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ABSTRACT

I present a study of analog cosmological models in Bose-Einstein condensates

(BEC) and in graphene, and superfluidity in a box-shaped traps. I start by examining

the dynamics of a Bose-Einstein condensate (BEC) trapped inside an expanding toroid

that can realize an analog inflationary universe. The expanding condensate forces phonons

to undergo redshift and damping due to quantum pressure, owing to the thinness of the

ring. I predict that such expanding BECs can exhibit spontaneous phonon creation from

the vacuum state and show how it would manifest in the atom density and density cor-

relations and discuss connections with the inflationary theory. I then extend this work

to study entanglement of the spontaneously generated phonon pairs, for which I use the

techniques of quantum continuous variables. I then develop a protocol to experimentally

measure the correlations entering the covariance matrix, allowing an experimental quan-

tification of the entanglement properties of the inflationary BEC. I then present a of how

a spatially-varying quasiparticle velocity in honeycomb lattices, achievable using strained

graphene or in engineered cold-atom optical lattices that have a spatial dependent tun-

neling amplitude, can yield the Rindler Hamiltonian embodying an observer accelerating

in Minkowski spacetime. Within this setup, a sudden switch-on of the spatially-varying

strain yields a spontaneous production of electron-hole pairs, an analog version of the

Unruh effect characterized by the Unruh temperature. I discuss how this thermal behav-

ior, along with Takagi’s statistics inversion, can manifest themselves in photo-emission

and scanning tunneling microscopy experiments. I show that the electronic conductivity

grows linearly with frequency ω, vanishing in the DC limit. Finally, I find that the total

electronic energy at zero environment temperature looks like Planck’s blackbody result

x



for photons due to the aforementioned statistics inversion, whereas for an initial ther-

mally excited state of fermions, the total internal energy undergoes stimulated particle

reduction. Finally, I study ultracold Fermi gases trapped inside a three-dimensional box

with vanishing boundary conditions, with interactions modeled using the Fermi-Huang

pseudopotential. Taylor expanding the pairing to linear order in position, solves the gap

equation yielding the transition temperature and local pairing amplitude that vanishes at

the edges.
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CHAPTER 1. INTRODUCTION

In this thesis, I will be exploring the area of analog gravity and superfluid prop-

erties in laser traps with toroidal and box geometries. Analog gravity is an arena, where

gravitational phenomena can be mimicked, in particular the theory of how quantum fields

behave in curved spacetimes, using condensed matter systems such as graphene, cold atom

setups like a Bose-Einstein condensate (BEC) and fiber optical systems. In Chapter 2, our

focus will be on mimicking the primordial inflationary universe inside a BEC, i.e., I estab-

lish an analogy between how a scalar field evolves in an exponentially expanding universe,

with how phonon modes evolve in a rapidly expanding toroidal BEC. I will then look at

how this BEC expansion leads to a spontaneous creation of entangled phonon pairs. In

Chapter 3, I use the theory of continuous quantum variables to model the states of these

phonons and thereby quantify their entanglement.

In Chapter 4, I will show that graphene with a certain spatial strain pattern can

lead to spontaneous creation of electron and hole pairs with an emergent thermal distri-

bution. This is the celebrated Unruh effect which predicts that an accelerating observer

will see the Minkwoski vacuum as a thermal bath of particles. However, unlike their rela-

tivistic counterparts, the quasi-particle creation in the analog systems here (graphene and

toroidal BEC) can manifest themselves in correlations and susceptibilities. Thus, by im-

porting techniques from quantum field theory in curved spacetimes helps explore new and

interesting physics in condensed matter and cold atom systems. In Chapter 5, I will use

the Bogoliubov-de Gennes approach with the interactions being modeled by a pseudopo-

tential to explore superfluid properties inside a box-shaped trap with hard-wall boundary
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conditions, such as the transition temperature and the local pairing amplitude. I will end

this thesis with some brief concluding remarks in Chapter 6. In the following subsections,

I provide introductions to the material for each chapter.

1.1. Toroidal BEC

The theory of inflation is the most promising description of the early universe [1,

2, 3, 4, 5, 6, 7], although alternatives exist [8]. This theory is based on a field ϕ, the in-

flaton, propagating in a classical spacetime and moving under the influence of its own po-

tential V (ϕ). The quantum fluctuations in the inflaton field couple with the spatial curva-

ture of the universe, thus acting as seeds for the observed cosmic microwave background

(CMB) anisotropies [9] and the large scale structure of our universe [10], although primor-

dial gravitational waves are yet to be observed. The exact shape of the potential V (ϕ) is

currently not known, although work has been done to reconstruct it [11]. Indeed, experi-

ments have put stringent constraints on some of the candidates such as the quadratic and

quartic inflationary potentials, though there remains a huge class of models that are able

to explain observations [12]. In addition, the CMB observations have revealed possible

anomalies on the largest scales with a 3σ significance, that hint towards new physics [13].

However, testing inflationary models using cosmological experiments is expensive and diffi-

cult.

A natural question, is if there exists an alternative setting to test the predictions

of inflation. The answer is ‘analog gravity’ [14], where the aim is to come up with simple

experimental setups that can be performed in a lab and which mimic the equations gov-

erning gravitational and cosmological phenomena such as inflation and black hole physics.
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Early work in this direction came from Unruh who, in 1981, showed [15] that the Navier-

Stokes’ equations for fluid flow, such as in a draining bathtub, could mimic Hawking ra-

diation [16, 17] coming from a black hole horizon. This showed that analog black holes

can be constructed, allowing the study of near-horizon physics outside of an astrophysical

setting. Several recent experiments have confirmed the existence of such analog Hawking

radiation [18, 19, 20, 21], as well as other phenomena such as classical superradiance [22],

the Casimir effect [23], and Sakharov oscillations [24]. Other analog gravity proposals test

ideas like the Gibbons-Hawking effect [25], the vacuum decay [26, 27, 28, 29] and the Un-

ruh effect [30].

Inflation in analog systems has been studied theoretically [31, 32, 33, 34, 35, 36,

37], and realized experimentally in Bose-Einstein condensates (BECs) [38] and in ion

traps [74]. Here, our primary motivation is the BEC implementation of analog inflation

realized by Eckel et al. [38]. The Eckel et al. experiments featured a BEC in a time-

dependent trap with the shape of a thin toroid, with a rapid expansion of the toroid

mimicking the inflationary era. Some of the analogs of cosmological phenomena observed

by Eckel et al were the red-shifting of frequencies and damping of modes due to expan-

sion. Vortex creation after halting of the ring expansion was also observed, an analog of

reheating in the early universe.

1.2. Toroidal Entanglement

In 1966, L. Parker made a fascinating discovery [58, 59]: the expansion of the

universe can create particles out of the vacuum (see [57] for a brilliant, earlier intuition

about this phenomenon by E. Schrodinger). More precisely, Parker considered Friedman-
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Lemaitre-Robertson-Walker (FLRW) spacetimes that are asymptotically Minkowskian in

the future and past, and showed that (non-conformal invariant) quantum fields that at

early times are prepared in the vacuum state, generically end up in an excited state. The

underlying translational invariance of the gravitation field leads to momentum conserva-

tion for the quantum field, which in turns implies that particles are created in pairs, with

wavenumber k⃗ and −k⃗.

Phrased in a modern language, Parker showed that, for each pair (k⃗,−k⃗), the ini-

tial vacuum evolves to a two-mode squeezed vacuum, with squeezing intensity and squeez-

ing angle determined by the expansion history of the universe. This means, in particular,

that the two particles in each created pair are entangled. This entanglement is of primary

importance, since it constitute the quantum signature of the phenomenon of particle cre-

ation.

Parker’s ideas were formulated in the theory of linearized quantum field propagat-

ing on a fixed gravitational background—the quantized fields are test fields, which do not

disrupt or modify in any way the underling geometry— and the use of Bogoliubov trans-

formations. This same formalism was later applied to black holes by S. Hawking in the

mid seventies, leading to the celebrated Hawking effect [16, 17], and also to the paradigm

of cosmic inflation in the early eighties [1, 2, 3, 4, 5, 6, 7]. These two phenomena probably

constitute the most important predictions of quantum field theory in curved spacetimes.

In particular, the later provides a possible explanation for the origin of the density per-

turbations in the early universe, which seeded the matter distribution I observed today.

This is an outstanding statement, as it would imply that the structures in our universe

have emerged from a process of squeezing of the quantum vacuum. Several investigations
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have focused on envisaging ways of testing this extraordinary possibility. More concretely,

important efforts have been dedicated to quantify the genuine quantum signature of the

squeezing process predicted by inflation, namely the generation of quantum entanglement,

and to discuss ways of observing it [60, 61, 62, 63, 64, 65, 66, 67, 69, 71].

On the other hand, in a seminal paper W. Unruh proved that the physics of quan-

tum fields propagating on non-trivial geometries can be simulated in the lab, giving birth

to the field of analog gravity [15]. Analog models offer an interesting test bank to recreate

Parker’s phenomenon of particle creation in the lab in a controlled manner, and to con-

firm its key predictions. In this chapter, I focus attention on one of the simplest analog

systems leading to quasiparticle creation a la Parker—a toroidal Bose-Einstein condensate

(BEC) whose radius is rapidly growing. This system has been recently recreated [38, 73],

and used to simulate an effectively one-dimensional inflationary universe [36, 76, 77]. Ex-

perimental efforts have been able to observe the cosmological redshift that the expansion

induces on density perturbations in the fluid, as well as damping. This is a promising plat-

form to directly observe particle pair creation. Recent theoretical studies [76] have ana-

lyzed the spectrum of particles created in this system under a finite period of exponen-

tial expansion, and have computed the signatures that these particles produce on density-

density correlation functions.

The focus of this chapter is on entanglement. As mentioned above, entanglement

is the quantum hallmark of the process of two-mode squeezing behind pair-creation, and

observing it would assist on identifying the physical origin of the observed correlations and

in distinguishing them from other physical processes. Our goal is to contribute, from the

theoretical side, to the observability of this key aspect of the pair-creation process. I first

5



quantify the entanglement generated in this process by using an entanglement measure

well adapted to the physical setup. Next, this quantification allows us to analyze the way

entanglement is affected by the presence of thermal noise and losses, ubiquitous in real ex-

periments. Using the tools put forward in [81], I show that noise and losses degrade the

entanglement in the final state, possibly eliminating it entirely, rendering the final state

classical. This is important for experimental setups. I determine under what conditions

the quantum signatures of the pair-creation process are washed away. Next, following the

ideas in [87], I propose a way of amplifying the entanglement generated in this scenario,

possibly compensating for the aforementioned deleterious effects. This is done by consid-

ering stimulated particle-creation using appropriate initial states—stimulated in the stan-

dard sense of atomic physics; to be contrasted with the spontaneous effects arising when

the input is merely vacuum fluctuations. In particular, I study the use of single-mode

squeezed inputs as a way of stimulating additional creation of entangled pairs, increas-

ing the observability of this effect. Finally, I envisage an experimental protocol to recon-

struct the final state and to measure the entanglement it contains between pairs (k⃗,−k⃗) of

modes.

1.3. Unruh Effect in Graphene

As I discussed in the previous two subsections, quantum field theory in curved

spacetime [45, 47, 48, 99, 46, 100] is an exciting arena in which two cornerstones of mod-

ern physics, quantum field theory and general relativity, merge to produce surprising re-

sults. One classic prediction at this crossroads is that a quantum field in an initial vacuum

state, under the influence of spacetime curvature (or gravity), leads to a spontaneous gen-
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eration of particles associated with that field. This was first realized by Schrodinger [57]

in the context of relativistic quantum mechanics in an expanding universe and later by

Parker [58, 59] who independently showed this in the context of general quantum fields

in cosmological spacetimes. One such class of spacetimes is the one experienced by an ac-

celerating observer: the Rindler spacetime [101]. However, this spacetime is special be-

cause it creates particles with a thermal spectrum [102, 103, 104], i.e., an accelerating (or

Rindler) observer sees the Minkowski (or flat) spacetime vacuum as a thermal bath of par-

ticles. This phenomenon is called the Fulling-Davies-Unruh effect (also known as the Un-

ruh effect). Here, the thermality emerges due to two reasons. The first is the appearance

of a horizon that splits the entire spacetime into two mutually inaccessible regions (cor-

responding to observers accelerating in opposite directions) and thus vacuum expectation

values in one region lead to tracing over the degrees of freedom of the other region, thus

yielding a mixed state. The second reason is that the response function of an accelerating

particle detector follows the principle of detailed balance, or in other words satisfies the

Kubo-Martin-Schwinger (KMS) condition [105, 106], which is a sufficient condition for a

spectrum to be called thermal.

Similar horizons and therefore their associated thermal behavior also emerge in

other spacetimes, such as black holes [16, 17] where this behavior is known as Hawking

radiation, and the Gibbons-Hawking effect in de-Sitter cosmologies [107]. A surprising re-

sult that appears here is that the power spectrum, which depends on the density of states

and the statistics, is sensitive to the dimensions of spacetime. In odd spacetime dimen-

sions, the power spectrum of fermions has a Bose-Einstein distribution, whereas bosons

follow a Fermi-Dirac distribution. This is the well-known ‘apparent inversion of statistics’
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due to Takagi [108] which is linked to the violation of Huygens’ principle in odd spacetime

dimensions [109, 110, 111, 112, 113, 114, 115].

There have been various proposals to detect the Unruh effect in accelerating sys-

tems [116, 117, 118], for example using Bose-Einstein condensates [120, 119]. However,

observing this effect is challenging as an acceleration of about 1021m/s2 is required to gen-

erate a temperature of 1K [46] which is likely beyond the reach of current technology. In

such a situation, analog gravity [14] offers an alternative arena for observing relativistic

phenomena, in which condensed matter or cold atom systems are engineered to mimic the

behavior of relativistic systems. This area emerged in 1981 when Unruh showed [15] how

water ripples in a draining bathtub can mimic the Klein-Gordon equation for a scalar field

near a black hole horizon. This led to the prediction of analog Hawking radiation which

was realized in a series of experiments [18, 19, 20, 21]. On the other hand, particle cre-

ation in the context of the inflationary early universe was recently observed in toroidal

Bose-Einstein condensates [38, 73] and studied theoretically in Refs. [36, 76, 77].

Such analog platforms can be used to mimic the Unruh effect, as was recently ob-

served in Bose-Einstein condensates [121] by modulating the scattering length that de-

termines the interactions between ultracold bosonic atoms. Various proposals have also

been made to detect the analog Unruh effect in ultracold Fermi gases in square lattices

[123, 30, 122], in graphene [124, 126, 125], in quantum hall systems [127, 128], and in Weyl

semi-metals [129].

Here our main interest is in exploring analog Rindler physics, and the analog Un-

ruh effect, in graphene and related cold-atom systems (i.e., fermionic atoms in honey-

comb lattices. Indeed, the status of graphene as an analog relativistic system has been
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long recognized [130, 131], and the fact that graphene’s low-energy excitations obey the

Dirac equation was established even from the earliest experimental work on these sys-

tems [132, 133]. As is well known, the effective “speed of light” characterizing the Dirac

quasiparticles in graphene takes a value v ≃ c/300 (with c the actual speed of light). To

achieve the Rindler Hamiltonian in graphene requires engineering a spatial variation in v

along one direction.

In this chapter, our aim is to discuss how the Unruh effect would be manifested in

honeycomb systems such as mechanically strained graphene or in an appropriately engi-

neered cold atom optical lattice system [137, 135, 136, 134, 138]. In either case, what is

needed is a spatial variation in the local tunneling matrix elements between sites. The ba-

sic idea is to start with unstrained graphene, in equilibrium at low temperature T (that I

will usually assume to be T = 0). As mentioned above, fermionic excitations in unstrained

graphene obey the conventional Dirac equation, i.e., the Dirac equation in Minkowski

(flat) spacetime. The next step is to suddenly switch on the strain field, changing the

system Hamiltonian to the Rindler Hamiltonian, with excitations described by a Rindler

Dirac equation. The Unruh effect emerges because a vacuum initial (Minkowski) state be-

comes, after the strain, an effective thermal distribution of Rindler quasiparticles charac-

terized by the strain-dependent Unruh temperature. Note that this non-adiabatic process

is essential to produce the Unruh effect.

Earlier theoretical work by Rodriquez-Laguna and collaborators showed [30], in

the context of square optical lattices, that such a sudden quench should indeed yield the

Unruh effect, provided that the timescale of the switching process is much faster than the

timescale at which the electron dynamics operates (governed by the inverse tunnelling
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rate). Here I assume the switching on is sufficiently rapid so that, invoking the sudden

approximation of quantum mechanics, the correct procedure is to obtain observables by

calculating the expectation values of operators in the strained system with respect to

states of the unstrained lattice (i.e., the Minkowski vacuum or, at finite real temperature,

a Fermi gas of Dirac quasiparticles and holes).

1.4. Superfluid in a Box-Shaped Trap

The area of ultra-cold atoms was developed in the 1990’s with the observation of

the first Bose-Einstein condensate (BEC) in simultaneous experiments at JILA and MIT

[175, 176]. Most of the studies in the first years were devoted to quantum gases of bosonic

nature and were aimed at investigating the important consequences of Bose-Einstein con-

densation, which, before 1995, remained an elusive and inaccessible phenomenon. Since

then there has been a flood of work, both experimental and theoretical. Major achieve-

ments of these studies have been, among others, the investigation of superfluid features,

including the hydrodynamic nature of the collective oscillations, Josephson like effects, re-

alization of quantized vortices, transition to the Mott-insulator phase and the realization

of Berezinskii-Kosterlitz-Thouless (BKT) phase transition in two dimensional configura-

tions. For more details please refer to the reviews [177, 178, 179].

These experiments rely on some alkali atoms being fermionic (because they have

an odd number of neutrons) and some bosonic (with an even number of neutrons). Thus

it has been possible to create atomic Fermi and Bose gases. With the use of evaporative

cooling, temperatures have now reached as low as 50nK [180]. Achieving this range of

temperatures allows one to experimentally explore superfluid properties of these cold
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atomic gases. In addition to this, recent experiments have used standing waves of light

to realize optical lattice traps for cold atoms [181, 178, 182, 183] that helps study solid

state properties like high-temperature superconductivity. Besides studying these solid

state properties one can also test the Bardeen-Cooper-Schrieffer (BCS) theory [202, 203]

for order of million atoms or less, unlike the case of solids where we are forced to work

with moles of atoms. Experiments have also pursued exotic forms of superfluidity like

the elusive Fulde-Ferrell-Larkin-Ovchinikov (FFLO) phase which was predicted in 1960’s

[187, 188]. Thus ultra cold atomic gases provide a platform where one can in analogy

study other systems. The advantage here is that there is a lot of flexibility in tuning the

parameters like particle number, scattering cross-sections, chemical potential and other

properties.

However, most of experiments have been performed in harmonic oscillator traps

[177], while most theoretical work assumed harmonic or periodic boundary conditions

(bulk case). However in recent times, experimentalists have started studying properties

of cold atomic gases in ‘box’-like traps that have vanishing boundary conditions. The first

such experiment in a box trap was done with bosons [184], where a BEC was observed.

Then in 2016 a three dimensional cylindrical box-shaped trap was successfully constructed

by Zwierlein’s group at MIT [185] and next year a group in Germany was able to create

the two dimensional version of this [186]. In the 3D box experiment, a cylindrical shaped

trap was created by using lasers. Firstly, two parallel sheets of laser beams were used to

create the cylinder caps. Secondly, a set of laser beams was arranged in a circle and per-

pendicular to the caps. This helped create the curved part of the cylinder, as shown in

Fig. 1. This was done in such a way that the radius of cylinder was 60µm and length was
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120µm. One obvious question that arises is how exact was the box potential like a box.

The answer is that the trap was modeled by a power law V (r) ∼ r16 which is an extremely

steep potential, so it more or less mimics an infinite square well.

Figure 1.1. Homogeneous Fermi gas in a box shaped trap. (a) Schematic picture of the
box trap with planes that cut through the gas to give integrated densities (with respect
to position) in the axial and radial directions. (b) Radius of the cloud as a function of
the Fermi energy where the dotted black and dashed red lines correspond to a perfect box
potential and a harmonic potential respectively. The blue solid fits with a power law po-
tential V (r)∼r16. (c) Measured radial probability densityP(n2D) for the integrated density
n2D. This figure has been taken from [185].

In this experiment, about 2 × 106 6Li-atoms were prepared in the two lowest hy-

perfine states near a Feshbach resonance. These hyperfine levels act as pseudo-spins and

there are equal number of atoms in both spin up and down states, i.e., this is spin bal-

anced gas. Then these atoms were put inside the box trap and evaporative cooling was

used to create temperatures of order ten nano-kelvins. Thus a density of n ≈ 1012cm−3

and Fermi energy of EF ≈ 13kHz was achieved. The lifetime of the gas was several tens of

12



seconds and thus the imaging was done in a very short duration. In the ẑ-direction there

was a weak harmonic potential with a trapping frequency of ωz = 2π · 23.9 Hz. One may

ask, how do I know that the confined gas was homogeneous. The answer is to look at the

probability distribution P(n) for the atomic density n. Imaging done along the ẑ- and x̂-

directions yielded the radial and axial probability distribution P(n2D) for the integrated

density n2D (Fig. 1(c)). The distribution for the homogeneous gas was found to be sharply

peaked near the trap average density n2D, in which P (n2D) for an optical gaussian trap is

also shown for comparison (spread over a large range of densities).

This box trap set is a promising platform for the observation of the quasiparticle

jump in the momentum distribution of a Fermi liquid [190], critical fluctuations in the

BEC-BCS crossover and long lived solitons [191]. It is could also be used to test BCS

theory and possibly detect other exotic forms of superfluidity like the FFLO state which

occurs due to unequal populations of atoms having spins up and down, for example 60

percent atoms in ↑-state and 40 percent atoms in ↓-state. Due to their unequal popula-

tions their Fermi surfaces will also be of different sizes. Thus, when two fermions will try

to pair up they will have momenta opposite in direction and unequal in magnitudes. The

difference between the magnitudes of the two momenta gives the Cooper pairs a net mo-

menta called the FFLO pairing wavevector q = kF↑ − kF↓. As a result, in the bulk, there

should be spatial modulation of the gap parameter either of the form ∆(r) ∼ eiq·r [187] or

∆(r) ∼ cos(q · r) [188]. However for the bulk case it has been shown theoretically that in

the phase diagram, this FFLO-phase occupies a very narrow range [189] which agrees with

no observation of this phase in the experiments. This may change in the box. The reason

is that in the bulk any form of the FFLO density wave is translationally invariant which
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means that any Goldstone mode of arbitrarily small energy can shift this wave and thus

make it unstable. On the other hand, the box is not translationally invariant and thus a

form like ∆(r) ∼ cos(q · r) might stabilize for some specific values of q by taking advan-

tage of the vanishing boundary conditions.
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CHAPTER 2. INFLATIONARY DYNAMICS AND PARTICLE
PRODUCTION IN A TOROIDAL BOSE-EINSTEIN
CONDENSATE

In this chapter, I present analytical results to help understand the Eckel et al.

experiments [38] and discuss possible observables (other than redshift of phonon wave-

lengths) that can probe inflationary physics in the context of an analog BEC experiment.

In particular, I show that the thinness of the toroid introduces significant quantum pres-

sure corrections in the BEC, that cause damping of sound modes and eventually lead

to spontaneous phonon creation. The rest of this chapter is organized as follows: in

Sec. 2.1, I investigate the evolution of perturbations (i.e., phonons) in a BEC using the

Bogoliubov-de Gennes Hamiltonian. In Sec. 2.2, I show that this approach leads to the

Mukhanov-Sasaki equation [40, 41, 42] that governs the evolution of such phonons in the

primordial universe. This equation forces the density fluctuations to undergo damping

that comes from quantum pressure. In Sec. 2.3, I show that as the ring undergoes an

expansion there is a spontaneous generation of phonons which is the analog of particle

creation in the early universe. In Sec. 2.4, I study the case of stimulated phonon creation

by calculating the average density in a coherent state and showing that an initial traveling

density wave bifurcates (due to phonon creation) into two waves, as illustrated in Fig. 2.1.

In Sec. 2.5, I calculate the density-density correlation function for this system at zero and

finite temperatures, showing that the angle-dependence of density correlations exhibits a

signature of phonon production. In Appendix A, I provide details that are omitted from

the main text.
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2.1. Bogoliubov-de Gennes Hamiltonian

In this section I describe, within the Bogoliubov-de Gennes (BdG) formalism,

how a boson gas in a time-dependent trap can exhibit emergent relativistic dynamics

that mimic the phenomenon of inflation. I start with the following Hamiltonian that de-

scribes a Bose-Einstein condensate (BEC), given in terms of a complex scalar field (Φ̂(r)),

evolving inside a non-uniform and time dependent toroidal potential V (r, t):

Ĥ = Ĥ0 + Ĥ1,

Ĥ0 =

∫
d3r Φ̂†(r)

[
− ℏ2

2M
∇2 + V (r, t) − µ

]
Φ̂(r),

Ĥ1 =
U

2

∫
d3r Φ̂†(r)Φ̂†(r)Φ̂(r)Φ̂(r), (2.1)

where µ is the chemical potential, U = 4πasℏ2
M

is the interaction parameter, as is the scat-

tering length, ℏ is Planck’s constant, and M is the mass of the bosonic atoms. The time-

dependent single-particle potential V (r, t) describes a time-dependent toroidal potential

which, taking a cylindrical coordinate system r = (ρ, θ, z), I can take to be parabolic in

the ẑ direction and a higher power law in the radial (ρ̂) direction:

V (r, t) =
1

2
Mω2

zz
2 + λ|ρ−R(t)|n, (2.2)

consistent with the experiments of Eckel et al. [38], who realized a “flat bottomed” trap

with the exponent n ≃ 4. Here, R(t) is the externally-controlled radius of the toroid that

increases with time. The condensate field operator obeys the commutation relation

[
Φ̂(r), Φ̂†(r′)

]
= δ(3)(r − r′). (2.3)

Under the BdG approximation, the condensate field operator in the Heisenberg picture

Φ̂(r, t) can be written as the sum of a coherent background Φ0(r, t) and the perturbation
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operator δϕ̂(r, t):

Φ̂ = Φ0(1 + δϕ̂). (2.4)

Plugging Eq. (2.4) into the Hamiltonian (2.1) and using Heisenberg’s equations of motion,

I get

iℏ∂tδϕ̂ = − ℏ2

2M
∇2δϕ̂− ℏ2

M

∇Φ0

Φ0

·∇δϕ̂+Un0

[
δϕ̂†+δϕ̂

]
, (2.5)

for the δϕ̂(r, t) equation of motion [36]. Here, I defined the background density as

n0(r, t) ≡ |Φ0(r, t)|2.

Equation (2.5) describes dynamics of the perturbation operator δϕ̂ in the presence

of a time-dependent background Φ0(r, t). Below, I find it convenient to transform to the

Madelung representation in terms of density n̂(r, t) and phase ϕ̂(r, t) field operators via:

Φ̂(r, t) =
√
n̂(r, t)eiϕ̂(r,t). (2.6)

To proceed I use Eq. (2.4) on the left hand side of Eq. (2.6) and I introduce linear pertur-

bations for the phase ϕ̂ = ϕ0 + ϕ̂1 and the density n̂ = n0 + n̂1 on the right hand side of

Eq. (2.6). Then, keeping first-order contributions, we obtain an expression for the conden-

sate perturbation δϕ̂ in terms of the perturbations in density n̂1(r, t) and phase ϕ̂1(r, t):

δϕ̂(r, t) =
n̂1(r, t)

2n0(r, t)
+ iϕ̂1(r, t). (2.7)

Here ϕ0(r, t) denotes the background phase. The phase and density perturbations sat-

isfy the commutation relation
[
n̂1(r, t), ϕ̂1(r

′, t)
]

= iδ(3)(r − r′). Substituting the

above relation into (2.5) and using Madelung’s representation for the background

Φ0(r, t) =
√
n0(r, t)e

iϕ0(r,t), I get the equations of motion for the phase and density
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perturbations [38]:

− ℏ
U
∂tϕ̂1 = D̂n̂1 +

ℏ2

MU
∇ϕ0 ·∇ϕ̂1, (2.8)

∂tn̂1 = − ℏ
M

∇ ·
[
n̂1∇ϕ0 + n0∇ϕ̂1

]
, (2.9)

where I made use of the continuity equation for n0: ∂tn0 = − ℏ
M
∇ ·

(
n0∇ϕ0

)
and I defined

the operator

D̂ ≡ 1 − ℏ2

2MU

(∇2

2n0

− ∇n0 ·∇
2n2

0

− ∇2n0

2n2
0

+
(∇n0)

2

2n3
0

)
. (2.10)

The terms in parentheses in D̂ are due to the quantum pressure, which are often neglected

in the hydrodynamic limit where D̂ ≈ 1. In that situation, Eqs. (2.8) and (2.9) can be

readily combined to get a relativistic wave equation for ϕ̂1 (see [34, 35, 38]) :

0 =
1√
−g

∂µ(
√
−ggµν∂νϕ̂1), (2.11)

where µ = 0 denotes time and µ = 1, 2, 3 denote space so xµ = (ct, x, y, z) and ∂µ =

(1
c
∂
∂t
,∇) where c =

√
Un0/M is the BEC speed of sound. Here, the metric is

gµν =



−c3 0 0 0

0 c(R + ρ̃)2 0 0

0 0 c 0

0 0 0 c


, (2.12)

with determinant g = −c6(R + ρ̃)2, where ρ̃ = ρ − R(t) is the comoving radial coordinate.

Note that the speed of sound c is not a relativistic invariant as the equations for BEC do

not reproduce Einstein’s equations for the background metric. Instead, Eq. (2.11) tells us

that only the equation for a scalar field evolving on an expanding metric is being mim-

icked. This tells us that the metric in Eq. (2.12) is emergent, i.e., I infer it from the wave
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equation for scalar field, and not derive it directly from some analog of Einstein’s equa-

tions. Thus the analogy between BEC and spacetime does not exist at the background

level, but rather at the level of perturbations.

Equation (2.11) shows that a boson gas in a time-dependent toroidal trap indeed

simulates an expanding one-dimensional universe with the metric Eq. (2.12). However, be-

low I show that although the quantum pressure terms in D̂ are small, their inclusion qual-

itatively impacts the dynamics of low-energy modes in the expanding toroidal BEC, lead-

ing to damping and spontaneous phonon creation. This quantum pressure provides short

distance corrections to the evolution of sound modes in a BEC, which become significant

when I reduce the thickness of the ring to make it quasi one-dimensional.

Having obtained equations (2.8) and (2.9), that describe excitations of a superfluid

boson gas in a time-dependent trap, in the next section I show how, in the thin-ring limit,

these equations reduce to the Mukhanov-Sasaki equation that describes damped sound

modes.

2.2. The Mukhanov-Sasaki Equation

Equations (2.8) and (2.9) derived in the preceding section describe phase and den-

sity perturbations (i.e., phonons) in a BEC with a generic time-dependent trapping po-

tential V (r, t). In fact, the potential V (r, t) only explicitly appears in the dynamics of the

background density (n0) and phase (ϕ0) on which phonons propagate (which I study in

Appendix A), while the density and phase perturbations n̂1 and ϕ̂1 are sensitive to n0 and

ϕ0 via Eqs. (2.8) and (2.9). Our first task is to make simplifying approximations that ap-

ply to the geometry realized in Ref. [38], i.e., a thin expanding toroidal trapping potential.
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As I shall see, this leads to the Mukhanov-Sasaki equation for damped sound modes.

Figure 2.1. Sketch of the initial (with radius R0) and final (with radius Rf ) state of an
expanding ring-shaped (toroidal) BEC, as realized in Ref. [38]. As depicted, an initial
density wave traveling counterclockwise (blue) bifurcates due to phonon creation, into
two counter propagating waves (red and blue). In the main text, I use polar coordinates
(ρ, θ, z) with z directed out of the page. I also indicated the ring diameter w, implying
that the ring cross-sectional area A ≃ 1

4
πw2 for the case of a circular cross section. How-

ever, in the main text I shall allow for different radii in the ρ and z direction (denoted by
Rρ and Rz, respectively).

The first simplifying approximation I shall invoke is to neglect the ρ and z depen-

dences of the phase and density perturbations, thereby replacing ϕ̂1(r, t) → ϕ̂1(θ, t) and

n̂1(r, t) → V−1n̂1(θ, t) in Eqs. (2.8) and (2.9), where V = RA is a volume scale with A the

cross-sectional area of the toroid (so that 2πV is the toroid volume). Note that the angle-

dependent density fluctation operator n̂1(θ) is dimensionless.

Such an approximation holds in the thin-ring limit, where the toroidal radius R(t)

is much larger than the typical length scales Rρ and Rz (defined in Appendix A) char-

acterizing the ring cross-sectional area (see Fig. 2.1). This implies that an initial angle-

dependent perturbation around the ring, such as prepared in the experiments of Ref. [38],

will not excite density variations in the ρ and z directions.
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The second simplifying approximation I shall invoke is to assume that the back-

ground phase ϕ0 and density n0 are functions only of ρ and z (i.e., they are independent

of θ). This is expected, given the angular symmetry of the toroidal trapping potential.

I shall furthermore assume that the condensate and the ring are moving with the same

velocity, i.e., the superfluid velocity equals the ring velocity v = ℏ
M
∇ϕ0 = Ṙρ̂ (here

Ṙ ≡ dR
dt

). The conditions for validity of this assumption are explored in Appendix A. This

implies that the gradients in the perturbations are orthogonal to the condensate velocity

i.e. v ·∇ϕ̂1 = v ·∇n̂1 = 0. By a similar argument, the dot-product term ∇n0 ·∇n̂1 = 0

in the quantum pressure also vanishes. On the other hand, the divergence of condensate

velocity is not zero: ∇ · v = ℏ
M
∇2ϕ0 ≈ Ṙ

R
.

Within these approximations, the equations of motion (2.8) and (2.9) in the thin

ring limit take the form:

−ℏV
U
∂tϕ̂1(θ, t) = D̂θn̂1(θ, t), (2.13)

∂tn̂1(θ, t) = −Ṙ
R
n̂1(θ, t) −

ℏVn0

MR2
∂2θ ϕ̂1(θ, t), (2.14)

describing angle-dependent excitations in a thin radially expanding toroidal BEC. Here

D̂θ ≡ 1 − ℏ2
2MU

(
∂2θ

2n0R2 − ∇2n0

2n2
0

+ (∇n0)2

2n3
0

)
is the projection of D̂ in the θ-space. To solve this

system of equations, I introduce mode expansions as :

ϕ̂1(θ, t)=

√
U

2πVℏ

∞∑
n=−∞

[
einθχn(t)ân+e−inθχ∗

n(t)â†n

]
, (2.15)

n̂1(θ, t)=

√
UV
2πℏ

∞∑
n=−∞

[
einθηn(t)ân+e−inθη∗n(t)â†n

]
, (2.16)

where the ladder operators ân satisfy
[
ân, â

†
n′

]
= δn,n′ , and the mode functions are assumed

to be same whether the modes are traveling clockwise or anticlockwise, i.e. χ−n = χn and
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η−n = ηn. I take χn(t) and ηn(t) to satisfy (ηnχ
∗
n − η∗−nχ−n) = iℏ/U , which leads to the

commutation relation
[
n̂1(θ, t), ϕ̂1(θ

′, t)
]

= iδ(θ − θ′). Substituting these mode expansions

in (2.13) and (2.14), I get the following equations of motion for the mode functions:

− ℏ
U
χ̇n(t) = Dnηn(t), (2.17)

η̇n(t) = −Ṙ
R
ηn +

ℏn0

MR2
n2χn, (2.18)

where Dn ≡ 1 + ℏ2
4M2c2

(
n2

R2 + ∇2n0

n0
− (∇n0)2

n2
0

)
is the eigenvalue of D̂θ.

To arrive at the Mukhanov-Sasaki equation, I eliminate ηn in favor of χn:

χ̈n +
(
1 + γQP

)Ṙ
R
χ̇n + αQP

n2c2

R2
χn = 0. (2.19)

The corrections due to quantum pressure are γQP = −R
Ṙ
· Ḋn

Dn
and αQP = Dn. In general

these are dependent on the density, the radius of the ring and the mode index n. However,

I can make an estimate of what values these corrections typically take. We start by ap-

proximating the density gradient ∇n0 by the density divided by the width of the ring w

(characterized by the TF radii Rρ and Rz, see Appendix A). Similarly, I can approximate

∇2n0 ≃ −n0/w
2. Thus Dn ≈ 1+ n2

2

(
ξ
R

)2−( ξ
w

)2
, where ξ = ℏ√

2Mc
is the coherence length. In

the hydrodynamic limit, where the coherence length is small compared to the dimensions

of the ring, αQP = Dn ≈ 1.

To estimate γQP, I need to estimate Ḋn. To do this I use experimental parameters

from Ref. [38], with M given by the mass of a 23Na atom, the speed of sound c ≈ 2 mm/s

and the width of the ring w ≈ 2 µm (which is indeed an order of magnitude smaller than

the radius R(t) that varies between 10 µm to 50 µm [38]). Thus
(
ξ
w

)2 ≈ 10−1. Also, since

the width of the ring is small compared to its radius, w ≪ R(t), I find Ḋn ≈ −1
2

(
ξ
w

)2 Ṙ
R

.
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Here we estimate the ring width via w =
√

2µ
Mω2

z
, where ωz is the trapping frequency in the

z direction. We also made use of the local density approximation (LDA) to estimate the

chemical potential in a harmonic trap. Following [38], I get µ ∝ R−1/2 (see Appendix A).

This implies that γQP ≈ 1
2

(
ξ
w

)2 ≈ 10−1. This shows that short-distance physics of quantum

pressure comes into play as we decrease the width of the ring w to make it quasi-1D.

I pause to note that although the quantum-pressure terms in Eq. (2.10) do not

have a direct cosmological analog, our final Mukhanov-Sasaki equation is in fact relevant

for cosmology. Indeed, within inflationary cosmology, the Einstein equations that describe

the background evolution of inflationary spacetime yield a Mukhanov-Sasaki equation that

is of the form of Eq. (3.5) but with the coefficient of the damping term being the num-

ber of spatial dimensions, with a small correction due to the so-called “slow-roll parame-

ters” [43] that is reminscent of the small parameter γQP obtained here. More generally, as

I shall show below, Eq. (3.5) leads to a crucial prediction of inflationary theory, which is

spontaneous particle creation that leads (in the cosmological context) to the distribution

of anisotropies in the CMB.

