suppose Assumptions 4.4.1 and 4.4.2 hold. Then, for the sequence {xt}

generated by Algorithm 4.2, we have

lim
t→∞

‖∇Φ(xt)‖ = lim
t→∞

‖∇Φ(x̂t)‖ = 0. (4.70)

Proof. First, apparently, by the definitions in (4.69), we have Λ > µ ≥ 0 since η > 0.

When µ = 0, we have h is a convex function, and it follows from Algorithm 4.2 that τ = 0

95



Initialization: Choose Θ > Λ; Set x̆1 = x1 = xk and τ = 1−
√

Θ−µ
Θ+µ

.

For t = 1, 2, 3, . . .

Set βt = max{βt, τ}, where βt = 2/(t+ 1).
x̂t = βtx̆t + (1− βt)xt.
Set γt = βtΘ(t+ 1)/t.

x̆t+1 = argmin
{
〈∇h(x̂t),x〉+ γt

2
‖x− x̆t‖2 + φ(x)

}
.

xt+1 = βtx̆t+1 + (1− βt)xt.
end

Algorithm 4.2. A generalized accelerated gradient method (G-AGM) for solving x-
subproblem

and βt = βt for all t ≥ 1. In this case, Algorithm 4.2 reduces to a standard accelerated

gradient method (see algorithms developed in [65, 66]) for solving convex composite op-

timization which guarantees limt→∞Φ(xt) = limt→∞Φ(x̂t) = Φ∗ > −∞. Hence, (4.70)

holds.

In the following, we discuss the convergence of Algorithm 4.2 when µ > 0. From

the updates of xt+1 and x̂t, we have

βt(x̆t+1 − x̂t) + (1− βt)(xt − x̂t) = xt+1 − x̂t = βtst, (4.71)

where st = x̆t+1 − x̆t. Then, by (4.69) and (4.71), the following relations hold

h(xt+1) ≤ h(x̂t) + 〈∇h(x̂t),xt+1 − x̂t〉+
Λ

2
‖xt+1 − x̂t‖2

= h(x̂t) + 〈∇h(x̂t),xt − x̂t〉+ 〈∇h(x̂t),xt+1 − xt〉+
Λβ2

t

2
‖st‖2

≤ h(xt) +
µ

2
‖xt − x̂t‖2 + 〈∇h(x̂t),xt+1 − xt〉+

Λβ2
t

2
‖st‖2 . (4.72)

Furthermore, by (4.71), (4.72), xt+1 = βtx̆t+1 + (1 − βt)xt and the convexity of function φ,
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we have

Φ(xt+1) = h(xt+1) + φ(xt+1)

≤ βt [h(xt) + 〈∇h(x̂t), x̆t+1 − xt〉+ φ(x̆t+1)] + (1− βt) [h(xt) + φ(xt)]

+
µ

2
‖xt − x̂t‖2 +

Λβ2
t

2
‖st‖2

= βt

[
h(xt) + 〈∇h(x̂t), x̆t+1 − xt〉+

γt
2
‖st‖2 + φ(x̆t+1)

]
+(1− βt)Φ(xt) +

µ

2
‖xt − x̂t‖2 +

Λβ2
t − γtβt

2
‖st‖2. (4.73)

Now, it follows from

x̆t+1 = arg min
{
〈∇h(x̂t),x〉+

γt
2
‖x− x̆t‖2 + φ(x)

}
, (4.74)

and st = x̆t+1 − x̆t that

〈∇h(x̂t), x̆t+1 − xt〉+
γt
2
‖st‖2 + φ(x̆t+1)

≤ γt
2

(
‖xt − x̆t‖2 − ‖xt − x̆t+1‖2)+ φ(xt)−

1

2
‖xt − x̆t+1‖2

M , (4.75)

where M = βATA, and

∇h(x̂t) + γtst +∇φ(x̆t+1) = 0. (4.76)

By (4.73) and (4.75), we have

Φ(xt+1) ≤ βt

[
h(xt) +

γt
2

(
‖xt − x̆t‖2 − ‖xt − x̆t+1‖2)+ φ(xt)−

1

2
‖xt − x̆t+1‖2

M

]
+(1− βt)Φ(xt) +

µ

2
‖xt − x̂t‖2 +

Λβ2
t − γtβt

2
‖st‖2

≤ Φ(xt) +
µ

2
‖xt − x̂t‖2 +

βtγt
2

(
‖xt − x̆t‖2 − ‖xt − x̆t+1‖2)

−βt
2
‖xt − x̆t+1‖2

M −
(Θ− Λ)β2

t

2
‖st‖2, (4.77)

where the last inequality follows from

γtβt − Λβ2
t = β2

t Θ(t+ 1)/t− Λβ2
t ≥ (Θ− Λ)β2

t .
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Now, note that

x̆t − xt =
1

βt
(x̂t − xt) and x̆t+1 − xt =

1

βt
(xt+1 − xt). (4.78)