In fact, the quantum pressure effects in Eq. (3.5) are essential for achieving particle

production. To see this, I now examine the implications of making a futher approximation

(motivated by our preceding estimates), in which I take αQP → 1 and γQP → 0. Indeed,

this approximation brings Eq. (3.5) into a very simple form:

χ̈n +
Ṙ

R
χ̇n +

n2c2

R2
χn = 0, (2.20)

where I assume a constant speed of sound c. Equation (2.20) was discussed in detail

in [38]. Here, I solve it by introducing the conformal time dη = cdt
R(t)

that measures the
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size in cosmology. Equation (2.20) then takes the form of a simple harmonic oscillator:

χ′′
n(η) + n2χ(η) = 0, with plane waves e±i|n|η as solutions. Switching back to proper time t,

I get:

χn(t)
∣∣∣
γ=0

∼ exp

[
± i|n|

∫ t

0

cdt′

R(t′)

]
. (2.21)

This shows that the amplitude of the modes will be conserved with time in the γQP → 0

limit. Thus the quantum pressure correction γQP plays the role of a damping parameter.

As will be seen in Sec. 2.3, nonzero γQP (even if it is small in magnitude) is essential for

particle production. This is a well-known fact in cosmology [48], where a conformally in-

variant scalar field living in a (1 + 1)-dimensional spatially flat FLRW spacetime, has plane

wave modes as solutions of the wave equation and thus leads to no particle creation.

Thus, while small, the quantum pressure correction represented by γQP fundamen-

tally modifies the solutions of the Mukhanov-Sasaki equation. In general, the parameters

γQP and αQP are dependent on time, but in what follows, I will assume them to be con-

stants (γQP = γ, αQP = α). This approximation gives us an analytic handle on the

parameter space, where the basic physical features like the particle creation can be mod-

eled without going in to the fine details of how they evolve with time. I will take γ to be

a small number and take α → 1. The reason for the latter approximation is that in this

chapter, we are mainly interested in particle creation due to quantum pressure, embodied

in the parameter γ. I expect that the slight deviation of α from unity, which effectively

yields a time-dependent speed of sound (see [25, 31, 32, 33, 34, 35]), will be a subleading

effect here. Within these approximations, (3.5) reduces to the following Mukhanov-Sasaki
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equation [40, 41, 42]:

χ̈n +
(
1 + γ

)Ṙ
R
χ̇n +

n2c2

R2
χn = 0, (2.22)

where I have assumed the speed of sound c to be a constant.

-0.1 0. 0.1 0.2 0.3 0.4 0.5

-1.

-0.5

0.

0.5

1.

χm=1

t(s)

Figure 2.2. Comparison of solutions χm of (2.22) for m=1 mode without quantum pressure
(γ=0) (dashed, black) and with quantum pressure (γ = 0.5) (solid, orange) (for t < 0 they
coincide). The modes undergo damping and redshift just as they do in the inflationary
era. For this plot, I took the speed of sound to be c = 2 mm/s, the initial radius to be
R0 = 10µm, the timescale that governs the expansion of the ring to be τ = 6.21ms and the
duration of expansion to be tf = 10ms.

In the following, I also choose a specific form for the time-dependent radius R(t).

Our choice is motivated by the fact that, in the inflationary era, the Hubble parameter

H ≡ ȧ
a
≈ H0 is roughly a constant and one could model this phase with a de-Sitter type

inflation where the scale factor a(t) ∼ eH0t [44, 43]. This motivates us to study an expo-

nential expansion R(t) = R0e
t/τ of the ring radius, characterized by the timescale τ . Then

the general solution to Eq. (2.22) is:

χn(t) = e−
t
2τ

(1+γ)
[
AnJ 1+γ

2
(z) +BnJ− 1+γ

2
(z)
]
, (2.23)

where the time dependent parameter z = ωnτ with the frequency ωn = |n|c
R(t)

and Jn(z)

are Bessel functions of the first kind. The coefficients An and Bn are fixed by the initial
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conditions.

To illustrate the effect of nonzero γ in the case of exponential inflation in the

toroid, in Fig. 2.2 I plot χn as a function of t for an n = 1 mode for the case of γ = 0

(dashed curve) and γ = 0.5 (solid curve). For t < 0 (before expansion), both curves

show oscillatory motion, and during expansion (for t > 0), where they are governed by

Eq. (2.23), they both show a redshift [38] i.e. their frequency ωn = nc
R(t)

decreases as

the ring expands. However, while the γ = 0 curve shows no reduction of amplitude, the

γ = 0.5 curve exhibits damping due to quantum pressure. Both of these phenomena, the

redshift and damping, have their respective counterparts in cosmology.

Before concluding this section, note that, as in conventional inflationary theory, the

fate of modes after expansion in a toroidal BEC is strongly dependent on the mode index

n (which controls the mode wavelength). To see this, note that for exponential expansion

R(t) ∝ et/τ , the horizon size is given by ηH =
∫ tf
0

cdt
R(t)

= cτ(1 − e−tf/τ ). After the expansion

persists long enough i.e. tf/τ is large, then the horizon size is ηH ∼ cτ . If the parameter

z = |n|cτ
R(t)

is small, i.e., R
|n| ≫ cτ , then the wavelengths of the modes are much larger than

the horizon size and the mode solution (2.23) becomes constant in time:

χn(t) ≈
(

2R0

|n|cτ

) 1+γ
2 Bn

Γ
(
1−γ
2

) , (2.24)

where I have used the result that for small arguments z → 0, the Bessel function goes as

Jn(z) → 1
Γ(n+1)

(
z
2

)n
. Note that the form of the exponential factor in Eq. (2.23) is essential

to get the above result. This freezing of super-horizon modes (i.e. those with small mode

index) is a very important aspect of the inflationary mechanism as these modes re-enter

the horizon at a later time and form large scale structures in the observable universe. In
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the next section, I will discuss how phonons are produced due to the mode solution (2.23)

and see the importance of the super-horizon modes in the expanding ring.

2.3. Spontaneous Phonon Creation

Now that I have solved the Mukhanov-Sasaki equation for a constant quantum

pressure parameter γ, in this section I use its solution (2.23) to understand how a BEC

in the vacuum state, when expanded exponentially, will exhibit the dynamical generation

of phonons. I start with an initially static BEC in its vacuum state. The mode functions

for this initial BEC (which I denote as the “in” state) obey Eq. (2.22), but with Ṙ = 0 (so

that they are undamped). These inital mode functions are:

χin
n (t) =

1√
2ω0

n

e−iω
0
nt, (2.25)

which satisfy i∂tχ
in
n = ω0

nχ
in
n , where ω0

n is the frequency at t = 0. These positive-frequency

‘in’-mode functions satisfy the Wronskian condition W [χn, χ
∗
n] = χ̇nχ

∗
n − χnχ̇

∗
n = −i, and

associated with them is the structure of ladder operators ân that annihilate their associ-

ated ‘a-vacuum’ state: ân|0a⟩ = 0.

Having described the normal modes of the initial BEC, I turn to the impact of a

period of exponential growth on the BEC, starting at t = 0, and described by the ex-

ponential function R(t) = R0e
t/τ . During this period, the modes evolve according to

(2.23), where the coefficients are fixed by matching the mode functions χn(t) and their

time derivatives with that of the initial BEC at t = 0. This matching results in the condi-

27



tions:

An =
J 1−γ

2
(z0) + iJ− 1+γ

2
(z0)

J 1+γ
2

(z0)J 1−γ
2

(z0) + J− 1+γ
2

(z0)J−1+γ
2

(z0)
,

Bn =
J−1+γ

2
(z0) − iJ 1+γ

2
(z0)

J 1+γ
2

(z0)J 1−γ
2

(z0) + J− 1+γ
2

(z0)J−1+γ
2

(z0)
, (2.26)

where z0 = |n|cτ
R0

. Equation (2.23), along with these coefficients, describes the mode func-

tions during the exponential growth regime of the toroidal BEC.

The expansion comes to a halt at some later time t = tf . In this third regime of

t > tf , the BEC Hamiltonian is again static, with excitations described by ‘out’-mode

solutions that are analogous to Eq. (2.25):

χout
n (t) =

1√
2ωfn

e−iω
f
n(t−tf ). (2.27)

Due to the quantum evolution during the ring expansion, the final Heisenberg picture re-

sults for the operators ϕ̂1(θ, t) and n̂1(θ, t) are still given by Eqs. (2.15) but with the final

mode functions a superposition of the ‘out’-modes in Eq. (2.27):

χfn(t) = e−
tf
2τ
γ
[
αnχ

out
n (t) + βnχ

out∗
n (t)

]
, (2.28)

where ωfn = |n|c
Rf

is the frequency for t ≥ tf . The coefficients in Eq. (2.28) are obtained

by again demanding that the mode function and its derivatives are consistent at tf , with

the t → t−f solution given by Eq. (2.23) as described above. By solving these matching

conditions I find the coefficients αn and βn:

αn=
e−

tf
2τ

2

[
An

(
J 1+γ

2
−iJ−1+γ

2

)
+Bn

(
J− 1+γ

2
+iJ 1−γ

2

)]
, (2.29)

βn=
e−

tf
2τ

2

[
An

(
J 1+γ

2
+iJ−1+γ

2

)
+Bn

(
J− 1+γ

2
−iJ 1−γ

2

)]
, (2.30)
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where I have suppressed the arguments of the Bessel functions, which are all evaluated at

zf = |n|cτ
Rf

with Rf the final ring radius. These coefficients, which satisfy |αn|2 − |βn|2 = 1,

describe the modification of the mode functions χn during the expansion process. One can

plug in equations (2.29)-(2.30) in Eq. (2.28), and thereby realize that the final mode χfn

has the same form as Eq. (2.23), i.e. an exponentially decreasing factor times some linear

combination of Bessel functions.

The modified mode function (2.27) in the ‘out’-regime, defines a new set of ladder

operators b̂n that annihilate the new ‘b-vacuum’ state |0b⟩ ≠ |0a⟩: b̂n|0b⟩ = 0. The coef-

ficients αn and βn provide a Bogoliubov transformation between ân and b̂n via [45, 46, 47,

48]:

ân = α∗
nb̂n − β∗

nb̂
†
−n, (2.31)

b̂n = αnân + β∗
nâ

†
−n. (2.32)

Thus, assume I start in the ‘a-vacuum’, characterized by vanishing particle density

⟨0a|n̂a|0a⟩ = 0, where n̂a = â†nân. During the expansion, the system wavefunction remains

|0a⟩ (since I work in the Heisenberg picture), but the ân evolve into the b̂n according to

Eq. (2.31). A measurement of the particle density will find the final system is bubbling

with ‘b-particles’ [49], as represented by the expectation value ⟨0a|n̂b|0a⟩ = |βn|2. This is

known as spontaneous particle creation from the vacuum state, characterized by the power

parameter |βn|2 that I plot in Fig. 2.3 with respect to the mode index n, for three values

of the quantum pressure parameter γ = 0.2, γ = 0.35 and γ = 0.5.

I now describe the connection of these results to the theory of inflation. It can be

inferred from Fig. 2.3 that the power associated with small mode indices such as n = 1
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Figure 2.3. The particle production parameter |βn|2 as function of mode index n for var-
ious values of the quantum pressure γ = 0.2 (green), γ = 0.35 (blue) and γ = 0.5 (red).
The dashed lines show |βn|2 as continuous functions to emphasize their overall dependence
on the discrete mode indices. For this plot, I took the speed of sound to be c = 2 mm/s,
the initial radius to be R0=10µm, the expansion timescale to be τ = 6.21ms and the dura-
tion of expansion to be tf = 10ms.

is much higher than those at larger n. As in inflationary cosmology, this is because dur-

ing the expansion some modes such as n = 1 become super-horizon and freeze (2.24), i.e.

their power remains constant. In contrast, modes that are well within the horizon (i.e.,

at higher n, or smaller wavelength) are strongly damped and thus their power |βn|2 is re-

duced.

Thus, larger values of the quantum pressure parameter lead to stronger damping of

modes (2.22) as well as increased spontaneous phonon production. This suggests that the

loss of amplitude is converted into phonon production. In the next section, I will discuss

the possibility of observing stimulated creation of phonons from a coherent initial state.

2.4. Stimulated Phonon Creation

Having discussed how phonons can be produced by a BEC that is initially in its

vacuum state, I now turn to the possibility of starting with a initial coherent state in the
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mode N :

|α,N⟩ = e−
1
2
|α|2eαâ

†
N |0a⟩, (2.33)

where the complex parameter α is a measure of the average number of particles in the

coherent state given by |α|2. Physically, such a state represents a macroscopic current-

carrying state of the BEC.

The states |α,N⟩ are eigenfunctions of the annihilation operators:

âm|α,N⟩ = δm,Nα|α,N⟩. (2.34)

In what follows, I will use these coherent states to calculate the average density in the

ring, before and after expansion. The advantage of using coherent states relative to fixed-

number Fock states is that in the latter, the average density is zero at all times. This im-

plies that, in an experiment, no significant change will be observed in the average density.

For the case of an initial vacuum state, studied in the preceding section, another compli-

cation is the presence of other phonon modes, such as thermally excited phonons (since

experiments cannot truly reach the zero-temperature vacuum state), that may swamp the

signal from spontaneously created phonons. In contrast, in a coherent state, the average

densities change with time, making it easier to detect changes due to phonon production.

Since we are in the Heisenberg picture, the system wavefunction is always given by

Eq. (2.33), while the density operators change during the rapid expansion of the ring. I

start by writing the mode expansion for the initial density operator (before expansion). To

do this, I make use of (2.16), and the relation (2.17) between the density ηn and phase χn
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modes neglecting the quantum pressure corrections (i.e. Dn ≈ 1 here):

n̂i1(θ, t) = N0

∞∑
n=−∞

[
einθηinn (t)ân + e−inθηin∗n (t)â†n

]
, (2.35)

where N0 =
√

UV0

2πℏ is the initial normalization and the ‘in’-density modes are ηinn (t) =

i ℏ
U

√
ω0
n

2
e−iω

0
nt. Note that we are only neglecting the quantum pressure corrections in the

connection between the ηn and χn (where they have a small effect) but keeping them in

the Mukhanov-Sasaki equation for the mode functions (where including the quantum pres-

sure is qualitatively important, as I have discussed).

Next, I write down the final density operator after expansion, which has a simi-

lar form, but with the ‘out’-mode density operators discussed above (see Eqs. (2.31) and

(2.32)):

n̂f1(θ, t) = Nfe
−

tf
2τ
γ

∞∑
n=−∞

[
einθηoutn (t)b̂n + e−inθηout∗n (t)b̂†n

]
, (2.36)

with the final normalization Nf =
√

UVf

2πℏ and the ‘out’-density modes are defined as

ηoutn (t) = i ℏ
U

√
ωf
n

2
e−iω

f
n(t−tf ). Now, I define the average density in the coherent state as:

⟨n̂1(θ, t)⟩ = ⟨α,N |n̂1(θ, t)|α,N⟩. (2.37)

If I take α ∈ R, then the initial average density can be written as a wave that travels in

the counterclockwise direction (+θ̂):

⟨n̂i1(θ, t)⟩ = −2
√
|N |α · sin

[
Nθ − |N |c

R0

t

]
, (2.38)

where I have set the normalization
√

ℏcV0

4πUR0
to unity for simplicity.

The initial atom density (at t = 0) according to Eq. (2.38) is shown in Fig. 2.4 with

a dotted line, describing a counterclockwise traveling density wave (in the +θ̂ direction).
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Figure 2.4. Comparison of average density ⟨n̂1⟩ before (dashed, black) and just after ex-
pansion (solid) for four values of the quantum pressure parameter γ. In order of decreas-
ing amplitude, the solid curves correspond to γ=0 (violet), γ=0.1 (green), γ= 0.2 (orange),
and γ = 0.5 (red). Note the γ = 0 final curve has equal amplitude to the initial density
profile (in agreement with our earlier finding shown in Fig. 2.2), with the phase difference
αn = ei(zf−z0) between the curves reflecting the fact that the wave travels around the ring
during expansion. For this plot I studied a coherent state characterized by α =

√
10 and

mode index N = 2. I also took the sound speed to be c = 2 mm/s, the initial radius to be
R0 = 10µm, the timescale for expansion to be τ = 6.21ms and the duration of expansion to
be tf = 10ms.

However, upon evaluating the density expectation value after expansion, I find that the fi-

nal average density can be expressed as a sum of two waves (as illustrated schematically

above in Fig. 2.1) reflecting phonon creation: A counterclockwise wave traveling wave (di-

rection +θ̂) with amplitude |αn|, representing a reduced initial wave, and a smaller clock-

wise traveling wave (direction −θ̂) with an amplitude |βn|, thus representing the density

wave due to newly created phonons. The final time-dependent density is:

⟨n̂f1(θ, t)⟩ = −2e−
tf
2τ
γ|N |

1
2α

(
|αN | sin

[
Nθ− |N |c

Rf

∆t+φα

]
− |βN | sin

[
Nθ+

|N |c
Rf

∆t+φβ

])
,

(2.39)

where I have again set the normalization
√

ℏcVf

4πURf
to unity. Here, ∆t = (t − tf ) is the time
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Figure 2.5. After rapid expansion of the toroidal BEC, an initial traveling wave bifur-
cates into oppositely-oriented traveling waves, as depicted in Fig. 2.1. The total density of
these waves (solid, black), given by Eq. (2.39), is a sum of a right-moving wave (dashed,
blue, arrow indicating direction), representing the ingoing particles and a left-moving wave
(dashed, red, arrow indicating direction) representing the dynamically created particles.
For this plot I studied a coherent state characterized by α=

√
10 and mode index N = 1,

I set the quantum pressure parameter γ=0.3, the sound speed to be c= 2 mm/s, the initial
radius to be R0 = 10µm, the duration of expansion to be tf = 10ms and took the timescale
governing the trap expansion to be τ = 6.21ms.

elapsed after the expansion has ended, and φα = Arg(αN) and φβ = Arg(βN) are, re-

spectively, the phase associated with the incoming and created particles. The final density

wave is shown in Fig. 2.4 at t = tf , for various values of quantum pressure. In Fig. 2.5 I

show the density vs. angle for increasing values of the elapsed time ∆t = (t − tf ). The to-

tal density is shown as a black solid curve, and the contributions due to the two terms in

Eq. (2.39), i.e., the abovementioned counterclockwise and clockwise contributions, are de-

picted as blue (rightmoving arrow) and red (leftmoving arrow) dashed curves, respectively.

Although these two contributions are not separately measurable, they can be inferred from

the time dependence of the density vs. angle, showing a concrete experimentally testable

signature of particle production in an initial coherent state.

2.5. Density Correlations

As I have discussed, a rapidly expanding toroidal BEC undergoes a modification of

its vacuum, leading to particle production with amplitude βn. In this section, I show how
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this is revealed in correlations of the density fluctuations (i.e., noise correlations), an ex-

perimental probe that has already been used to study horizons in the context of Hawking

radiation [21]. I start by computing density correlations at zero temperature T = 0 before

generalizing to nonzero temperature.

T = 0 limit

I assume our initial system, before expansion, is a vacuum of ân particles |0⟩. The

appropriate equal-time fluctuation correlation function is:

C(θ, θ′) = ⟨n̂1(θ, t)n̂1(θ
′, t)⟩ − ⟨n̂1(θ, t)⟩⟨n̂1(θ

′, t)⟩, (2.40)

where the averages are being taken with respect to the initial vacuum state |0⟩. Then, for

the initial static BEC before expansion, I make use of ⟨a†nan′⟩ = 0 along with (2.35) and

(2.38) to calculate the initial noise correlations, obtaining:

Ci(θ − θ′) = N 2
0

∞∑
n=−∞

|ηinn (t)|2ein(θ−θ′). (2.41)

Since the mode functions in the summand |ηinn (t)|2 = ℏ2
2U2ω

0
n ∝ |n|, this sum is diver-

gent and must be regularized. To implement this regularization, note that this divergence

comes from the fact that I have taken a long-wavelength (low energy) approximation. The

linear-in-n energy dependence of these modes must become quadratic, as in the conven-

tional Bogoliubov approximation, for sufficiently large |n| ≥ nc ≡ 2cMR0

ℏ . I account for this

this by replacing the linear summand with the result following from Bogoliubov theory,
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which gives:

Ci(θ − θ′) = N 2
0

ℏ2c
2U2R0

nc

∞∑
n=−∞

n2√
n2(n2 + n2

c)
ein(θ−θ

′),

=
1

2π
n0V0

∞∑
n=−∞

n2√
n2(n2 + n2

c)
ein(θ−θ

′), (2.42)

where in the second line I inserted our formulas for N0, nc, and c (at the initial radius R0)

to simplify the prefactor. This result is precisely what one would obtain for a 1D BEC, at

T = 0, within standard Bogoliubov theory [50]. The final sum is convergent, although it

has a delta-function piece that I can isolate with the Poisson summation formula to arrive

at

Ci(θ − θ′) = n0V0

(
δ(θ − θ′) + S(θ − θ′)

)
, (2.43)

S(θ) ≡ 1

2π

∞∑
n=−∞

[ n2√
n2(n2 + n2

c)
− 1
]
einθ, (2.44)

for the noise correlations before expansion.

The result for the final regularized noise correlations after expansion follow simi-

larly, and can be written in the following manner:

Cf (θ − θ′) = n0Vfe−
tf
τ
γ
(
δ(θ − θ′) + S(θ − θ′) + Csub(θ − θ′)

)
, (2.45)

where I defined the function

Csub(θ) ≡ 1

2π

∞∑
n=−∞

n2√
n2(n2 + n2

c)
× 2
[
|βn|2 − Re

(
αnβ

∗
ne

−2iωf
n∆t
)]
einθ, (2.46)

which, as can be seen by comparing to Eq. (2.43), is an additional contribution after the

rapid expansion of the ring BEC. Here, the superscript “sub” indicates that this is the

subtracted noise correlator, i.e., the difference of the final and initial normalized correla-

tors. Note that this contribution depends on ∆t = (t − tf ), the time elapsed after expan-

sion, so that the summand exhibits oscillatory behavior as a function of ∆t. However, I
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find that the summand is well approximated by time-averaging over one period (2π/ωn) of

these oscillations, which eliminates the interference term αnβ
∗
n and yields

Csub(θ) ≃ 1

π

∞∑
n=−∞

n2√
n2(n2 + n2

c)
|βn|2einθ, (2.47)

for the subtracted noise correlations.

The expressions (2.43) and (2.45) for the initial and final noise correlations have a

dirac-delta function that is divergent at θ = θ′. In plotting these functions, I drop this

piece, and set the prefactors (i.e., n0V0/(2π) and n0Vfe−
tf
τ
γ/(2π)) to unity to simplify

comparing the noise before and after expansion. The main part of Fig. 2.6 shows this com-

parison, with the initial case being a red dashed line and the final case being a solid green

line. I see that each case is dominated by a large (though finite) negative contribution at

equal angles (θ → 0). I regard such anti-correlations as reflecting the repulsion of bosonic

atoms at short distances [51, 52]. For larger angular separations, the correlations gradu-

ally flatten out [53], except for the appearance of a cusp feature at nonzero angle in the

final noise correlations. This cusp clearly represents a signature of the phonon creation,

proportional to |βn|2, that I have discussed above. In the inset, I plot the subtracted part

Eq. (2.47) for three values of the quantum pressure parameter: γ = 0.2 (solid green),

γ = 0.35 (short-dashed blue) and γ = 0.5 (long-dashed red). This shows that the mag-

nitude of the cusp increases with increasing quantum pressure, although the cusp location

is independent of γ. I do find that the cusp location as a function of angle increases with

increasing expansion time tf , asymptotically approaching θ = π for large tf .

To better understand the origin of the cusp in Fig. 2.6, and connect it to particle
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Figure 2.6. Main: Noise correlations C(θ) at zero temperature, before (dashed, red , given
in Eq. (2.43), and after (solid, green, given in Eq. (2.45)) expansion, with quantum pres-
sure γ = 0.5. In each, I focused on θ ̸= 0 (dropping the delta-function piece) and dropped
overall prefactors. The correlations after expansion show a cusp like feature that I regard
as a signature of particle creation. Inset: To emphasize the cusp, I plot the difference be-
tween these curves, the subtracted noise correlations Csub(θ−θ′) plotted with respect to the
angle difference θ. Here I chose three values of quantum pressure parameter γ = 0.2 (solid,
green) and γ = 0.35 (short-dashed, blue) and γ = 0.5 (long-dashed, red). For both plots, I
took the speed of sound to be c= 2 mm/s, the initial radius to be R0 = 10µm, the duration
of expansion to be tf=10ms, the timescale governing the trap expansion to be τ = 6.21ms,
and nc = 10.

production during expansion of the ring BEC, I differentiate (2.47) to get:

d

dθ
Csub(θ) = − 2

π

∞∑
n=1

n2|βn|2√
n2 + n2

c

sin(nθ). (2.48)

A good approximation to this sum results if I Taylor expand the creation parameter βn for

small damping γ ≪ 1 and large mode index n ≫ 1, which gives n2|βn|2 ≈
(
γ
4

)2( cτ
R0

)−2
[
1 +

a2 − 2a cos
(
2nθH

)]
, where a = e

tf
τ is the scale factor and θH = cτ

R0

(
1 − a−1

)
is the angular

horizon size at the end of expansion. Upon plugging this into (2.48), I end up with three
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sums that I write as:

1

f(γ)

d

dθ
Csub(θ) = a

∞∑
n=1

sin(n(θ − 2θH))√
n2 + n2

c

+ a

∞∑
n=1

sin(n(θ + 2θH))√
n2 + n2

c

− (1 + a2)
∞∑
n=1

sin(nθ)√
n2 + n2

c

, (2.49)

where f(γ) = γ2

8π

(
cτ
R0

)−2
. I now analyze the angle dependence of this quantity. For θ > 0,

the first sum is the dominant one, and approximating it by an integral I get

∞∑
n=1

sin(n(θ − 2θH))√
n2 + n2

c

≃
∫ ∞

0

dx
sin
(
nc(θ − 2θH)x

)
√

1 + x2
,

≃ π

2

[
Θ(θ − 2θH)I0

(
nc(θ − 2θH)

)
− L0

(
nc(θ − 2θH)

)]
, (2.50)

where the integration variable x = n/nc, I0(x) is the modified Bessel function of the first

kind, L0(x) is the modified Struve function and Θ(x) is the unit step function. The ap-

pearance of the latter means that the derivative is discontinuous at θ = 2θH, implying that

this determines the angular position of the cusp. I therefore conclude that the cusp in the

correlation function is determined by the angular horizon size:

θcusp = 2θH = 2
cτ

R0

(
1 − e−

tf
τ

)
. (2.51)

This result shows that the cusp location is independent of the damping parameter γ, as I

saw in Fig. 2.6. It also explains why the cusp moves away from the origin, eventually slow-

ing down as it approaches θ = π, as the duration of expansion tf increases. The negative

correlation at the cusp signifies creation of phonons that anti-bunch as they are created

in pairs that move away from each other with opposite momenta [45, 46, 47, 48]. This is

similar to the ‘tongue’-like features that were numerically observed in an acoustic black

hole [51].
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Figure 2.7. Subtracted noise correlations Tc
T
Csub(θ) plotted with respect to the angle differ-

ence θ, at finite temperatures given in Eq. (2.53). In each, I focused on θ ̸= 0 (dropping the
delta-function piece) and dropped overall prefactors. For low temperature T/Tc=0.1 (short-
dashed, blue), the correlations after expansion show a cusp like feature as in Fig. 2.6. For
high temperatures T/Tc = 2 (solid, red) and T/Tc = 5 (long-dashed, yellow), I get similar
correlations with a kink at the same location where the cusp appears. The appearance of
the kink and the scaling behavior with temperature is a signature of particle creation.

T ̸= 0 regime

A key question concerns the fate of the cusp feature at finite temperatures. To ex-

plore this, I extend the preceding analysis to finite temperatures by assuming the initial

unexpanded ring is characterized by a Bose distribution of quasiparticles. I therefore eval-

uate the averages in Eq. (2.40) using:

⟨â†nân′⟩ = δn,n′nB(En), (2.52)

where nB(x) = (eβx − 1)−1 is the Bose-Einstein distribution with the chemical potential

set to zero for massless phonons, β−1 = kBT and En =
√
ϵn(ϵn + 2Un0) is the Bogoliubov

dispersion. Following similar steps as in the preceding, I find for the subtracted correlation
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function:

Csub(θ) ≃ 1

π

∞∑
n=−∞

n2√
n2(n2 + n2

c)

(
1 + 2nB(n, T )

)
|βn|2einθ, (2.53)

which is similar to (2.47) except for the appearance of a Bose-Einstein distribution func-

tion nB(n, T ) defined as

nB(n, T ) =
(
ef(n)

Tc
T − 1

)−1

,

f(n) ≡
∣∣∣ n
nc

∣∣∣(1 +
n2

n2
c

)1/2

, (2.54)

where the temperature scale is defined as Tc ≡ n2
cℏ2

2MR2kB
.

In Fig. 2.7, I plot the subtracted noise correlator (2.53), divided by T/Tc, for three

different temperatures T/Tc = 0.1, T/Tc = 2 and T/Tc = 5. For these curves, I chose

the quantum pressure to be γ = 0.5, the speed of sound to be c = 2 mm/s, the radius

to be R = 10µm, the duration of expansion to be tf = 10ms, the timescale governing

the expansion of the trap to be τ = 6.21ms and nc = 10. Using these parameters I get

Tc = 10 nK for the relevant temperature scale.

These curves show that, while the cusp-like feature is still present at low T , it is

smoothed out at higher T . The higher T curves instead exhibit a change of slope (i.e.,

a kink) at the horizon location. In fact, the two higher temperature curves in Fig. 2.7

overlap. This is due to the fact that they are well approximated by taking the high-

temperature limit of the Bose function, replacing nB(n, T ) ≈ T/(fTc) in Eq. (2.53) to

obtain for the subtracted correlator:

Csub(θ) ≈ 2T

πTc

∞∑
n=−∞

|βn|2

1 + (n/nc)2
einθ. (2.55)

The approximate result Eq. (2.55) shows that, with increasing temperature, the angle-
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dependent subtracted noise correlations scale linearly with T , but with an angle-

dependence that still reflects the horizon location.

From these results, I can outline two experimental procedures to identify stimu-

lated particle creation in an experiment measuring density correlations. Firstly, an exper-

iment that measures correlations at different temperatures (but for the same expansion

time) would find an approximate collapse of the curves, when plotted as normalized in

Fig 2.7. This probes the predicted linear scaling with temperature. Secondly, experiments

at fixed temperature but varying expansion time would detect a change in the location

of the angle-dependent kink, representing the moving horizon. These results demonstrate

that correlations in the density fluctuations show a clear signature of particle production

in a rapidly expanding toroidal BEC, showing another way that cold atom experiments

can probe inflationary physics.

To conclude, in this chapter I looked at how a Bose-Einstein condensate confined

to a rapidly expanding thin toroidal setup leads to spontaneous creation of phonons,

similar to the inflationary universe. For this, I studied the long-wavelength limit of the

Bogoliubov-de Gennes equations, yielding a damped harmonic oscillator equation, i.e., the

Mukhanov-Sasaki equation. I showed that this damping forces an initial positive-frequency

plane wave in the static BEC to end up as a combination of positive and negative fre-

quency modes. As a result, the phonon field operator evolves and sees the initial vacuum

as a state filled with phonons. This spontaneous particle creation is maximum for low-

energy modes as these modes are the ones that are able to exit the sonic horizon in the

BEC. Thus this setup achieves the two key features of the inflationary mechanism: par-

ticle creation and horizon exit of long-wavelength modes. I then showed that an initially
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excited (coherent) state leads to an amplification in the phonon population, which could

be seen as a density modulation. I ended with a discussion of density correlations, where I

showed that phonon creation manifests itself as a cusp at zero temperature, and as a kink

at finite temperatures.
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CHAPTER 3. ENTANGLEMENT IN AN EXPANDING
TOROIDAL BOSE-EINSTEIN CONDENSATE

In the previous chapter, I looked at how phonons are spontaneously generated in an

expanding toroidal BEC. In this chapter, I will see that these phonons are always created

in two-mode squeezed states, i.e., they are entangled in modes n and −n. This means that

the correlations discussed in the previous chapter (at zero temperature) are purely due

to quantum effects, i.e., they are of the EPR (Einstein-Podolsky-Rosen) type [88], that

degrade and become classical in nature at finite temperatures, i.e., their features can be

reproduced by other classical experiments. These quantum correlations are relevant for

the inflationary mechanism, as there too entangled modes are generated in pairs (k⃗,−k⃗),

which could possibly have left some imprint in the cosmic microwave background radia-

tion.

The rest of this chapter is organized as follows: in Sec. 3.1, I review how fluctu-

ations (i.e., phonons) evolve in an expanding toroidal BEC using the Mukhanov-Sasaki

equation [40, 41, 42] that governs the evolution of fluctuations in the primordial universe.

This equation describes how the condensate fluctuations undergo damping due to the pres-

ence of quantum pressure, leading to a spontaneous generation of phonons in two-mode

squeezed states. In Sec. 3.2, I will use the theory of continuous quantum variables to con-

struct the covariance matrix which has information about all possible system correlations.

I will then use this to quantify the amount of entanglement present in this system for

an initial vacuum state with no phonons. I will discuss how thermal noise and detector

imperfections can lead to loss of entanglement, and how an initial squeezing in a single-
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mode of phonons can help recover this lost entanglement. In Sec. 3.3, I propose a protocol,

based on the Hanbury-Brown and Twiss [94, 95, 96] like experiment discussed in Ref. [89]

that was performed for BECs, to determine the entanglement of an inflationary toroidal

BEC. I show that this protocol makes it possible to measure the correlation functions en-

tering the covariance matrix determining the system density matrix, thereby providing a

way to quantify the entanglement present in the inflationary toroidal BEC due to analog

particle creation.

3.1. Particle creation in toroidal BECs

In this section, I briefly review and expand upon the discussion of the previous

chapter (also in Ref. [76]) which analyzed properties of an inflationary toroidal BEC.

There it was shown that this sytem can exhibit spontaneous phonon creation that mimics

the spontaneous generation of perturbations from the vacuum during the inflationary era

of the primordial universe.

In the thin-ring limit [38, 73], the only relevant spatial coordinate is the angle θ

around the ring, and fluctuations in the phase ϕ̂1(θ) and density n̂1(θ) are captured by the

following Hamiltonian:

Ĥ =

∫ 2π

0

dθ

[
ℏ2

2MR2
n0V

(
∂θϕ̂1(θ)

)2
+

1

2

U

V
n̂2
1(θ)

]
, (3.1)

where ℏ is the reduced Planck’s constant, M is the mass of the atoms in the condensate,

R(t) is the mean radius of the toroid. Following the experiment of Eckel et al, I assume

R(t) to exhibit an experimentally-controllable time dependence. Here, n0 is the average

condensate density, U = 4πasℏ2
M

is the interaction parameter with as being the scatter-

ing length, and V = RA is a volume scale with A being the cross-sectional area of the
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toroid (such that 2πV is the toroid volume). The angle dependent fluctuation field oper-

ators ϕ̂1(θ, t) and n̂1(θ, t) are dimensionless and satisfy equal time commutation relations[
n̂1(θ, t), ϕ̂1(θ

′, t)
]

= iδ(θ − θ′). To study the energy dependence of these angle-dependent

mode excitations I assume the following mode expansions for the fluctuation operators

[76]:

ϕ̂1(θ, t) =

√
U

2πVℏ

∞∑
n=−∞

[
einθχin

n (t)ân + e−inθχin∗
n (t)â†n

]
, (3.2)

n̂1(θ, t) =

√
UV
2πℏ

∞∑
n=−∞

[
einθηinn (t)ân + e−inθηin∗n (t)â†n

]
, (3.3)

where the ladder operators ân satisfy
[
ân, â

†
n′

]
= δn,n′ , and the mode functions are assumed

to be same whether they travel clockwise or anticlockwise, i.e. χin
−n = χin

n and ηin−n = ηinn

and they satisfy (ηinn χ
in∗
n − ηin∗−nχ

in
−n) = iℏ/U . The operators ân and â†n respectively cre-

ate and annihilate phonons with mode number n. To see this, I note that in the initial

static toroidal BEC with radius R(t = 0) ≡ R0, there exists a preferred set of ‘in’-modes

χin
n (t) = (2ω0

n)−1/2e−iω
0
nt, which is a positive frequency mode as i∂tχ

in
n = ω0

nχ
in
n , where

ω0
n = |n|c/R0 is the frequency at t = 0. Associated to these ‘in’-modes, is the structure

of ladder operators ân that annihilate their associated ‘a-vacuum’: ân|0a⟩ = 0. The ‘in’-

density modes ηn can be extracted from the corresponding phase modes χn via the Euler

equation in [76]: n̂1(θ, t) = −ℏV
U

d
dt
ϕ̂1(θ, t) which upon using the above mode expansion

gives ηn = − ℏ
U
d
dt
χn(t). Thus, in this regime, the Hamiltonian diagonalizes and can be writ-

ten as a sum of harmonic oscillators as follows:

Ĥ in =
∞∑

n=−∞

1

2
ℏω0

n

[
ânâ

†
n + â†nân

]
, (3.4)

giving us a particle interpretation in the form of phonons excited from the vacuum state
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|0a⟩. For the choice where the ‘in’-modes are described by plane waves in time, it can be

shown that the above Hamiltonian defines a time-translation operator eiĤ
int under whose

action the vacuum state |0a⟩ is invariant. Thus the presence of time translation symmetry

is intimately connected to the emergence of well-defined quasi-particles.

At t = 0, the ring starts expanding according to the form of R(t) that can de-

signed to be an error function [38], an exponential [76] or a power-law in time. As a

result, the time translation symmetry gets broken and the modes acquire a non-trivial

time-dependence. In this regime, the evolution of phase modes χn is governed by the

Mukhanov-Sasaki equation, which in the early universe cosmology dictates the evolution of

fluctuations in the inflaton field [40, 41, 42]:

χ̈n +
(
1 + γQP

)Ṙ
R
χ̇n + αQP

n2c2

R2
χn = 0, (3.5)

where Ṙ = dR/dt is the time derivative of the ring’s radius, γQP and αQP are corrections

due to quantum pressure that depend on density, radius of the ring and mode index. For

the special case when γQP = γ is a constant, αQP is unity and the ring expands exponen-

tially R(t) = R0e
t/τ , τ being the expansion time-scale, the solutions to (3.5) are Bessel

functions that undergo damping [76] (see Eq. 2.23 in Chapter 2). The absence of plane

wave solutions in this time-dependent regime implies that there are no preferred set of

modes and diagonalizing the Hamiltonian as I did in Eq.(3.4) is not possible. Thus, the

vacuum state at any instant is not invariant under time translations, and thus there is no

notion of ‘particles’ during this time-dependent regime. In the case of the primordial uni-

verse, where there are no static regimes, the procedure to select a preferred set of modes

was given by Bunch and Davies [90]. However, in the toroidal BEC case, there is an ini-
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tial static regime before t = 0 which provides us with initial conditions thereby selecting a

preferred vacuum state.

This expansion ends at time t = tf, and thus begins the final static regime

where again I expect to find a preferred set of positive frequency ‘out’-modes χout
n (t) =

(2ωf
n)−

1
2 e−iω

f
n(t−tf), that depend on the final frequency ωf

n = |n|c
Rf

, where Rf = R0e
tf/τ is

the ring radius at t = tf. However, in the Heisenberg picture, the states remain static

whereas the operators evolve with time. Thus the expansion makes the fluctuation modes

χn evolve such that they can be expressed as a superposition of ‘out’-modes and their

complex conjugates, yielding the following mode expansion for the phase operator:

ϕ̂1(θ, t) =

√
U

2πVℏ
e

γtf
2τ

×
∞∑

n=−∞

[
einθ
(
αnχ

out
n (t) + βnχ

out∗
n (t)

)
ân + e−inθ

(
α∗
nχ

out∗
n (t) + β∗

nχ
out
n (t)

)
â†n
]
, (3.6)

with relative probability amplitudes αn and βn, known as the Bogoliubov coefficients that

satisfy the normalization condition |αn|2 − |βn|2 = 1. Since the quantum field for phase has

evolved from the initial mode expansion in Eq. (3.2) to the final in Eq. (3.6), the notion of

vacuum state carried by the fluctuations also changes. The above mode expansion can be

rearranged to give an expression similar to Eq. (3.2) accompanied by replacing the ladder

operators ân → b̂n, that annihilate the new ‘b-vacuum’ state |0b⟩ ≠ |0a⟩: b̂n|0b⟩ = 0,

yielding the Bogoliubov transformation between these two vacua:

b̂n = αnân + β∗
nâ

†
−n. (3.7)

Thus if I start with a toroidal condensate in a state with no phonons i.e. characterized by

the ‘a-vacuum’ ⟨0a|â†nân|0a⟩ = 0, then after going through an expansion phase, the final
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static BEC described by the ‘b-vacuum’ will be seen as if bubbling with ‘a-particles’ i.e.

⟨0b|â†nân|0b⟩ = |βn|2.

In Ref. [76], the particle creation probability |βn|2 was calculated, as a function of

the mode index n, for the case of exponential expansion R(t) = R0e
tf/τ and for various

values of the quantum pressure parameter γ. The probability for particle creation in gen-

eral decreases with mode index n, being much larger for small mode indices such as n = 1.

This fact is consistent with the well-known horizon exit phenomena in early-universe cos-

mology which states that low frequency modes (like n = 1), exit the horizon early in the

expansion and thus their amplitude freezes, whereas the high frequency modes remain in-

side the horizon and undergo damping leading to considerable power loss. The reason this

spontaneous phonon generation happens is because the quantum pressure parameter γ in

(3.5) forces the mode function χn to undergo amplitude damping in mode n, which then

gets used into creating phonons in mode −n, thereby changing the direction of travel in-

side the toroid. Thus, the two key ingredients responsible for the success of the inflation-

ary paradigm, i.e., particle creation and the horizon exit mechanism, can also manifest in

the toroidal BEC setup.

A good approximation to |βn|2 results if I Taylor expand it for small damping γ ≪

1 and large mode index n≫ 1, giving us:

|βn|2 ≈
1

n2

(γ
4

)2( cτ
R0

)−2[
1 + a2 − 2a cos

(
2nθH

)]
, (3.8)

where the scale factor a = e
tf
τ is the ratio of final and initial radii Rf/R0, and θH =

cτ
R0

(
1 − a−1

)
is the angular horizon size at the end of the expansion. The cosine term in

Eq. (3.8) leads to oscillations in the particle creation probability versus mode index [76],
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with the oscillation scale being (2θH)−1. Using Eq. (3.1), the final static Hamiltonian can

be diagonalized in terms of the ‘out’-mode basis associated with annihilation operators b̂n:

Ĥout =
∞∑

n=−∞

1

2
ℏωf

n

[
b̂nb̂

†
n + b̂†nb̂n

]
, (3.9)

where the presence of time translation symmetry in the final static regime permits a de-

scription in terms of particles (phonons). The phenomena of spontaneous particle creation

can be understood using an analogy with a quantum mechanical particle occupying the

ground state in a one-dimensional box. If the box is now expanded suddenly, then in the

sudden approximation of quantum mechanics, the new wave-function for the particle can

be written as a linear combination of the eigenstates of the original Hamiltonian. This

would not be the case if the box were expanded very slowly, in which case there would be

sufficient time for the wave-functions to change their form to conform with the new Hamil-

tonian.

Using the Bogoliubov transformation Eq. (3.7) along with the annihilation relation

b̂n|0b⟩ = 0, it can be shown that the ‘b-vacuum’ which characterizes the final static regime

can be expressed as a superposition of excited ‘a-particle’ states as follows [46]:

|0b⟩ =
∏
n∈Z

1√
|αn|

e
βn
2αn

â†nâ
†
−n|0a⟩. (3.10)

This way of expressing a state as an exponential of a quadratic product of creation opera-

tors acting on the vacuum is known as a two-mode squeezed state. Thus the ‘b-vacuum’ is

a squeezed state with respect to the ‘a-vacuum’, and vice-versa. The physical picture here

is that the expanding BEC creates pairs of phonons in modes n and −n that travel oppo-

site to each other and are entangled. In the next section, I will use the theory of Gaussian
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continuous variables to discuss in what sense these phonon pairs are entangled by first de-

scribing the covariance matrix (which has complete information about a system’s correla-

tions), how to perform partial transposition on it, and then how to quantify entanglement

using Logarithmic Negativity. I will also see how finite temperature of the BEC is detri-

mental to this mode entanglement and how it can be recovered by preparing the initial

BEC with phonons in single mode squeezed states.

3.2. Gaussian States and Entanglement in the Ring

In the previous section, I discussed how a rapidly expanding toroidal BEC sponta-

neously generates phonons from the vacuum. In Ref. [76], it was shown that the density-

density correlations between phonons with respect to the ring angle exhibits a cusp like

feature at zero temperature, and a kink like feature at finite temperatures, with their lo-

cations scaling with the horizon size, and their amplitude increases with quantum pressure

and temperatures. In this section, I will investigate whether these correlations due to dy-

namical phonon creation are quantum or classical in nature, i.e., whether the phonons are

entangled or not. If the system has entanglement in it, then its correlations cannot be re-

produced by any classical process, and hence they are called quantum correlations.

The fluctuations inside a BEC can be represented by quantum fields of phase ϕ̂1(θ)

and density n̂1(θ), that possess infinite degrees of freedom (as the mode index can be any

integer). Therefore, they can be described using continuous variable quantum states. Any

quantum state having N degrees of freedom can be described by a vector of 2N quadra-

ture operators r̂ = (x̂1, p̂1, x̂2, p̂2, ...)
T, made of canonically conjugate Hermitian operators

x̂ and p̂ per degree of freedom. Since I study entanglement between modes n and −n in
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the toroid, I need this formalism for the case of N = 2. Thus, the hermitian conjugate

pairs are (X̂n, P̂n, X̂−n, P̂−n) that satisfy the canonical commutation relations [r̂, r̂T] = iΩ,

with Ω = Ω1 ⊗ In, where Ω1 =

 0 1

−1 0

 is the symplectic form and In is the n × n iden-

tity matrix. Gaussian states are defined to be those quantum states where any m-point

correlator can be decomposed into two-point correlators. For example, when m = 4 and

I choose vacuum |0⟩ as our Gaussian state, then the four point correlator of a scalar field

ϕ̂(x) becomes:

⟨ϕ̂(θ1)ϕ̂(θ2)ϕ̂(θ3)ϕ̂(θ4)⟩ = ⟨ϕ̂(θ1)ϕ̂(θ2)⟩⟨ϕ̂(θ3)ϕ̂(θ4)⟩ + ⟨ϕ̂(θ1)ϕ̂(θ3)⟩⟨ϕ̂(θ2)ϕ̂(θ4)⟩

+ ⟨ϕ̂(θ1)ϕ̂(θ4)⟩⟨ϕ̂(θ2)ϕ̂(θ3)⟩, (3.11)

which can be derived using Wick’s theorem. Here I assumed that the vacuum average of

the individual field operators is zero. Thus any correlation function that involves an even

number of phase ϕ̂(θ) and/or density n̂(θ) operators can be decomposed in terms of the

first and second moments, whereas any odd combination of such field operators vanishes

identically. Thus Gaussian states are completely characterized by their first moments or

the mean vector µ = ⟨r̂⟩, and the anti-symmetrized second moments or the covariance

matrix σ = ⟨{(r̂ − µ), (r̂ − µ)T}⟩. I subtract µ in the definition of σ to avoid having re-

dundant information in the first and second moments. One focuses on the symmetric part

of the second moments because the anti-symmetric part is determined by the canonical

commutation relations, and is state independent.

Alternatively, Gaussian states can also be defined as all the ground and thermal

states of Hamiltonians that are quadratic in the quadrature operators [87]: Ĥ = 1
2
r̂THr̂ +

r̂Tr, where r is a 2N -dimensional real vector and H is the real, symmetric and positive
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definite Hamiltonian matrix. As a result, the density operator for any mixed Gaussian

state can be written as:

ρ̂G =
e−βĤ

Tr
[
e−βĤ

] , (3.12)

where β ∈ R+, and the limit β → 0 represents pure Gaussian states. The quadratic nature

of the Hamiltonian implies that its unitary action on such states is a linear evolution of

the quadrature governed by symplectic transformations [87], thereby preserving the Gaus-

sianity of the quantum states.

To quantify entanglement of Gaussian states, I make use of the positivity of partial

transpose (PPT) criterion, which states that if a Gaussian state with a 2N -dimensional

covariance matrix σ under partial transposition σ̃ = TσT , has an eigenvalue with abso-

lute value less than unity, then the system is entangled. The minimum symplectic eigen-

value, if it exists, can then be used to calculate the Logarithmic Negativity EN [n],

EN [n] = log2 ||ρ̃||, (3.13)

where ρ̃ is the partially transposed density matrix and ||Â|| represents the sum of the ab-

solute value of the eigenvalues of Â. This corresponds to finding the logarithm of the ab-

solute value of the minimum symplectic eigenvalue of the partially transposed covariance

matrix σ̃. Note that if all the symplectic eigenvalues are greater than unity, then EN [n] is

defined to be zero. In general for multi-mode Gaussian states, the PPT-criterion is neces-

sary and sufficient for the existence of entanglement between one versus n modes, but for

other bi-partitions such as two modes versus n modes, this criterion is sufficient but not

necessary. However, EN [n] is still a consistent entanglement monotone, i.e. a quantity that

does not increase under local operations and classical communication (LOCC) [87].
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For a bipartite Gaussian state such as the toroidal BEC phonons in modes n and

−n, the covariance matrix is defined in terms of quadratures {X̂±n, P̂±n} (I take µ = 0 for

vacuum, thermal or squeezed state averages of phase and density operators):

σ =



⟨{X̂n, X̂n}⟩ ⟨{X̂n, P̂n}⟩ ⟨{X̂n, X̂−n}⟩ ⟨{X̂n, P̂−n}⟩

⟨{P̂n, X̂n}⟩ ⟨{P̂n, P̂n}⟩ ⟨{P̂n, X̂−n}⟩ ⟨{P̂n, P̂−n}⟩

⟨{X̂−n, X̂n}⟩ ⟨{X̂−n, P̂n}⟩ ⟨{X̂−n, X̂−n}⟩ ⟨{X̂−n, P̂−n}⟩

⟨{P̂−n, X̂n}⟩ ⟨{P̂−n, P̂n}⟩ ⟨{P̂−n, X̂−n}⟩ ⟨{P̂−n, P̂−n}⟩


. (3.14)

Then under partial transposition, i.e. transpose operation T = diag(1, 1, 1,−1) on one

of its modes, I get the partially transposed covariance matrix: σ̃ = TσT . If this has a

an eigenvalue with absolute value less than unity, then according to the PPT-criterion,

the system is entangled. Note, that this criterion is a necessary and sufficient for the exis-

tence of entanglement in two-mode Gaussian systems, such as between the toroidal BEC

phonons in modes n and −n.

In the subsequent subsections, I will construct the covariance matrix for states per-

taining to the particle creation process (see Eq. (3.10)) for various types of initial inputs

(such as vacuum, thermal and single-mode squeezed), describe how to perform partial

transposition, and hence calculate the symplectic eigenvalues that will help to quantify

entanglement as EN [n].

Quadratures and time evolution

As I discussed in the previous section, the fluctuations inside the toroidal BEC as

described by a real scalar field ϕ̂1(θ) and its conjugate momenta n̂1(θ), is a set of infinite

harmonic oscillator for each mode index n. In the initial static regime, I can expand the
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the phase field in terms of plane wave modes χin
n (t) = (2ω0

n)−1/2e−iω
0
nt and ladder opera-

tors ân, whereas, in the final static phase, the mode expansion in Eq. (3.6) is in terms of

χout
n (t) = (2ωf

n)−1/2e−iω
f
nt and b̂n. These modes satisfy the equation χ̈n + ω2

nχn = 0, and

therefore, in analogy with the quantum harmonic oscillator, I can define canonically conju-

gate Hermitian operators for mode n as X̂n = 1√
2
(ân+ â†n) and P̂n = − i√

2
(ân− â†n). To con-

struct the covariance matrix I define the vector of quadrature operators pertaining to the

two modes n and −n as r̂ = (X̂n, P̂n, X̂−n, P̂−n)T and use it in σ = ⟨{(r̂ − µ), (r̂ − µ)T}⟩,

where I have taken the mean vector µ = ⟨r̂⟩ = 0 as I will not be considering coherent

states. Using this definition, the covariance matrix for the initial static BEC is:

σin = (1 + 2nB)I4, (3.15)

where nB(x) = (ex − 1)−1 is the Bose-Einstein distribution. I can similarly evaluate the

final case σout by evaluating all the vacuum averages of the b̂-operators. Alternatively, I

could define a vector of ladder operators before Â
in

= (ân, â−n, â
†
n, â

†
−n)T, and after ex-

pansion Â
out

= (b̂n, b̂−n, b̂
†
n, b̂

†
−n)T, that satisfy commutation relations: [Â, Â

T
] = J , with

J =

 0 I2

−I2 0

 being the symplectic form in this basis. The quadrature operators r̂ can

be written in terms of ladder operators using the following unitary operation Û :

r̂ = UÂ, U ≡ 1√
2



1 0 1 0

−i 0 i 0

0 1 0 1

0 −i 0 i


, (3.16)

To describe the initial state, I build the covariance matrix in the space of annihilation op-

erators as σin
A = ⟨{Â

in
,
(
Â

in)T}⟩, which is related to the physical covariance matrix via the
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unitary evolution σin
A = U †σinU . For an initial state with thermal noise (i.e., characterized

by a finite temperature T density matrix) I get:

σin
A = (1 + 2nB(En))

0 1

1 0

 , (3.17)

where nB(x) = (eβx − 1)−1 is the Bose-Einstein distribution with β = (kBT )−1 and kB

the Boltzmann constant. Here, the Bogoliubov energy dispersion is En =
√
ϵn(ϵn + 2Mc2),

with c the speed of sound and ϵn = ℏ2n2

2MR2 the single particle energy in the toroid. In the

hydrodynamic limit of interest here, in which the mode wavelength is large compared to

the coherence length, I can approximate En ≃ ℏc
R
|n|.

As I have discussed, the impact of the inflationary regime on the toroidal BEC is

captured by the Bogoliubov transformation Eq. (3.7), which implies the following relation

between the initial (in) and final (out) ladder operators:

Â
out

= SAÂ
in
, SA ≡



αn 0 0 βn

0 αn βn 0

0 β∗
n α∗

n 0

β∗
n 0 0 α∗

n


. (3.18)

As a result, the out covariance matrix is easily obtained from the in covariance matrix via

σout
A = SAσ

in
AS

T
A. Performing this computation for the case of the initial thermal state in
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Eq. (3.17), and transforming back to the physical variables via σout = Uσout
A U †, I get:

σout = (1 + 2nB)

×



|αn|2 + |βn|2 0 αnβn + α∗
nβ

∗
n −i(αnβn − α∗

nβ
∗
n)

0 |αn|2 + |βn|2 −i(αnβn − α∗
nβ

∗
n) −(αnβn + α∗

nβ
∗
n)

αnβn + α∗
nβ

∗
n −i(αnβn − α∗

nβ
∗
n) |αn|2 + |βn|2 0

−i(αnβn − α∗
nβ

∗
n) −(αnβn + α∗

nβ
∗
n) 0 |αn|2 + |βn|2


,

(3.19)

where I dropped the argument of the Bose function (which is always En) for brevity. I

note that a vacuum input corresponds to the zero temperature limit of the above covari-

ance matrix that makes the Bose function vanish. Note that the procedure outlined to

obtain (3.19), can be summarized by the formula: σout = Û ŜAσ
in
A Ŝ

T
AÛ

†. Thus, once the in-

put state σin
A has been given, then all is needed are the Bogoliubov transformation matrix

(3.18) and the unitary evolution matrix (3.16) to determine the covariance matrix after

expansion.

Our next task is to implement the partial transpose of the covariance matrix. To

do this, I note that the transpose of ladder operators: b̂Tn = b̂†n and b̂†Tn = b̂n, results in the

following transposition of the quadrature operators: X̂T
n = X̂n and P̂T

n = −P̂n. Thus, the

process of partial transposition on a two-mode Gaussian system is defined as keeping the n

undisturbed, and transposing only the mode −n. This procedure is equivalent to changing

the sign of momenta for the −n mode, i.e. P̂−n → −P̂−n when evaluating the covariance

matrix. Thus the partial transpose of the covariance matrix in Eq. (3.19) can be found as:

σ̃out = T̂ σoutT̂ , where T̂ = diag(1, 1, 1,−1) is the partial transposition operator for two-
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mode Gaussian states. The symplectic eigenvalues of σ̃out are the eigenvalues of the matrix

iΩσ̃out, where the absolute minimum is given by λT [n] = (1 + 2nB)
(
|αn| − |βn|

)2
, with

subscript T denoting the temperature of the initial BEC. The PPT-criterion states that if

λT [n] ≥ 1, then the system is separable, otherwise it is entangled. Using the normalization

condition for Bogoliubov coefficients |αn|2 − |βn|2 = 1, the condition for the existence of

entanglement, then takes the following form:

nB < |βn|
[
|βn| +

√
1 + |βn|2

]
. (3.20)

Since the Bose function, for fixed energies, is an increasing function of temperature, this

formula implies that increasing temperature will always lead to a destruction of entangle-

ment, implying that thermal phonons present in the system are detrimental to the entan-

glement between spontaneously generated phonon pairs.

This condition can also be derived using the Cauchy-Schwarz Inequality (Peres-

Horodecki criterion), which is a generalization of Bell’s inequality to the mode space. This

was used by Steinhauer [21] to quantify entanglement in his Hawking radiation experi-

ment, where phonon pairs are spontaneously created due to presence of an analog BEC

black hole horizon. Here the relevant quantity ∆ is defined as follows:

∆ = ⟨b̂†nb̂n⟩⟨b̂
†
−nb̂−n⟩ − |⟨b̂nb̂−n⟩|2, (3.21)

where the averages of ‘b’-operators b̂n is taken with respect to the ‘a’-vacuum |0a⟩. This

criterion states that if ∆ < 0, then the system is entangled, otherwise it is separable. To

apply this criteria on the toroidal BEC case, I use the Bogoliubov transformation b̂n =

αnân +β∗
nâ

†
−n, and the thermal averages of the ‘a’-operators ⟨â†nân⟩ = nB(En) and ⟨ânâ†n⟩ =

(1 + nB(En)). Then the expression for the Peres-Horodecki parameter in the toroidal BEC
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becomes ∆ = n2
B − |β2

n| − 2nB|βn|2, and therefore, the condition for the existence of en-

tanglement here turns out to be the same as (3.20). However, the parameter ∆ is an en-

tanglement witness, i.e., it only tells us whether a system has entanglement or not. In the

next subsection, I use the symplectic eigenvalues discussed here to quantify mode entan-

glement via logarithmic negativity.

Entanglement generation by the BEC expansion

As I have discussed in Eq. (3.10), the BEC expansion spontaneously creates pairs

of phonons in modes n and −n (similar to quantum processes like parametric down-

conversion), suggesting that modes traveling in opposite directions could be entangled. In

this subsection, I quantify these quantum correlations by means of logarithmic negativity

for various model parameters, and for vacuum and noisy input states.

For the final static BEC, the discussion following Eq. (3.13) implies finding the log-

arithm of the minimum symplectic eigenvalue of the partially transposed of covariance ma-

trix in Eq. (3.19), which gives us:

EN [n] = Max
(

0,− log2

[
(1 + 2nB)(|αn| − |βn|)2

])
, (3.22)

In Fig. 3.1, I plot EN [n] for the corresponding Bogoliubov coefficients derived in [76]

(please see Fig. 2.3), and for the system parameters given in Ref. [38]. The input state for

this plot is taken to be the vacuum state, i.e. T = 0, resulting in σin = I4. Since EN [n] is

positive in the plots, therefore entanglement exists for all modes at zero temperature i.e.

for a vacuum input in the initial ring. This is due to the fact that particle creation leads

to two-mode squeezed phonon states which by definition are entangled.
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Figure 3.1. Logarithmic Negativity between phonons labeled by n and −n, for zero ambi-
ent temperature T = 0, for various values of the quantum pressure γ= 0.2 (green), γ = 0.35
(blue) and γ = 0.5 (red). The mode index n is discrete; I have added a continuous dashed
line to increase the visibility of the overall dependence of EN with n. This plot corre-
sponds to an exponentially expanding ring, with radius R(t) = R0e

t/τ , where I took the
initial radius to be R0 = 10µm, the duration of expansion to be tf = 10ms, the timescale
governing the trap expansion to be τ = 6.21ms, speed of sound to be c = 2 mm/s, and
nc = 10, as I did for particle creation parameter in Fig. 2.3.

As a next step in our analysis, I study the case of a noisy input, corresponding to

σin = (2nB + 1)I4. The logarithmic negativity as function of the Bogolioubov coeffi-

cients and the BEC temperature is given by (3.22). In general, a noisy input in the initial

ring i.e. Tenv ̸= 0, is detrimental to this mode entanglement as can be clearly seen from

Fig. 3.2. Mathematically, this can be understood from the form of the minimum symplec-

tic eigenvalue which is directly proportional to the Bose factor. As the temperature in-

creases, so does the Bose factor and therefore the symplectic value, and at some critical

temperature this eigenvalue becomes larger than unity and hence all the entanglement in

the system vanishes.

There are some interesting physical features to note from these plots. First, note

that entanglement at T = 0, is maximum for low energy modes (n = 1), and decreases
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Figure 3.2. Logarithmic negativity EN (n) versus the mode index n, for various values of
the environment temperature, T = 0nK (red), T = 0.3nK (blue), T = 0.5nK (green), and
T = 0.7nK (orange). The figure shows that entanglement in the final state is degraded by
ambient thermal noise, and that the entanglement in pairs with small n is more fragile.
For this plot I use quantum pressure γ = 0.5, and used the parameters given in Ref. [76].

with increasing mode index with oscillations at the scale of inverse horizon size, as can

be seen from Eq. (3.8). This is due to the fact long wavelength modes, such as n = 1,

exit the horizon earlier compared to other modes n ≥ 2 during the expansion phase (see

Ref. [76]). Thus their amplitude freezes, thereby conserving their power and producing a

relatively larger number of entangled phonon pairs in the final static regime. On the other

hand, high frequency modes stay confined well within the horizon and thus go through

considerable damping, thus generating much fewer entangled phonons. With increasing

temperature, the entanglement in low energy modes disappears at a lower temperature,

than the high energy modes. This is due to the fact that spontaneous phonon creation

happens with probability |βn|2 ∼ 1
n2 (see Eq. (3.8)) and thus dies off slowly, whereas the

thermal phonons (similar to blackbody photons) are generated in huge numbers for low

energy modes, and die of exponentially with the mode index i.e. e−βEn .

To determine the temperature Tv at which entanglement in the mode pair (n,−n)
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vanishes, I set that EN [n] = 0 given by (3.22), and solve for Tv as a function of the mode

index n, yielding the following expression:

Tv(n) =
En
kB

[
EN

{
1 +

1

|βn|(βn +
√

1 + |βn|)

}]−1

, (3.23)

for which I made use of the normalization condition for the Bogoliubov coefficients |αn|2 −

|βn|2 = 1. The denominator inside the logarithm is the same as the condition for the con-

dition for the existence of entanglement in Eq. (3.20), which was also derived using the

Peres-Horodecki parameter ∆ in Eq. (3.21). In Fig. 3.3, I plot Tv(n), which in general in-

creases with the mode index n confirming that the entanglement at lower modes n is more

sensitive to the BEC temperature, as a lower value temperature is needed to remove the

entanglement in those modes. The oscillatory nature of the function Tv(n) is due to the

oscillations in the particle creation parameter |βn|2 due to the presence of a cosine term

involving the sonic horizon size cos(2nθH), appearing in Eq. (3.8) [76]. In the next subsec-

tion, I will discuss how this loss of entanglement due to a thermal bath of phonons could

be rescued by the use of single mode squeezed states.

Single mode squeezed states and inputs

In previous subsection, I saw how logarithmic negativity helps us quantify the

mode entanglement of phonons in a BEC at zero temperature, and how thermal noise

degrades it and makes it vanish at temperature Tv given in Eq. (3.23). This could be a

problem because according to Fig. 3.2, the entanglement in mode n = 1 vanishes at very

low temperatures (of the order of nano Kelvins), and it is difficult to create higher angular

modes in the ring without exciting the radial or vertical modes (see Ref. [38]).

To mitigate this, in this subsection, I propose using single-mode squeezed states
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Figure 3.3. The temperature Tv(n) (in nK) at which the entanglement in the mode pair
(n,−n) completely vanishes. Larger ambient temperature is needed to degrade the en-
tanglement in pairs with large mode index n. The oscillations originate in the oscillatory
character of |βn|2. This figure uses the same parameters as in Fig. 3.2.

in mode n, keeping the other mode −n in the vacuum, that acts as a quantum resource.

Such states can be generated using the quadratic Hamiltonian [87]: Ĥsq
n = r

2
r̂Tσxr̂ =

rX̂nP̂n = r
2i

(â2n − â†2n ), where r is the squeezing parameter which in general is complex

(physically achieved when a squeezed state goes through a phase shifter that rotates the

optical squeezing phase). This squeezing Hamiltonian generates translation in the squeez-

ing parameter r, yielding the state vector: |r⟩n = e−irĤ
sq
n = e

r
2
(â†2n −â2n), that corresponds to

a mixing of creation and annihilation in the mode n, as follows:

ân → cosh r ân + eiϕ sinh r â†n, (3.24)

where ϕ is the squeezing phase or angle. From this, the covariance matrix of a two mode
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system that is squeezed in one of the subsystems takes the following form:

σin
r = (1 + 2nB)



e2r 0 0 0

0 e−2r 0 0

0 0 1 0

0 0 0 1


, (3.25)

where I have taken r ∈ R. This is the covariance matrix for the initial static BEC pre-

pared in a thermally seeded single-mode squeezed state. Evolving this state, I obtain the

entanglement between modes n and −n to be:

λT,r[n] = (1 + 2nB)
[(
|αn|2 + |βn|2

)2
+ 4|αn|2|βn|2 cosh(2r)

− 4|αn||βn| cosh r
√
|αn|4 + |βn|4 + 2|αn|2|βn|2 cosh(2r)

] 1
2
, (3.26)

which is invariant under the phase transformations r → reiθ, and therefore, real and com-

plex squeezing give the same result for entanglement as (3.26).

In Fig. 3.4, I have plotted the mode entanglement EN [n] = − log2

(
λT,r[n]

)
for var-

ious choices of single-mode squeezing parameter r, and fixed values of quantum pressure

γ = 0.5 and thermal noise T = 0.5nK. For small values of the squeezing parameter r,

the entanglement in the low energy modes like n = 1 still dies off, which can be recovered

by tuning r ≥ 1.5, whereas the larger modes always see some enhancement. Thus, initial

squeezing amplifies the entanglement generated by the expansion and potentially facili-

tates in the recovery of the quantum correlations that otherwise would have been lost due

to the background thermal noise, as I saw in Fig. 3.2. To explore the dependence of entan-

glement on the parameter space of the input state, I constructed the color plots in Fig. 3.5
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Figure 3.4. Logarithmic negativity EN [n] for pairs (n,−n), versus the squeezing intensity
r and ambient temperature T=0.5nK. Various values of initial squeezing r are shown. This
plot corresponds to quantum pressure γ = 0.5, and the rest of the parameters are the same
as in previous plots.

for two different values of the mode index n = 1 and n = 5, where on the horizontal axis

I vary T , on the vertical r, and the color represents the value of EN [n]. The color plots in

Fig. 3.5 confirm that the optimal direction in the parameter space for increasing entangle-

ment is moving towards low temperature values T and high initial squeezing r. This is a

generic feature regardless of the mode index n. The white regions represent the separabil-

ity domain, i.e. EN [n] = 0, and there are no quantum correlations in the resulting mode

pair due to the dominance of the background temperature over the initial squeezing.

Note that the temperatures needed to observe mode entanglement (see Figs. 3.2,

3.4 and 3.5), appear to be below nano-Kelvins. However, I would like to point out that

these results depend on the choice of the temperature scale Tc associate with the BEC in-

teractions, that can be tuned to larger values near a Feshbach resonance. An alternative

to this could be to use the techniques in Refs. [91, 92, 93], that have achieved pico-Kelvin

temperatures. Thus it should be possible to reduce thermal noise in the toroid such that
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entanglement could be detected, and also reduce the thermal losses due to Landau and

Beliaev damping [38].

Figure 3.5. Color plots of logarithmic negativity EN [n] as a function of environmental
thermal noise T (horizontal axis) and single-mode squeezing parameter r (vertical axis),
for two mode numbers: (a) n= 1 and (b) n= 5. The white region corresponds to no entan-
glement, i.e., the phonons are classically correlated. A darker shade represents an increase
of mode entanglement. For low temperatures and high values of the squeezing parameter,
the entanglement is maximum.

Losses and efficiency

The discussion until now assumes an ideal situation where the BEC phonons can

be prepared in states (with low temperatures and high squeezing parameters), the pro-

cess of expansion is an ideal quantum channel, and the probes used to detect fluctuations

in the final static BEC are performed with no losses. In reality, finite environment tem-

peratures can give rise to damping due to thermally excited phonons, and the supersonic

expansion can give rise to the formation of vortices and solitons [38]. Such processes create

an environment where the entangled phonons could undergo decoherence.

I model the losses due to the entire evolution of the toroid by a quantum attenu-
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ator channel with efficiency parameter η (see Ref. [87]). I start with a thermally seeded

single-mode squeezed state as I discussed in Eq. (3.25), which after unitary evolution gives

us σout, and then perform an imperfect detection, i.e., σout → ησout+(1−η)I4. In the limit

of highly efficient detector η → 1, the final covariance matrix possesses entanglement given

by Eq. (3.26), whereas in the limit of an inefficient detector (or significant losses) η → 0,

yields the identity matrix representing a perfectly mixed state with no entanglement. Fol-

lowing the procedure of the previous subsections, I obtain the symplectic eigenvalues as

follows:

λT,r,η[n] =
1

4
√

2

√
X −

√
Y ,

X = 16

[
2(1 − η)2 + 2(1 + 2nB)2η2(|αn|4 + |βn|4)

+ 4(1 + 2nB)η(1 − η) cosh2 r(|αn|2 + |βn|2)

+ 4(1 + 2nB)2η2(1 + 2 cosh(2r))|αn|2|βn|2
]
,

Y = 256(1 + 2nB)2η2
[
16 sinh4 r(1 − η)2(|αn|4 + |βn|4)

+ 128(1 + 2nB)2η2 cosh2 r cosh(2r)|αn|4|βn|4

+ 64(1 + 2nB)2η2 cosh2 r(|αn|4 + |βn|4)|αn|2|βn|2

+ 4(1 − η)2
(
3 + 12 cosh(2r) + cosh(4r)

)
|αn|2|βn|2

+ 128(1 + 2nB)η(1 − η) cosh4 r(|αn|2 + |βn|2)|αn|2|βn|2
]
, (3.27)

I took the squeezing parameter r to be real. The logarithmic negativity is then given by

EN [n] = Max
(
0,− log2 λT,r,η[n]

)
, which is independent of the squeezing angle ϕ (see

Eq. (3.24)). I plot this in Fig. 3.6 which shows that even for highly efficient detectors η =

0.95, the entanglement loss is significant, especially for low-energy modes. On the other
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hand, for large losses, η = 0.70 the low-energy modes (n ≤ 3) are completely devoid of any

quantum correlations. This shows how important it is to carefully design detectors of high

efficiency.

Figure 3.6. Logarithmic negativity EN [n] for various values of squeezing intensity r and
ambient temperature T = 0.5nK, for (a) efficient η = 0.95, and (b) lossy detectors η = 0.70
detectors. This plot corresponds to quantum pressure γ = 0.5, and the rest of the parame-
ters are the same as in previous plots.

In this section, I discussed how entanglement emerges in the exponentially ex-

panding toroidal BEC, for various possible input states such as the vacuum state which

gives us the ideal amount of entanglement due the spontaneous creation entangled phonon

pairs, thermal noise that degrades this entanglement and squeezed states that could ampli-

fying it. I also looked at losses due to imperfections in the initial state preparation, in the

expansion or the detection processes, that could cause decoherence. In the next section,

I will present a protocol to experimentally determine the covariance matrix for the final

static BEC prepared in any initial state, and thereby deduce the amount of entanglement

present in this system.

68



3.3. Protocol to Measure Entanglement

In Sec. 3.2, I discussed how the covariance matrix is a way to completely specify

the quantum state of a system (i.e. its density operator as discussed in Eq. (3.12)), and

thus provides us with the information needed to extract observables. I also saw how the

quantum states and evolution of the spontaneously generated phonons in an expanding

toroidal BEC can be modeled using covariance matrices for two-mode Gaussian states,

and how the PPT-criterion helps quantify entanglement between phonons in modes n and

−n. In this section, our aim is to discuss a protocol that can experimentally measure this

entanglement. To that end, I need to build the covariance matrix in the mode space n,

where I need two types of vacuum averages of ‘b-operators’: ⟨{b̂n, b̂†n}⟩ and ⟨{b̂n, b̂−n}⟩

In general, a direct measurement of these mode averages in the BEC is not accessible.

On the other hand, it is possible to measure real space correlations between fluctuations

separated by angle α. There are three elementary spatial correlations i.e. density-density

Cnn(α), phase-phase Cϕϕ(α), and the mixed correlation between density and phase Cnϕ(α)

defined as follows:

Cnn(α) = ⟨{n̂1(α), n̂1(0)}⟩, (3.28)

Cϕϕ(α) = ⟨{ϕ̂1(α), ϕ̂1(0)}⟩, (3.29)

Cnϕ(α) = ⟨{n̂1(α), ϕ̂1(0)}⟩. (3.30)

In this section, I will discuss a protocol that measures these three independent spatial cor-

relations, thereby yielding all the elements of the covariance matrix, and thus making it

possible to experimentally quantify the amount of entanglement in this system.

To measure these spatial correlations, I propose a toroidal version of the technique
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Figure 3.7. A schematic figure showing the protocol to measure mode entanglement in the
BEC. The first stage (first panel) is where the expanded BEC is Bragg diffracted using
a laser, which then splits into two parallel clouds with an induced phase difference of δ.
Then, in the second stage (second panel), one of the rings is rotated by an angle α which
brings the two points (shown in green and orange colors) in front of each other. In the
third stage (third panel), the two clouds are made to interfere with each other and the
atom density correlations are obtained. This setup measures all types of correlations be-
tween phase and density fluctuations, and thus the covariance matrix can be built.

due to Hellweg et al. [89], and shown in Fig. 3.7. Suppose the initial static BEC is pre-

pared in either a thermal or a thermally seeded one-mode squeezed state, which upon go-

ing through an expansion phase is filled with squeezed phonons. Once the expansion ends,

lasers are applied to split the toroidal cloud into two parallel rings. This interaction with

lasers leads to Bragg diffraction of the BEC inducing an experimentally controllable phase

difference δ between the two separated annular clouds, after which the two clouds that are

then allowed to evolve freely for some time. To measure the correlations between any two

points on the toroid separated by angle α, one of rings is rotated by this angle with re-

spect to the other. For such controllable angular displacements α and controllable induced
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phase difference δ, the final condensate field operator is:

Φ̂(θ) =
1

2

[√
n0 + n̂1(θ − α/2)ei

(
ϕ0+ϕ̂1(θ−α/2)

)
+ eiδ

√
n0 + n̂1(θ + α/2)ei

(
ϕ0+ϕ̂1(θ+α/2)

)]
,

(3.31)

where I have made use of the Madelung representation Φ̂(θ) =
√
n̂eiϕ̂ to write the con-

densate field operator in terms of density n̂ and phase operators ϕ̂, and introduced angle-

dependent perturbations in them n̂ = n0 + n̂1(θ) and ϕ̂ = ϕ0 + ϕ̂1(θ) as described in

Eq. (3.1).

The two clouds are then made to interfere with each other and the condensate den-

sity correlations are measured for two points opposite to each other present on the two

rings i.e. ⟨N̂(θ)N̂(θ)⟩, where N̂(θ) = Φ̂†(θ)Φ̂(θ) is the condensate density. For simplicity,

I will set θ = 0, and work with the anti-symmetrized correlations ⟨{N̂(0), N̂(0)}⟩α,δ la-

belled by chosen values of rotation angle α and induced Bragg phase δ. Since the conden-

sate density can be written in terms of phase ϕ̂1(θ) and density n̂1(θ) of fluctuations, the

condensate correlation can be written in terms of the three types of correlators between

fluctuations as follows:

⟨{N̂(0), N̂(0)}⟩α,δ =
1

2
n2
0(1 + cos δ)2 +

1

16

[
C̃nn(α)(1 + cos δ)2 + 4n2

0C̃ϕϕ(α) sin2 δ
]
. (3.32)

Fixing the relative rotation angle α and choosing two different induced phases, say δ1 and

δ2, the above linear equation can be solved yielding the modified correlation functions

(marked by a tilde C̃) that can be related to the elementary correlation functions between

density and phase i.e. Cnn, Cϕϕ and Cnϕ as follows:

C̃nn(α) = −2
(
Cnn(α) − Cnn(0)

)
, (3.33)

C̃ϕϕ(α) = −2
(
Cϕϕ(α) − Cϕϕ(0)

)
, (3.34)
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that gives the difference between the elementary correlations measured with some rotation

angle α and with no relative ring rotation.