Then, we have from (4.77) that

Φ(xt+1) ≤ Φ(xt) +
µ+ γt/βt

2
‖xt − x̂t‖2 − γt/βt

2
‖xt+1 − xt‖2

−βt
2
‖x̆t+1 − xt‖2

M −
(Θ− Λ)β2

t

2
‖st‖2. (4.79)

For t ≥ 2, by (4.78), we obtain

x̂t − xt = βt(x̆t − xt) = βt(x̆t − xt−1 + xt−1 − xt)

= βt

(
1

βt−1

(xt − xt−1) + xt−1 − xt

)
= θt(xt − xt−1), (4.80)

where θt = βt
βt−1

(1 − βt−1). In addition, by defining β0 = 1 and x0 = x1, we can see (4.80)

holds for all t ≥ 1. Hence, for t ≥ 1 it follows from (4.79) that

Φ(xt+1) ≤ Φ(xt) +
(γt/βt + µ)θ2

t

2
‖xt − xt−1‖2 − γt/βt

2
‖xt+1 − xt‖2

−βt
2
‖x̆t+1 − xt‖2

M −
(Θ− Λ)β2

t

2
‖st‖2. (4.81)

Since γt/βt = Θ(t+ 1)/t, we have

γt/βt − γt+1/βt+1 = Θ/(t2 + t) > 0.

So, we have from (4.81) that

Φ(xt+1) +
ηt+1

2
‖xt+1 − xt‖2

≤ Φ(xt) +
ηt
2
‖xt − xt−1‖2 − γt+1/βt+1 − ηt+1

2
‖xt+1 − xt‖2

−βt
2
‖x̆t+1 − xt‖2

M −
(Θ− Λ)β2

t

2
‖st‖2, (4.82)
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where ηt = (γt/βt + µ)θ2
t .

Now, by the choice of βt in Algorithm 4.2 and µ > 0, we have

βt = max{βt, τ}, (4.83)

where τ = 1−
√

(Θ− µ) / (Θ + µ) > 0. So, for all t ≥ 1, we have βt/βt−1 ≤ 1 and

θt = βt/βt−1(1− βt−1) ≤ 1− βt−1 ≤
√

(Θ− µ) / (Θ + µ) < 1. (4.84)

Then, by (4.84) and γt/βt = Θ(t+ 1)/t > Θ, for all t ≥ 1, we have

γt/βt − ηt = γt/βt − (γt/βt + µ)θ2
t = γt/βt(1− θ2

t )− µθ2
t

≥ Θ(1− θ2
t )− µθ2

t = Θ− (Θ + µ)θ2
t ≥ Θ− (Θ + µ)

Θ− µ
Θ + µ

= µ. (4.85)

Hence, it follows from (4.82), (4.83) and (4.85) that

Φ(xt+1) +
ηt+1

2
‖xt+1 − xt‖2

≤ Φ(xt) +
ηt
2
‖xt − xt−1‖2 − µ

2
‖xt+1 − xt‖2

−βt
2
‖x̆t+1 − xt‖2

M −
(Θ− Λ)τ 2

2
‖st‖2 (4.86)

for all t ≥ 1. Since Φ(x) is bounded from below by Assumption 4.4.1, we can obtain from

(4.86), µ > 0, τ > 0 and Θ > Λ that

∞∑
t=t

‖xt − xt−1‖2 <∞ and
∞∑
t=t

‖x̆t+1 − x̆t‖2 =
∞∑
t=t0

‖st‖2 <∞,

which implies

lim
t→∞
‖xt+1 − xt‖ = 0 and lim

t→∞
‖x̆t+1 − x̆t‖ = 0. (4.87)

Since xt+1 − x̂t = βt(x̆t+1 − x̆t), we have from (4.87) that limt→∞ ‖xt − x̂t‖ = 0. Then, we

have from (4.78) that

lim
t→∞
‖x̆t − xt‖ ≤ 1/τ lim

t→∞
‖x̂t − xt‖ = 0. (4.88)
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Therefore, (4.70) follows from (4.76), (4.87),(4.88) and the Lipschitz continuity of ∇f and

∇φ.

By Theorem 4.4.1, any cluster point of {xt} will be a stationary point of the x-

subproblem (4.66). Now suppose lim inft→∞ ‖xt − xk‖ > 0. Otherwise, xk is a stationary

point of the x-subproblem. We discuss the iterates {xt} generated by Algorithm 4.2 will

essentially satisfy conditions (4.6) and (4.7). First, by ∇Φ(x) = ∇xLβ(x,yk+1,λk) +

βDkx(x − xk) and limt→∞∇Φ(xt) = 0, the condition (4.7) will be satisfied by setting

x̂k = xt for any cx > η and all t sufficiently large. Second, since x0 = x1 = xk, we have

from (4.82) that

Φ(x̂k) = Φ(xt) ≤ Φ(x1) = Φ(xk) (4.89)

for t ≥ 1. Note that Φ(x̂k) ≤ Φ(xk) is equivalent to

β

2
‖x̂k − xk‖2

Dkx + Lβ(x̂k,yk+1,λk) ≤ Lβ(xk,yk+1,λk).