In order to extract the elementary correlations, the above steps need to be repeated

for several relative rotation angles α ∈ (0, 2π) (in discrete steps owing to angular resolu-

tion). Then, an angular average can be performed on the above modified correlations by

numerically integrating over all possible angles α, giving:

1

4π

∫ 2π

0

dα C̃nn(α) =
1

4π

∫ 2π

0

dα − 2
(
Cnn(α) − Cnn(0)

)
= − 1

2π

∫ 2π

0

dα Cnn(α) +
1

2π

∫ 2π

0

dα Cnn(0)

= Cnn(0), (3.35)

where in the first line I made use of (3.33), and in going from second to third line, I made

use of the identity:
∫ 2π

0
dα einα = δn,0. Since we are dealing with perturbations here, there-

fore n ̸= 0, and thus the angular integral of Cnn(α) is zero. Thus, using this angular aver-

aging procedure, the elementary correlations between density-density and phase-phase can

be extracted as follows:

Cnn(α) = −1

2
C̃nn(α) +

1

4π

∫ 2π

0

dα C̃nn(α), (3.36)

Cϕϕ(α) = −1

2
C̃ϕϕ(α) +

1

4π

∫ 2π

0

dα C̃ϕϕ(α). (3.37)

Density correlations Cnn can also be measured using in-situ imaging. In this technique,

light is shined on the condensate. If a region of the BEC contains more atoms, then light

will undergo larger attenuation through this. This way, the data for the density is coded

in the form of pixels. By measuring the correlations between these pixels, one measures

Cnn, which can then be compared to the result in Eq. (3.36) coming from the angular in-
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terference set-up.

It should be noted that this angular rotation-interference method does not directly

determine the mixed correlations Cnϕ. However, this mixed correlator is related to the

time derivative of the phase-phase correlation:

Cnϕ(α) ≡ ⟨
{
n̂1(α, t), ϕ̂1(0, t)

}
⟩ = −ℏVf

U

d

dt
Cϕϕ(α, t), (3.38)

where I have made use of the Euler equation in [76]: n̂1(θ, t) = −ℏV
U

d
dt
ϕ̂1(θ, t) that relates

density fluctuation to the time derivative of the phase operator. Thus, in order to deter-

mine Cnϕ, I need to repeat the above steps of rotation and interference of toroidal BEC

clouds and measure Cϕϕ for different times after expansion t > tf . This requires prepar-

ing an assembly of identical condensates, where the first BEC will be expanded, Bragg

diffracted, rotated and interfered giving the atom density correlations (3.32) from which I

extract phase-phase correlation using Eq. (3.36) at t = tf . The second BEC will be sub-

jected a similar process but measuring its phase correlation at t = tf + ∆t, and so on

for the entire assembly of BECs. This procedure will yield the time evolution data for the

phase-phase correlations Cϕϕ(α, t), and using Eq. (3.38) will result in the required mixed

correlation function. Note that the time interval ∆t, should be much smaller compared

to any other time scales in the system, such as the frequency associated with the smallest

mode ωf
n=1 = c/Rf, or the time scale associated with the damping of density fluctuations

as was seen in [38]. The spatial correlations (3.36), (3.37), and (3.38) can now be used to

characterized the state of the system.

To convert these spatial correlation functions to the mode space, I express the

mode annihilation operator b̂n in terms of the fluctuation field operators n̂1(θ) and
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ϕ̂1(θ) using the scalar product of two Klein-Gordon wave-functions ϕ and χ defined as

(ϕ, χ) ≡ i
∫
dx
[
ϕ∗(x, t)

{
∂tχ(x, t)

}
−
{
∂tϕ

∗(x, t)
}
χ(x, t)

]
(see [97]):

b̂n = −i

√
U

ℏVf
e

γtf
2τ

∫ 2π

0

dθ√
2π
e−inθ

[
χ∗
nn̂1(θ, t) − Vfη∗nϕ̂1(θ, t)

]
, (3.39)

which in turn can be used to express the fundamental mode correlations ⟨{b̂n, b̂−n}⟩ and

⟨{b̂†n, b̂
†
−n}⟩ in terms of real space correlators as follows:

⟨{b̂n, b̂−n}⟩ = − U

ℏVf
e

γtf
τ

∫ 2π

0

dα e−inα
[
(χ∗

n)2Cnn(α) + V2
f (η∗n)2Cϕϕ(α) − Vfχ∗

nη
∗
nCnϕ(α)

]
,

⟨{b̂n, b̂†n}⟩ =
U

ℏVf
e

γtf
τ

∫ 2π

0

dα e−inα
[
|χn|2Cnn(α) + V2

f |ηn|2Cϕϕ(α)

]
, (3.40)

where for the second vacuum average I made use of the property χ∗
nηn + η∗nχn = iℏ

2U
− iℏ

2U
=

0. Plugging the data for spatial correlations (3.36), (3.37), and (3.38) into the above

Fourier transforms, gives us the vacuum averages after expansion in the mode space.

These experimentally determined vacuum averages can also be compared with the theoret-

ical results ⟨{b̂n, b̂−n}⟩ = 2αnβ
∗
n

(
1 + 2nB(En)

)
and ⟨{b̂n, b̂†n}⟩ =

(
1 + nB(En)

)(
|αn|2 + |βn|2

)
.

Then, the covariance matrix can be constructed for the expanded ring in the mode space,

and the procedure outlined in Sec. 3.2 can be followed to calculate the Logarithmic

Negativity EN [n], thus determining the amount of entanglement in the toroidal BEC.

In this chapter, I revisited the setup discussed in Chapter 1, where a rapidly ex-

panding Bose-Einstein condensate (BEC) trapped inside a thin toroidal laser trap (effec-

tively a one-dimensional ring), spontaneously generates phonons in two-mode squeezed

states which manifests itself as a cusp (at zero temperature) or kink (finite temperature)

like features in the density-density correlations. Naturally, a question arises as to whether

these correlations are quantum (entangled) or classical in nature. For this purpose, I then
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briefly reviewed the theory of Gaussian quantum continuous variables for bosons, wherein

the state of the fluctuations (phonons) can be completely specified by the mean vector and

the covariance matrix for a system of two modes n and −n. To discuss entanglement, I

reviewed the PPT criterion that helps define logarithmic negativity as an entanglement

quantifier. Using this, I found that in an initial static BEC prepared in vacuum state, the

entanglement is maximum for lowest energy modes n = 1, and decreases with increas-

ing n in an oscillatory manner that is due to the presence of sonic horizon in the system.

This entanglement degrades due to thermal noise or detector inefficiencies, which could

be recovered using single-mode squeezed states of phonons. I ended this chapter with the

discussion of a protocol of Bragg splitting the BEC into two condensates, rotating one of

them and then making them interfere. I showed that this procedure gives all types of real

space correlations and hence mode entanglement can be determined experimentally in the

toroidal BEC setup.

For future work, one could look into the work by Glenz and Parker in Ref. [98],

that suggests slope discontinuities in the radius of expanding toroid R(t) can yield un-

physical results. This is the scale factor that I have used for our work, and it yields |βn|2

that has oscillations with respect to mode index and dies of as n−2 for large n. I could

repeat our calculations for a smooth (C2 function) radius such that R(t), dR/dt and

d2R/dt2 are all continuous. One such suggestion [98] is to have the initial and final BECs
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to be asymptotically smooth with an exponentially expanding phase static in between:

R(t)

R0

=



[
a41i + (a42i − a41i)nF(t/si)

]p
, for t < ti

eHt, for ti ≤ t ≤ tf[
a41f + (a42f − a41f )nF(t/sf )

]p
, for t > tf

Here nF (x) = (ex + 1)−1 is the Fermi-Dirac function, and the constants a1i, a2i, si, H, a1f ,

a2f and sf will have to be chosen such that R(t) is everywhere C2-smooth. Then, the task

will be to evaluate particle creation probability |βn|2, and study the limit in which the ini-

tial and final regimes join the intermediate exponential phase in a non-smooth manner, i.e.

tune s, and see if it agrees with our results or not.
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CHAPTER 4. UNRUH EFFECT AND TAKAGI’S STATISTICS
INVERSION IN STRAINED GRAPHENE

In this chapter, I theoretically study the dynamics of low-energy and long-

wavelength fermions in a mechanically strained graphene sheet. Due to these strains,

a horizon appears diving the sheet into two-disconnected pieces forbidding the fermions

to crossover. In addition to spontaneous creation of electron-hole pairs, I will show that

observables confined to one side show emergent thermality. In relativity, accelerated ob-

servers fall into two causally disconnected families (Rindler wedges), thereby, also leading

to similar thermal effects, also known as the Unruh effect. Here, I aim to explore this ef-

fect and its consequences in the context of graphene. The rest of this chapter is organized

as follows. In Sec. 4.1, I describe how the Rindler Hamiltonian can be realized for low-

energy and long wavelength fermions in mechanically strained graphene. Since the basic

effect relies only on engineering a spatially-varying tunneling matrix element, I expect it

should be similarly possible to engineer the Rindler Hamiltonian in cold-atom systems. In

Sec. 4.2, I revisit the Hamiltonian for fermions in flat spacetime (or flat graphene sheet)

and identify the normal modes of this system that correspond to particle and hole excita-

tions. In Sec. 4.3, I derive the Dirac equation due to the Rindler Hamiltonian, obtaining

a similar mode expansion for the strained case. In Sec. 4.4, I use the mode expansions in

flat and strained (Rindler) honeycomb lattices to derive how a sudden strain can induce

spontaneous electron-hole creation with an emergent Fermi-Dirac distribution, which is

the analog Unruh effect. In Sec. 4.5 I analyze the Green’s functions after such a sudden

strain, showing how signatures of the analog Unruh effect may be measured in observables
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such as photoemission spectroscopy and scanning tunneling microscopy and how the

form of the emergent thermality is connected to the violation of Huygens’ principle. In

Sec. 4.6, I study the frequency-dependent optical conductivity of this system, which I find

to increase approximately linearly with increasing frequency, in contrast to flat graphene,

where it is known to be nearly constant (i.e., frequency-independent) [139, 140, 141, 142].

In Sec. 4.7, I discuss the effects of this sudden switching-on of the Rindler Hamiltonian

on the total internal energy of fermions at finite environment temperature. In Sec. 6.3 I

provide brief concluding remarks and in Appendix B, I give details that are omitted from

the main text on the Dirac equation in curved spacetime.

Figure 4.1. The honeycomb lattice of graphene where the carbon atoms in red color for
the Bravais lattice with primitive lattice vectors a1=a(

√
3/2, 3/2) and a2=a(−

√
3/2, 3/2),

connected to the nearest neighbor carbon atoms shown in blue by δi, i = 1, 2, 3, as defined
in Eq. (4.2).
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4.1. Creating the Rindler Hamiltonian

In this section, I will show how the Rindler Hamiltonian can be realized via

graphene with a spatially-varying strain that yields a Hamiltonian with a spatially-varying

Fermi velocity. This is in contrast to the low-energy theory of conventional graphene that

exhibits a spatially-uniform Fermi velocity.

To see how such a spatially-varying Fermi velocity can be engineered, I start with

the tight binding Hamiltonian for graphene which involves (π orbital) electrons hopping

from carbon atoms in the A sub-lattice to their nearest neighboring B carbon atoms (as

shown in Fig. 4.1), and vice versa:

Ĥ = −
∑
Rj ,n

tRj ,n

[
â†Rj

b̂Rj+δn + b̂†Rj+δn
âRj

]
, (4.1)

where Rj labels the Bravais lattice points formed by the A-atoms, and index n denotes

the three nearest neighboring B atoms. Here, the â and b̂ operators annihilate fermions on

the A and B sublattices, respectively, with hopping amplitude tRj ,n (that I have taken to

be real). The nearest neighbor vectors δn joining the A and B atoms are as follows:

δ1 = a

(√
3

2
,
1

2

)
, δ2 = a

(
−
√

3

2
,
1

2

)
, δ3 = a

(
0,−1

)
, (4.2)

with a the nearest-neighbor carbon distance. When a graphene sheet undergoes a mechan-

ical strain, with uij ≡ 1
2
(∂iuj + ∂jui) being the strain tensor, the distance between two

carbon atoms changes and thus the hopping amplitude gets adjusted accordingly. For per-

turbative strains, I can then Taylor expand the hopping amplitude as follows [143]:

tRj ,n = t0

[
1 − β∆u(1)n − β∆u(2)n

]
, (4.3)
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with

∆u(1)n =
δinδ

j
n

a2
uij, (4.4)

∆u(2)n =
δinδ

j
nδ

k
n

2a2
∂iujk, (4.5)

where ∆u
(1)
n is the first order change due to strains alone, and ∆u

(2)
n denotes the first order

change due to strains and their derivatives (which is a low energy approximation). Here, a

is the lattice spacing, and β = | ∂ log t
∂ log a

| is the Grüneisen parameter. Note I also assume that

the electrons cannot hop to the next nearest neighbors, i.e. t′ = 0.

With the aim of realizing the Rindler Hamiltonian, henceforth I choose the follow-

ing components for the strain tensor:

uxx = uyy = −|x|
βλ

, uxy = 0,

t1(x) = 1 +
|x|
λ

+

√
3

4

a

λ
sgn(x),

t2(x) = 1 +
|x|
λ

−
√

3

4

a

λ
sgn(x),

t3(x) = 1 +
|x|
λ
, (4.6)

where λ is the strain scale that measures the distance over which an appreciable inhomo-

geneity develops in the honeycomb lattice. With this choice of strain tensor, the distance

between atoms decreases with increasing distance from x = 0. At low energies, the elec-

tron dynamics is governed by two nodes in the reciprocal space K =
(

4π
3a

√
3
, 0
)

= −K′. I

can thus write down the a and b operators localized near these nodes as [144]:

âRj
= eiK·Rj Â(Rj) + eiK

′·Rj Â′(Rj), (4.7)

b̂Rj+δn = eiK·(Rj+δn)B̂(Rj + δn) + eiK
′·(Rj+δn)B̂′(Rj + δn), (4.8)
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where the prime ′ denotes operators associated to the K′ node. For low energies, it suffices

to Taylor expand the b̂R+δn operators to linear order in gradients of these operators [144]:

B̂(Rj + δn) ≈ B̂(Rj) + δn ·∇B̂(Rj). (4.9)

Plugging into the tight-binding Hamiltonian (4.1), the expressions for operators

near the nodes (4.7), and the Taylor expansions for the hopping amplitude (4.3) and for

the operators on B carbon atoms (4.9), gives us the following:

Ĥ = −t0
∑
Rj ,n

[
1 − β∆u(1)n − β∆u(2)n

]
×

{[
Â†(Rj)

{
B̂(Rj) + δn ·∇B̂(Rj)

}
eiK·δn + h.c.

]
+

[
Â

′†(Rj)
{
B̂′(Rj) + δn ·∇B̂′(Rj)

}
eiK

′·δn + h.c.
]}
, (4.10)

where second term in each line is the hermitian conjugate of the first, denoted by h.c..

Here I have ignored cross-terms between the two nodes like ∼
∑

Rj
Â†(Rj)B̂

′(Rj)e
i(K−K′)·Rj ,

that destructively interfere and thus vanish. I now simplify this expression by using the

Rindler strain pattern (4.6) and keeping terms that are linear order in gradients, terms

that are linear order in strains and terms that are both linear in gradients as well as

strains. I also introduce two-component field operators at the K and K′ nodes:

ψ̂K(Rj) =

B̂(Rj)

Â(Rj)

 , (4.11)

ψ̂K′(Rj) =

Â
′
(Rj)

B̂
′
(Rj)

 . (4.12)

Upon approximating the sums over Bravais lattice points Rj to spatial integrals over r,

relabeling the K and K′ points to be the right (R) and left (L) nodes, I finally arrive at
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the effective Hamiltonian:

Ĥ =
∑
i=R,L

∫
d2rψ̂†

i (r)ĥiψ̂i(r), (4.13)

ĥR ≡
√
v(x)σ · (σ · p̂

)√
v(x) = −ĥL, (4.14)

where σ =
(
σx, σy

)
is the vector of Pauli matrices, p̂ = −iℏ∇ is the momentum operator,

with ∇ =
(
∂x, ∂y

)
being the gradient. Here, v(x) = v0

(
1 + |x|

λ

)
represents a spatially-

varying Fermi velocity with v0 = 3t0a
2ℏ being the Fermi velocity of the unstrained Honey-

comb lattice. If I had instead chosen a plus sign for the strain tensor components in (4.6),

then I would get a spatially decreasing Fermi velocity v0
(
1 − |x|

λ

)
.

In the next step, I establish two different limiting cases of the Hamiltonian

Eq. (4.13): The unstrained case, λ → ∞, that yields the well known 2D Dirac Hamil-

tonian, and the case of strong strains, λ → 0, in which the system Hamiltonian describes

Dirac particles moving in a Rindler metric [101]. In the strong-strain limit, I can neglect

the unit contribution in v(x), leaving v(x) = v0|x|/λ. In fact, as I now argue, this ap-

proximation also holds in the long-wavelength limit. Our argument relies on translation

symmetry in the y-direction, which implies eigenfunctions of ĥR are plane waves in the

y direction, ∝ eikyy with wavevector ky. Re-scaling the coordinates via x → x/|ky| and

y → y/|ky| changes the spatially dependent Fermi velocity to v(x) → v0
(
1 + |x|

|ky |λ

)
and the

momentum operator becomes p̂ → |ky| · p̂. In the long-wavelength limit (|ky|λ ≪ 1), the

contribution of unity inside v(x) becomes negligible and |ky| cancels out, giving us the 2D

Rindler Hamiltonian which is just (4.13) with the Fermi velocity v(x) = v0|x|/λ.

Having discussed how the Rindler Hamiltonian can be realized in strained honey-

comb lattices, in the coming sections, I apply these ideas to see how a sudden switch on of
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the system strain, suddenly changing the Hamiltonian from the 2D Dirac Hamiltonian to

the 2D Rindler Hamiltonian can strongly modify low-energy and long-wavelength proper-

ties leading to the analog Unruh effect. To begin with, in the next section, I start with a

review of fermions in flat unstrained honeycomb lattices, i.e., the case of graphene.

4.2. Mode expansion: Flat honeycomb lattice

In this section, I review the Dirac equation for flat (unstrained) graphene and de-

rive the resulting normal mode expansion that describes electron and hole excitations. As

I have already discussed, the low-energy Hamiltonian for fermions hopping on a uniform

(unstrained) honeycomb lattice follows from taking the λ → ∞ limit of Eq. (4.13), result-

ing in Ĥ = ĤR + ĤL with

ĤR = v0

∫
d2r ψ̂†

R(r)σ · p̂ψ̂R(r), (4.15)

where to get ĤL I simply replace R → L and take v0 → −v0. The field operators ψ̂i (i =

L,R) satisfy the anticommutation relation

{ψ̂i, ψ̂†
j} = δijδ(r − r′), (4.16)

In the following I focus on the right node, with results from the left node easily following.

The Heisenberg equation of motion for the field operators ψ̂R(r, t) is:

iℏ∂tψ̂R(r, t) = [ψ̂R(r, t), Ĥ] = v0σ · p̂ ψ̂R(r, t), (4.17)

the massless Dirac equation (Weyl equation) that describes how fermions (with zero rest

mass) propagate in a flat spacetime with an emergent (2 + 1)-dimensional Minkowski line

element labeled by the inertial coordinates (T,X, Y ):

ds2Mink = −v20dT 2 + dX2 + dY 2, (4.18)
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where the speed of light is now replaced by the Fermi velocity c → v0. In Appendix B, I

describe how a metric expressed in inertial coordinates like (4.18) (see Eq. (B.2)) leads to

a Dirac equation in inertial coordinates (4.17) (see Eq. (B.13)). This metric describes the

dynamical trajectories of inertial observers in a flat spacetime. Suppose two inertial frames

S and S ′ moving with relative speed v, then the coordinates of an observer in frame S ′ i.e.

(T ′, X ′, Y ′), are related to the ones in S via Lorentz transformations:

v0T
′ = v0T cosh θ − x sinh θ,

X ′ = x cosh θ − v0T sinh θ,

Y ′ = Y, (4.19)

where cosh θ = γ = 1√
1−β2

is the Lorentz factor with β = v
v0

, and sinh θ = γβ. The ratio

of these factors relate the velocity with rapidity θ ∈ (−∞,∞): tanh θ = β ∈ (−1, 1).

In either frame, the trajectory of an inertial observer is of the form −v20T 2 + X2 + Y 2 =

constant.

Thus, as one might expect, fermions hopping in an unstrained honeycomb lat-

tice obey an analog Dirac equation with the Fermi velocity v0 playing the role of the

speed of light. Our next task is to expand the fermion field operators into normal modes

corresponding to positive energy “particle” and negative energy “hole” excitations in

graphene’s Dirac band structure. Since the system is homogeneous in space and time (or

alternatively the emergent metric components (4.18) are constants), the Dirac equation

solutions that describe the evolution of fermions are plane waves of the form e±i(k·x−ωkt)

and thus the field operators on the right node can be expressed in terms of the following
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mode expansion [145]:

ψ̂R(r)=

∫
d2k

2π

(
ei(k·r−v0kt)ukâk + e−i(k·r−v0kt)v−kb̂

†
k

)
, (4.20)

where the wave-vector k = (kx, ky) is related to the linear momenta in spatial directions

via p = ℏk and, thanks to translation symmetry, is related to the energy ϵk = ℏωk (ωk is

the mode frequency), via the dispersion relations ϵk = ℏv0|k| or ωk = v0k where k ≡ |k| =√
k2x + k2y is the wavevector magnitude.

This mode expansion for the right node KR (right-handed Weyl fermions) should

have positive helicity, which is defined as the projection of the Pauli spin operator onto

the direction of the momentum vector h = σ · k̂. Thus the flat spinors used in the mode

expansion (4.20) are defined as follows:

uk =
1√
2

 1

kx+iky
k

 , vk =
1√
2

−
(kx−iky

k

)
1

 . (4.21)

In the above definitions, uk has positive helicity h = +1, whereas vk has negative helic-

ity h = −1. The particle â and hole b̂ operators satisfy anti-commutation relations and

annihilate the flat honeycomb (Minkowski) vacuum state |0M⟩:

{âk, â†k′} = δ(k − k′), {b̂k, b̂†k′} = δ(k − k′),

âk|0M⟩ = 0, b̂k|0M⟩ = 0. (4.22)

To obtain the mode expansion for the left node KL (left-handed Weyl fermions), the par-

ticle and hole spinors uk and v−k in Eq. (4.20) need to be switched with vk and u−k, re-

spectively, which means they both have negative helicities.

As is well known, the particle and hole fermionic excitations in graphene obey a

linear dispersion relation, with ωk ∝ |k|. In Fig. 4.2(a), I depict this linear energy dis-
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Figure 4.2. A schematic figure to depict the (a) Minkowski and (b) Rindler mode expan-
sions. In flat graphene, the existence of translation symmetry yields a Dirac-like linear en-
ergy dispersion ϵk = ℏv0|k| (shown in green in panel a). The electron and hole excitation
energies are both positive (ϵk > 0) with the operators âk|0M⟩ = 0 = b̂k|0M⟩ annihilating
the Minkwoski vacuum. In strained graphene, the Rindler energy Eky ,Ω = ℏΩ > 0 (shown
in green in panel b) and transverse momenta ℏky are decoupled, with their associated elec-

tron and hole operators annihilating the Rindler vacuum state ĉky ,Ω|0R⟩ = 0 = d̂ky ,Ω|0R⟩.

persion, with the system ground state being a fully occupied valence band at negative en-

ergies and a fully unoccupied conduction band at positive energies. This figure also de-

picts the positive energy particle (or electron) and hole excitations that are captured by

the mode expansion (4.20).

4.3. Mode expansion: Rindler system

In this section, I study the case of fermions hopping in a honeycomb lattice in the

presence of a strain field that leads to the Rindler low-energy Hamiltonian, obtained by

approximating v(x) ≃ v0
λ
|x|. As in the flat case, the system Hamiltonian comprises terms

from the left and right nodes, Ĥ = ĤR + ĤL, with the right-node Hamiltonian:

ĤR =
v0
λ

∫
d2r ψ̂†

R(r)
√
|x|σ · p̂

√
|x|ψ̂R(r), (4.23)
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which I call the Rindler Hamiltonian by analogy with the well-known Rindler metric, that

describes how the flat Minkowski spacetime is seen by an accelerating observer [101]. Fol-

lowing the discussion in the homogeneous case, I find the equation of motion

iℏ∂tψ̂R(r) =
v0
λ

√
|x|σ · p̂

√
|x| ψ̂R(r), (4.24)

the Dirac equation for massless fermions in Rindler spacetime with Rindler coordinates

(t, x, y) [147, 146, 148] described by the line element

ds2 = −
(x
λ

)2
v20dt

2 + dx2 + dy2. (4.25)

In Appendix B, I describe how the Rindler metric (see Eq. (B.3)) leads to a Dirac

equation for accelerating electrons (see Eq. (B.14)). To understand the role of this met-

ric in the context of honeycomb systems, I first need to understand its role in relativis-

tic physics. Imagine a Rindler observer in the frame SR, moving with some acceleration

a = ax̂ (a > 0) with respect to an inertial frame S. The observer starts their journey far

away at x = ∞ at time t = −∞ with velocity close to the speed of light c moving towards

the origin x = 0. Initially they decelerate, eventually stopping at a certain distance from

the origin xmin = c2

a
, and then return to x = +∞ at t = +∞. Since at any one instant

of time, the Rindler observer is moving at a certain velocity v, I expect a hyperbolic-like

trajectory similar to the Minkowski case: −v20T 2 + X2 + Y 2 = constant, and the transfor-

mation between inertial coordinates (T,X) and Rindler (t, x) coordinates to be similar to

(4.19). This is reminiscent of non-relativistic physics, where the trajectory of an acceler-

ated observer is parabolic: x = x0 + u0t + 1
2
at2. However, relativistic accelerations need to

be hyperbolic as motion also affects the rate at which the observer’s clock ticks. Thus the
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relation between the inertial and Rindler coordinates are as follows [147, 146, 148]:

cT = xmin sinh
ct

xmin

,

X = xmin cosh
ct

xmin

, (4.26)

which gives us the trajectory of a Rindler observer viewed from an inertial frame S: X2 −

c2T 2 = x2min. The above coordinates (T,X) label the worldline of an accelerated ob-

server from the perspective of an inertial frame. If the acceleration is changed to a dif-

ferent but constant value, then I get a family of Rindler observers, each with a different

closest distance of approach xmin. This family is parameterized using a new coordinate

xmin → x, giving us the Rindler metric in Eq. (4.25). If I set the spatial coordinates to

zero, i.e. dx = dy = 0 then t behaves like the proper time as seen on the watch of a

Rindler observer. Similar arguments hold for an observer accelerating in the opposite di-

rection with a < 0. Note that (4.25) becomes degenerate at x = 0, i.e. the time-time com-

ponent of the metric tensor vanishes (gtt = 0) and hence has no inverse. This is known as

the Rindler horizon. Because of this horizon, oppositely accelerating observers can never

communicate with each other. Note that the connection between the coordinates (T,X)

and (t, x) is just a switch of variables, therefore the metric (4.25), is basically flat space-

time written in disguise, and thus the Riemann curvature of this spacetime is zero. Also

note that the coordinates (t, x, y) cover only two portions of the flat Minkowski spacetime:

the right Rindler wedge x > 0 for positive accelerations and the left Rindler wedge x < 0

for negative accelerations.

In the context of strained graphene, the emergent metric in Eq. (4.25) tells us that

similar Rindler physics is expected provided I replace the speed of light with the Fermi ve-
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locity c → v0, and the distance of closest approach with the strain scale xmin → λ. Once

I do this, then I can interpret the electron dynamics inside graphene as Rindler fermions

where the analog acceleration is given by a =
v20
λ

, where a choice of strain λ corresponds

to choosing a unique Rindler observer with this acceleration. Such analog accelerations are

expected here because under the semiclassical model of electron dynamics, the strained

graphene has an environment with broken translation symmetry that forces the Fermi

velocity to be spatially dependent v(x) = v0(1 + |x|
λ

). Moreover, the strain pattern in

Eq. (4.6) tells us that carbon atoms become closer with distance from the origin, thus en-

hancing electron hopping. This hopping from one carbon atom to another will be most

difficult at the origin itself, especially for low-energy and long-wavelength modes which

cannot tunnel from one side to the other. Therefore, x = 0 being a barrier for such modes

acts as an analog of the Rindler horizon, breaking the strained graphene into two discon-

nected pieces: the right side mimics the right Rindler wedge, and the left side mimics the

left Rindler wedge.

Our next task is to identify the normal mode expansion for the field operator ψ̂R(r)

in the Rindler Dirac equation (4.24) [149, 150, 151, 152, 153, 154, 116, 108]. In doing this,

I define the frequency scale Ω > 0 and look for positive energy (E = ℏΩ > 0) solutions

(corresponding to Rindler particles) and negative energy (E = −ℏΩ < 0) solutions (cor-

responding to Rindler holes). Starting with the E > 0 case, the solutions take the form

ψ+
Ω (x, ky)e

i(kyy−Ωt), where py = ℏky is the momentum in the y-direction. If I define the
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components of the spinor part via

ψ+
Ω (x, ky) =

f(x)

g(x)

 , (4.27)

then the functions f(x) and g(x) satisfy (henceforth I set ℏ → 1):

(
|x| d
dx

+ ky|x| +
sgn(x)

2

)
g(x) = iΩf(x), (4.28a)(

|x| d
dx

− ky|x| +
sgn(x)

2

)
f(x) = iΩg(x). (4.28b)

The dimensionless form of these equations came because I measured energy (or frequency,

Ω) relative to the scale

ωc = v0/λ, (4.29)

characterizing the strain magnitude.

Starting with the case of x > 0 and ky > 0, and focusing on solutions that are

normalizable at |x| → ∞, I find:

f(x) = K 1
2
−iΩ
(
kyx
)
−K 1

2
+iΩ

(
kyx
)
, (4.30a)

g(x) = K 1
2
−iΩ
(
kyx
)

+K 1
2
+iΩ

(
kyx
)
, (4.30b)

where Kν(x) is the modified Bessel function of the second kind, that diverges at the ori-

gin x = 0 and for large negative arguments x → −∞. This divergence can be attributed

to the form of the analog Rindler metric (4.25), whose time-time component vanishes at

x = 0, and contributes a non-smooth modulus function |x| in the Weyl equations which

leads to different solutions in the left and right spatial regions of the strained honeycomb

lattice. As I have already discussed, this demarcation of the system at x = 0 is known

as the Rindler horizon. In analogy with relativity, the left spatial portion acts as the left
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Rindler wedge, and similarly for the right portion. There, an observer in right wedge will

never be able to communicate with their counterpart in the left wedge. In the next sec-

tion, I will see that this is an essential reason why a natural temperature emerges in this

system.

The solutions for f and g above have Bessel functions with positive arguments.

Therefore they are finite and vanish asymptotically for kyx → ∞. For the case x > 0

and ky < 0, the equations (4.28a) and (4.28b) get interchanged, resulting in an exchange

of the spinor components f(x) ↔ g(x). The case of x < 0 and ky > 0 effectively switches

Ω → −Ω and ky → −ky relative to the x > 0 and ky > 0 case, while the case of x < 0 and

ky < 0 effectively switches Ω → −Ω relative to the x > 0 and ky > 0 case. Taken together,

these considerations imply the positive energy spinor

ψ+
Ω (x, ky) =



K 1
2
−iΩ − sgn(ky)K 1

2
+iΩ

K 1
2
−iΩ + sgn(ky)K 1

2
+iΩ

 if x > 0

K 1
2
+iΩ + sgn(ky)K 1

2
−iΩ

K 1
2
+iΩ − sgn(ky)K 1

2
−iΩ

 if x < 0

where K 1
2
±iΩ is shorthand for K 1

2
±iΩ(|kyx|). I emphasize here that the above two solutions

come from solving the Rindler-Dirac equation separately for x > 0 and x < 0, pertaining

to the two sides of the honeycomb lattice. Thus I define orthonormality separately in the

x > 0 and x < 0 regimes.

Turning to the E < 0 case, I take the solutions to have the form ψ−
Ω (x, ky)e

−i(kyy−Ωt),

which effectively changes the sign of ky and Ω relative to the positive energy case. This
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leads to the negative energy spinors:

ψ−
Ω (x, ky) =



K 1
2
+iΩ + sgn(ky)K 1

2
−iΩ

K 1
2
+iΩ − sgn(ky)K 1

2
−iΩ

 if x > 0

K 1
2
−iΩ − sgn(ky)K 1

2
+iΩ

K 1
2
−iΩ + sgn(ky)K 1

2
+iΩ

 if x < 0

The normal mode expansion then takes the form: [149, 150, 151, 152, 153, 154, 116,

108]

ψ̂R(r, t) =

∫ ∞

−∞

dky√
2π

∫ ∞

0

dΩ Nky ,Ω

[
ψ+
Ω (x, ky)e

i(kyy−Ωt)ĉky ,Ω + ψ−
Ω (x, ky)e

−i(kyy−Ωt)d̂†ky ,Ω

]
, (4.31)

where the operators ĉky ,Ω annihilate positive energy Rindler particles and the operator

d̂†ky ,Ω creates a negative energy Rindler hole, as illustrated in Fig. 4.2(b). These particle

and hole operators satisfy fermionic anticommutation relations:

{ĉky ,Ω, ĉ
†
k′y ,Ω

′} = δ(ky − k′y)δ(Ω − Ω′), (4.32)

{d̂ky ,Ω, d̂
†
k′y ,Ω

′} = δ(ky − k′y)δ(Ω − Ω′). (4.33)

I emphasize that, in our convention, the energy scale ℏΩ > 0, so that both particle and

hole excitations have positive energy (although the latter emerge from below the Fermi

level). Thus the Rindler vacuum |0R⟩ is annihilated by both the electron and hole opera-

tors:

ĉky ,Ω|0R⟩ = 0, (4.34)

d̂ky ,Ω|0R⟩ = 0. (4.35)
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For the left handed electrons, I need to solve the corresponding set of Weyl equations,

which is the same as the equation for right-handed electrons, except for a minus sign as-

sociated with the time derivative. This amounts to saying that the fermions on KL node

will be described by the same mode expansion as (4.31), except that the spinors will all

change signs for the frequency i.e. ψ±
Ω (x, ky) → ψ±

−Ω(x, ky). Finally, to determine the nor-

malization factor Nky ,Ω =
√

|ky |
2π2 coshπΩ I make use of the inner product for Weyl spinors

[108, 45]:

(
ψσ

′

Ω′(x, ky), ψ
σ
Ω(x, ky)

)
≡
∫ ∞

0

dx ψσ
′†

Ω′ (x, ky)ψ
σ
Ω(x, ky) = δσσ

′
δ(Ω − Ω′), (4.36)

where σ = ± denotes the positive or negative energy spinors, and the following identity for

Bessel functions [154, 155]:

∫ ∞

0

dx
[
K 1

2
+iΩ(x)K 1

2
−iΩ′(x) +K 1

2
−iΩ(x)K 1

2
+iΩ′(x)

]
= π2 sech(πΩ)δ(Ω − Ω′). (4.37)

Now that I have derived the mode expansion (4.31) in terms of Bessel functions

that are singular at the horizon for the field operators in a strained graphene system (or in

an ultracold honeycomb optical lattice that has a linear-in-position Fermi velocity), in the

next section, I will describe how this leads to spontaneous creation of electron-hole pairs,

which is equivalent to saying that a sudden change in the Fermi velocity v0 → v0
|x|
λ

leads

to a spontaneous jump of electrons from the valence to conduction band.

4.4. Spontaneous Electron-Hole Pair Creation

In the last two sections, I discussed the Dirac Hamiltonian (4.15) and its solutions

(4.20) for a flat honeycomb system with homogeneous Fermi velocity v(x) = v0, and the

Rindler Hamiltonian (4.23) and its solutions (4.31) for an inhomogeneous honeycomb lat-
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tice with a spatially-varying Fermi velocity v(x) = v0
|x|
λ

. The latter solutions are made

out of spinors of Bessel functions that diverge at the horizon x = 0, with separate solu-

tions at x > 0 and x < 0. In this section, I will describe how this set-up leads to sponta-

neous creation of electron-hole pairs, with the spectrum of these excitations described by

an emergent Fermi-Dirac distribution that is a function of Rindler mode frequency Ω and

the characteristic frequency ωc, defined in Eq. (4.29), that is proportional to the Unruh

temperature.

Since the Rindler |0R⟩ and the Minkowski vacua |0M⟩ are associated with strained

and flat honeycomb lattices respectively, they are expected to be very different from each

other, i.e. the notion of particles that one ascribes to with respect to the Minkowski vac-

uum cannot be same as the Rindler case, since in the former case there exists translation

symmetry, whereas in the latter, the mechanical strain strongly modifies the properties of

system eigenstates.

I consider the situation where I start with the flat honeycomb Hamiltonian (4.15)

described by the mode expansion (4.20) for the field operators, and then suddenly switch

on the linear-in-position Fermi velocity with a characteristic strain length λ, thereby in-

voking the Rindler Hamiltonian (4.23) and the corresponding mode expansion (4.31). In

the Heisenberg picture then, I expect that the mode expansion for the fermionic field op-

erators ψ̂R on the right node evolve from Eq. (4.20) to Eq. (4.31), whereas the state of the

system will remain the Minkowski vacuum state |0M⟩. This is just the sudden approxima-

tion of quantum mechanics, where if a potential suddenly changes its shape, then the orig-

inal ground state can be expressed as a linear combination of the eigenstates of the new

Hamiltonian, and thus the observables can be found by taking expectation values of oper-

94



ators in the modified system with respect to the ground state of the original Hamiltonian.

Thus, in the present case, to find observables I need to know how the Rindler operators ĉ

and d̂ act on the Minkowski vacuum state |0M⟩. For this, I need to find an expression of

these Rindler operators in terms of the Minkowski annihilation operators â and b̂.

To connect these operators, I can simply equate the two mode expansions (4.20)

and (4.31) as they describe the same quantum field operator ψ̂R. Then I take its inner

product with positive energy solutions
(
ψ+
Ω (x, ky), ψ̂R(x)

)
for electron, and negative en-

ergy solutions
(
ψ−
Ω (x, ky), ψ̂R(x)

)
for hole Rindler operators, as defined in (4.36) [108, 45],

yielding:

ĉ>ky ,Ω =

∫
d2k′

[
α+,>
k′,ky ,Ω

âk′ + β+,>
k′,ky ,Ω

b̂†
k′

]
,

d̂>†
ky ,Ω

=

∫
d2k′

[
β−,>
k′,ky ,Ω

âk′ + α−,>
k′,ky ,Ω

b̂†
k′

]
, (4.38)

the Bogoliubov transformations that express the Rindler ladder operators for x > 0 (de-

noted by superscript >) as a linear combination of the Minkwoski ladder operators. Sim-

ilar relations hold for x < 0 region with the superscript < at the appropriate places. Fol-

lowing Takagi [108], the coefficients of this linear relationship α±
k,k′y ,Ω

′ and β±
k,k′y ,Ω

′ , known

as Bogoliubov coefficients, are found to be:

α+,>
k′,ky ,Ω

=
√
nF(−2πΩ) δ(ky − k′y) P(k′,Ω),

β+,>
k′,ky ,Ω

= −i
√
nF(2πΩ) δ(ky + k′y) P(k′,Ω),

α−,>
k′,ky ,Ω

= α+,<
k′,ky ,Ω

=
(
α+,>
k′,ky ,Ω

)∗
=
(
α−,<
k′,ky ,Ω

)∗
,

β−,>
k′,ky ,Ω

= β+,<
k′,ky ,Ω

=
(
β+,>
k′,ky ,Ω

)∗
=
(
β−,<
k′,ky ,Ω

)∗
, (4.39)

where the first Bogoliubov coefficient α+,> for the right side of graphene is found by tak-
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ing the inner product of the positive energy Rindler spinor for x > 0 with the positive

energy Minkowski modes, whereas the second coefficient β+,> is found using the nega-

tive energy Minkowski modes. Similarly, the other two coefficients α−,> and β−,> can be

found by using negative energy Rindler spinors. In the last two lines, I list how the rest

of the coefficients are related to the first two via complex conjugation. These coefficients

are written in terms of the Fermi-Dirac function nF(x) = (ex + 1)−1 and the projection

operator:

P(k,Ω) =
1 + i√

2

1√
2πk

(
k + kx
k − kx

) iΩ
2
(√

k + kx
2k

+ i

√
k − kx

2k

)
. (4.40)

The anticommutation relations for the Rindler operators ĉky ,Ω and d̂ky ,Ω, along with those

of the Minkowski operators âk and b̂k and the transformations Eq. (4.38) imply the follow-

ing normalization condition for the Bogoliubov coefficients:∫
d2k̃

(
ασ,r
k̃,ky ,Ω

ασ
′,r′∗

k̃,k′y ,Ω
′ + βσ,r

k̃,ky ,Ω
βσ

′,r′∗
k̃,k′y ,Ω

′

)
= δσσ

′
δrr

′
δ(ky − k′y)δ(Ω − Ω′), (4.41)

where the superscript σ = ± labels the positive and negative energy solutions, and r =>

,< labels the right (x > 0) or left (x < 0) region of graphene. To find these Bogoliubov

coefficients, I made use of the Fourier transform of the modified Bessel functions of the

second kind [154, 155]:∫ ∞

0

dx Kν(ax)eibx =
π

4
√
a2 + b2

×

[
(
√
r2 + 1 + r)ν + (

√
r2 + 1 − r)ν

cos(πν/2)
+ i

(
√
r2 + 1 + r)ν − (

√
r2 + 1 − r)ν

sin(πν/2)

]
,

(4.42)

where r = b/a. The conditions required for the validity of the sine transform are Re a > 0,

b > 0, |Re ν| < 2 and ν ̸= 0. Whereas the conditions for the cosine transform are
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Re a > 0, b > 0, |Re ν| < 1. For our case, a = ky > 0 and ν = 1
2
± iΩ satisfy the con-

ditions. However, b = kx could be positive or negative. For kx > 0 case, the above Fourier

transform can be used whereas for kx < 0, one needs to take the complex conjugate of the

above transform.

Note that the transformation in (4.38) and the corresponding Bogoliubov coeffi-

cients in (4.39), can be re-written in a much cleaner way [108]:

ĉ>ky ,Ω =
√
nF(−2πΩ)Âky ,Ω − i

√
nF(2πΩ)B̂†

−ky ,Ω, (4.43a)

d̂>†
ky ,Ω

= i
√
nF(2πΩ)Â∗

−ky ,Ω +
√
nF(−2πΩ)B̂∗†

ky ,Ω
, (4.43b)

where instead of using momentum integrations as in (4.38), the Rindler operators are ex-

pressed in terms of modified Minkowski Â and B̂, that are defined as a complex linear

combination of the original Minkowski operators â and b̂ as follows [108]:

Âky ,Ω =

∫ ∞

−∞
dkx P(k,Ω) âk,

B̂†
ky ,Ω

=

∫ ∞

−∞
dkx P(k,Ω) b̂†k, (4.44)

that (like the operators {â, b̂}) also annihilate the Minkowski vacuum:

Âky ,Ω|0M⟩ = B̂ky ,Ω|0M⟩ = 0, (4.45)

which follows from Eq. (4.22). In addition, they satisfy the anti-commutation relations:

{
Âky ,Ω, Â

†
k′y ,Ω

′

}
=

{
B̂ky ,Ω, B̂

†
k′y ,Ω

′

}
= δ(ky − k′y)δ(Ω − Ω′). (4.46)

As a result of these properties, the expectation value of modified operators in the
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Minkowski vacuum state |0M⟩ become:

〈
0M
∣∣Âky ,ΩÂ†

k′y ,Ω
′

∣∣0M
〉

=
〈
0M
∣∣B̂ky ,ΩB̂

†
k′y ,Ω

′

∣∣0M
〉

= δ(ky − k′y)δ(Ω − Ω′),〈
0M
∣∣Â†

ky ,Ω
Âk′y ,Ω′

∣∣0M
〉

=
〈
0M
∣∣B̂†

ky ,Ω
B̂k′y ,Ω

′
∣∣0M

〉
= 0, (4.47)

where in order to derive the Dirac delta function in energies δ(Ω − Ω′), in the above vac-

uum averages, the following identity was used [108]:

∫ ∞

−∞

dkx
2πk

(
k + kx
k − kx

)i(Ω−Ω′)/2

=

∫ ∞

−∞

dy

2π
ei(Ω−Ω′)y = δ(Ω − Ω′), (4.48)

where in the first equality I made the substitution y = 1
2

log
(
k+kx
k−kx

)
.

The advantage of (4.43) emerges when I evaluate the expectation value of Rindler

operators in the Minkwoski vacuum, where I only need vacuum averages of modified

Minkwoski operators, simplifying our calculations. Interestingly, when I compute expecta-

tion values of the Rindler operators with respect to the Minkoski vacuum I find that such

averages involve an emergent Fermi distribution:

⟨0M|ĉ>†
ky ,Ω

ĉ>k′y ,Ω′ |0M⟩ = ⟨0M|d̂>†
ky ,Ω

d̂>k′y ,Ω′ |0M⟩ = nF(2πΩ)δ(ky − k′y)δ(Ω − Ω′), (4.49)

that arise solely due to strains in the material, rather than due to any real heat bath.

This implies that although the occupancy of Rindler electrons and holes in the Rindler

vacuum is zero, in the Minkowski vacuum state it is proportional to the Fermi function.

Thus surprisingly, spontaneous particle creation here has a spectrum that turns out to be

thermal in nature. This is known as the Fulling-Davies-Unruh effect which, in the con-

ventional setting, says that an accelerating observer views the Minkowski spacetime as a

thermal bath of particles at the Unruh temperature TU = ℏa
2πkBc

. Within the present analog
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setup, in which the accelerating observer is replaced by a sudden switch on of a spatially-

inhomogeneous strain, the analog Unruh temperature is given by TU = ℏωc

2πkB
= ℏv0

2πkBλ
.

To see how this thermality arises in a concrete way, I re-write the (4.43) for elec-

trons in the right side of graphene (x > 0) and holes on the left side (x < 0):

ĉ>ky ,Ω =
√
nF(−2πΩ)Âky ,Ω − i

√
nF(2πΩ)B̂†

−ky ,Ω, (4.50a)

d̂<†
−ky ,Ω = −i

√
nF(2πΩ)Âky ,Ω +

√
nF(−2πΩ)B̂†

−ky ,Ω, (4.50b)

where I made use of the symmetry properties of Bogoliubov coefficients in (4.39) and I

chose to evaluate the hole operator for x < 0 region and with inverted momentum −ky

with respect to the electrons. These can be inverted to write the modified operators in

terms of Rindler operators:

Âky ,Ω =
√
nF(−2πΩ)ĉ>ky ,Ω + i

√
nF(2πΩ)d̂<†

−ky ,Ω, (4.51a)

B̂†
−ky ,Ω = i

√
nF(2πΩ)ĉ>ky ,Ω +

√
nF(−2πΩ)d̂<†

−ky ,Ω. (4.51b)

Equation (4.49) suggests that what I see as the vacuum of a flat graphene sheet, may ap-

pear as a state filled with Rindler strained particles. Thus I can express the Minkowski

vacuum in terms of Rindler excited states in the following way [156, 157]:

|0M⟩ =
∏
ky ,Ω

|0ky ,Ω⟩M, (4.52)

|0ky ,Ω⟩M =
1∑

m,n=0

Amn|m>
ky ,Ω

⟩R |n<−ky ,Ω⟩R, (4.53)

which expresses the Minkowski vacuum state in terms of a Rindler state with m electrons

on the right and n holes on the left side. Note that the sum has only two entries because

of the Pauli principle for fermions which according to (4.45), means that the electron an-

nihilation operator (also true for holes) acting on the state with no electrons as well as
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the corresponding electron creation operator acting on a state with one electron will yield

zero, i.e. ĉ|0R⟩ = ĉ†|1R⟩ = 0. Dropping the quantum labels ky and Ω, and the subscript

R, and applying the modified Minkowski electron annihilation operator Âky ,Ω to the above

Minkwoski state in Eq. (4.52), I get ([156, 157]):

0 = Â|0ky ,Ω⟩M (4.54)

=
[
n

1
2
F(2πΩ)A11 + in

1
2
F(−2πΩ)A00

]
|0>⟩|1<⟩

+ n
1
2
F(−2πΩ)A10|0>⟩|0<⟩ + in

1
2
F(2πΩ)A10

]
|1>⟩|1<⟩.

If the right hand side vanishes for arbitrary Rindler Fock states, then this yields the sum-

mation coefficients as A10 = A01 = 0, and A11 = −iA00e
−πΩ. Also normalizing the ansatz

in (4.52) yields |A00|2 + |A11|2 = 1. Combining these ideas, I get A00 = n
1
2
F(2πΩ) and

A11 = −in
1
2
F(−2πΩ), and therefore the flat graphene vacuum state can be expressed as a

two-mode squeezed state of Rindler-strained fermions:

|0M⟩ =
∏
ky ,Ω

n
1
2
F(−2πΩ)

[
|0>ky ,Ω⟩R |0<−ky ,Ω⟩R − ie−πΩ|1>ky ,Ω⟩R |1<−ky ,Ω⟩R

]
, (4.55)

similar to the Bardeen-Cooper-Schrieffer (BCS) state [158, 159] for electrons that form a

Cooper pair [160] inside a superconductor or superfluid. From this, a density matrix can

be constructed ρ̂ = |0M⟩⟨0M| representing the pure state of the flat graphene sheet, and

when traced over the left side (x < 0) Rindler particle states, I get a reduced density ma-

trix in terms of the Rindler Hamiltonian expressed in terms of modes pertaining to the

right side only (x > 0):

ρ̂> =
e−2πĤ>

Tr e−2πĤ>
, (4.56)

where the normal ordered Hamiltonian constrained to the right side should be understood
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in terms of a sum in modes Ĥ> =
∑

ky ,Ω
Ω{ĉ>†

ky ,Ω
ĉ>ky ,Ω + d̂>†

ky ,Ω
d̂>ky ,Ω}. This density matrix is

clearly of the Gibbs’ thermal ensemble form.

In the case of the conventional Unruh effect with an accelerating observer, the

Rindler horizon that bars any communication between the two wedges presents a natural

trace of the density matrix. In the present setting of a strained honeycomb lattice, the

low-energy and long-wavelength modes see the point x = 0 as an analog horizon and

thus leakage of such modes between the two sides is either zero or minuscule. Hence, even

though the global state of the honeycomb system might be a pure state, when I make

measurements on one side of the sheet, the degrees of freedom on the other side are not

available to us and hence get naturally traced out from the density matrix giving us a

reduced mixed thermal state as in Eq. (4.56) [100, 108, 161, 116]. This is known as the

thermalization theorem which says that the presence of horizons in a spacetime is suffi-

cient for thermality to emerge. It is intimately connected to the Kubo-Martin-Schwinger

(KMS) condition [105, 106] and the principle of detailed balance which I shall discuss

in the next section. Thus any strain pattern that realizes an analog spacetime with a

natural horizon such as black holes, de-Sitter or Rindler, can lead to the appearance of

such thermal effects.

So far I have discussed how a Rindler Hamiltonian (4.23) forms from assuming a

linear-in-position Fermi velocity v(x) = v0
|x|
λ

, how this leads to the Bogoliubov transfor-

mations (4.43) between the strained (Rindler) and flat (modified Minkowski) honeycomb

operators, giving rise to the vacuum averages in (4.49) that behave as thermal averages

over an ensemble represented by the density matrix (4.56). These results collectively are

termed as the Unruh effect which emerges due to the presence of a natural demarcation in
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the material. Before we discuss the implications of this spontaneous electron-hole forma-

tion on observables like the electronic conductivity and internal energy, in the next section

I will present the Green’s functions pertaining to the strained graphene system to discuss

in what sense is the Unruh effect a genuine thermal phenomena. I will also discuss how

the dimensionality of graphene leads to the violation of Huygens’ principle and the inver-

sion of statistics which could possibly be seen in photo-emission experiments.

4.5. Green’s Functions

In this section, I describe properties of single-particle Green’s functions that will

help us explain how thermal behavior emerges, how the Huygens’ principle is violated and

how this leads to the phenomena of apparent statistics inversion in the excitation spec-

trum of fermions. Towards the end of this section, I discuss how these properties can be

detected in experiments like photoemission spectroscopy (PES) and scanning tunneling

microscopy (STM).

Following Ooguri [109], I introduce two fundamental single particle Green’s func-

tions defined with respect to the flat graphene vacuum state |0M⟩:

G+(r, t; r′, t′) = ⟨0M|ψ̂R(x, y, t)ψ̂†
R(x′, y′, t′)|0M⟩, (4.57a)

G−(r, t; r′, t′) = ⟨0M|ψ̂†
R(x, y, t)ψ̂R(x′, y′, t′)|0M⟩. (4.57b)

Here G+ creates a particle at location r′ = (x′, y′) and time t′, and then annihilates it at

another location r = (x, y) and time t, whereas G− does the opposite. In the condensed-

matter context, these are called the > and < Green’s functions, respectively [162] (up

to factors of i), and their physical interpretation will become clear when I discuss their

Fourier transforms below.
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Interestingly, despite the intrinsically nonequilibrium nature of this setup, i.e.,

a sudden switch-on of the system strain that changes the system Hamiltonian from the

Dirac to the Rindler Hamiltonian, these Green’s functions have simple forms, at least in

the local real-space limit. To see this, we set the positions equal i.e. x′ = x and y′ = y.

Making use of mode expansion (4.31) for the right node fields and the vacuum averages

(4.49) for Rindler ladder operators with respect to Minkowski vacuum, and taking the

spinor trace, I find:

Tr G+(x, y,∆t) =
1

2πx2

∫ ∞

0

dΩ Ω cothπΩ
[
eiΩ∆tnF(2πΩ) + e−iΩ∆tnF(−2πΩ)

]
, (4.58)

Tr G−(x, y,∆t) =
1

2πx2

∫ ∞

0

dΩ Ω cothπΩ
[
eiΩ∆tnF(−2πΩ) + e−iΩ∆tnF(2πΩ)

]
, (4.59)

where ∆t = (t− t′). If I define a typical timescale associated with the Unruh temperature,

ℏ/(kBTU) (equal to 2π in our units) then it can be shown that the above Green’s functions

are periodic in imaginary shifts by this timescale:

Tr G+(x, y,∆t− 2πi) = Tr G−(x, y,∆t). (4.60)

This is known as the Kubo-Martin-Schwinger (KMS) condition [105, 106] which in the

conventional equilibrium case at temperature T , guarantees that the thermal average of

any two operators Â and B̂ for a system kept in contact with a heat bath at temperature

β = (kBT )−1 is also periodic in imaginary time, i.e. ⟨Â(t)B̂(t′)⟩ = ⟨B̂(t′)Â(t + iβ)⟩. For

example, if I take the operators Â and B̂ as the graphene right-node field operators, then I

get the following KMS condition for the Green’s functions in (4.57a) and (4.57b):

G+(r, r′,∆t− 2πi) = G−(r, r′,∆t). (4.61)

Note that here I have assumed that the Green’s functions depend solely on the time dif-
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ference ∆t because the system exhibits time translation invariance when it is in thermal

equilibrium. In an isolated strained graphene sheet, this condition implies that the vac-

uum (pure state) average of field operators behaves as a legitimate thermal (mixed state)

average with respect to the reduced density operator (4.56) (that can be thought of as an

evolution operator [162, 163]), as if it is kept in contact with a real heat bath set at the

Unruh temperature, i.e. T = TU.

To further understand the meaning of the KMS condition, I take the Fourier trans-

forms of the above Green’s functions (4.58) and (4.59) defined as

F±(x, ω) =

∫ ∞

−∞
d(∆t) e−iω∆tTr G±(x, y,∆t), (4.62)

from which I obtain:

F+(x, ω) =
ω

x2
nB(2πω), (4.63)

F−(x, ω) = − ω

x2
nB(−2πω). (4.64)

As discussed by Coleman [162], F+(x, ω) is the photo-emission spectra that gives the total

excitation of electrons when graphene is illuminated by light. Similarly, F−(x, ω) measures

the de-excitation spectra. The ratio of these two power spectra turns out to be:

F+(x, ω)

F−(x, ω)
= e−2πω, (4.65)

which says that the rate of excitation versus de-excitation is of the Boltzmann form with

the strain frequency 1/2π playing the role of temperature. This is the principle of detailed

balance which originates from Boltzmann’s principle of microscopic reversibility [164, 165],

but was first applied to quantum systems by Einstein in [201] that predicted the phenom-

ena of stimulated emission. He studied the set up where an atom with two energy levels
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E1 < E2 is in thermal contact with a bath of photons such that when equilibrium sets in

the ratio of number of particles in the excited state |E2⟩ versus |E1⟩ is e−β(E2−E1). Then

by demanding that the excitation probability should match de-excitation (spontaneous

and stimulated) at equilibrium, the number distribution of photons will be given by a

Planck distribution ρ(ω) = (exp(βω) − 1)−1, where ω = (E2 − E1) is the energy of the

photon wave-packet that is absorbed by the two-level atoms. Such two-level systems are

termed Unruh-DeWitt detectors in the relativistic context [104, 161]. Thus the Fourier

transform of the KMS condition, i.e., the principle of detailed balance, tells us that accel-

erated fermionic fields have a Fermi-Dirac spectrum and when they are in contact with a

two-level or more atom or detector, then the latter comes into global thermal equilibrium

with the field with the Unruh temperature defined everywhere on the real or analog space-

time.

The discussion above can be summarized by stating the thermalization theorem.

For a comprehensive account of its various versions, see [108]. It states that if the space-

time (or the analog system) has a causal horizon (like the Minkowski spacetime in Rindler

coordinates), then any quantum field on that spacetime will spontaneously emit particles

in a thermal distribution characterized by a Bose or Fermi function which is captured by

the reduced density matrix (4.56) in Gibbs’ ensemble form. Once this density operator is

achieved, then the KMS condition (4.60), or more generally Eq. (4.61), guarantees that

the field will also thermalize any other system (like an atom or a detector) in its contact,

that has energy levels, thus establishing a global thermal equilibrium with temperature

T = 1/2π.

To discuss Huygens’ principle and how its violation leads to statistics inversion, I
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now consider two other fundamental Green’s functions pertaining to the commutator and

the anti-commutator of fermionic fields, that are similar to the Green’s functions defined

in (4.58) and (4.59). The former is related to the Keldysh Green’s function [167] and the

latter is related to the retarded Green’s function that takes causality into account:

GC(r, t; r′, t′) = ⟨0M|
[
ψ̂R(x, y, t), ψ̂†

R(x′, y′, t′)
]
|0M⟩, (4.66a)

GA(r, t; r′, t′) = ⟨0M|
{
ψ̂†
R(x, y, t), ψ̂R(x′, y′, t′)

}
|0M⟩. (4.66b)

After setting x = x′ and y = y′, computing these Green’s functions, and taking the trace, I

get:

Tr GC(x, y,∆t) = − i

πx2

∫ ∞

0

dΩ Ω sin(Ω∆t), (4.67)

Tr GA(x, y,∆t) =
1

πx2

∫ ∞

0

dΩ Ω coth(πΩ) cos(Ω∆t). (4.68)

Conventionally, the Huygens’ principle states that, if I have a source in even spacetime di-

mensions, then its wave-fronts can be constructed by drawing circles (appropriate to the

dimensions) with the source at the center [108]. This means that the retarded Green’s

function that describes the propagation of waves to any point (x, y, t) with the source at

(x′, y′, t′) has support only on the light cone, i.e. it vanishes when (x′, y′, t′) and (x, y, t)

are either timelike or spacelike separated. This implies that the retarded Green’s function

in even spacetime dimensions is proportional to a Dirac delta function and its derivatives.

However, strained graphene mimics an odd-dimensional spacetime where I find that the

anticommutator in Eq. (4.68) is not a Dirac delta function. This is the manifestation of

the well-known violation of Huygens’ principle [108],[168]. It says that in odd spacetime

dimensions, our intuition for wave propagation breaks down, i.e. a sharp source of wave
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does not lead to a single spherical wavefront, and instead the observer notices a continu-

ously decreasing tail.

Curiously, although the anticommutator Green’s function violates Huygens’ princi-

ple, from Eq. (4.67) I see that the commutator Green’s function GC amounts to 2i
x2
δ′(∆t),

i.e. it has support on the light cone. As a result, it is expected that the Fourier transform

of the GC will be a polynomial in ω, whereas for GA it will lead to the following:

FC(x, ω) = − ω

x2
, (4.69)

FA(x, ω) =
ω

x2
cothπω. (4.70)

To see the connection of this violation of Huygens’ principle with statistics inversion, I

need the fluctuation-dissipation theorem. They can be derived in general by writing (4.68)

and (4.67) in terms of (4.57a) and (4.57b), i.e. GA = G+ +G− and GC = G+−G−, Fourier

transforming them, and finally applying the KMS condition or the principle of detailed

balance i.e. F− = e2πωF+, yields two different but equivalent versions of the theorem:

F+(x, ω) = nF(2πω) × FA(x, ω), (4.71)

= nB(2πω) ×−FC(x, ω). (4.72)

The excitation or power spectrum F+(x, ω) is related to the rate at which an accelerated

detector senses Rindler particles, and shows inversion of statistics depending on the di-

mension of the spacetime [108, 110, 109, 111, 113, 112, 114, 115]. Following Ooguri [109],

there are two interpretations for this. The first makes use of (4.71), which says that the

excitation spectrum is basically the Fermi-Dirac function coming from the real statistics of

the fermions, multiplied with the spectral density of states coming from the Fourier trans-

form of anti-commutator which I know violates Huygens’ principle and thus is not simply
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a polynomial in ω. This, coupled with the particular form of the mode functions in (4.31)

gives us a hyperbolic cotangent which coincidentally inverts the Fermi to a Bose function.

The other interpretation comes from (4.72), where one can argue that since we are in odd

spacetime dimensions in graphene, therefore I would expect the Fourier transform of the

commutator to be polynomial in ω (see (4.69)). Thus the excitation spectrum should be

expected to be a Bose-Einstein distribution multiplied by a factor which is polynomial in

ω, thereby removing the need to invoke any inversion.

Figure 4.3. The orange solid curve is a plot of the power spectrum F−(ω), that can be
measured in photo-emission spectroscopy (PES) experiments. The black dot-dashed curve
is a plot of FA(ω) that can be measured in scanning-tunneling microscopy (STM) ex-
periments that measure the density of states. Their ratio (in green), yields the expected
Fermi-Dirac spectrum in accordance with the Unruh effect predictions.

To see how these power spectra could manifest themselves in experiments, I fo-

cus at the first version (4.71) of the Fluctuation-Dissipation theorem, but instead for

F−, i.e. F−(ω) = nF(−2πω)FA(ω). To do this, the experimenter will first obtain the

photo-emission data from the Photo Emission Spectroscopy or the PES experiment [30].

For low-energies and long wavelengths, this will give us a plot of fermion occupancy in
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graphene’s lowest energy band which in this limit, should mimic the Planck distribution

F− = − ω
x2
nB(−2πω). As can be seen from Fig. 4.3, F−(ω) increases with energy, which

is due to the fact that the PES-experiment measures the occupancy of valence band elec-

trons by extracting them by shining light. If the intensity of light is increased, then more

electrons residing in the lower valence energy levels will be detected. The experimenter

can then obtain the data regarding the local density of states by performing the Scanning

Tunneling Microscopy or the STM experiment [124, 126] which, in the low-energy and

long-wavelength limit (where our calculations are valid), will be given by the statistics

inversion factor FA = ω
x2

cothπω, which implies that Huygens’ principle is being violated

in strained graphene. Now if I take the ratio of the PES and STM data, I will find:

PES data

STM data
=
F−(x, ω)

FA(x, ω)
= nF(−2πω), (4.73)

I will obtain the Fermi-Dirac distribution as expected from the Unruh effect of fermions,

as can be seen in Fig. 4.3.

Equipped with the Bogoliubov transformations (4.43) between the strained

(Rindler) and flat (modified Minkowski) honeycomb operators, that lead to the vacuum

averages in (4.49) and the statistics inversion in Eqs. (4.71)-(4.72), we are now ready

to discuss in the next two sections, the implications of this spontaneous electron-hole

formation on observables like the electronic conductivity and total internal energy.

4.6. Electronic Conductivity

In this section, I consider another observable that is sensitive to the Unruh effect

in strained graphene, the frequency-dependent conductivity. For this calculation, I shall

require the Bogoliubov transformations (4.43), derived in Sec. 4.4, that establish the re-
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lationship between the Rindler operators {ĉ, d̂} in a strained honeycomb system with the

modified Minkowski operators {Â, B̂} in a flat (unstrained) honeycomb system. This led

us to the expectation value (4.49) of the Rindler operators with respect to the Minkowski

vacuum. To use these results, I will need the Kubo formula that relates the frequency-

dependent conductivity to an associated current-current correlation function. For gener-

ality, we’ll briefly recall the Kubo formula derivation for both the setups considered here,

i.e., the case of electronic graphene (in which the fermions are charged electrons) and the

case of neutral cold atoms in an optical lattice.

For the electronic graphene case, I can start with the Rindler Hamiltonian (4.23)

minimally coupled to an electromagnetic vector potential A(r, t), i.e. I can make the re-

placement −iℏ∇ → −iℏ∇ − eA in the derivative operators giving us the following new

Hamiltonian [190]:

Ĥ(t) = ĤR + Ĥ1(t),

Ĥ1(t) = −
∫
d2r ĵ(r, t) ·A(r, t), (4.74)

where ĤR is the Rindler Hamiltonian (4.23). Here, the conserved current operator in the

strained (Rindler) system is:

ĵ(r, t) ≡ ev0
|x|
λ
ψ̂†
R(r, t)σψ̂R(r, t). (4.75)

Within linear response theory, I can treat the vector potential term as a perturbation, and

to linear order the response of the average current is given by:

⟨ĵµ(r, t)⟩ = − i

ℏ

∫ t

−∞
dt′
〈[
ĵµ(r, t), Ĥ1(t′)

]〉
, (4.76)

=
i

ℏ

∫ t

−∞
dt′
∫
d2r′

〈[
ĵµ(r, t), ĵν(r

′, t′)
]〉
Aν(r

′, t′).
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The time-dependent vector potential can be written as Aν(r
′, t′) = 1

iω+Eν(k, ω)e−i(k·r
′+ω+t′),

where ω+ = ω + iδ , with δ = 0+. Here, Eν(k, ω) is the electric field at wavevector k and

frequency ω. Upon plugging this into Eq. (4.76), multiplying both sides by e−iq·r and

integrating over r in the limit of q → 0 (corresponding to spatial averaging), I obtain:

⟨ĵµ(q → 0, t)⟩ =
1

ℏω+

∫ ∞

−∞
dt′Θ(t− t′)e−iω

+t′
〈[
ĵµ(0, t), ĵν(0, t

′)
]〉
Eν(0, ω). (4.77)

Noting that the time-dependent electric field Eν(0, t) = Eν(0, ω)e−iω
+t, redefining the vari-

able of integration to T = (t − t′) and taking the ratio of current and electric field, I find

the average conductivity tensor σµν = ⟨ĵµ(0,t)⟩
Eν(0,t)

:

σµν =
1

ℏω+

∫ ∞

−∞
dT Θ(T )eiω

+T
〈[
ĵµ(0, T ), ĵν(0, 0)

]〉
. (4.78)

The preceding derivation depends on the use of the vector potential as an external stim-

ulus. But, for a system that is not made of charged particles such as neutral ultracold

atomic gases, I must use a different approach. In this case, a change in the local chemi-

cal potential creates a pressure difference and hence affects the density of fermions. In-

stead of Eq. (4.74), the perturbing Hamiltonian involves a coupling of the atom density

n̂(r, t) = ψ̂†(r, t)ψ̂(r, t) to a spatially and temporally varying chemical potential:

Ĥ1(t) = −
∫
d2r µ(r, t)n̂(r, t). (4.79)

Plugging this into Eq. (4.76) with µ(r, t) = µ(r)e−iωt, integrating by parts in the t′ inte-

gral and also integrating by parts in space using the equation of continuity 0 = ∂
∂t
n̂(r, t) +

∇ · ĵ(r, t) , I finally arrive at the Kubo formula for neutral atoms, with the average atom

current related to the chemical potential gradient as j = −σ∇µ where σ is given by

(4.78).
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Thus, in either case I require the current-current correlation function, with the

averages being performed with respect to the Minkowski vacuum. I start with the com-

putation of σxx. Instead of directly using Eq. (4.78) that involves the spatially Fourier-

transformed current correlator, I start with the real-space current-current correlation func-

tion, perform spatial averages (on r and r′), and finally Fourier transform to frequency

space. The average current correlation function at the right node has the following form :

C̄xx(t− t′) =

∫
d2r

∫
d2r′⟨0M|ĵx(r, t)ĵx(r′, t′)|0M⟩, (4.80)

where we are evaluating the correlations only between fields on the right node. In what

follows, I will set e→ 1, ℏ → 1 and ωc → 1.

I performed spatial integrals on (4.80) along the coordinates r and r′ because the

conductivity Eq. (4.78) requires the current-current correlation in the reciprocal space in

the limit q → 0. Integration along y and y′ will yield Dirac delta functions in wavevectors

δ(ky − k′y), after which integration of spinor products is performed over x and x′ directions

using the following identity:∫ ∞

0

dx x
[
K 1

2
+iΩ(x)K 1

2
−iΩ′(x) −K 1

2
−iΩ(x)K 1

2
+iΩ′(x)

]
=

iπ2(Ω2 − Ω′2)

2[sinh(πΩ) + sinh(πΩ′)]
. (4.81)

Thus the average current-current correlator as a function of time for the right handed

fermions looks as follows:

C̄xx(∆t) =
1

2

∫ ∞

−∞
dΩ

∫ ∞

−∞
dΩ′ cosh πΩ coshπΩ′

nF(2πΩ)nF(−2πΩ′)ei(Ω−Ω′)∆t (Ω2 − Ω′2)2

[sinh(πΩ) + sinh(πΩ′)]2
,

(4.82)

where ∆t = (t − t′). I now subtract from this the current correlator with time coordinates
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interchanged, t↔ t′ i.e. C̄xx(t′− t) = C̄xx(−∆t), to obtain the vacuum average of the com-

mutator of current-current correlation. Plugging this into the expression for conductivity

tensor (4.78), where I perform the Fourier transform of a retarded function in time using

the Plemelj formula lim
δ→0+

1
x+iδ

= P 1
x
− iπδ(x), and extracting the imaginary part, I finally

obtain the xx-component of the dissipative average conductivity as follows:

σ̄′′
xx(ω) =

πω

2

∫ ∞

−∞
dΩ cosh πΩ coshπ(Ω + ω) (4.83)

× (2Ω + ω)2

(sinh πΩ + sinh π(Ω + ω))2
[
nF(2πΩ) − nF(2π(Ω + ω))

]
,

where the double prime ′′ denotes the imaginary part of conductivity that leads to dissipa-

tion of electronic current. In this formula, I have dropped dimensionful prefactors (such as

e2/ℏ, the typical units of conductivity), and I have dropped an extensive factor

A =

∫ ∞

0

dky
2π

1

k2y

∫ ∞

−∞
dy = Ly

∫ ∞

0

dky
2π

1

k2y
, (4.84)

with Ly the size of the system in the y direction. Properly handling the remaining integral

would require analyzing our problem in a finite system along x, a task I leave for future

work.

I have plotted Eq. (4.83) in Fig. 4.4 which shows that the conductivity grows ap-

proximately linearly with the probing frequency and vanishes in the DC-limit (ω → 0).

As I discussed in Sec. 4.1, the Rindler Hamiltonian with Fermi velocity v(x) ≃ v0|x|/λ,

can be achieved for modes with low energies and long wavelengths. Hence, the results

for conductivity (and for internal energy) for strained honeycomb lattices are valid if I

choose to probe long-wavelength modes kyλ ≪ 1. This is valid because in order to eval-

uate these observables, spatial averages need to be performed equivalent to setting q → 0

in σ(ω, q → 0) as I discussed in Eq. (4.77).
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Figure 4.4. A plot showing how the average dissipative conductivity (in units of e2/ℏ)
grows approximately linearly as a function of AC-frequency (in units of strain frequency
ωc = v0/λ). The longitudinal components σ′′

xx(ω) (in red) and σ′′
yy(ω) (in green) both van-

ish in the DC-limit ω → 0.

To understand the result in Eq. (4.83), I revisit the electronic conductivity of flat

graphene (per node and per spin) in the collisionless limit and at a finite environment

temperature β = (kBT )−1 [170]:

σ̄′′
xx(ω) =

1

16

[
nF

(
− βω

2

)
− nF

(βω
2

)]
(4.85)

=
1

16

[
1 − 2nF

(βω
2

)]
, (4.86)

where the left hand side is measured in units of e2/ℏ. The right hand side vanishes in the

DC-limit ω → 0. This happens because in this limit, only the energy levels close to the

Dirac point participate in electronic transitions due to switching on the vector potential in

(4.74). However, here the electron occupancy in conduction band, given by nF(βω) ∼ 0.5,

is equal to the electron occupancy in the valence band, given by nF(−βω) ∼ 0.5. Thus

the rate of excitation and de-excitation are equal and hence the electrons near the Dirac

point (DC-limit) do not participate in conductivity. On the other hand, as the probing

frequency is increased, the electron occupancy in the valence band starts exceeding the
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conduction band, thus giving us a net rate of excitation of electrons that give non-zero

conductivity. In the opposite limit of ω ≫ (ℏβ)−1, the high energy modes are unaffected

by the thermal scale and hence, the electron occupancy here is approximately unity, i.e.

the de-excitation is minuscule and conductivity reaches it maximum value of e2/16ℏ. The

density of states in a two-dimensional material such as graphene, is expected to be linear

in energy. However this gets cancelled out due to the 1/ω in the expression for conductiv-

ity (4.78), and therefore only the Fermi functions are needed to physically understand the

behavior of conductivity.

Since the strained graphene system is effectively at an Unruh temperature TU ,

by analogy with the preceding argument I might also expect to find that σ(ω) → 0 for

ω → 0, as I indeed find in Fig. 4.4. To derive the approximate linear behavior, I use

the fact that the factor multiplying the Fermi functions in square brackets in Eq. (4.83)

is sharply peaked at Ω = −ω/2. Then, we are allowed to make this replacement in the

square brackets, yielding
[
nF(−πω) − nF(πω)

]
that can be pulled outside the integral.

Upon evaluating the remaining Ω integration over the peak region finally gives

σ̄′′
xx(ω) ≃

√
3

2π3/2
ω tanh

πω

2
, (4.87)

which agrees with our numerical result in Fig. 4.4.

I can also interpret these results by focusing on the second version similar to (4.86)

and noting that the conductivity is reduced due to the presence of emergent Fermi func-

tions. This happens due to stimulated particle reduction [58, 171, 172, 173, 174]. The

process of straining the honeycomb lattice leads to creation of fermions in the conduction

band with a Fermi distribution nF(2πΩ) characterized by Unruh temperature (here 1/2π),
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yielding a thermally excited state. To study the linear electronic response of this system,

a vector potential stimulus is provided because of which more electrons from the valence

band jump to the conduction band. Pauli’s exclusion principle does not allow the strained

electrons to co-exist with the electronically excited ones, hence leading to an overall re-

duction in the response. Since particle creation is maximum at zero energy where the two

bands meet (as the Unruh-Fermi function is maximum at low energies), it is easiest for

strains to create electrons at this zero-energy level, and hence the stimulated reduction is

maximum for zero probing frequency i.e. the DC-limit ω → 0. In contrast higher energies

overpower the strains making the Fermi functions small, and hence maximum conductivity

is achieved.

Next I turn to the conductivity σyy for directions perpendicular to the strain fields,

which, following the same procedure, leads to the similar result:

σ̄′′
yy(ω) =

πω

2

∫ ∞

−∞
dΩ coshπΩ coshπ(Ω + ω) (4.88)

× (2Ω + ω)2

(sinh πΩ − sinhπ(Ω + ω))2
[
nF(2πΩ) − nF(2π(Ω + ω))

]
,

the only difference being a minus sign in the denominator of one factor in the integrand.

In this case the factor multiplying the Fermi functions in square brackets is not a nar-

row peak at −ω/2; nonetheless the qualitative behavior is similar as seen in Fig. 4.4

which shows that just like the xx-component, the yy-component of conductivity also

grows approximately linearly with the probing frequency and vanishes in the DC-limit

(ω → 0). One key difference is that σ̄′′
yy(ω) is smaller in magnitude. The reason is that in

x̂-direction the atoms have been forced to come closer to each other using strains of type

(4.6) thereby increasing the Fermi velocity, and thus hopping becomes easier. Whereas in
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the ŷ-direction, the strains do not depend on coordinate y, and thus the atoms are further

apart in this direction as compared to x̂, hence the hopping and the conductivity here are

lower.

The transverse or off-diagonal components of conductivity tensor are anti-

symmetric i.e. σxy(ω) = −σyx(ω), which can be readily inferred from the commutator

in Eq. (4.78). This means that knowledge of one, determines the other. Performing similar

calculations as the longitudinal case, yields a vanishing transverse conductivity:

σ′′
xy(ω) = −σ′′

yx(ω) = 0. (4.89)

This can be expected because if σxy ̸= 0, then an electric field in the x-direction Ex would

be able to create a current in the y-direction. However due to translation symmetry, there

is no reason why +ŷ would be favored over −ŷ, and thus the current is expected to be

zero by symmetry. This symmetry gets broken when there is a real magnetic field in the

system.

In this section I showed how the Rindler Hamiltonian (4.23) leads to a linear in

probing frequency behavior of longitudinal components of the electronic conductivity

(4.83), (4.88), and that the transverse (4.89) components simply vanish. These results for

average dissipative conductivity are summarized in Fig. 4.4, where both the longitudinal

components scale linearly for frequencies. In the next section, I will take a look at the

consequence of Rindler Hamiltonian on the internal energy of such honeycomb systems.