So, with the choice of Dkx satisfying condition (4.68), the condition (4.6) holds with Dx =

ηI by setting x̂k = xt for all t ≥ 1.

4.5. Numerical Experiments

In this section, we evaluate the performance of Algorithm 4.1 on numerical exper-

iments. The convergence results require that the parameters in Algorithm 4.1 are chosen

such that (4.28) and (4.29) hold and {Ek} or {Êk} defined in (4.26) are bounded from be-

low. However, the condition (4.28) depends on the Lipschitz constant L, which is usually

unknown for general nonlinear function f and a poor estimate of its value may severely

deteriorate the algorithm performance. Fortunately, a closer inspection on the convergence
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proof (see inequality (4.25)) reveals that the convergence results still hold as long as

‖∇f(x̂k)−∇f(xk)‖ ≤ L‖x̂k − xk‖ (4.90)

holds for all k sufficiently large. Here, L may be some constant smaller than the true Lips-

chitz constant. Hence, in numerical experiments, we gradually estimate the Lipschitz con-

stant by starting with some L0 > 0 and for k = 0, 1, . . ., update Lk as

Lk+1 =


ρLk, if ‖∇f(x̂k)−∇f(xk)‖ > Lk‖x̂k − xk‖,

Lk, otherwise,

(4.91)

where ρ > 1 is some parameter. Since ∇f is Lipschitz continuous, we see that Lk can

only be increased finite number of times. Hence, Lk will remain as a constant L such that

(4.90) holds for all k sufficiently large. Under the above choice of Lk , we dynamically up-

date β by βk = Lk/cβ at the k-th iteration for some cβ ∈ (0, 1). We require that L0 and

cβ are chosen such that for all β ≥ β0 = L0/cβ, the functions Lkx(·) and Lky(·) are bounded

from below and (4.45) holds with β = β0. Hence, we can always solve the subproblems

inexactly as required by Algorithm 4.1, and {Ek} (also {Êk}) will be bounded from be-

low by Theorem 4.3.3. So, to ensure global convergence, by Theorem 4.3.2 and the above

setting, we only need to require cβ and the parameters in Algorithm 4.1 are chosen such

that

ϕ(τ)

2
Dkx −

ψ1(s) [2(cβ + cx)
2 + 6c2

x]

sσA
I � 0 and

ϕ(τ)

24
Dky −

ψ1(s)c2
x

sσA
I � 0 (4.92)

for some τ ∈ (0, 1), where ϕ(τ) = (1 − τ)/(1 + τ). In our numerical experiments, the

parameters are chosen as

cβ = cx =
1

13
, Dkx = Dky =

1

6
I, s = 1, ρ = 1.01, η = 1.2, and δ = 0.1.
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The above choices of parameters satisfy condition (4.92) with τ sufficiently small in (0, 1),

since σA = 1 in our experiments.

4.5.1. The SCAD Penalty Problem

Recall the following smoothly clipped absolute deviation (SCAD) penalty problem:

min
x∈Rn

F (x) :=
1

2
‖Hx− u‖2 +

n∑
i=1

pκ (|xi|) , (4.93)

where H ∈ Rm×n,u ∈ Rm and the nonconvex SCAD penalty pκ(·) is defined as

pκ(θ) :=


κθ, θ ≤ κ,

−θ2+2cκθ−κ2
2(c−1)

, κ < θ ≤ cκ,

(c+1)κ2

2
, θ > cκ,

with c > 2 and κ > 0 being the knots of the quadratic spline function. Clearly, the above

problem can be reformulated as a special case of (4.1):

min
x∈Rn

1

2
‖Hx− u‖2 +

n∑
i=1

pκ (|yi|) (4.94)

s.t. x− y = 0.

Then, (4.94) is in the form of (4.1) as f(x) = 1
2
‖Hx − u‖2, g(y) =

∑n
i=1 pκ (|yi|), A = I,

B = −I and b = 0. Applying I-ADMM in Algorithm 4.1 and G-AGM in Algorithm 4.2

with Dky = ηyI and Dk
x = ηxI, we have the following updates:

yk+1 = arg miny∈Rn

{∑n
i=1 pκ (|yi|) + (1+ηy)β

2

∥∥∥∥y − xk+ηyyk−λ
k
/β

1+ηy

∥∥∥∥2
}
,

x̆t+1 = 1
γt+β

[
λk + β(ηxx

k + yk+1)− (HTH + βηxI)x̂t + γtx̆t +HTu
]
,

where the y-subproblem has closed form solution as we mentioned in Chapter 3.

We choose L0 = 1 in this experiment, since the function f here is nonnegative. We

compare I-ADMM with several algorithms for solving the SCAD penalty problem, which

are NL-ADMM [107], P-ADMM [86], BP-ADMM (Algorithm 2, [14]),
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Figure 4.1. Comparison of state-of-the-art algorithms for the SCAD penalty problem
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S-ADMM [79] and IBG-ADMM [129], where

• NL-ADMM uses the tuned value β = 300 and s = 1.6 as the dual stepsize;

• P-ADMM uses β = 5.1L as the penalty value according to [86, Example 1];

• BP-ADMM uses tk = β which is 1.2 times the maximal value satisfying the

involved conditions (14) and (15) in [14] (also see [14, Assumption 1]);

• S-ADMM uses the tuned stepsizes (α, θ) = (0.05, 1.2) and the penalty parameter

is chosen to be larger than the maximal eigenvalue of the involved quadratic

function(see [79, Assumption 3.1]);

• IBG-ADMM [129] solves (4.94) by introducing variable y = Hx− u (see

[129, Section 4.2] for more details on the implementation and parameter

settings).

Same as those used in [129], the parameters in function pκ is set as (c, κ) =

(3.7, 0.1). We first generate a matrix H with each component H ij ∼ N (0, 1). We then

normalize each column of H and take it as H. We take x∗ ∈ Rm to be a random sparse

vector with the density 100/n and then set u = Hx∗ + ε, where ε ∼ N (0, 100/n). The

following optimality error Opt(k) = max
{
‖xk − yk‖, ‖HT(Hxk − u) − λk‖

}
is used for

the iterates generated by algorithms except IBG-ADMM, while for IBG-ADMM, we have

Opt(k) = max
{
‖Hxk − yk − u‖, ‖yk + λk‖

}
since it solves problem (4.94) in a different

format.

Figure 4.1 presents the convergence curves of |F (xk)− Fmin|/|Fmin| and Opt(k) ver-

sus CPU time, where Fmin is the minimum of the objective values obtained by all the com-

parison algorithms. We can see from Figure 4.1 that I-ADMM performs significantly bet-

ter than other comparison algorithms in terms of the running time to a certain accuracy.
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I-ADMM can always obtain an objective function value with higher accuracy and smaller

optimality error Opt(k). This efficiency is contributed by the adaptive inexact subproblem

solution, the expansion linesearch step and the adaptive way for updating the Lipschitz

constant in (4.91).

4.5.2. The Nonconvex Quadratic Programming Problem

In this subsection, we consider the following nonconvex quadratic programming

(NQP) problem

min
x∈Rn

1

2
xTGx− gTx (4.95)

s.t. v ≤ Ax ≤ u,

where G ∈ Rn×n is symmetric but may not be positive semidefinite, A ∈ Rm×n, g ∈ Rn

and u,v ∈ Rm. When A = I, the problem (4.95) will be reduced to a bound constrained

quadratic programming problem, which already has many applications. Note that since

efficient projection on the feasible set of (4.95), which is a polyhedral, is in general non-

trivial.

The problem (4.95) can be also rewritten in the format of (4.1) as

min
(x,y)∈Rn×Rm

1

2
xTGx− gTx + δC(y) subject to Ax = y, (4.96)

where δC is the indicator function of the set C = {y ∈ Rm : v ≤ y ≤ u}. Applying I-

ADMM in Algorithm 4.1 and G-AGM in Algorithm 4.2 to the problem (4.96) with Dky =

ηyI and Dk
x = ηxI involves solving the following subproblems:

yk+1 = arg min
y∈Rn

δC(y) +
(1 + ηy)β

2
‖y − q‖2 and (

γt
β

I + ATA)x̆t+1 = b,

where q := Axk+ηyyk−λ
k
/β

1+ηy
and b := 1

β
ATλk + ηxx

k +ATyk+1 − (ηxI + 1
β
G)x̂t + 1

β
(γtx̆t + g).
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Figure 4.2. Comparison of different algorithms for solving the NQP problem.
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Observe that both of the above subproblems admit closed form solutions. And

when m � n, the Sherman-Morrison-Woodbury Formula should be used to solve x̆t+1

as

x̆t+1 =
β

γt
b− β2

γ2
t

AT
(
I +

β

γt
AAT

)−1

Ab.