4.7. Internal Energy

As I saw in the previous section, that spontaneous particle creation due to us as-

suming a linear-in-position Fermi velocity had a profound effect on the behavior of elec-
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tronic conductivity which scaled linearly in the probing frequency, as opposed to the flat

honeycomb case where it has a constant value for all frequencies. In this section, I will

be looking at how this Rindler-Unruh particle creation affects the response of honeycomb

systems when brought in contact with a thermal heat bath, i.e. I will find the total elec-

tronic energy in the system U , which can be calculated using the expectation value of the

Rindler Hamiltonian (4.23) with respect to a Minkowski thermal density matrix labeled by

the temperature parameter β = (kBT )−1 as a subscript:

UM = ⟨ĤR⟩β,

= iℏ
〈∫

d2x ψ̂†
R(x) · ∂tψ̂R(x)

〉
β,M

, (4.90)

where to get the second line I made use of the Dirac equation (4.24) to simplify further

calculations. Equivalently, this can also be calculated using the energy-momentum ten-

sor operator as discussed in Ref. [108]. However, the above Minkowski thermal average

is divergent and thus requires normal ordering. This involves subtracting off the Rindler

thermal average (i.e. the limit of zero strains λ → ∞) of the Rindler Hamiltonian from the

Minkowski average as follows:

U = ⟨ĤR⟩β,M − ⟨ĤR⟩β,R. (4.91)

This renormalization is needed because the Hamiltonian is quadratic in the fields ψ̂2(x)

[45, 48, 99, 100, 46, 47], and thus the expectation value has a genuine divergence since

even smearing the field operators will not cure this divergence, unlike the case of two-point

functions which are bi-distributions and their divergences at short distances can be cured

by smearing.
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To evaluate these expectation values, the physical picture that I will be needing is

that the honeycomb lattice is initially in a thermal state (due to contact with a heat bath

or the surroundings), and then strains are put on it. As a result, the initial state of the

flat honeycomb lattice is described by the eigenstates of the standard Dirac Hamiltonian

(4.15), whose excitations are described by Minkowski operators {âk, b̂k} in Eq. (4.20) la-

beled by momentum vector k. Since this system is also kept in contact with a heat bath

at temperature β = (kBT )−1, the thermal averages of Minkowski operators will be given

by the Fermi distributions:

⟨â†kâk⟩β,M = ⟨b̂†kb̂k⟩β,M = nF(βϵk) ≡
1

eβϵk + 1
, (4.92)

as a function of the Minkowski energy dispersion relation ϵk = ℏωk = ℏv0|k|. When

the strains are turned on, then the system is described the Rindler Hamiltonian (4.23),

whose excitations are governed by the Rindler operators {ĉky ,Ω, d̂ky ,Ω}, labeled by the in-

dependent pair of momenta ℏky and energy ℏΩ. I have seen in Sec. 4.3, that the Bogoli-

ubov transformations (4.43) help express these Rindler operators in terms of modified

Minkowski operators {Â±
ky ,Ω

, B̂±
ky ,Ω

}, which are in turn complex linear combinations of the

standard ones {âk, b̂k} as given in Eq. (4.44). Thus making use of this transformation be-

tween operators, and the thermal averages in Eq. (4.92), I obtain the thermal averages of

the Rindler operators in the Minkowski vacuum as follows:

〈
ĉ†ky ,Ωĉk′y ,Ω′

〉
β,M =

〈
d̂†ky ,Ωd̂k′y ,Ω′

〉
β,M

= δ(ky − k′y)

[
δ(Ω − Ω′)

√
nF(2πΩ)

√
nF(2πΩ′)

+

{√
nF(−2πΩ)

√
nF(−2πΩ′) −

√
nF(2πΩ)

√
nF(2πΩ′)

}
Zky(∆)

]
, (4.93)
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where ∆ ≡ Ω − Ω′ and I define the function Zky(∆):

Zky(∆) =

∫ ∞

−∞

dkx
2πk

(
k + kx
k − kx

)−i∆/2

nF(βϵk), (4.94)

which I emphasize is real (i.e., Z∗
ky

(∆) = Zky(∆)). Note the difference between the two

types of Fermi distributions being used here. The first nF(βϵk), is due to a heat bath la-

beled by the environment temperature parameter β and is a function of the Minkowski

energy ϵk. The second one nF(2πΩ) is an emergent thermal distribution governed by the

strain frequency ωc = v0/λ.

The thermal averages in (4.93) have a temperature-independent part proportional

to a delta function in energy δ(Ω − Ω′) and a temperature-dependent part having the func-

tion Zky(Ω − Ω′). To get an intuition for this formula, I discretize the wavevector and fre-

quency delta functions to Kronecker delta functions, effectively smearing the Rindler oper-

ators [108]. Then taking k′y = ky and Ω′ = Ω, the electron (or hole) thermal averages take

the following form:

Nky ,Ω ≡
〈
ĉ†ky ,Ωĉky ,Ω

〉
β,M − Zky(0)

= nF(2πΩ)

[
1 − 1

π

∫ ∞

−∞

dk̂x√
k̂2x + k̂2y

nF

(√
k̂2x + k̂2y

)]
, (4.95)

where Ω is the dimensionless frequency used elsewhere (in which the Unruh temperature is

1/(2π)) and the wavevectors k̂ = ℏv0k
kBT

are normalized using the real system temperature

T . I have also renormalized the number average by subtracting off the Rindler vacuum

contribution which can be found by setting TU = 0 (λ → ∞) in (4.93), or equivalently

subtracting off Zky(0) from the expectation value in the first line. This is the same proce-

dure as was discussed in (4.91) without which the integrals inside the expectation values

diverge.
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In Fig. 4.5, I plot the renormalized occupancy as a function of frequency for vari-

ous values of the normalized wavevector k̂y. This figure shows that nonzero environment

temperature leads to a stimulated reduction of fermions [58, 171, 172, 173, 174], i.e., a

smaller Unruh effect. However, this reduction is dependent on the momentum ky, with

the k̂y → ∞ curve (dashed line) identical to the zero-temperature Unruh effect, and an

increasing stimulated reduction with decreasing k̂y. This happens because I start with

an initial thermal state of fermions and Pauli’s exclusion principle does not allow new

fermions to co-exist with them that are spontaneously created via strains, hence leading

to reduction. The higher the initial temperature, the lower the value of k̂y and therefore

the further away the spectrum is from the Fermi-Dirac. In other words, if I keep the en-

vironment temperature fixed, then in the limit of small wavelength I recover the Unruh

effect and for larger wavelengths the average fermion number strays away from the perfect

Fermi-Dirac distribution.

Next, I turn to the direct calculation of the internal energy U using Eq. (4.91). For

this task I shall use Eq. (4.93) without making the abovementioned discretization that was

used for Fig. 4.5. I find that the internal energy has two contributions U = U0 + Uβ.

For the zero temperature part U0, the energy and momentum integrals inside the thermal

averages can be simplified by using the Dirac delta functions δ(Ω − Ω′) and δ(ky − k′y) that

pin Ω′ = Ω and ky = k′y. Then integration can be performed over momenta ky using the

following identity:

∫ ∞

0

dky ky K 1
2
+iΩ(kyx)K 1

2
−iΩ(kyx) =

π2

4x2
Ω

sinhπΩ
, (4.96)
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Figure 4.5. A figure showing the average number of fermions (plotted with respect to
mode energy normalized with Unruh temperature, see Eq.(4.95)) in a graphene sheet
which is initially in a thermal state and is then strained leading to stimulated particle re-
duction, for various values of momenta k̂y normalized with real temperature. The dashed
black curve represents the Unruh effect with a perfect Fermi-Dirac distribution which
could be achieved in the limit of k̂y→∞, i.e. large ky or zero environment temperature. As
the temperature rises, the Fermi-Dirac distribution gets reduced due to Pauli’s principle.

which leads to:

U0 =
Ly
π

∫
dx

x2

∫ ∞

0

dΩ ℏΩ Ω cothπΩ nF(2πΩ),

=
Ly
π

∫ ∞

a

dx

x2

∫ ∞

0

dΩ ℏΩ Ω nB(2πΩ), (4.97)

where in going from first to second line I used the identity cothx · nF(2x) = nB(2x), and

I cutoff the x spatial integral at the lattice scale a. I also note that the energy labels Ω

that are not associated with an ℏ, need to be understood as being normalized with ωc.

This result is for the right side of the honeycomb lattice per node and per spin state. This

temperature independent contribution U0 is made up of three elements: the mode energy

ℏΩ, the density of states Ω cothπΩ and the occupancy of energy levels given by a Fermi-

Dirac distribution nF(2πΩ). In the last line, however, I see that the product of the last

two factors in the first line effectively yields a linear-in-energy density of states multiplied
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by the Bose-Einstein distribution. This is Takagi’s apparent statistics inversion [108] that

I discussed in equations (4.71) and (4.72). Thus, although Eq. (4.97) pertains to fermions,

the final result looks like Planck’s black body result for photons.

The temperature-dependent part of the total internal energy, Uβ, depends on the

temperature-dependent terms of the thermal averages in Eq. (4.93). For this contribution,

the momentum integrals inside the thermal averages can be simplified by using the Dirac

delta function δ(ky − k′y), pinning k′y = ky. Then, integrating over x using Eq. (4.37) gives

us a Dirac delta function δ(Ω−Ω′). This along with the finite temperature renormalization

discussed in Eq. (4.91) gives the temperature dependent part of internal energy:

Uβ = −Ly
π

∫ ∞

0

dΩ ℏΩ nF(2πΩ)

∫ ∞

−∞
dky Zky(0), (4.98)

The momentum integral can be simplified by switching to polar coordinates, i.e.

(kx, ky) → (k, θ), and using the identity
∫∞
0
dx nF(x) = log 2, thus yielding:

∫ ∞

−∞
dky Zky(0) =

kBT log 2

ℏv0
. (4.99)

Compiling the results for the temperature independent and dependent cases I find that the

renormalized total internal energy U = U0 + Uβ for a strained graphene sheet kept in an

environment with finite temperature is:

U =
Ly
πa

∫ ∞

0

dΩ Ω cothπΩ ℏΩ nF(2πΩ)

− Ly
πλ

log 2

βϵc

∫ ∞

0

dΩ ℏΩ nF(2πΩ), (4.100)

where ϵc = ℏωc. This result depends linearly on temperature and manifestly shows that

because I started with an initial thermal state of fermions in flat graphene, then the pro-
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cess of straining leads to stimulated particle reduction due to Pauli’s exclusion principle

[58, 171, 172, 173, 174].

In this chapter, I studied what happens when a graphene sheet with no strains, is

suddenly brought into a state with the Rindler strain pattern, where the strains are mini-

mum at the origin and increase as I go away. I showed that this leads to spontaneous cre-

ation of electron-hole pairs, similar to the toroidal BEC case where phonons were spon-

taneously generated due to the time dependence of the trap. The Rindler pattern is such

that it effectively divides the entire graphene sheet into two disconnected pieces, i.e. the

long-wavelength modes are not able to traverse from one side to the other. As a result,

the pure state of the initial flat graphene sheet, when now viewed from the lens of strained

operators confined to one region, see it as a thermal bath of electrons and holes, with an

emergent temperature that is proportional to the strains. This is analogous to the situa-

tion in relativity, where the Minkowski vacuum is seen as a thermal bath by an accelerat-

ing observer, i.e., the Unruh effect.

However, in two dimensions, the power spectra of a fermionic field is given by a

Bose-Einstein distribution. This is known as Takagi’s statistics inversion which happens

because Huygens’ principle is violated in even space dimensions, i.e. a single light pulse

does not spread out as a single circular wavefront, rather it has wake following it. I ar-

gues that this could possibly be seen in the photo-emission experiments. I then discussed

this emergent Unruh effect manifests itself in the electronic conductivity as two features:

firstly, the conductivity vanishes is the DC-limit (ω → 0). Secondly, apart from a density

of states linear in ω, the conductivity is given by a hyperbolic tangent, which is similar to

the electronic conductivity of flat graphene sheet kept at finite environment temperatures.
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I ended this chapter with a discussion of the total internal energy at zero and finite envi-

ronment temperatures. At zero temperature, I get a result similar to Planck’s blackbody

radiation formula for photons, indicating that statistics inversion is at play here. At finite

temperatures, I find a stimulated particle reduction due to the fact that unlike phonons

in a BEC, here we are dealing with fermions that obey Pauli’s exclusion principle. Thus,

when a flat graphene sheet is at finite temperature, then the conduction band with ther-

mal electrons, and after straining, the emergent electrons enter into a competition with

the already present thermal electrons, thus annihilating each other.
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CHAPTER 5. ULTRACOLD FERMIONS IN A BOX SHAPED
TRAP

In this chapter, I will discuss how the properties of an ultracold atom superfluid

are affected when it is confined to an atomic trap that has the geometry of box or a thin

slab. Although the experiments have constructed cylindrical [185] and circular traps [186],

I will study a cubical box shaped trap. In particular, I will be looking into how the pres-

ence of fixed boundary conditions and pseudo-potential interactions affect the superfluid

transition temperature and the local pairing amplitude change compared to the bulk. For

this purpose, I will discuss the Bogoliubov-de Gennes (BdG) Hamiltonian which describes

trapped fermions that interact via short ranged attraction. Due to the presence of the

trapping potential, I expect and inhomogeneous pairing amplitude ∆(R). As I will see,

this spatial in-homogeneity makes it difficult to regularize divergences that occur in the

theoretical description of this system. This is because the typical way to regularize the

theory (by connecting the coupling constant in the Hamiltonian to the scattering length)

implicitly assumes spatially homogeneous pairing (that is, an infinite and uniform system).

A key question that I will answer here is the interplay between regularization and the in-

homogeneous pairing. Since it is well known that short range interactions lead to singu-

larities in the self-consistent gap equation, therefore, I will regularize this by relating the

coupling constant to the scattering length.

To understand how ultra cold fermions behave in the presence of a trap V (r, t), I
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will start with the following Hamiltonian H = H0 +H1, (see [192]):

H0 =
∑
σ=↑,↓

∫
d3r Ψ†

σ(r)
[ p̂2

2m
− µ+ V (r, t)

]
Ψσ(r), (5.1)

H1 =

∫
d3Rd3rd3r′ ⟨r′|Û |r⟩

× Ψ†
↑

(
R +

1

2
r′
)

Ψ†
↓

(
R− 1

2
r′
)

Ψ↓

(
R− 1

2
r
)

Ψ↑

(
R +

1

2
r
)
, (5.2)

where R is the center of mass coordinate and r, r′ are radial coordinates, p̂ = −iℏ∇

is the momentum operator, m is the mass of atoms in the Fermi gas, µ is the chemical

potential, λ is the interaction parameter, σ =↑, ↓ is the spin label, Ψ†
σ and Ψσ are field

operators which create/destroy a fermion of spin σ and, H0 and H1 are the kinetic and

interaction parts respectively. The kinetic part H0 has V (r, t) which describes a general

time and position dependent trap. There are two specific cases of V (r) for us to consider:

the bulk case, and the case of a gas confined to a box trap. In the bulk case I have su-

perfluid everywhere in space with V (r, t) = 0 and periodic boundary conditions are im-

posed on the single-particle wavefunctions (thus they are plane waves) and for the box

case V (r, t) = 0 for 0 < (x, y, z) < L and V (r, t) = ∞ everywhere else. The inter-

action Hamiltonian H1 has a term which looks like the matrix element of the interaction

potential between two fermions ⟨r′|Û |r⟩. This could be modelled either by a Delta po-

tential ⟨r′|Û |r⟩ = λδ(r′ − r) which basically means that the interaction is largest when

two fermions are nearby, which is also how Van der Waals force works. One could also use

the Fermi-Huang pseudo-potential Û(r′, r) = λδ(r′)∂r′(r
′δ(r′ − r)) which is discussed

in Appendix. D. The picture the interaction Hamiltonian H1 portrays is as follows: Two

fermions are created out of vacuum at positions R+ 1
2
r′ and R− 1

2
r′ by the field operators

Ψ†
↑ and Ψ†

↓ respectively giving them spins up and down. These field operators satisfy the
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anti-commutation relation:

{Ψσ(r),Ψ†
σ′(r

′)} = δ
(3)
σσ′δ(r − r′) (5.3)

These fermions then propagate radially from r′ → r with the centre of mass coordinates

fixed at R, and during this time they interact via the potential ⟨r′|Û |r⟩. Finally they

reach R + 1
2
r and R − 1

2
r where they are annihilated by the field operators Ψ↑ and Ψ↓

respectively.

The rest of this chapter is organized as follows: In Sec. 5.1, I will discuss elements

of the BCS theory that describes properties of a bulk superfluid. In Sec. 5.2 I start with

a one-dimensional confined superfluid described by point interactions and how the tran-

sition temperature and gap parameter gets corrections from the confinement size. I then

introduce the pseudo-potential in Sec. 5.3, which when incorporated in the Bogoliubov-

de Gennes approach leads to an integral gap equation. In Sec. 5.5 and Sec. 5.6 I approxi-

mately solve the real space gap equation using Taylor expansion of the gap parameter, in

a thin slab and a cubical box.

5.1. The BCS Theory

In this section, I will briefly review the BCS theory and how it leads to the gap

equation that explains the bulk properties of superconductors and superfluids. Supercon-

ductivity was discovered by Kamerlingh Onnes in 1911 [196] when he saw that the resis-

tance of solid mercury abruptly vanished at 4.2 K. In addition to a vanishing resistivity

superconductors exhibit other phenomena such as the Meissner effect in which supercon-

ductors expel magnetic fields ([197]). Superfluidity on the other hand, was discovered by

Kapitza [198], Allen and Misener in 1938 [199]. This also exhibits strange properties like
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zero viscosity and the fountain effect (where the superfluid creeps up the walls of the con-

tainer and starts flowing out). There is a related phenomenon known as Bose-Einstein

condensation which was proposed by S. N. Bose [200] and Albert Einstein in 1925 [201]

and observed in 1995 [175, 176]. A Bose-Einstein condensate (BEC) is a state of mat-

ter in which a macroscopic number of atoms occupy a single particle wavefunction, be-

low a certain critical temperature. These bosonic atoms occupy(condense) to the lowest

energy level and act as a single giant atom. In a superfluid, a similar coherence of con-

stituents exists but the key difference between them is that the BEC is made up of bosons

whereas a superfluid is made up of fermions which are interacting with each other and

thus form Copper pairs. In cold atom experiments when interacting Fermi gases are made,

besides exhibiting a superfluid phase they also have a BEC phase (see Fig. 2) which is

very weakly interacting. The microscopic theory for superfluidity was found by Bardeen,

Cooper and Schrieffer(BCS Theory) in 1957 [202, 203]. According to this, electrons in

a superconductor interact via phonons in such a way that they effectively attract each

other and thus form ‘Cooper pairs’ which ‘act’ like bosons in a condensate described by

a single wavefunction. This attractive interaction builds up a gap near the Fermi surface

and thus any collision of these electrons with the ions or disorder is not strong enough

to excite them i.e. the electrons become invisible to the lattice and thus the resistivity

drops to zero. Similar ideas apply to superfluids and the more modern ultracold atomic

Fermi gases. The attractive interaction does not need to be due phonons and thus Van der

Waal’s interaction does the job in the case ultracold fermions.

To understand BCS theory, I will start with the Hamiltonian given in (5.1)-(5.2)

which describes a Fermi gas kept in a spatial trap V (r) and chemical potential µ, with a
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the interactions being modeled by a Dirac delta potential ⟨r′|Û |r⟩ = λδ(r′ − r) which ba-

sically means that the interaction is largest when two fermions approach each other. Using

mean-field theory (see Appendix C), I arrive at the gap equation for general temperature

T :

1

λ
= −

∑
k

tanh Ek

2T

2Ek
, (5.4)

where Ek =
√

(ϵk − µ)2 + ∆2 is the quasi-particle (Cooper pairs) energy dispersion re-

lation, ϵk is the single-particle energy, and ∆ is the gap parameter which quantifies the

amount of pairing in the system. The solution to this equation determines pairing ∆ as

a function of interaction parameter λ. The sum
∑

k in (5.4) is a sum over all momen-

tum vectors k, and is thus divergent in three dimensions. This divergence in the many-

body problem comes from the singular nature of the δ-function interactions, and a similar

divergence occurs in the two-body scattering problem associated with the Hamiltonian.

The two-body scattering problem relates the bare coupling parameter λ to the scattering

length as:

1

λ
=

m

4πas
−
∑
k

1

2ϵk
, (5.5)

The divergence of the sum in (5.4) is of the same form as the divergent sum in (5.4). I can

regularize both equations by eliminating λ to get:

m

4πas
= −

∑
k

(tanh Ek

2T

2Ek
− 1

2ϵk

)
. (5.6)

The regularization of this gap equation relies on translation invariance of the bulk, i.e.

it depends on the assumption that our system is spatially uniform. Therefore, the above

regularization does not work in the box trap where I expect spatially varying pairing

strength.
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Figure 5.1. The BEC-BCS Crossover [204, 205]. Plot of ∆
ϵF

(orange) v/s −1
kF as

and µ
ϵF

(green)

v/s −1
kF as

for the bulk case of an ultracold Fermi gas. The left side of the plot −1
kF as

< −0.5

is the BEC regime, right side −1
kF as

> +0.5 is the BCS regime and the middle part is the
Unitary regime where the scattering length diverges as → ∞.

This equation relates the pairing amplitude ∆ to the two-body scattering length

as which can be measured in experiments. Note that in the limit tanh Ek

2T
→ 1 I recover a

regularized zero temperature gap equation:

m

4πas
= −

∑
k

( 1

2Ek
− 1

2ϵk

)
. (5.7)

The solution of this equation for gap parameter ∆ is plotted in Fig. 5.1. Near the tran-

sition temperature ∆ ≪ |µ| which implies Ek ≈ |ξk| and thus the gap equation (5.6)

becomes:

m

4πas
= −

∑
k

(tanh ξk
2T

2ξk
− 1

2ϵk

)
. (5.8)

This equation is also known as the transition temperature Tc-equation since it determines

the temperature of the second order phase transition to the superconducting phase. If the

number of particles in a system is fixed (like in cold atom experiments), then there is an-

other equation called the number equation that comes by setting the derivative of the free

energy (see Eq. (C.12)) with respect to the chemical potential to be equal to the number
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of particles in the system i.e. N = −∂Φ
∂µ

:

n =
∑
k

(
1 − ξk

Ek

)
, (5.9)

where the sum on the right hand side is convergent. For T = 0 I can combine equations

(5.7) and (5.9) to get relationships between: (a) ∆
ϵF

versus −1
kF as

and (b) µ
ϵF

versus −1
kF as

,

where ϵF = ℏ2k2F/2m is the Fermi energy (chemical potential at zero temperature), with

kF = (3π2n)1/3 being the Fermi wave-vector. This was done in [204] and I have plotted

these relationships in Fig. 5.1. Note that solving the gap equation (5.7) gives a level pair-

ing amplitude or gap ∆ that is independent of mode index k, i.e. I have uniform pairing

in momentum space. This implies furthermore homogeneous and isotropic pairing in real

space. Fig. 5.1 shows that the gap parameter (∆ in orange) or the pairing is very large for

the BEC (Bose-Einstein condensate) regime on the left but decreasing as I go to the BCS

or SF (superfluid) regime on the right. The chemical potential (µ in green) is negative for

BEC and increases as I move to the BCS regime.

5.2. One-Dimensional Box Trap

Now that I have reviewed BCS theory in the bulk case, in this section, I turn to the

case of a superfluid confined to a one-dimensional box trap. In the bulk case I saw that

the pairing is homogeneous and isotropic but I expect this to change in the box trap be-

cause it has fixed boundaries and sharp edges which make it intrinsically inhomogeneous

and non-isotropic. Thus our goal is to find the local pairing amplitude ∆(r) and the lo-

cal fermion density n(r). Inside the box and away from boundary, I expect the superfluid

to behave as if it was in the bulk, whereas, near the boundary the probability of finding

Cooper pairs should vanish due to vanishing boundary conditions. Thus I expect ∆(r) to

132



satisfy Dirichlet boundary conditions, and to have a contribution from the bulk and cor-

rections of order 1
L

due to finite size L of the box. Different theoretical works have been

performed on this topic and they have found different phenomenology, thus providing us

with the motivation to study the problem of confined Fermi gases. In the area of elec-

tronic condensed matter [206, 207], it was shown that when one analyses BCS theory with

vanishing boundary conditions (in a slab of finite thickness L), then the gap parameter

decreases with increase in slab thickness (∼ 1
L

behaviour) along with level oscillations in

the gap with peaks at resonance values when the energy level due to slab thickness crosses

the Fermi surface. More recently it was shown in Ref. [208] that similar oscillations can

be seen in the value of the critical temperature with slab thickness and in Ref. [209] it was

shown that the local gap and density have spatial dependences. Non-interacting fermions

have been dealt with in [210] where they show that inside a box the density is spatially

varying. Having briefly reviewed the literature on confined Fermi gases and superconduc-

tors I now turn to our approach to this problem.

In the rest of this section, I will study fermions confined to a one-dimensional

box interacting via a Dirac delta function. Unlike the three-dimensional case, the one-

dimensional gap equation is not divergent, and thus no regularization is required here. I

start with the one dimensional version of the Hamiltonian in (5.1)-(5.2), where I set the

trap potential V (x) = 0 inside the box i.e. 0 ≤ x ≤ L and interaction potential to be a

delta function Û(x′ − x) = λδ(x′ − x):

H0 =
∑
σ

∫
dx Ψ†

σ(x)
[ p̂2

2m
− µ+ V (x)

]
Ψσ(x), (5.10)

H1 = λ

∫
dx Ψ†

↑(x)Ψ†
↓(x)Ψ↓(x)Ψ↑(x), (5.11)
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where H0 is the kinetic part, H1 is the interaction part, p̂ = −i d
dx

and Ψ†
σ(x) and Ψσ(x)

are field operators which create/annihilate fermions. These field operators satisfy the anti-

commutation relation: {Ψσ(x),Ψ†
σ′(x′)} = δσσ′δ(x − x′). They can be decomposed in the

basis of box states as:

Ψσ(x) =
∑
n

ψn(x)cnσ, (5.12)

Ψ†
σ(x) =

∑
n

ψn(x)c†nσ, (5.13)

where ψn(x) =
√

2
L

sin
(
nπx
L

)
are single particle box wavefunctions, and c†nσ and cnσ

are creation/annihilation operators for fermions in the energy level n that satisfy anti-

commutation relations {cnσ, c†n′σ′} = δσσ′δnn′ . Plugging (5.12)-(5.13) into (5.10)-(5.11) I get

the Hamiltonian in n-space

H =
∑
nσ

ξnc
†
nσcnσ + λ

∑
n1,n2,n3,n4

λ̂n1n2n3n4c
†
n1↑c

†
n2↓cn3↓cn4↑, (5.14)

where ξn = ϵn − µ and λ̂n1n2n3n4 =
∫
dx ψn1(x)ψn2(x)ψn3(x)ψn4(x) is the interaction

function which takes into account that the box has fixed boundaries.

Now I need to invoke two further approximations. Firstly I note that in the bulk

case, pairing of fermions is strongest when they are in (+k,−k) states. Similarly here I

will assume that the pairing is at its peak when n1 = n2 ≡ m and n3 = n4 ≡ n. This

amounts to a BCS-type pairing approximation. Thus our interaction function reduces to

λ̂n1n2n3n4 → λ̂m,n:

λ̂m,n =
1

L

(
1 +

1

2
δm,n

)
, (5.15)

where the Kronecker delta δm,n is zero for m ̸= n, and unity for m = n. The Hamiltonian
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then reduces to:

H =
∑
nσ

ξnc
†
nσcnσ + λ

∑
m,n

λ̂m,nc
†
m↑c

†
m↓cn↓cn↑. (5.16)

Upon going through the same steps as described in equations (C.5)-(C.8), I arrive

at the gap equation at zero temperature, that is similar to (C.8):

∆m = −λ
∑
n

λ̂m,n
∆n

2En
, (5.17)

where En =
√

(ϵn − µ)2 + ∆2 is the Cooper pair energy in the box and ϵn = n2π2ℏ2
2mL2 are the

single particle box energies. Secondly, I can take the large system limit keeping corrections

of the order of 1
L

. Under this assumption the summations become integrals
∑

n →
∫

Ldk
2π

:

λ̂k,p ≈ 1 +
π

2L
δ(k − p). (5.18)

and the gap equation becomes:

∆(k) = −λ
∫ ∞

−∞

dp

2π

[
1 +

π

2L
δ(k − p)

] ∆(p)

2Ẽ(p)
, (5.19)

where Ẽ(k) =
√
ξ2(k) + ∆2(k) is energy dispersion relation for the quasi-particles in the

box. To solve (5.19) I will assume the ansatz ∆(k) = ∆0 + 1
L

∆1(k) because we are looking

for the leading connection to the bulk result in the large L limit. Thus I get:

∆0 +
1

L
∆1(k) = −λ

∫ ∞

−∞

dp

2π

∆(p)

2Ẽ(p)
− λ

8L

∆(k)

Ẽ(k)
. (5.20)

Now I compare O(1) and O( 1
L

) on both sides of (5.20) which gives us the regular gap

equation for bulk and corrections due to boundary:

∆0 = −λ
∫ ∞

−∞

dp

2π

∆(p)

2Ẽ(p)
, (5.21)

∆1(k) = − λ

8L

∆0

E(k)
, (5.22)
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where E(k) =
√
ξ2(k) + ∆2

0 is energy dispersion relation for the quasi-particles in bulk.

Thus the level pairing amplitude in k-space looks like:

∆(k) ≈ ∆0 −
λ

4L

∆0

2E(k)
. (5.23)

Let us examine this result. Since a large box is the same as bulk, thus L → ∞ gives

∆(k) → ∆0 (as expected). For high energies the pairing between fermions should not be

affected the box size, thus k → ∞ gives ∆(k) → ∆0. Equation (5.23) is invariant with

respect to box symmetry k → −k, is a maximum for ϵk = µ and is in general less than the

bulk gap (which means the boundary lowers pairing ability).

I just discussed T = 0 results. Let us now look at near transition temperature T =

Tc regime where the gap parameter is vanishingly small |µ| ≫ ∆(k) and thus I can set

Ẽ(k) ≈ |ξ(k)|. In this limit the gap equation in the continuum limit is:

∆(k) = −λ
∫ ∞

−∞

dp

2π

[
1 +

π

2L
δ(k − p)

]
∆(p)

tanh
[ ξ(p)

2T

]
2ξ(p)

,

= −λ
∫ ∞

−∞

dp

2π

tanh
[
ξ(p)
2T

]
2ξ(p)

∆(p) − λ

4L

tanh
[
ξ(k)
2T

]
2ξ(k)

∆(p),

= C − λ

4L

tanh
[ ξ(k)

2T

]
2ξ(k)

∆(k), (5.24)

that gives us the solution ∆(k) = C
(

1 + λ
4L

tanh
[

ξ(k)
2T

]
2ξ(k)

)−1

, similar to (5.23), which means

that the pairing amplitude is energy dependent and has finite size corrections. Now plug-

ging this into the definition of C i.e. C = −λ
∫ +∞
−∞

dp
2π

tanh
[

ξ(p)
2T

]
2ξ(p)

∆(p) I get the Tc-equation:

1 = −λ
∫ +∞

−∞

dp

2π

tanh
[ ξ(p)

2T

]
2ξ(p)

1

1 + λ
4L

tanh
[

ξ(k)
2T

]
2ξ(k)

,

≈ −λ

[∫ +∞

−∞

dp

2π

tanh
[
ξ(p)
2T

]
2ξ(p)

]
1

1 + λ
4L

1
4Tc

,

= − λ

1 + λ
4L

1
4Tc

×N1D

(
ln
µ

Tc
+ γ

)
, (5.25)
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where N1D =
√
m

2πℏ
√
2µ

is the density of states in one dimension, and I used the identity:

∫ µ

0

dx
1

x
tanh

x

2T
= log

µ

T
+ γ − log

π

2
. (5.26)

Now I will use the ansatz that the transition temperature should have a bulk value

with a correction due to the finite size of the box Tc = Tc0 + 1
L
Tc1. I used the following

series expansions:
(

1 + λ
16LTc

)−1

≈
(

1 − λ
16LTc0

)
and ln

(
µ
Tc

)
≈ ln

(
µ
Tc0

)
− Tc1

Tc0L
. Again com-

paring the O(1) and O( 1
L

) terms I get Tc1 = 1
16N1D

and thus the transition temperature

is:

Tc = Tc0 +
1

16N1DL
. (5.27)

In summary, in this section I looked at the case of fermions confined to a one-dimensional

box, with point interactions represented by a Dirac delta function that depends on their

relative coordinates. In the large system limit, I saw that the interaction function has a

size-correction of the form 1
L

. This helped us derive similar size corrections to the pairing

amplitude and the transition temperature. However, extending this approach (perturba-

tion in 1
L

) to higher dimensions does not work, and leads us to consider pseudo-potential

interactions. In the next section, I will look at how a pseudopotential interaction mod-

ifies the gap equation providing us with an alternative method of describing interacting

fermions in a box trap.

5.3. Three-Dimensional Box Traps

In the previous section, I discussed a procedure to solve the gap equation for a one-

dimensional superfluid with interactions given by Dirac delta function. I assumed that the

gap has a bulk part and a correction due to the finite size of the box. However, extend-
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ing this method to higher dimensions does not work as the gap equation becomes diver-

gent, and the form of this divergence is different from the one in the two-body problem,

hence I regularization is not possible. Another assumption that I made was that the pair-

ing is uniform. However, for box-shaped traps I expect the gap to have a spatially-varying

profile, and thus the procedure of the previous will not work here either. This leads us to

model the interactions using the pseudopotential. In this section I will discuss the deriva-

tion of Bogoliubov de Gennes(BdG) equations by describing interacting fermions with

two-body scattering length as using the pseudopotential, and apply it to the near transi-

tion temperature regime. I will then show that this method recovers the bulk case in the

large volume limit.

Pseudopotential and the BdG Approach

I start with the BdG Hamiltonian for interacting fermions in a laser trapping

potential V (r), as discussed in Eqs. (5.1)-(5.2), that describes two fermions created

at R ± 1
2
r′ and destroyed at R ± 1

2
r and in the meantime they interact via a poten-

tial Û . For a Fermi gas this interaction can be described using the pseudo-potential

⟨r′|Û |r⟩ = λδ(r′)∂r′
[
r′δ(r − r′)

]
, which is an operator acting on functions. Unlike

Eq. (5.11), here λ = 4πℏ2as
m

, i.e. the scattering length is already included in the definition

of the pseudopotential. Thus I now no longer require the two-body problem to regular-

ize the gap equation. Also note that the pseudopotential scheme regularizes the model

without the need for translation invariance. It does this by enforcing the correct behavior

for two-body scattering in the limit of zero inter-particle distance, i.e., r → 0. Please see

Appendix. D where I discuss the motivation behind the pseudopotential.
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Following the analysis of Bruun et al [192], I wish to study the evolution of

⟨Ψ↑(r1, t)Ψ↓(r2, t)⟩ with time, for which I will need Heisenberg’s equation of motion for

the field operators ∂Ψσ

∂t
= i

ℏ

[
Ψσ, H

]
and the following commutators:

[
H0,Ψσ(r, t)

]
= −

[
− ∇2

2m
− µ+ V (r)

]
Ψσ(r, t), (5.28)[

H1,Ψ↑↓(r, t)
]

= ∓λ
∫
d3y

∫
d3r′⟨r − r′|Û |y⟩

× Ψ↓

(1

2
(r + r′ − y, t)

)
Ψ↑

(1

2
(r + r′ + y, t)

)
Ψ†

↓,↑(r
′, t). (5.29)

Next, I invoke the mean field approximation by taking the average of two field operators

in Eq. (5.29) and calling it the local pairing amplitude ∆(R) [192]:

∆(r, r′) = λ

∫
d3y⟨r − r′|Û |y⟩

〈
Ψ↓

(1

2
(r + r′ − y, t)

)
Ψ↑

(1

2
(r + r′ + y, t)

)〉
,

= δ(r − r′) × λ

∫
d3y∂y

[
yδ(y)

〈
Ψ↓
(
R− 1

2
y, t
)
Ψ↑
(
R +

1

2
y, t
)〉]

,

= δ(r − r′) × ∆(R), (5.30)

where y is a radial separation coordinate, and the short-distance y → 0 diver-

gence in the pairing strength is regularized by the pseudopotential as: ∆(R) =

λ
∫
d3y∂y

[
yδ(y)

〈
Ψ↓
(
R − 1

2
y, t
)
Ψ↑
(
R + 1

2
y, t
)〉]

, thereby eliminating the need to in-

voke the two-body problem for regularization. With this new definition of local pairing in

terms of pseudopotential, I can then write down the Heisenberg equations of motion as

follows:

iℏ∂tΨ↑(r, t) = ĥ(r)Ψ↑(r, t) + ∆(r)Ψ†
↓(r, t), (5.31)

iℏ∂tΨ↓(r, t) = ĥ(r)Ψ↓(r, t) − ∆(r)Ψ†
↑(r, t), (5.32)

where the operator ĥ = −∇2

2m
− µ + V (r). Our next ask is to derive the self consis-

tency condition for the local pairing amplitude. Using (5.31)-(5.32), the evolution of
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⟨Ψ↑(r1, t)Ψ↓(r2, t)⟩ in the steady state is:

0 = iℏ∂t⟨Ψ↑(r1, t)Ψ↓(r2, t)⟩,

=
[
− ℏ2

2m
(∇2

r1
+ ∇2

r2
) − 2µ+ V (r1) + V (r2)

]
⟨Ψ↑(r1, t)Ψ↓(r2, t)⟩

+ ∆(r1)⟨Ψ†
↓(r1, t)Ψ↓(r2, t)⟩ + ∆(r2)⟨Ψ†

↑(r1, t)Ψ↑(r2, t)⟩ − ∆(r2)δ(r1 − r2),

=
[
− ℏ2

m
(∇2

y +
1

4
∇2
R) − 2µ+ V (R− 1

2
y) + V (R +

1

2
y)
]
⟨Ψ↑(R +

1

2
y, t)Ψ↓(R −

1

2
y, t)⟩

+ ∆(R +
1

2
y)⟨Ψ†

↓(R +
1

2
y, t)Ψ↓(R− 1

2
y, t)⟩ + ∆(R− 1

2
y)⟨Ψ†

↑(R− 1

2
y, t)Ψ↑(R +

1

2
y, t)⟩

− ∆(R)δ(y), (5.33)

where in the second line I have (r1, r2) =
(
R + 1

2
y,R − 1

2
y
)

. Now the Dirac delta in

the last term of (5.33) is a singular function and needs to be cancelled out by the action

of ∇2
y on the average ⟨Ψ↑Ψ↓⟩ in the limit when two fermions are close i.e. y → 0. This

constrains the form of the average ⟨Ψ↑Ψ↓⟩ to be:

〈
Ψ↑(R +

1

2
y, t)Ψ↓(R −

1

2
y, t)

〉
=

m

4πℏ2y
∆(R) + Freg(R) + O(y). (5.34)

This implies that the local pairing amplitude is:

∆(R) = λ

∫
d3y∂y

[
yδ(3)(y)

〈
Ψ↓
(
R− 1

2
y, t
)
Ψ↑
(
R +

1

2
y, t
)〉]

,

= −λFreg(R). (5.35)

Thus our goal will be to first calculate the expectation value ⟨Ψ↑Ψ↓⟩ using the BdG equa-

tions and then split the expression to get a singular part ∼ 1
y

(which will be removed by

the pseudo-potential) and a regularized part which I will give us a finite result.

The Bogoliubov-de Gennes (BdG) approach is just another representation of the

BCS theory where instead of working with the field operators Ψσ(r) and their expansions

140



in terms of box wavefunctions ψn(r), and single particle creation c†nσ and annhilation op-

erators cnσ, I define:

Ψ↑(r) =
∑
n

(
un(r)e−iEntγn↑ − v∗n(r)eiEntγ†n↓

)
, (5.36)

Ψ↓(r) =
∑
n

(
un(r)e−iEntγn↓ + v∗n(r)eiEntγ†n↑

)
, (5.37)

where the functions un, vn are solutions of the BdG equations: ĥ(r) ∆(r)

∆∗(r) −ĥ(r)


un(r)

vn(r)

 = En

un(r)

vn(r)

 , (5.38)

which can deduced by putting the expansions (5.36)-(5.37) into the equations of motion

(5.31)-(5.32). Using (5.36)-(5.37) I get for the expectation ⟨Ψ↓Ψ↑⟩:

〈
Ψ↑(R +

1

2
y, t)Ψ↓(R −

1

2
y, t)

〉
=

∑
n

[
un
(
R +

1

2
y
)
v∗n
(
R− 1

2
y
)
(1 − nF (En))

− v∗n
(
R +

1

2
y
)
un
(
R− 1

2
y
)
nF (En)

]
, (5.39)

where I have used the results ⟨γn1↑γ
†
n2↑⟩ = δn1,n2(1 − nF (En1)) and ⟨γ†n1↓γn2↓⟩ =

δn1,n2nF (En1). I will come back to this result later. Let us first look at the BdG Hamilto-

nian in (5.38)

HBdG =

 ĥ(r) ∆(r)

∆∗(r) −ĥ(r)

 , (5.40)

and its associated Green’s function G(r, r′; iω):

G(r, r′; iω) =
∑
n

[
⟨r|n+⟩⟨n+|r⟩
iω − En+

+
⟨r|n−⟩⟨n−|r⟩
iω − E−

n

]
, (5.41)

where ⟨n+|r⟩ = [un vn] and ⟨n−|r⟩ = [−v∗n u∗n] are eigenfunctions of (5.40) with eigenval-

ues En+ = En and En− = −En respectively. Plugging these eigenfunctions in (5.41) and
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focussing on the Matsubara sum of 12-component of the Green’s function I get:

T
∑
ω

G12(r, r
′) =

∑
n

[
un(r)v∗n(r′)nF (En) − v∗n(r)un(r′)(1 − nF (En))

]
,

= ⟨Ψ↑(r)Ψ↓(r
′)⟩, (5.42)

where in the last line I used (5.39). This is precisely what is needed in Eq.(5.35). I will

now discuss the near transition temperature regime.

Near Transition Temperature T → Tc

The preceding results show how to obtain the local paining amplitude in a trapped

Fermi superfluid. In this section, I focus on the regime of T → Tc in which the BdG-

equations simplify. As I saw in the previous subsection, if I want to evaluate the local

pairing amplitude I need to first find the Matsubara sum of 12-component of BdG Green’s

function and then plug into (5.35). For this I need to solve the BdG equation:iω − ĥ(r) ∆(r)

∆∗(r) iω + ĥ(r)

G(r, r′; iω) =

δ(r − r′) 0

0 δ(r − r′)

 , (5.43)

To solve this I need the functions un and vn which I can get by solving (5.38). In general

this is very difficult as this is a pair of coupled second-order differential equations. Instead,

I will use a Ginzburg-Landau approach to Taylor expand in the pairing amplitude ∆(r).

This is valid near the transition temperature Tc, where I expect that the pairing amplitude

is vanishingly small. In that case I can use this ∆(r) as a perturbation around the BdG

Hamiltonian when there is no pairing. Thus instead of solving for the full Green’s function

G(r, r′; iω) in (5.43), I can solve for G0(r, r
′; iω) in

Ĥ0G0(r, r
′; iω) =

iω − ĥ(r) 0

0 iω + ĥ(r)

G0(r, r
′; iω) =

δ(r − r′) 0

0 δ(r − r′)

 , (5.44)
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while treating Ĥ∆ as a perturbation on Ĥ0 defined as:

Ĥ∆ =

 0 ∆(r)

∆(r) 0

 . (5.45)

Then I can use the Dyson series to evaluate the full Green’s function via:

G(r, r′; iω) = G0(r, r
′; iω) +

∫
d3r1G0(r, r1; iω)Ĥ∆(r1)G0(r1, r2; iω) + ... (5.46)

To evaluate this I will need the 0th order Green’s function:

G0(r, r
′; iω) =

G0(r, r
′; iω) 0

0 −G0(r, r
′;−iω)

 , (5.47)

where G0(r, r
′; iω) =

∑
n
ψn(r)ψn(r′)

iω−ξn is the box Green’s function. Now I need the (1,2)-

component of G(r, r′; iω) for which I use Dyson series (5.46) to first order:

G(r, r′; iω)
∣∣∣
(1,2)

= −
∫
d3r1G0(r, r1; iω)∆(r)G0(r1, r

′;−iω). (5.48)

Summing over all the Matsubara frequencies and then using (5.35) and (5.42) I get an ex-

pression for the local pairing amplitude:

∆(R) = λ

∫
d3yδ(3)(y)∂y

[
y

∫
d3r′

∑
n1,n2

nF (ξn1) − nF (−ξn2)

ξn1 + ξn2

× ψn1

(
R− 1

2
y
)
ψn1(r

′)ψn2(r
′)ψn2

(
R +

1

2
y
)

∆(r′)
]

(5.49)

An alternative way of writing (5.49) is to write it in the form of an eigenvalue equation

∆(R) =
∫
d3r′K(R, r′)∆(r′) where the kernel is defined as follows:

K(R, r′) = λ

∫
d3yδ(3)(y)∂y

[
y
∑
n1,n2

nF (ξn1) − nF (−ξn2)

ξn1 + ξn2

× ψn1

(
R− 1

2
y
)
ψn1(r

′)ψn2(r
′)ψn2

(
R +

1

2
y
)]
. (5.50)
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In the comings sections, I will use (5.49) to determine the superfluid transition tempera-

ture and the local pairing amplitude in a box trap in the vicinity of Tc. In the next sub-

section, I will see how to recover the bulk transition temperature equation.

Recovering the Bulk Limit

In this section, I will use the real space kernel in Eq. (5.50) to get the well known

result for bulk Tc-equation. In the bulk case, the wavefuctions are plane waves which enter

Green’s functions G0(r1, r2) =
∑

k
eik·(r1−r2)

iω−ξk
. Thus a similar procedure as above can be

followed to get an expression for the bulk kernel Kb(R,R′):

Kb(R,R′) = λ

∫
d3yδ(y)∂y

[
y
∑
k1,k2

nF (ξk1) − nF (−ξk2)

ξk1 + ξk2

eik1·
(
R− 1

2
y−R′

)
eik2·

(
R′− 1

2
y−R

)]
.(5.51)

Now as I discussed in the paragraph following (5.35), I will split this kernel into two parts

by adding and subtracting Kb
0 i.e. Kb = Kb

0 + (Kb − Kb
0) = Kb

0 + Kb
1 where Kb

0 is the

T → 0 and µ → 0 limit of Kb and it is the singular part ∼ 1
y

which will be removed by the

pseudo-potential

Kb
0(R,R

′) = λ

∫
d3yδ(y)∂y

[
y
∑
k1,k2

1

ϵk1 + ϵk2

eik1·
(
R− 1

2
y−R′

)
eik2·

(
R′− 1

2
y−R

)]
,

= −λ m

2π3

∫
d3yδ(y)∂y

[
y

4

(y2 + 4|R−R′|2)

]
. (5.52)

where in the second line I have taken the continuum limit and thus converted sums to in-

tegrals. On the other hand Kb
1 is the regularized part where I can safely set y → 0

Kb
1(R,R

′) = λ
∑
k1,k2

(
nF (ξk1) − nF (−ξk2)

ξk1 + ξk2

+
1

ϵk1 + ϵk2

)
ei(k1−k2)·(R−R′). (5.53)

I cannot evaluate (5.52)-(5.53) yet because they need to act on another an eigenfunction.

Thus I will first find the eigenfunctions. It turns out that the plane waves or any linear
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combination of them eip·R
′

is an eigenfunction of both (5.52)-(5.53). However in the bulk

limit I know that the local pairing amplitude is uniform i.e. ∆(r) = ∆0 =
∑

p ∆pe
ip·r

which can be satisfied iff ∆p = 0 for all p ̸= 0. Thus our eigenvalue equation becomes:

∫
d3R′Kb(R,R′)eip·R

′
=

∫
d3R′Kb

0(R,R
′)eip·R

′
+

∫
d3R′Kb

1(R,R
′)eip·R

′
,

=
mλ

8π
peip·R

+ eip·Rλ
∑
k

(
nF (ξk+1

2
p) − nF (−ξk−1

2
p)

ξk+1
2
p + ξk−1

2
p

+
1

ϵk+1
2
p + ϵk−1

2
p

)
,

−1

λ
=

∑
k

(
tanh ξk

2T

2ξk
− 1

2ϵk

)
, (5.54)

where in the last line I have put p = 0. Thus, I get the standard Tc-equation for the bulk

limit. This tells us that the pseudopotential approach is valid.

5.4. Regularizing the Box Kernel

In order to solve the superfluid gap equation in Eq. (5.49), in this section, I will

discuss how to divide the real-space kernel K(R,R′) into two parts: a regular part, and

a term which is divergent in the limit of R = R′ such that, the latter can be regularized

using the pseudopotential. This procedure is similar to the one I discussed to recover the

bulk limit in the previous section. I start by re-writing the real space kernel as follows:

K(R, r′) = λ

∫
d3yδ(y)∂y

[
y
∑
n1,n2

nF (ξn1) − nF (−ξn2)

ξn1 + ξn2

× ψn1

(
R− 1

2
y
)
ψn1(r

′)ψn2(r
′)ψn2

(
R +

1

2
y
)]
, (5.55)

where ψn(r) =
(

2
L

) 3
2

sin
(
nxπx
L

)
sin
(
nyπy

L

)
sin
(
nzπz
L

)
are the box wavefunctions that

vanish at the box edges. Our objective is to first break (5.55) into singular K0 and non-

singular parts K1 where the singular part will be dealt with by the pseudo-potential. Then
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I will need to simplify the sums in kernels and finally find their eigenfunctions. To split

this kernel into two parts I use the idea that at very high energies ϵn ≫ µ and ϵn ≫ T

and thus I get ξn ≈ ϵn and ξn
2T

→ ∞. This means that effectively we are taking the

limit (µ, T ) → 0. In this limit the Fermi functions become step functions i.e. nF (ξn1) =

Θ(−ϵn1) = 0 and nF (−ξn2) = Θ(ϵn2) = 1 and kernel (5.55) becomes K0:

K0(R, r
′) = λ

∫
d3yδ(y)∂y

[
y
∑
n1,n2

1

ϵn1 + ϵn2

ψn1

(
R− 1

2
y
)
ψn1(r

′)ψn2(r
′)ψn2

(
R +

1

2
y
)]
.

(5.56)

Adding and subtracting this from (5.55) i.e. writing K = K0 + (K − K0) = K0 + K1, I get

the regularized part K1 as:

K1(R, r
′) = λ

∫
d3yδ(y)∂y

[
y
∑
n1,n2

[
nF (ξn1) − nF (−ξn2)

ξn1 + ξn2

− 1

ϵn1 + ϵn2

]

× ψn1

(
R− 1

2
y
)
ψn1(r

′)ψn2(r
′)ψn2

(
R +

1

2
y
)]
. (5.57)

Te next step is to evaluate the sum in (5.56) and (5.57) and then find their eigenfunctions.

The idea is to evaluate both these sums using the following identity:

∫
d3k1
(2π)3

∫
d3k1
(2π)3

eik1·r1eik2·r2

ϵk1 + ϵk2

=
m

2π3

1

(r21 + r22)2
. (5.58)

This can be done in principle because the wavefunctions ψ(r) can be written in terms of

exponentials using the identity sin(x) = eix−e−ix

2i
. However when I look at say (5.56), I see

that there are four wavefunctions and using the identity just described, this will lead to 84

exponentials, which is difficult to deal with. Thus I will simplify our problem by studying

the thin film case first and later generalize it to the cubical geometry. I will confine the

thin film in the x̂ direction i.e. behaves like an infinite square well of size L and keep it

infinite in the remaining two directions, which means it behaves like bulk. This greatly
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simplifies our problem as now I have to deal with only 4 exponential terms. Thus using

(5.58) I get:

K0(R,R
′) = Kb

0(R,R
′) +

m

8π3

[
1

4R4
+

+
2

(R2
+ +R2

−)2

]
(5.59)

were R+ ≡ (X + X ′, Y − Y ′, Z − Z ′) and R− ≡ (X −X ′, Y − Y ′, Z − Z ′) = R −R′. Our

plan is to next evaluate (5.57) and then find their eigenfunctions. I will also try using the

Poisson summation to evaluate (5.56) and (5.57), which converts a sum into a series:

∞∑
n=−∞

f(n) =
∞∑

q=−∞

F (q)

F (q) =

∫ ∞

−∞
dx e2πiqxf(x) (5.60)

Alternatively, I can use the image charge representation (that can be derived using the

Poisson sum formula) for the box Green’s function which appear in sums in the kernels:

G(r1, r2) = − 1

4π

∑
n

[
1√

(x1 − x2 + 2nxL)2 + (y1 − y2 + 2nxL)2 + (z1 − z2 + 2nxL)2

− 1√
(x1 + x2 + 2nxL)2 + (y1 − y2 + 2nxL)2 + (z1 − z2 + 2nxL)2

− 1√
(x1 − x2 + 2nxL)2 + (y1 + y2 + 2nxL)2 + (z1 − z2 + 2nxL)2

+
1√

(x1 + x2 + 2nxL)2 + (y1 + y2 + 2nxL)2 + (z1 − z2 + 2nxL)2
− (z2 → −z2)

]
, (5.61)

where r1 = (x1, y1, z1) = (X+ x
2
, Y + x

2
, Z+ x

2
) and r2 = (x2, y2, z2) = (X− x

2
, Y − x

2
, Z− x

2
).

Here terms with higher values of n will be sub-dominant and since we are looking for 1
L

-

corrections I can limit ourselves to working with only n = 0 terms:

G(r1, r2) = − 1

4π

[
− 1

r
+

1√
4X2 + y2 + z2

+
1√

x2 + 4Y 2 + z2
+

1√
x2 + y2 + 4Z2

− 1√
4X2 + 4Y 2 + z2

− 1√
x2 + 4Y 2 + 4Z2

− 1√
4X2 + y2 + 4Z2

+
1√

4X2 + 4Y 2 + 4Z2

]
, (5.62)
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where the first term is the one responsible for all the singular behavior and rest of the

terms represent the boundary of the box.

Since we are interested in eliminating the singularities in the kernel K0 I need to

see exactly how they come about. One thing is for sure that the singularities appear as

two fermions approach each other i.e. when the relative coordinate goes to zero y → 0.

Thus I study this kernel in two cases. Case 1 is when the fermions get created and annihi-

lated at different center of mass locations i.e. R ̸= R′. In this situation, I can safely set

y → 0 in (5.56) and get:

K0(R,R
′) = −λ

∑
n1,n2

1

ϵn1 + ϵn2

sin(n1xπX) sin(n1xπX
′) sin(n2xπX

′) sin(n2xπX
′)

× e−2iπ(n1y−n2y)(Y−Y ′) × e−2iπ(n1z−n2z)(Z−Z′). (5.63)

where I have set the box length L = 1. This expression is non-singular and can be eval-

uated using (5.58). On the other hand, case 2 is when the fermions get created and anni-

hilated at the same centre of mass location i.e. R = R′. In this situation I will have to

analyse the following in the limit y → 0:

K0(R,R
′) = λ

∫
d3yδ(y)∂y

[
y
∑
n1,n2

1

ϵn1 + ϵn2

eiπ(n1y+n2y)y × eiπ(n1z+n2z)z
]

× sin(n1xπ(X − x

2
)) sin(n1xπX) sin(n2xπX) sin(n2xπ(X +

x

2
)). (5.64)

In Sec. 5.6, I will analytically evaluate these kernels for two cases: a thin slab and a cubi-

cal box. In the next section, I will discuss how to use Taylor expansion in the ∆(R) pa-

rameter to solve the real-space gap equation.
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5.5. Taylor Expansion Method: Transition Temperature

In this section, I will use the method of Taylor expansion to simplify the gap equa-

tion, and approximately obtain the transition temperature inside a box-shaped trap. As I

saw in equations (5.49) and (5.34)-(5.35) of the previous sections, the linearized gap equa-

tion takes the form of an integral eigenvalue equation:

∆(R) =

∫
d3R′K(R,R′)∆(R′)

= ∆(R)

∫
d3R′K(R,R′) +

∫
d3R′K(R,R′)

[
∆(R′) − ∆(R)

]
, (5.65)

where in the second line I added and subtracted ∆(R). Since singularities appear in

K(R,R′) for R = R′, I expect that the vanishing of the term in square brackets will

regularize this. Using Eq. (5.62), I can write the first R′-integral as follows:∫
d3R′K(R,R′) = −g

∑
n

(
tanh( ξn

2T
)

2ξn
− 1

2ϵn

)
ψ2
n(R) + g

m

ℏ2
F (0,R), (5.66)

where I define the function F (r,R) as the non-singular part of the two-particle Green’s

function in Eq. (5.62),

∑
n

1

2ϵn
ψn

(
R− r

2

)
ψn

(
R +

r

2

)
= −m

ℏ2
G(r,R) = −m

ℏ2

[
F (r,R) − 1

4πr

]
. (5.67)

Once the singular part is removed by the pseudo-potential in the kernel K(R,R′), I can

then safely set r → 0. Note that since K(R,R′) diverges for R = R′, therefore I expect

that the second integral has a dominant contribution in this limit. Thus I can Taylor ex-

pand the gap parameter to linear order, i.e. ∆(R′) ≃ ∆(R) + (R−R) ·∇∆(R), giving us

the following approximate expression for the second integral:∫
d3R′K(R,R′)

[
∆(R′) − ∆(R)

]
= g∇∆(R) ·

∫
d3R′

∑
n1,n2

nF (ξn1) − nF (−ξn2)

ξn1 + ξn2

× ψn1(R)ψn1(R′)ψn2(R′)ψn2(R)(R′ −R). (5.68)
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Plugging these results into the integral gap equation (5.65), I get the following (approxi-

mate but equivalent) differential equation for the gap parameter:

1 + gB(R) = gA(R) ·∇ log ∆(R), (5.69)

where the functions B(R) and A(R) are defined as follows:

B(R) ≡
∑
n

(
tanh( ξn

2T
)

2ξn
− 1

2ϵn

)
ψ2
n(R) − m

ℏ2
F (0,R), (5.70)

A(R) ≡
∫
d3R′

∑
n1,n2

nF (ξn1) − nF (−ξn2)

ξn1 + ξn2

×ψn1(R)ψn1(R′)ψn2(R′)ψn2(R)(R′ −R). (5.71)

Now I will prove that the vector A vanishes at the center of the box i.e. A(Rc) = 0 where

Rc = (1
2
, 1
2
, 1
2
). I will do this for the X-component and argue that similar procedure holds

for the other two components,

AX(Rc) =

∫
d3R′

∑
n1,n2

F (n1, n2)ψn1(Rc)ψn1(R′)ψn2(R′)ψn2(Rc)
(
X ′ − 1

2

)
, (5.72)
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where I define F (n1, n2) ≡ nF (ξn1 )−nF (−ξn2 )

ξn1+ξn2
, and ni = |ni| for i = 1, 2. Now evaluating

ψn(Rc) gives us ±1 if n is odd and zero otherwise. Thus (5.72) becomes :

AX(Rc) =

∫
d3R′

∑
n1,n2

F (2n1 + 1, 2n2 + 1)ψ2n1+1(R
′)ψn2+1(R

′)
(
X ′ − 1

2

)
· (−1)

∑
ni ,

=
∑
n1,n2

(−1)
∑
niF (2n1 + 1, 2n2 + 1)δn1yn2yδn1zn2z

×
∫ 1

0

dX ′
(
X ′ − 1

2

)
sin[(2n1x + 1)πX ′] sin[(2n2x + 1)πX ′],

=
∑
n1,n2

(−1)
∑
niF (2n1 + 1, 2n2 + 1)δn1yn2yδn1zn2z

×
∫ +1/2

−1/2

dX ′X ′ sin[(2n1x + 1)π(X ′ +
1

2
)] sin[(2n2x + 1)π(X ′ +

1

2
)],

=
∑
n1,n2

(−1)
∑
niF (2n1 + 1, 2n2 + 1)δn1yn2yδn1zn2z

×
∫ +1/2

−1/2

dX ′X ′ cos[(2n1x + 1)πX ′] cos[(2n2x + 1)πX ′],

= 0, (5.73)

where in the first line I define (−1)
∑
ni ≡ (−1)n1x+n1y+n1z+n2x+n2y+n2z , in the second line

I have used the orthogonality of wave-functions in y and z directions to give us Kronecker

deltas, in the third line I have shifted X ′ → X ′ − 1/2 and in the last two lines I have used

the fact that the integral of an even and an odd function is zero.

Using this result in the gap equation (5.69) at the center of the box results in the

transition temperature or the Tc-equation:

−1

g
=

∑
n

(
tanh( ξn

2T
)

2ξn
− 1

2ϵn

)
ψ2
n(Rc) −

m

ℏ2
F (0,R),

=

(
2

L

)3 ∑
n∈ODD

[
tanh( ξn

2T
)

2ξn
− 1

2ϵn

]
− m

ℏ2
F (0,Rc), (5.74)

where in the summation n ∈ ODD means that each of nx, ny, nz in n can only be positive
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odd integers. Now replacing the coupling constant with the scattering length and convert-

ing the sum to an integral I get:

− 1

4πas
=

∫
d3k

(2π)3

[
tanh( ξk

2T
)

2ξk
− 1

2ϵk

]
− m

ℏ2
F (0,Rc), (5.75)

=

√
2mµ

2π2ℏ

[
ln

(
8µe−2

πkBTc

)
+ γ

]
+
δ

L
,

where the second line is valid only for µ > 0 and µ ≫ T , and δ is a constant. To eval-

uate this constant δ, I look at the expression for F (0,Rc) defined in equations (5.67)

and (5.61)-(5.62), in terms of positions (X, Y, Z) and the box length L. Re-scaling

(X/L, Y/L, Z/L) → (X, Y, Z), I get F (0,Rc) in terms of dimensionless function f [X, Y, Z]:

F (0,R) =
1

4π

[ 1√
(2X + 2L)2 + (2Y + 2L)2 + (2Z + 2L)2

+ ...
]
,

=
1

L
· 1

4π

[ 1√
(2X + 2)2 + (2Y + 2)2 + (2Z + 2)2

+ ...
]
,

=
1

L
· f [X, Y, Z], (5.76)

which at the box center becomes F (0,Rc) = 1
L
f
[
1
2
, 1
2
, 1
2

]
= 0.139062

L
, giving us δ = 0.139062.

In the next subsections, I will study the transition temperature equations (5.74)-(5.75) for

the bulk and box cases.

Bulk Case

For the bulk superfluid, I start with the transition temperature equation in (5.8)

and re-write it as follows:

− 1

kFas
=

2

π

∫ ∞

0

dx x2

[
tanh

(
x2−µ̂
2T̂

)
x2 − µ̂

− 1

x2

]
, (5.77)

where I have introduced a new variable x = k
kF

, and accordingly defined µ̂ = µ
ϵF

and

T̂ = kBT
ϵF

, where kF and ϵF =
ℏ2k2F
2m

are the Fermi wavevector and energy respectively. This
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equation has three unknowns: the chemical potential µ̂, the temperature T̂ , and the cou-

pling − 1
kF as

. In order to extract Tc versus the coupling, I need the number equation that

relates chemical potential to the temperature:

k3F
3π2

=
N

V
= 2

∫
d3k nF (ξk) =

k3F
2π2

∫ ∞

0

dx
x2

e
x2−µ̂

T̂ + 1
, (5.78)

where I have made use of Fermi wavevector and energy to write this equation in a dimen-

sionless form. The final integral can be simplified using the definition of polylogarithms:

−Lij+1(−ex) ≡ 1
Γ(j+1)

∫∞
0
dt tj

et−x+1
:

− 1 =
3
√
π

4
T̂ 3/2Li3/2(−e

µ̂

T̂ ). (5.79)

Solving this equation gives us the chemical potential in terms of the temperature which

I have shown in Fig. 5.2. Then plugging in the data for (µ̂, T̂ ) into Eq. (5.77) yields the

transition temperature versus the coupling (see Fig. 5.3).

Figure 5.2. Plot of µ̂ = µ
ϵF

versus T̂ = kBT
ϵF

for the bulk case.

Box Case : Including Size Corrections

Having discussed the bulk case, I now turn to the transition temperature equation

for the case of a superfluid confined inside a box of size L (see Eqs. (5.74)-(5.75)):

− 1

kFas
=

2

π

∫ ∞

0

dx x2

[
tanh

(
x2−µ̂
2T̂

)
x2 − µ̂

− 1

x2

]
− 4πδ

kFL
, (5.80)
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Figure 5.3. Plot of T̂ = kBT
ϵF

versus the coupling − 1
kF as

for the bulk case.

Comparing this with Eq. (5.77), I see that the last term introduces another variable in ad-

dition to µ̂, T̂c and coupling: the number of particles as kFL = (3π2N)1/3. I first fix the

number of particles, with three possible cases: N = 2 × 106, N = 2 × 104 and N = 2 × 103.

Then using the number equation (5.79) I eliminate µ̂. This gives us the transition temper-

ature T̂c in the box as a function of coupling, which I plot in Fig. 5.4 which shows small

deviations from the bulk case. To show the BCS-limit, I zoom in at − 1
kF as

= +1.0, giving

us Fig. 5.5 where the deviations in Tc are clearly visible. To quantify this, I calculate the

percentage change in the transition temperature:

% =
Tc,Bulk − Tc,Box

Tc,Bulk
× 100. (5.81)

I have summarized our percentage change results in Table. 5.1. Our results show that the

lesser the number of atoms I trap inside the box, the lower is the transition temperature.
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Figure 5.4. Plot of T̂ = kBT
ϵF

versus the coupling − 1
kF as

with corrections due to finite size of
the box. Here the black line is the bulk case, and the red, green and dashed lines are N =
2 × 106, 2 × 104, 2 × 103-atoms respectively.

Figure 5.5. Plot of T̂ = kBT
ϵF

versus the coupling − 1
kF as

near the BCS limit, with corrections
due to finite size of the box. Here the black line represents the bulk case, and the red,
green, dashed lines represent the box cases with N=2 × 106, 2 × 104, 2 × 103-atoms respec-
tively.

Table 5.1. Comparison of percentage corrections in the transition temperature due to fi-
nite size of the box. Here I took the coupling to be in the BCS-regime, i.e., − 1

kF as
= +1.0,

where the bulk transition temperature is T̂c0 = 0.1247.

Cases N kFL T̂c SIZE Corrections

High 2 × 106 389.80 0.1215 0.4%

Medium 2 × 104 83.97 0.1102 3.2%

Low 2 × 103 38.98 0.0939 6.4%
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5.6. Taylor Expansion Method: Local Pairing Amplitude

In the previous section, I solved the gap equation (5.69) that I got by Taylor ex-

panding the local pairing amplitude, at the center of box which gave us the transition

temperature as a function of coupling and number of atoms. In this section, I will be solv-

ing the gap equation to obtain ∆(R) as a function of position R inside a box with slab

and cubical geometries.

Slab Geometry

Here I consider a rectangular slab which has a height that is much smaller than its

length and breadth. Thus I approximately say that it is finite in ẑ and infinite in x̂ and ŷ.

Thus the wavefunction will entail sine function in ẑ (due to confinement) and plane waves

in the other two directions i.e.

Ψn(r) =

√
2

L3/2
sin
(nzπz

L

)
e

2πi
L

(nxx+nyy),

=

√
2

L3/2
sin(kzz)ei(kxx+kyy), (5.82)

where the fixed boundary conditions give us kz = nzπ
L

and periodic boundary conditions

give us kx = 2nxπ
L

and ky = 2nyπ

L
. I start with the gap equation:

∆(R) =

∫
d3R′K(R,R′)∆(R′), (5.83)

where the kernel K(R,R′) is defined as follows :

K(R,R′) = g

∫
d3yδ(3)(y)∂y

[
y
∑
n1,n2

nF (ξn1) − nF (ξn2)

ξn1 + ξn2

× Ψn1

(
R −

y

2

)
Ψn1(R′)Ψn2(R′)Ψn2

(
R +

y

2

)]
, (5.84)

156



where nF (ξn) = 1

1+exp( ξn
kBT

)
is the Fermi function, ξn = ϵn−µ with ϵn being the single parti-

cle energy, µ is the chemical potential and T is the temperature. Firstly, the dimensions of

the integral of this kernel are
[ ∫

d3R′K(R,R′)
]

=
[
as
L

]
, which is dimensionless. So I will

evaluate all the expressions for L = 1 and towards the end I will re-introduce L by making

the switch gm
ℏ2 → gm

ℏ2L . Secondly, the sum inside the kernel is divergent, and therefore, I will

split the kernel into two parts, a convergent piece K1

K1(R,R
′) = g

∫
d3yδ(3)(y)∂y

[
y
∑
n1,n2

(
nF (ξn1) − nF (ξn2)

ξn1 + ξn2

+
1

ϵn1 + ϵn2

)

× Ψn1

(
R −

y

2

)
Ψn1(R′)Ψn2(R′)Ψn2

(
R +

y

2

)]
, (5.85)

and a divergent piece K0 (found by setting µ = 0, T = 0 in K) which will be regularized by

the pseudopotential. :

K0(R,R
′) = g

∫
d3yδ(3)(y)∂y

[
y
∑
n1,n2

1

ϵn1 + ϵn2

× Ψn1

(
R −

y

2

)
Ψn1(R′)Ψn2(R′)Ψn2

(
R +

y

2

)]
. (5.86)

I can simplify K0 further by integrating over X ′ and Y ′ that pins n1x = n2x ≡ nx and

n1y = n2y ≡ ny, and thus (5.86) becomes:

∫ 1

0

dX ′
∫ 1

0

dY ′
∑
n1,n2

1

ϵn1 + ϵn2

Ψn1

(
R −

y

2

)
Ψn1(R′)Ψn2(R′)Ψn2

(
R +

y

2

)
,

= −8gm

ℏ2
∑
kx,ky
k1z ,k2z

e−i(kxx+kyy)

(2k2x + 2k2y + k21z + k22z)

× sin
[
k1z

(
Z − z

2

)]
sin[k1zZ

′] sin[k2zZ
′] sin

[
k2z

(
Z +

z

2

)]
. (5.87)
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Now I will convert the sums to integrals that can be evaluated analytically, and the de-

nominator of the last term can be written as the integral of an exponential as follows:∫ ∞

0

dx e−λx =
1

λ
,∫ ∞

−∞

dkx
2π

∫ ∞

−∞

dky
2π

e−i(kxx+kyy)e−2λ(k2x+k
2
y) =

1

8πλ
e−

(x2+y2)
8λ ,∫ ∞

0

dkz
π

sin[kzR] sin[kzR
′]e−λk

2
z =

1

4
√
πλ

[
e−

R−R′
4λ − e−

R+R′
4λ

]
. (5.88)

Plugging all these identities, I get that the divergent part of the slab kernel K0(Z,Z
′)

takes the form:

K0(Z,Z
′) = − gm

8π2

∫
d3rδ(3)(r)∂r

(
r ·
[

1
r2

4
+ (Z − Z ′)2

+
1

(Z + Z ′)2
− 2

Z2 + Z ′2

])
. (5.89)

At this point, it will be good for us to revisit the gap equation. Along the x̂ and ŷ direc-

tions I expext the gap to be constant just like the bulk case. It is only in the ẑ direction

that I expect the gap to have spatial variation, thus ∆(R) = ∆(Z). Thus the gap equation

(5.83) becomes :

∆(Z) =

∫
dZ ′K(Z,Z ′)∆(Z ′),

=

∫
dZ ′
[
K0(Z,Z

′) + K1(Z,Z
′)]∆(Z ′). (5.90)

Now I will Taylor expand the local gap parameter to linear order as I did in the previous

section:

∆(Z ′) = ∆(Z) + (Z ′ − Z) · d
dz

∆(Z) + O(Z ′ − Z)2, (5.91)

which when plugged into the gap equation yields:

∆(Z) = ∆(Z)

∫ 1

0

dZ ′
[
K0(Z,Z

′) + K1(Z,Z
′)
]
,

+ ∆′(Z)

∫ 1

0

dZ ′
[
K0(Z,Z

′) + K1(Z,Z
′)
]
· (Z ′ − Z). (5.92)
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Thus I need to analytically evaluate four integrals. Let us first look at the integrals involv-

ing K0. The first of these is :

I1 =

∫ 1

0

dZ ′K0(Z,Z
′) = − gm

8π2

∫
d3rδ(3)(r)∂r

(
r · I

)
, (5.93)

where the integral I is :

I =

∫ 1

0

dZ ′
[

1
r2

4
+ (Z − Z ′)2

+
1

(Z + Z ′)2
− 2

Z2 + Z ′2

]
. (5.94)

This has a singular piece with r2 and a non-singular piece. Let us deal with the singular

piece first. I cannot simply integrate this from Z ′ = 0 to Z ′ = 1 as it is singular for Z = Z ′

and r → 0. So instead, I will break the integral into two parts, one from Z ′ = 0 to Z ′ =

Z − r and the other from Z ′ = Z + r to Z ′ = 1, along with setting r = 0 in the integrands.

This way I can incorporate the r behavior and also never let Z ′ = Z :

IS =

∫ 1

0

dZ ′ 1
r2

4
+ (Z − Z ′)2

,

=

∫ Z−r

0

dZ ′ 1

(Z − Z ′)2
+

∫ 1

Z+r

dZ ′ 1

(Z − Z ′)2
,

=
2

r
+

1

Z(Z − 1)
, (5.95)

where the superscript ’S’ denotes singular part. Now for the non-singular part I need to

remember that (5.89) is valid only for Z + Z ′ < 1. For Z + Z ′ > 1 I need to replace

Z → (1−Z) and Z ′ → (1−Z ′). Thus I will replace
∫ 1

0
dZ ′K0(Z,Z

′) →
∫ 1−Z
0

dZ ′K0(Z,Z
′)+∫ 1

1−Z dZ
′K0(1 − Z, 1 − Z ′) that gives us :

INS =

∫ 1−Z

0

dZ ′
[

1

(Z + Z ′)2
− 2

Z2 + Z ′2

]
+

∫ 1

1−Z
dZ ′
[

1

(2 − Z − Z ′)2
− 2

(1 − Z)2 + (1 − Z ′)2

]
,

= −2 +
1

Z(1 − Z)
− 2

Z
tan−1

(1 − Z

Z

)
− 2

(Z − 1)
tan−1

( Z

Z − 1

)
, (5.96)
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where the superscript ’NS’ denotes the non-singular part. Thus our first integral is:

I1 =

∫ 1

0

dZ ′K0(Z,Z
′),

=
gm

ℏ2
· 1

4π2

[
1 +

1

Z
tan−1

(1 − Z

Z

)
+

1

(Z − 1)
tan−1

( Z

Z − 1

)]
. (5.97)

Similarly, applying the above discussed ideas to the second integral I get :

I2 =

∫ 1

0

dZ ′K0(Z,Z
′) · (Z ′ − Z),

=
gm

ℏ2
· − 1

4π2

[
2Z − 1 + tan−1

(1 − Z

Z

)
+ tan−1

( Z

Z − 1

)]
. (5.98)

The remaining temperature dependent integrals are as follows:

I3 =

∫
dZ ′K1(Z,Z

′) =
gm

ℏ2
· − 4

π2

∑
n

[
tanh

(
a(n2 − n2

µ)
)

n2 − n2
µ

− 1

n2

]
sin2(nzπZ), (5.99)

I4 =

∫
dZ ′K1(Z,Z

′) · (Z ′ − Z)

=
gm

ℏ2
· 8

π2

∑
nx,ny
n1z ,n2z

In1z ,n2z(Z) sin(n1zπZ) sin(n2zπZ)

×

[
nF

(
2a(n2

x + n2
y + n2

1z − n2
µ)
)
− nF

(
2a(n2

µ − n2
x − n2

y − n2
2z)
)

2n2
x + 2n2

y + n2
1z + n2

2z − 2n2
µ

− 1

2n2
x + 2n2

y + n2
1z + n2

2z

]
, (5.100)

where I have introduced new parameters such as the temperature normalized with mini-

mum energy in the box (ϵ1 = ℏ2
2mL2 ), normalized inverse temperature a ≡ ℏ2

4mkBTL2 = ϵ1
kBTc

=

ϵ̂1
T̂c

, the normalized chemical potential n2
µ ≡ 2mµL2

ℏ2 = µ̂
ϵ̂1

, and the various energies normal-

ized using Fermi energy ϵ̂1 ≡ ϵ1
ϵF

= ℏ2/2mL2

ϵF
, T̂c = kBTc

ϵF
, µ̂ = µ

ϵF
. The integral function I is

defined as :

In1z ,n2z(Z) =


2

(
(−1)n1z+n2z−1

)
n1zn2z

π2(n2
1z−n2

1z)
2 for n1z ̸= n2z

1
4
(1 − 2Z) for n1z = n2z.
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Now I can use the integrals (5.97)-(5.100) in Eq. (5.92) and re-instate the box

length L, which yields a gap equation (similar to Eq. (5.69)) in the slab as follows:

Lℏ2

gm
+B(Z) = A(Z) · d

dz
log ∆(Z), (5.101)

where the expressions for the functions B(Z) and A(Z) are as follows:

B(Z) =
4

π2

∑
nz

∫ ∞

−∞
dnx

∫ ∞

−∞
dny

[
tanh

(
a(n2 − n2

µ)
)

n2 − n2
µ

− 1

n2

]
sin2(nzπZ)

− 1

4π2

[
1 +

1

Z
tan−1

(1 − Z

Z

)
+

1

(Z − 1)
tan−1

( Z

Z − 1

)]
, (5.102)

A(Z) =
8

π2

∑
n1z ,n2z

∫ ∞

−∞
dnx

∫ ∞

−∞
dny In1z ,n2z(Z) sin(n1zπZ) sin(n2zπZ)

×

[
nF

(
2a(n2

x + n2
y + n2

1z − n2
µ)
)
− nF

(
2a(n2

µ − n2
x − n2

y − n2
2z)
)

2n2
x + 2n2

y + n2
1z + n2

2z − 2n2
µ

− 1

2n2
x + 2n2

y + n2
1z + n2

2z

]
− 1

4π2

[
2Z − 1 + tan−1

(1 − Z

Z

)
+ tan−1

( Z

Z − 1

)]
. (5.103)

Note that I have summed over the indices in the ẑ-direction and integrated over the x̂, ŷ-

directions. This means I first took periodic boundary conditions in the two infinite direc-

tions of the slab and then took thermodynamic limit, whereas in the direction of the con-

finement (ẑ), I kept the levels to be discrete.