In our numerical experiments, A is always generated to be an orthogonal matrix, i.e.,

ATA = I. Note that even for A being an orthogonal matrix, projection on the feasible

set of problem (4.95) is in general still nontrivial. Then we randomly generate a matrix U

with entries from standard normal distribution and make an orthogonal matrix A where

the columns are orthogonal and spanned by the columns of U . The initialization of G

and g is the same as that in the numerical experiments in Chapter 3. The vector u is

set to 10 ∗ e where e is a all-one vector and the elements in v are all zero. To ensure the

x-subproblem is bounded below, we set L0 = 2|min{λmin(G), 0}| + 1, where λmin(G) is the

smallest eigenvalue of G.

We compare I-ADMM with the aforementioned algorithms P-ADMM, BP-ADMM

and S-ADMM. The rest two algorithms IBG-ADMM and NL-ADMM are not presented

since their performance is much worse on solving this problem. We plot both |F (xk) −

Fmin|/|Fmin| and Opt(k), which is given by Opt(k) = max{‖Axk−yk‖, ‖Gxk−g−ATλk‖},

against the CPU time in Figure 4.2 for n belonging to {2000, 4000, 6000, 8000, 10000},

where Fmin denotes the minimum of the objective values obtained by the four algorithms.

From Figure 4.2, we can see that I-ADMM converges much faster and obtains a solution

with higher accuracy than other algorithms under the same CPU time budget.
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Chapter 5. Conclusion

In this chapter, we first summarize the proposed algorithms, the unified proximal

gradient method with extrapolation (UPG) and the inexact alternating direction method

of multipliers (I-ADMM), and add some remarks on the relationship between the two

types of the problems that UPG and I-ADMM solve. Then, we present the work that

might be of interests in future.

The goal of UPG is to solve nonconvex and nonsmooth composite optimization

problems, where the objective function is the sum of two components. One of the com-

ponents is smooth but possibly nonconvex and the other one is convex but can be nons-

mooth. UPG exploits an extrapolation step where extrapolation parameter is estimated

by a linesearch technique to accelerate convergence. The algorithm obtains the optimal

convergence rate for the convex case and a linear convergence rate when the problem is

nonconvex under additional proper assumptions. Furthermore, a stochastic generalization

of the method is proposed to solve nonconvex composite optimization problems where a

component in the objective is an averaged finite sum. Numerical examples demonstrate

the efficiency of both methods.

I-ADMM solves separable nonconvex and nonsmooth optimization problems with

linear equality constraints. Though the objective function is also given by the summation

of two parts, the two functions in the objective can be both nonconvex with one of which

being nonsmooth. I-ADMM solves each subproblem inexactly to an adaptive accuracy and

allows a larger range of dual stepsize. Global convergence and a linear convergence rate

of I-ADMM are established under proper assumptions. In addition, a generalized acceler-

ated gradient method is proposed to solve the smooth but possibly nonconvex subproblem.
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By allowing adaptive inexact subproblem solutions, the expansion linesearch step and the

adaptive way of updating the Lipschitz constant, I-ADMM performs significantly better

than other state-of-the-art ADMM algorithms as shown in numerical experiments.

If we take a close look at the problems UPG and I-ADMM handle, it is interesting

to observe that these two types of problems are in fact interchangeable under some condi-

tions. If we introduce a variable y and replace x by y in the function p of problem (3.1),

i.e., the one that UPG solves, add an indicator function δX (y) in the objective function for

the constraint x ∈ X and an equality constraint x = y, then problem (3.1) is converted to

the form of problem (4.1) with g(y) = p(y) + δX (y) being convex, A = I, B = −I, and

b = 0. For the other direction, namely, transforming problem (4.1) to the form of prob-

lem (3.1), we have to restrict g in (4.1) to be convex as it is required in problem (3.1) and

require the linear equality constraints have some special form, for example, A = B = 0,

b = 0, and X = {(x,y) ∈ Rn × Rn : x = y} or A = I, B = −I, b = 0, and X = Rn.

Therefore, problem (3.1) can be viewed as a special case of (4.1) and I-ADMM has a more

general frame. Hence, given an optimization problem that meets the settings of both UPG

and I-ADMM, UPG is preferred if we can find explicit solutions of the proximal subprob-

lems in UPG, in other words, p has the structure such that the proximal subproblem is

easy to solve. Otherwise, I-ADMM should be chosen. Obviously if there is no convexity

specified for any part of the objective function, I-ADMM is supposed to be applied since

UPG requires p is convex.

On the other hand, there are possible extensions of our current work and interest-

ing topics for future research. As we mentioned previously, although numerical examples

are conducted to show the possible practical applications of SUPG, we are unable to pro-
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vide the convergence results and convergence rate at the moment. So, this will be a con-

tinuous work in future. In the experiments, we compare SUPG with prox-SVRG, another

potential research is to implement the experiments with more state-of-the-art algorithms,

for example, the accelerated mini-batch proximal gradient method with variance reduction

in [104]. Note that we require part of the objective function, p(x), is convex for UPG, an

extension of UPG could be made to solve composite problems when p(x) is nonconvex, in

other words, there is no convexity required for any component in the objective function.

Results for similar idea can be found in [87]. Another possibility is to extend I-ADMM

to multi-block case as successful generalizations of ADMM have been presented for both

convex and nonconvex cases, e.g., in [89, 35, 90, 119, 134, 63]. Additionally, generalizing

I-ADMM to solve stochastic optimization problems could be an interesting topic as well,

since in this way, the method could further improve the convergence speed with stochastic

gradients. However, it might be complicated because we have to take into account the di-

vergence brought by inexact solutions and not using full gradients. The variance reduced

step and carefully choosing mini-batch size could be helpful to avoid the situation that the

stochastic gradients are far away from the gradients in the deterministic case. Some recent

results can be found in [91, 3, 92]. Additionally, when solutions with very high accuracy

are required, methods only involving first-order information might get very slow at the last

stage. Then a possible work to handle this issue is to combine these methods with second-

order techniques to accelerate the convergence, e.g., semi-smooth Newton’s method.

Extrapolation is a useful strategy for accelerating convergence of vector sequences,

which has been widely used in optimization methods. As one may notice, an extrapolation

step, which is a linear combination of the iterates from the past iteration, is applied in
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both proposed algorithms to accelerate convergence. The extrapolation parameter is adap-

tively selected by some linesearch technique. In fact, there is one extrapolation method

called nonlinear extrapolation introduced in [33] for unconstrained quadratic minimiza-

tion, where the core idea is to find a linear combination of all past iterates to minimize

the square of the norm of the gradient at the extrapolated point by using the iterates and

the corresponding gradients generated by first-order methods. The mechanism behind it is

that, if the function is differentiable, the gradient norm at a local minimizer equals zero.

The nonlinearity comes from the fact that the coefficients in the linear combination actu-

ally depend nonlinearly on the gradient at the extrapolated point. This method could be

a potential way to implement extrapolation in optimization methods as it finds an optimal

combination of iterates such that the gradient norm at the extrapolation point is minimal

at each iteration. Obviously one drawback of this method is that we have to store all pre-

vious iterates and the gradients, which needs much memory. A potential way to overcome

it is to limit the number of past iterates we want to use at the extrapolation step. More

details about this extrapolation method and other acceleration and extrapolation tech-

niques can be found in [33, 137, 17].
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stochastic gradient descent in the proximal setting. IEEE Journal of Selected Topics
in Signal Processing, 10(2):242–255, 2015.

[81] Galina M Korpelevich. The extragradient method for finding saddle points and other
problems. Matecon, 12:747–756, 1976.

[82] Andrei Kulunchakov and Julien Mairal. A generic acceleration framework for
stochastic composite optimization. Advances in Neural Information Processing Sys-
tems, 32, 2019.

[83] Guanghui Lan, Zhize Li, and Yi Zhou. A unified variance-reduced accelerated gra-
dient method for convex optimization. Advances in Neural Information Processing
Systems, 32, 2019.

[84] Kenneth Lange. Optimization, volume 95. Springer Science & Business Media, 2013.

[85] Guoyin Li and Ting Kei Pong. Splitting methods for nonconvex composite optimiza-
tion. arXiv preprint arXiv:1407.0753, 2014.

[86] Guoyin Li and Ting Kei Pong. Global convergence of splitting methods for noncon-
vex composite optimization. SIAM Journal on Optimization, 25(4):2434–2460, 2015.

[87] Huan Li and Zhouchen Lin. Accelerated proximal gradient methods for nonconvex
programming. Advances in neural information processing systems, 28, 2015.

118



[88] Tao Lin, Lingjing Kong, Sebastian Stich, and Martin Jaggi. Extrapolation for large-
batch training in deep learning. In International Conference on Machine Learning,
pages 6094–6104. PMLR, 2020.

[89] Tian-Yi Lin, Shi-Qian Ma, and Shu-Zhong Zhang. On the sublinear convergence rate
of multi-block admm. Journal of the Operations Research Society of China, 3:251–
274, 2015.

[90] Tianyi Lin, Shiqian Ma, and Shuzhong Zhang. On the global linear convergence of
the admm with multiblock variables. SIAM Journal on Optimization, 25(3):1478–
1497, 2015.

[91] Yuanyuan Liu, Fanhua Shang, and James Cheng. Accelerated variance reduced
stochastic admm. In Proceedings of the AAAI conference on artificial intelligence,
volume 31, 2017.

[92] Yuanyuan Liu, Fanhua Shang, Hongying Liu, Lin Kong, Licheng Jiao, and Zhouchen
Lin. Accelerated variance reduction stochastic admm for large-scale machine learn-
ing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(12):4242–
4255, 2020.

[93] Zhi-Quan Luo and Paul Tseng. On the linear convergence of descent methods for
convex essentially smooth minimization. SIAM Journal on Control and Optimiza-
tion, 30(2):408–425, 1992.

[94] Zhi-Quan Luo and Paul Tseng. Error bounds and convergence analysis of feasible
descent methods: a general approach. Annals of Operations Research, 1993.

[95] Harry M Markowitz. Foundations of portfolio theory. The journal of finance,
46(2):469–477, 1991.

[96] Angelo Miele, PE Moseley, AV Levy, and GM Coggins. On the method of multipli-
ers for mathematical programming problems. Journal of optimization Theory and
Applications, 10(1):1–33, 1972.

[97] Kazuo Murota. Linear programming. In Computer Vision: A Reference Guide, pages
1–7. Springer, 2020.

[98] Katta G Murty and Santosh N Kabadi. Some np-complete problems in quadratic
and nonlinear programming. Technical report, 1985.

[99] John A Nelder and Roger Mead. A simplex method for function minimization. The
computer journal, 7(4):308–313, 1965.

[100] Yu. E. Nesterov. A method of solving a convex programming problem with conver-

119



gence rate 0(1/k2). Sov. Math., Dokl., 27:372–376, 1983.

[101] Yurii Nesterov. Introductory lectures on convex optimization: A basic course, vol-
ume 87. Springer Science & Business Media, 2003.

[102] Yurii Nesterov et al. Lectures on convex optimization, volume 137. Springer, 2018.

[103] Yurii Nesterov and Arkadii Nemirovskii. Interior-point polynomial algorithms in
convex programming. SIAM, 1994.

[104] Atsushi Nitanda. Stochastic proximal gradient descent with acceleration techniques.
Advances in Neural Information Processing Systems, 27, 2014.

[105] Jorge Nocedal and Stephen J Wright. Numerical optimization. Springer, 1999.

[106] Boris T Polyak. Some methods of speeding up the convergence of iteration methods.
Ussr computational mathematics and mathematical physics, 4(5):1–17, 1964.

[107] Linbo Qiao, Bofeng Zhang, Jinshu Su, and Xicheng Lu. Linearized alternating di-
rection method of multipliers for constrained nonconvex regularized optimization. In
Asian Conference on Machine Learning, pages 97–109. PMLR, 2016.

[108] R Tyrrell Rockafellar. Favorable classes of lipschitz continuous functions in subgradi-
ent optimization. 1981.

[109] R. Tyrrell Rockafellar and Roger J.-B. Wets. Variational Analysis. Springer Verlag,
Heidelberg, Berlin, New York, 1998.

[110] Cornelis Roos. A full-newton step o (n) infeasible interior-point algorithm for linear
optimization. SIAM Journal on Optimization, 16(4):1110–1136, 2006.

[111] Ron Shamir. The efficiency of the simplex method: a survey. Management science,
33(3):301–334, 1987.

[112] Ron Shefi and Marc Teboulle. Rate of convergence analysis of decomposition meth-
ods based on the proximal method of multipliers for convex minimization. SIAM
Journal on Optimization, 24(1):269–297, 2014.

[113] Wei Shi, Qing Ling, Gang Wu, and Wotao Yin. A proximal gradient algorithm for
decentralized composite optimization. IEEE Transactions on Signal Processing,
63(22):6013–6023, 2015.

[114] Mikhail V Solodov and Benar Fux Svaiter. An inexact hybrid generalized proximal
point algorithm and some new results on the theory of bregman functions. Mathe-
matics of Operations Research, 25(2):214–230, 2000.

120



[115] Paul Tseng. Approximation accuracy, gradient methods, and error bound for struc-
tured convex optimization. Mathematical Programming, 125(2):263–295, 2010.

[116] Paul Tseng and Sangwoon Yun. A coordinate gradient descent method for nons-
mooth separable minimization. Mathematical Programming, 117:387–423, 2009.

[117] Paul Tseng and Sangwoon Yun. A coordinate gradient descent method for linearly
constrained smooth optimization and support vector machines training. Computa-
tional Optimization and Applications, 47(2):179–206, 2010.

[118] Jean-Philippe Vial. Strong and weak convexity of sets and functions. Mathematics
of Operations Research, 8(2):231–259, 1983.

[119] Fenghui Wang, Wenfei Cao, and Zongben Xu. Convergence of multi-block breg-
man admm for nonconvex composite problems. Science China Information Sciences,
61:1–12, 2018.

[120] Fenghui Wang, Zongben Xu, and Hong-Kun Xu. Convergence of bregman alter-
nating direction method with multipliers for nonconvex composite problems. arXiv
preprint arXiv:1410.8625, 2014.

[121] Xiao Wang, Shuxiong Wang, and Hongchao Zhang. Inexact proximal stochastic gra-
dient method for convex composite optimization. Computational Optimization and
Applications, 68:579–618, 2017.

[122] Yu Wang, Wotao Yin, and Jinshan Zeng. Global convergence of admm in nonconvex
nonsmooth optimization. 2015.

[123] Bo Wen, Xiaojun Chen, and Ting Kei Pong. Linear convergence of proximal gradi-
ent algorithm with extrapolation for a class of nonconvex nonsmooth minimization
problems. SIAM Journal on Optimization, 27(1):124–145, 2017.

[124] Bo Wen, Xiaojun Chen, and Ting Kei Pong. A proximal difference-of-convex algo-
rithm with extrapolation. Computational optimization and applications, 69:297–324,
2018.

[125] Zhongming Wu and Min Li. General inertial proximal gradient method for a class
of nonconvex nonsmooth optimization problems. Computational Optimization and
Applications, 73:129–158, 2019.

[126] Guangzeng Xie, Yitan Wang, Shuchang Zhou, and Zhihua Zhang. Interpolatron:
Interpolation or extrapolation schemes to accelerate optimization for deep neural
networks, 2018.

[127] Huiliang Xie and Jian Huang. Scad-penalized regression in high-dimensional par-

121



tially linear models. 2009.

[128] Jiaxin Xie, Anping Liao, and Xiaobo Yang. An inexact alternating direction method
of multipliers with relative error criteria. Optimization Letters, 11(3):583–596, 2017.

[129] Jiawei Xu and Miantao Chao. An inertial bregman generalized alternating direction
method of multipliers for nonconvex optimization. Journal of Applied Mathematics
and Computing, pages 1–27, 2021.

[130] Jinming Xu, Ye Tian, Ying Sun, and Gesualdo Scutari. Distributed algorithms for
composite optimization: unified framework and convergence analysis. IEEE Transac-
tions on Signal Processing, 69:3555–3570, 2021.

[131] Yangyang Xu. Hybrid jacobian and gauss–seidel proximal block coordinate update
methods for linearly constrained convex programming. SIAM Journal on Optimiza-
tion, 28(1):646–670, 2018.

[132] Junfeng Yang and Yin Zhang. Alternating direction algorithms for \ell 1-problems
in compressive sensing. SIAM journal on scientific computing, 33(1):250–278, 2011.

[133] Lei Yang, Ting Kei Pong, and Xiaojun Chen. Alternating direction method of mul-
tipliers for a class of nonconvex and nonsmooth problems with applications to back-
ground/foreground extraction. SIAM Journal on Imaging Sciences, 10(1):74–110,
2017.

[134] Maryam Yashtini. Multi-block nonconvex nonsmooth proximal admm: Convergence
and rates under kurdyka– lojasiewicz property. Journal of Optimization Theory and
Applications, 190(3):966–998, 2021.

[135] Maryam Yashtini. Convergence and rate analysis of a proximal linearized admm for
nonconvex nonsmooth optimization. Journal of Global Optimization, 84(4):913–939,
2022.

[136] Xiyu Yu and Dacheng Tao. Variance-reduced proximal stochastic gradient descent
for non-convex composite optimization. arXiv preprint arXiv:1606.00602, 2016.

[137] M Redivo Zaglia. Extrapolation methods: theory and practice. Elsevier, 2013.

[138] Lingmin Zeng and Jun Xie. Group variable selection via scad-l2. Statistics, 48(1):49–
66, 2014.

[139] Wenliang Zhong and James Kwok. Gradient descent with proximal average for non-
convex and composite regularization. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 28, 2014.

122



[140] Zirui Zhou and Anthony Man-Cho So. A unified approach to error bounds for struc-
tured convex optimization problems. Mathematical Programming, 165:689–728, 2017.

[141] Zeyuan Allen Zhu and Yang Yuan. Univr: A universal variance reduction framework
for proximal stochastic gradient method. ArXiv, abs/1506.01972, 2015.

[142] Martin Zinkevich, Markus Weimer, Lihong Li, and Alex Smola. Parallelized stochas-
tic gradient descent. Advances in neural information processing systems, 23, 2010.

123



Vita

Miao Zhang was born in Chengdu, Sichuan, China in 1994. She completed her un-

dergraduate studies at Huazhong Agricultural University in June 2016. She earned a Mas-

ter of Science degree in Applied Statistics at Huazhong Agricultural University in June

2018. She continued her studies at Louisiana State University to pursue studies in Math-

ematics in August 2018. She earned a Master of Science degree in Mathematics in 2020.

She is currently a candidate for a Doctor of Philosophy degree in Mathematics, which will

be awarded in May 2023.

124


	First-Order Algorithms for Nonlinear Structured Optimization
	Recommended Citation

	tmp.1681677990.pdf.DXQi5