To solve the gap equation (5.101), I will subtract from it the Tc equation, i.e. the

Eq. (5.101) with Z = 0.5:

Lℏ2

gm
+B(Z = 0.5) = A(Z) · d

dz
log ∆(Z) = 0. (5.104)

This procedure eliminates the coupling term Lℏ2/gm and yielding the following differen-

tial equation:

B(Z) −B(0.5) = A(Z) · d
dz

log ∆(Z), (5.105)
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Figure 5.6. Plot of B(Z) (see Eq. (5.102) in the text) versus position inside a slab. It is
symmetric about the box-center. For this plot I took nµ = 5.1 and a = 0.02.

Figure 5.7. Plot A(Z) (see Eq. (5.103) in the text versus position inside a slab. It vanishes
and is anti-symmetric about the box-center. For this plot I took nµ = 5.1 and a = 0.02.

whose solution is as follows:

∆(Z) = e
∫ Z
0 dZ

[
B(Z)−B(0.5)

A(Z)

]
. (5.106)

In Fig.(5.8) I have plotted the local pairing amplitude inside the box shaped trap.

Cubical Box

In the previous subsection, I discussed the Taylor expansion method of solving the

superfluid gap equation in a slab geometry. In this subsection, I will follow a similar ap-

proach to extract the local gap parameter inside a box with cubical geometry. I choose to

study the pairing amplitude along the path P : R =
(
X, 1

2
, 1
2

)
, which is a line joining one
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Figure 5.8. Plot of local pairing amplitude ∆(Z) versus position Z inside a slab. The blue
dots represent the solutions to the gap equation at various positions. For this plot I took
nµ = 5.1 and a = 0.02. The red curve is a variational guess ∆(Z) = 1027 · [Z(1 − Z)]5 that
fits the blue dots.

face center of the box to another. In principle, pairing could also be studied along other

paths such as the diagonal. Here the wavefunction is made of sine functions in all three

directions:

Ψn(r) =

(
2

L

)3/2

sin
(nxπx

L

)
sin
(nyπy

L

)
sin
(nzπz

L

)
,

=

(
2

L

)3/2

sin(kxπx) sin(kyπy) sin(kzπz), (5.107)

where the fixed boundary conditions give us k = (kx, ky, kz) = (nxπ
L
, nyπ

L
, nzπ
L

).

To solve the gap equation (5.83), I split the kernel K into divergent K0 and conver-

gent K1 parts, as I did in Eqs. (5.85)-(5.86). Since I have chosen the path P which only

varies in x̂, therefore I expect that the pairing along P will only be a function of X, i.e.,

∆(X). As a result, the Y ′ and Z ′ integrals in (5.83) can be performed. Let us first do this

for K0(R,R′) in Eq. (5.86):

∫ 1

0

dY ′
∫ 1

0

dZ ′K0(R,R′) = g

∫
d3yδ3(y)∂y

[
y · S

]
, (5.108)
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where the sum S is :

S =
∑
k1x,k2x
ky ,kz

sin
[
k1x

(
X − x

2

)]
sin
[
k1xX

′
]

sin
[
k2xX

′
]

sin
[
k2x

(
X +

x

2

)]

× sin
[
k1y

(
Y − y

2

)]
sin
[
k2y

(
Y +

y

2

)]
× sin

[
k1z

(
Z − z

2

)]
sin
[
k2z

(
Z +

z

2

)]
/
(
k21x + k22x + 2k2y + 2k2z

)
. (5.109)

Converting all the momentum sums to integrals and making use of the identity (5.88), I

end up with an approximate expression for K0 as :

K0(X,X
′) =

gm

Lℏ2
· −1

8π2
×

[∫
d3rδ(3)(r)∂r

(
r

(X −X ′)2 + r2

4

)
+

1

(X +X ′)2
− 2

X2 +X ′2 +
1

(X −X ′)2 + 1
2

+
1

(X +X ′)2 + 1
2

− 2

X2 +X ′2 + 1
2

− 1

(X −X ′)2 + 1
4

− 1

(X +X ′)2 + 1
2

+
1

X2 +X ′2 + 1
4

]
. (5.110)

It is instructive at this point to compare this expression for the box-K0 with the slab case.

The first line is the same as (5.89) and the rest of the terms appear because of confine-

ment in the other two directions.

Following the steps for the slab case, I now Taylor expand the local gap parameter

to linear order: ∆(X ′) ≃ ∆(X) + (X ′ − X) · d
dx

∆(X) and plug it into the gap equation,

yielding:

∆(X) = ∆(X)

∫ 1

0

dX ′
[
K0(X,X

′) + K1(X,X
′)
]
,

+ ∆′(X)

∫ 1

0

dX ′
[
K0(X,X

′) + K1(X,X
′)
]
· (X ′ −X), (5.111)

which is similar to Eq. (5.92). Thus I need to evaluate four integrals. I start with the spa-
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tial integral of K0:

Lℏ2

gm
I1 =

∫ 1

0

dX ′K0(X,X
′) =

1

4π2

[
1 +

1

X
tan−1

(1 −X

X

)
+

1

(X − 1)
tan−1

( X

X − 1

)
+ 2 tan−1(2) −

√
2 tan−1(

√
2)

+
1√

X2 + 1
2

tan−1 1 −X√
X2 + 1

2

− 1√
X2 + 1

4

tan−1 1 −X√
X2 + 1

4

+
1√

(X − 1)2 + 1
2

tan−1 X√
(X − 1)2 + 1

2

− 1√
(X − 1)2 + 1

4

tan−1 X√
(X − 1)2 + 1

4

]
,

(5.112)

where the first three terms match with the slab case (5.97) and the rest are due to confine-

ment in two other directions. Similarly, the spatial integral of K0 multiplied with (Z ′ − Z)

gives us the following result:

Lℏ2

gm
I2 =

∫ 1

0

dX ′K0(X,X
′) · (X ′ −X) = − 1

4π2

[
2X − 1 + tan−1

(1 −X

X

)
+ tan−1

( X

X − 1

)
+ 2X tan−1(2) − 2X tan−1(2X)

+4(X − 1) tan−1(2) + 4(X − 1) tan−1(2(X − 1)) + 2X
√

2 tan−1(
√

2X)

−2X
√

2 tan−1(
√

2) − 2
√

2(X − 1) tan−1(
√

2) − 2
√

2(X − 1) tan−1(
√

2(X − 1))

−
2(X − 1) tan−1

(
X√

(X−1)2+ 1
4

)
√

(X − 1)2 + 1
4

+
2X tan−1

(
1−X√
X2+ 1

2

)
√
X2 + 1

2

−
2X tan−1

(
1−X√
X2+ 1

4

)
√
X2 + 1

4

+
2(X − 1) tan−1

(
X√

(X−1)2+ 1
2

)
√

(X − 1)2 + 1
2

]
, (5.113)

where the first four terms are the same as (5.98) as I saw in the slab case. The tempera-

ture dependent part of the kernel has the following two spatial integrals associated with
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it:

Lℏ2

gm
I3 =

∫
d3R′K1(R,R′)

= − 8

π2

∑
nx

ny ,nz∈ODD

[
tanh

(
a(n2 − n2

µ)
)

n2 − n2
µ

− 1

n2

]
sin2(nxπX), (5.114)

Lℏ2

gm
I4 =

∫
d3R′K1(R,R′) · (Z ′ − Z)

=
32

π2

∑
n1x,n2x

ny ,nz∈ODD

[
nF

(
2a(n2

1x + n2
y + n2

z − n2
µ)
)
− nF

(
2a(n2

µ − n2
2x − n2

y − n2
z)
)

n2
1x + n2

2x + 2n2
y + 2n2

z − 2n2
µ

− 1

n2
1x + n2

2x + 2n2
y + 2n2

z

]
In1x,n2x(X) sin(n1xπX) sin(n2xπX), (5.115)

that are also similar to the slab case (5.99) and (5.100) respectively. Note that the sum-

mation indices of I3 and I4 change as compared to slab case as ny, nz can only be odd pos-

itive integers. Here a ≡ ℏ2
4mkBTL2 = ϵ̂1

T̂c
, n2

µ ≡ 2mµL2

ℏ2 = µ̂
ϵ̂1

, ϵ̂1 ≡ ϵ1
ϵF

= ℏ2/2mL2

ϵF
, T̂c = kBTc

ϵF
,

µ̂ = µ
ϵF

and the integral function I is defined as :

In1x,n2x(X) =


2

(
(−1)n1x+n2x−1

)
n1xn2x

π2(n2
1x−n2

2x)
2 for n1x ̸= n2x

1
4
(1 − 2X) for n1x = n2x.

Collecting the spatial integrals in equations (5.112)-(5.115) into the Taylor ex-

panded gap equation (5.111), I arrive at the following differential equation:

Lℏ2

gm
+B(X) = A(X) · d

dx
log ∆(X), (5.116)

where the functions B(X) for the box case is:

B(X) =
2

π2

∑
nx

∫ ∞

1

dny

∫ ∞

1

dnz

[
tanh

(
a(n2 − n2

µ)
)

n2 − n2
µ

− 1

n2

]
sin2(nzπZ)

− 1

4π2

[
1 +

1

Z
tan−1

(1 − Z

Z

)
+

1

(Z − 1)
tan−1

( Z

Z − 1

)]
, (5.117)
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Figure 5.9. Plot of difference between B(X) and B(0.5) from one face center (0, 1/2, 1/2)
to the other (1, 1/2, 1/2) versus position inside a cubical box (see Eq. (5.117) in the text).
It is symmetric about the box-center. For this plot I took nµ = 5.1 and a = 0.02.

Figure 5.10. Plot A(X) from one face center (0, 1/2, 1/2) to the other (1, 1/2, 1/2) ver-
sus position inside a cubical box (see Eq. (5.118) in the text). It vanishes and is anti-
symmetric about the box-center. For this plot I took nµ = 5.1 and a = 0.02.

and the expression for the function A(X) inside the box is as follows:

A(X) =
8

π2

∑
n1x,n2x

∫ ∞

1

dny

∫ ∞

1

dnz In1z ,n2z(Z) sin(n1zπZ) sin(n2zπZ)

×

[
nF

(
2a(n2

1x + n2
y + n2

z − n2
µ)
)
− nF

(
2a(n2

µ − n2
2x − n2

y − n2
z)
)

n2
1x + n2

2x + 2n2
y + 2n2

z − 2n2
µ

− 1

n2
1x + n2

2x + 2n2
y + 2n2

z

]
− 1

4π2

[
2Z − 1 + tan−1

(1 − Z

Z

)
+ tan−1

( Z

Z − 1

)]
,

(5.118)

where n2 = n2
x + n2

y + n2
z. Note that I have summed over the indices in x̂-direction and
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Figure 5.11. Plot of local pairing amplitude ∆(X) from one face center (0, 1/2, 1/2) to the
other (1, 1/2, 1/2), versus position X inside a cubical box. The blue dots represent the so-
lutions to the gap equation at various positions. For this plot I took nµ = 5.1 and a = 0.02.
The red curve is our variational guess ∆(X) = 16 · [X(1 −X)]2 that fits the blue dots.

integrated indices in the ŷ and ẑ-directions. In Fig. 5.9 and Fig. 5.10, I show the spatial

profiles of the functions B(X) and A(X) respectively. Following the previous subsection,

to solve Eq. (5.116), I subtract off the same equation but evaluated at X = 0.5, i.e., the Tc

equation, yielding:

B(X) −B(0.5) = A(X) · d
dx

log ∆(X), (5.119)

which can now be solved to get the local pairing amplitude in the box along the path P :

R =
(
X, 1

2
, 1
2

)
:

∆(X) = e
∫X
0 dX

[
B(X)−B(0.5)

A(X)

]
, (5.120)

which I have plotted in Fig.(5.11), which shows that the gap parameter vanishes at the

edges X = 0 and X = 1, and has a spatial profile similar to [X(1 − X)]2, unlike the slab

case where the exponent was 5.

To summarize, in this chapter I started with the Bogoliubov-de Gennes (BdG)

Hamiltonian and modeled the interactions using the pseudopotential, which gave us a su-

perfluid gap equation in the form of an integral eigenvalue equation. To solve this I Taylor
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expanded the gap parameter to linear order, where the assumption is that ∆(R) varies

slowly with respect to position. However, for a box-shaped trap I expect that the pair-

ing vanishes at the edge (Dirichlet boundary condition) and should rise rapidly to some

smooth value near the box center. This means that in order to correctly characterize the

pairing near the edge an alternate approach needs to be found. Nonetheless, this Taylor

expansion approach can be trusted near the box center and near the transition tempera-

ture regime.
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CHAPTER 6. CONCLUDING REMARKS

In this thesis, I explored analogue inflationary particle creation in rapidly expand-

ing toroidal Bose-Einstein condensates (BEC) and the associated entanglement properties,

analogue Unruh effect and Takagi’s statistics inversion in strained graphene, and how the

properties of a superfluid change inside a box-shaped trap compared the standard BCS-

theory for the bulk. Although, I discussed a wide variety of topics, there are some com-

mon themes between them. One such theme is the applicability of analogue gravity tech-

niques to condensed matter setups that lead to spontaneous quasi-particle creation from

the vacuum. For toroidal BEC and graphene I looked at this in detail, but I could have in

principle applied it to the box trap, and depending on whether I put time dependence or

some spatial disturbance, I would get quasi-particle generation there too. Another com-

mon theme, is that all these topics can be tested in cold atom setups. While this may be

obvious for the toroidal BEC and the box-shaped trap, the strained honeycomb could in

principle be constructed in optical lattices. In the coming subsections, I will provide con-

cluding remarks and possible future work for each chapter.

6.1. Toroidal BEC

In Chapter 2, I have explored how an exponentially expanding thin toroidal Bose-

Einstein condensate can reproduce the various features of primordial cosmological infla-

tion. Our work was inspired by recent experimental and theoretical work by Eckel and col-

laborators who studied inflationary physics in a ring-shaped BEC [38]. These authors ob-

served experimentally (and confirmed theoretically) the redshifting of phonons due to the
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rapid expansion of this analogue 1D universe, a damping of phonon modes due to Hubble

friction, and evidence of the preheating phenomena predicted to occur at the end of infla-

tion.

A central finding of our work is that quantum pressure effects, even if they are

quantitatively small, can have important implications for the dynamics of expanding

toroidal BEC’s. Such quantum pressure effects modify the Mukhanov-Sasaki equations

for phonon modes in a fundamental way, with the resulting solutions exhibiting damping

and redshift, just like in inflationary cosmology. I found that this damping is responsible

for the change of the vacuum state of the fluctuations, which ultimately leads to the

dynamical generation of phonons. This is the analogue of particle production in the early

universe. As a result, if the perturbations start in a coherent state, the ring expansion

forces them to bifurcate into two density waves that propagate opposite to each other,

leading to a complex time-dependent density wave in the toroid. This phonon generation

also manifests itself in the density-density noise correlations as a cusp-like feature that

tracks the horizon size. Both of these results are clear signatures of particle creation

and can be verified experimentally. However, it is important to note that, within the

gravitational analogy viewpoint, the model I consider here is a very special one i.e. a

quasi-one-dimensional toroidal BEC, the small width of which led us to consider the

short-distance corrections due to quantum pressure. More general models could be realized

experimentally that can give different results and interpretations [74].

I make note of two things. Firstly, a simple harmonic oscillator with a time depen-

dent frequency [46], can also exhibit a change of vacuum states leading to particle cre-

ation. Secondly, the fact that no particle creation happens for γ = 0 is related to the
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presence of an adiabatic invariant in 1D [38]. Unlike other settings where quantum pres-

sure effects are unimportant for particle production (for example, the Sakharov oscillations

measurements of Hung et al [24]), in the present case of a one-dimensional BEC, where

I have assumed a time independent speed of sound c, it is essential to have a nonzero γ

for the damping of modes. I emphasize that taking c to be constant is a simplifying ap-

proximation, and that a rapid time-dependent variation of c would also lead to phonon

production. Within the preceding approximations, our work shows that quantum pressure

is essential to achieve particle production, as seen from the form of Eq. (2.20) and its solu-

tion Eq. (2.21).

Such damping is also crucial within inflationary theory, where the horizon size is

approximately fixed. During this period, some modes (which are due to spontaneously

created particles) get stretched out of the horizon and thus freeze. However, other modes

never exit the horizon and thus undergo damping. When inflation ends, the horizon again

expands and starts enveloping these frozen modes, that re-enter the horizon and distribute

the available matter and radiation. This way, inflation provides a mechanism through

which vacuum fluctuations in the early universe manifest themselves later in the form of

distribution of galaxies and the CMB anisotropies. In a BEC, the quantum pressure is

essential for damping and particle creation. As a result, here too the same mechanism

of horizon exit and freezing of modes is happening. In this sense, the quantum pressure

terms provide us with an analogue of the inflationary mechanism in a BEC.

Future studies could look into other types of expansion rates like the ones arising

from the quadratic or the Starobinsky models of inflation. A further possibility as men-

tioned in [38], could be to study how causally disconnected regions recombine. This could
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potentially help cosmology experiments to observe physics beyond our current horizon.

Another possibility as discussed in [54], is to see whether cold atomic systems can be used

to study the trans-Planckian era that happened before inflation, which is believed to entail

quantum effects of gravity.

6.2. Toroidal Entanglement

In Chapter 3, I revisited the setup of Chapter 2 in which a Bose-Einstein conden-

sate (BEC) trapped inside a thin toroidal laser trap (effectively a one-dimensional ring),

is rapidly expanded. Previous works such as [38, 73] have experimentally studied this sys-

tem to show how the amplitude of the BEC fluctuations undergo damping due to the ex-

pansion of the ring which is an the analogue of cosmological redshift, and the mode wave-

lengths thus mimicking the gravitational redshift. In Chapter 2, I modeled this system

using the Bogoliubov-de Gennes (BdG) Hamiltonian, which in the thin-ring limit yields

the Mukhanov-Sasaki equation that describes how the azimuthal modes evolve in time.

I divided the entire problem into three stages. The first stage is a static BEC with no

phonons, which due to time-translation symmetry are described by plane wave modes in

time and give us a notion of particles. The second phase is where the ring expands rapidly

where the modes undergo damping due to the quantum pressure. When this expansion

ends, I enter into the third phase of a static BEC with a larger ring radius. In the Heisen-

berg picture, the state of the system remains the same, but the quantum field operators

described by density and phase modes evolve in time. Thus the notion of vacuum state

changes and these field operators see the final BEC as filled with phonons. This is sponta-

neous particle creation leads to the phonons being generated in two-mode squeezed states
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which manifests itself as a cusp (at zero temperature) or kink (finite temperature) like fea-

tures in the density-density correlations.

Naturally then, one would like to know if these correlations are quantum or clas-

sical in nature, i.e., is there any entanglement present in this system in the sense of

Einstein-Podolsky-Rosen (EPR). For this purpose, I then briefly reviewed the theory of

Gaussian quantum continuous variables for bosons, wherein the state of the fluctuations

(phonons) can be completely specified by the mean vector and the covariance matrix

for a system of two modes n and −n. To discuss whether such states are entangled or

not, I reviewed the PPT criterion which says that if the symplectic eigenvalues of the

covariance matrix that is partially transposed with respect to one of the subsystems, are

less than unity, then the state of such a phonon pair is entangled. I then employed this

technique to the case of an initial static BEC prepared in the vacuum, thermally excited

and single-mode squeezed states. I found that for an initial vacuum state, the entangle-

ment is maximum for lowest energy modes n = 1, and decreases with increasing n in

an oscillatory manner that is due to the presence of sonic horizon in the system. I then

saw how thermal noise or the presence of imperfections in the detector (losses) can lead

to entanglement degradation, whereas using states prepared with phonons squeezed in a

single mode n, acts as a quantum resource and leads to the enhancement of entanglement.

For a combination of such thermal and squeezed inputs, I found parameter spaces over

which experiments could possibly detect such quantum correlations.

Finally, I ended our discussion by proposing a protocol that makes use of an an-

gular version of the Hanbury-Brown and Twiss experiment. Here I aimed to measure the

correlations in real space as they are easier to directly measure than the ones in the mode
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space. I then discussed how a toroidal BEC cloud prepared any state and after expansion,

can be split via laser Bragg diffraction into two parallel clouds with an tunable induced

phase difference. Then one of the clouds is rotated and made to interfere with the non-

rotated cloud which yields experimental data the atom density correlations. By varying

the relative rotation angle and the induced phase, I showed how to extract from this data

the phase-phase and density-density correlations of fluctuations in the BEC. Additionally,

if the phase-phase correlations are measured as a function of time, then their time differ-

ential will yield the mixed correlations between phase and density. Thus, this procedure

ends up giving us all types of real space correlations that can then be Fourier transformed

to give the complete set of mode correlations. This way, the experimenter can build the

covariance matrix and hence determine the amount of entanglement in the toroidal BEC.

As I discussed in the introduction, different inflaton potentials V (ϕ) in the early

universe can give different expansion rates which could be mimicked in the toroidal setup,

and and could thus result in different amounts of mode entanglement. A further possible

direction could be to look at an expanding toroid of fermions (as in superfluids) where the

due to Pauli’s exclusion principle, the fermionic entanglement is maximum for a certain

mode index, as was discussed in Refs. [72, 70]. Another possibility would be to extend the

calculations in this paper to include non-gaussian processes [87] and non-classical correla-

tions such as quantum discord [61].

6.3. Unruh Effect in Graphene

In Chapter 4, I have discussed how a honeycomb lattice that is strained inhomoge-

nously can act as an arena where analogue Rindler physics associated with accelerating
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observers can be realized. I broke this problem into two stages. The first stage is that

of an unstrained flat graphene sheet that possesses (discrete) translation symmetry, and

leads to an emergent Dirac equation for low energy modes. This mimics the evolution of

fermions in flat Minkowski spacetime. I then solved the evolution equation to obtain the

mode expansion in terms of plane waves in space and time. This choice helps us define

a structure of ladder operators âk and b̂k which, when acting on the Minkowski or flat

graphene vacuum state |0M⟩, lead to excitation of electrons and holes that obey a linear

in energy-momentum dispersion relation.

The second stage starts when I suddenly switch on strains to create a Rindler

Hamiltonian with a spatially varying Fermi velocity v(x) ≃ v0
|x|
λ

where the origin x = 0

acts as an analogue of Rindler horizon separating the x < 0 and x > 0 regions and

forbidding low-energy and long-wavelength electrons to tunnel through. Thus the two

disconnected sides of strained graphene mimic the causally disconnected left and right

Rindler wedges. Then I solved the Dirac equation for right handed Weyl fermions and

obtained the solutions in terms of Bessel functions that blow up at the horizon and

asymptotically vanish at large x. Here the plane wave basis in Rindler time helps us

choose the structure of Rindler creation and annihilation operators ĉky ,Ω and d̂ky ,Ω for

electrons and holes with respect to the Rindler vacuum state |0R⟩. However, unlike the

Minkowski case, here due to broken translation symmetry there is no band dispersion and

the energy and momentum are decoupled.

Since the same quantum field operator has two different representations in the flat

and strained regimes, by projecting one onto the other I find that the Minkowski vacuum

|0M⟩ appears to operators of the strained system as if it is at finite temperature, swarming
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with Rindler particles. This can be understood in terms of the Heisenberg picture where

the state of the system remains the same, whereas the operators evolve, and thus in the

sudden approximation the original state is viewed as a linear combination of the eigen-

states of the new Hamiltonian. In fact, the Minkowski vacuum state corresponding to the

flat system can be expressed as a two-mode squeezed state with respect to the Rindler

vacuum, since one side of the lattice is unavailable to the modes residing on the oppo-

site side. Thus, expectation values on the right side effectively involve a trace over the left

side, amounting to a mixed thermal density operator for the right side. This is similar to

what happens in Rindler spacetime because when an observer picks a certain acceleration

say a > 0, then they are naturally causally disconnected from the observers accelerat-

ing opposite to them. As a result of this, the Minkwoski vacuum averages of Rindler lad-

der operators pertaining to one side appear as thermal averages, which is known as the

Fulling-Davies-Unruh effect.

After discussing this thermal-like creation of particles, I looked into the properties

of the strained Green’s functions which satisfy the KMS condition that ensures that if the

analogue spacetime has a horizon in it, then the spectrum of particles it creates is bound

to be thermal in nature. Another feature of these Green’s functions was that the Huygens’

principle gets violated due to graphene being a two-dimensional material and thus leads

to a Bose-Einstein spectrum for electron-hole pairs created by strains, a manifestation of

Takagi’s statistics inversion.

I then discussed how the Unruh thermality (for low-energy and long wavelength

modes) could be measured in photo-emission spectroscopy (PES) experiments and the

inversion factor could be seen in scanning tunneling microscopy experiments that mea-

177



sure the density of states. In PES, shining photons on graphene would excite fermions

to higher states according to a Bose distribution and therefore, in this sense, these ex-

periments are related to the Unruh-DeWitt detectors that also get excited with a Bose-

Einstein response when interacting with acceleration radiation. I also found that a sim-

ilar thermal like behavior could be seen in measurements of the spatially averaged elec-

tronic conductivity of an isolated strained honeycomb lattice, which at low energies, ex-

hibits a frequency dependence that is similar to that found in the case of a flat graphene

sheet kept at finite environment temperature, hence signalling emergence of Unruh-like

thermality. Finally, I ended our discussion with a calculation of the total system energy

due to strains at finite environment temperature and found that it has a zero temperature

portion which resembles the black body spectrum of photons thus signalling statistics in-

version, and a finite temperature part whose contribution is negative. This is due to the

fact that if I start with an initially excited (thermal) state in flat graphene, then strains

lead to stimulated particle reduction due to the Pauli principle not allowing newly created

fermions to occupy the energy levels already occupied by thermal fermions.

6.4. Superfluid in a Box-Shaped Trap

In Chapter 5, I discussed the properties of a superfluid that is confined to a box-

shaped laser trap with vanishing boundary conditions. To study this theoretically, I with

the Bogoliubov-de Gennes (BdG) Hamiltonian, where I first modeled the interactions us-

ing a Dirac delta function in one-dimension. Using the BCS-approximation, i.e. pairing

is favored for modes of same energy, I found that the interaction function has a 1/L cor-

rection due to finite size of the box. As a result of this, the solution to the gap equation
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gave us a level pairing that has a bulk contribution and a a 1/L correction dependent on

the energy. Similar size correction also appeared when I solved the transition temperature

equation to obtain Tc. However, this approach does not work for higher dimensions as the

gap equaiton there is divergent, which does not cancel with divergence in the two-problem.

Thus for three dimensions, I considered the BdG Hamiltonian with pseudopoten-

tial interactions, which has regularization built into it, i.e., it cancels the divergence in the

pairing when two fermions approach each other, thereby eliminating the need to invoke

the two-body problem. At the transition temperature, I looked at the Green’s function

solution of the BdG Hamiltonian that led us to a superfluid gap equation in the form of

an integral eigenvalue equation, where the kernel K = K0 + K1 can be decomposed into

a convergent piece (finite temperature part) K1 and a divergent piece (zero temperature

part) K0. The pseudopotential then acts on K0 and eliminates the 1/r-divergence. This

procedure yields a well-behaved integral gap equation which in the bulk limit reproduces

the standard transition temperature equation. To solve this integral eigenvalue problem, I

Taylor expanded the gap parameter to linear order. This gave us a first order differential

equation in ∆(R), which at the box center turns into a transition temperature equation

with the first similar to the bulk case (except that the sum is over box eigenstates) and

1/L finite size correction. I solved this for various values of atom number in the box, and

showed that in general the Tc in the box is lower than the bulk, and the lower the number

atoms, the lower is Tc.

I then looked at the integral eigenvalue problem in the slab and cube cases. In the

slab case, I took its height to be finite, and the length and breadth to be infinite. Therefor

the sums in those two directions can be converted to integrals. This helped us obtain an
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analytic expression for the zero-temperature part of the kernel K0. Employing the Tay-

lor expansion of the gap parameter gave us first order differential whose solution gave

us the local pairing amplitude in the slab along its height that vanishes on the edges. In

the cube case, I chose to study pairing along a path that connects one face edge to the

other, parallel to the cube’s length. Thus integrals in the other two directions could be

performed as the gap will vary only along the edge. This simplified the integral eigenvalue

equation, where again the Taylor expansion method helped us find that the local pairing

amplitude makes a bell-shape and vanishes at the box edge. I ended this chapter with a

remark about the validity of the Taylor expansion approach which assumes that ∆(R)

varies slowly with respect to position. As I saw in the plots for ∆(R), this is a valid as-

sumption near the box center, but pairing rises rather rapidly as I go away from the edge,

thereby contradicting our assumption. This suggests that I need to find a more general

way of solving the eigenvalue problem that appropriately characterizes the near edge be-

havior of the pairing amplitude.

Future studies could look into the spin-imbalanced case and look for observable sig-

natures of the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase. As I discussed in the in-

troduction, in the bulk case the FFLO gap has the form eiq·r which has been shown to

be unstable [217] to arbitrarily small displacements in real space (Goldstone mode). The

box however does not possess translation invariance because of a fixed boundary and thus

there is a possibility that an FFLO gap of the form cos(q · r) will be stabilized for cer-

tain values of q. Since experiments have been done on nano-films [218], I can extend our

results for spin balanced Fermi gas in the thin film case to the spin imbalanced case. An-

other possible direction is to look at how Tan’s contact density C(r) [211] which has been
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studied in the harmonic trap [214], gets modified the box-shaped trap.
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APPENDIX A. DYNAMICS OF AN EXPANDING TOROIDAL
BEC

In this section I study BEC’s in the presence of an expanding toroidal-shaped trap

given by Eq. (2.2). Our aim is to understand the background solution on which phonon

excitations propagate. For this task I study the time-dependent Gross-Pitaevskii equation

(GPE)

iℏ
∂

∂t
Φ0(r, t) = − ℏ2

2M
∇2Φ0(r, t) +

(
V (r, t) − µ

)
Φ0(r, t)

+U |Φ0(r)|2Φ0(r, t). (A.1)

Writing Φ0(r, t) =
√
n0(r, t)e

iϕ0(r,t), with n0 the density and ϕ0 the superfluid phase, I

obtain:

−ℏ∂tϕ0(r, t) = − ℏ2

2M
√
n0(r, t)

∇2
√
n0(r, t) (A.2)

+
ℏ2

2M
(∇ϕ0(r, t))

2 + V (r, t) − µ+ Un0(r, t),

∂tn0(r, t) = − ℏ
M

∇ ·
(
n0(r, t)∇ϕ0(r, t)

)
, (A.3)

A key question is whether the superfluid velocity, v(r, t) = ℏ
M
∇ϕ0(r, t), is equal to the ra-

dial ring velocity ρ̂Ṙ(t). Before analyzing this, I recall the simpler case of a homogeneously

translated trap moving at constant velocity vT . In this case, which can be described by a

trapping potential V (r, t) = V (r − vT t), Galilean invariance [55] ensures that a solution

to Eqs. (A.2) and Eqs. (A.3) always exists with superfluid velocity v = vT and density

n(r) static in the moving frame. That is, I can always boost to a moving reference frame

in which the single-particle potential is static.

In the case of present interest, however, a toroidal expanding ring described by the

trapping potential Eq. (2.2), the lack of Galilean invariance means that I cannot find such
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a simple exact solution with v = ρ̂Ṙ(t). In the following, I investigate whether such a

relation holds approximately under the conditions of the experiment. To do this, we take

the gradient of both sides of Eq. (A.2), and use the definition of the superfluid velocity, to

obtain the Euler equation:

−M∂tv = ∇
[
− ℏ2

2M
√
n0(r, t)

∇2
√
n0(r, t)

+
1

2
Mv2 + V (r, t) − µ+ Un0(r, t)

]
. (A.4)

I now invoke the Thomas-Fermi (TF) approximation [56] by neglecting the Laplacian term

in square brackets on the right of Eq. (A.4). Then, I plug our assumed solution v = ρ̂Ṙ(t)

into the left side, which leads to −M∂tv = −MR̈ρ̂, allowing us to find the following result

for the TF density of a BEC in an expanding toroid:

n0(r) =
1

U

(
µ(t) − 1

2
Mω2

zz
2 − λ|ρ−R|n −MR̈(ρ−R)

)
×Θ
(
µ(t) − 1

2
Mω2

zz
2 − λ|ρ−R|n −MR̈(ρ−R)

)
, (A.5)

obtained by integrating both sides of Eq. (A.4) with respect to ρ. Note I also plugged in

V (r, t) from Eq. (2.2), and an overall constant of integration was chosen so that the ρ de-

pendence of Eq. (A.5) is via the combination ρ − R(t) (although I suppressed the time

argument in R for brevity).

The chemical potential in Eq. (A.5) is determined by satisfying the fixed number

constraint N =
∫
d3r n0(r), with N the total boson number. In this integration, the term

proportional to (ρ − R(t)) will approximately vanish, with the other terms in Eq. (A.5)
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determining the TF radii in the z and ρ directions, which are given by:

Rz =

√
2µ(t)

Mω2
z

, (A.6)

Rρ =
(µ(t)

λ

)1/n
. (A.7)

With these definitions, the density is given by:

n0 ≃
µ(t)

U

[
1 − z2

R2
z

− 1

Rn
ρ

|ρ−R|n − MR̈

µ(t)
(ρ−R)

]
×Θ
(

1 − z2

R2
z

− 1

Rn
ρ

|ρ−R|n − MR̈

µ(t)
(ρ−R)

)
, (A.8)

describing a peak in the atom density that approximately follows the expanding ring. The

large value of the exponent n implies a “flatness” to the density profile in the radial di-

rection, i.e., a weak dependence of the density on ρ. I note that in the Eckel et al experi-

ments the exponent n ≃ 4, although we’ll keep it general in this section.

The system chemical potential µ(t) is determined by the requirement of a fixed to-

tal particle number N during expansion. Since the density at the center of the toroid (i.e.

at ρ = R(t) and z = 0) is proportional to µ(t) in Eq. (A.8), and the toroid volume is pro-

portional to RzRρR(t), then the fixed number constraint leads to the estimate

N ∝ µ(t)RzRρR(t) ∝ µ(t)
3n+2
2n R(t), (A.9)

which implies the chemical potential satisfies

µ(t) ∝ R(t)−
2n

3n+2 , (A.10)

with exponent γ ≡ 2n
3n+2

≃ 4
7
. Thus, during expansion, the chemical potential (and cen-

tral density) decrease with increasing time. Note that since the sound velocity c ∝ √
n0,

184



this result implies that the sound velocity scales with toroidal radius as c ∝ R(t)−
1
2
γ, or

R(t)−2/7 for the case of n = 4 [38].

I have found that a solution with v ≃ Ṙ(t)ρ̂ can approximately satisfy the Euler

equation and yields a time-dependent chemical potential in the number constraint equa-

tion. The next step is to examine the continuity equation, Eq. (A.3), which is:

∂tn0 = −∇n0 · v − n0∇ · v. (A.11)

I now analyze Eq. (A.11) without assuming v ≃ Ṙ(t)ρ̂, but only the TF density profile

result Eq. (A.5). To simplify the left side of Eq. (A.11), I note that Eq. (A.5) implies that

the partial time derivative of n0 satisfies:

∂tn0 = −Ṙ(t)ρ̂ ·∇n0(ρ, z, t) (A.12)

+
1

U

(
∂tµ(t) −M(ρ−R(t))

...
R (t)

)
.

Henceforth I drop the final term on the right side, since it is small in the regime ρ → R(t).

Plugging this into the left side of Eq. (A.11) gives

− Ṙ(t)ρ̂ ·∇n0 +
1

U
∂tµ(t) = −∇n0 · v − n0∇ · v. (A.13)

I now analyze this equation in the regime of ρ ≃ R(t). From Eq. (A.5), I find that the

gradient of n0 is a constant at ρ→ R and is given by:

ρ̂ ·∇n0

∣∣∣
ρ→R(t)

= −MR̈(t)

U
. (A.14)

Plugging this in to the continuity equation, using our result for µ (which implies ∂tµ =

−γ Ṙ
R
µ), and cancelling an overall factor of 1/U , I find:

MṘR̈− µγ
Ṙ

R
= MR̈v − µ∇ · v. (A.15)
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Now I take account of the fact that our system exhibits a rapid growth of R with increas-

ing t. During this expansion, µ decreases slowly according to Eq. (A.10), while Ṙ
R

is O(1)

(e.g. for exponential growth). This implies that the first terms on the right and left sides

of Eq. (A.15) are much larger than the second terms on the left and right sides. Dropping

the subleading terms, I finally get:

MṘR̈ = MR̈v, (A.16)

or v = Ṙ, consistent with our original assumption. This shows that, within the preced-

ing approximations, a rapidly expanding toroidal BEC indeed exhibits a radial superfluid

velocity v = Ṙρ̂.
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APPENDIX B. THE DIRAC EQUATION

In this section, I will investigate how fermionic quantum fields evolve in a (2 + 1)-

dimensional spacetime equipped with the following line element:

ds2 = −
(

1 +
|x|
λ

)2

c2dt2 + dx2 + dy2, (B.1)

which is written in some coordinates (t, x, y) whose interpretation depends on the choice

of parameter λ. The limit in which it diverges, i.e. λ → ∞, I recover the flat Minkowski

metric expressed in inertial coordinates (t, x, y), which I could also re-label with (T,X, Y )

as was done in (4.18):

lim
λ→∞

ds2 = −c2dt2 + dx2 + dy2, (B.2)

whereas in the opposite limit where this parameter is small, i.e. λ → 0, I recover the flat

Minkowski metric written in terms of the Rindler coordinates (t, x, y):

lim
λ→0

ds2 = −x
2

λ2
c2dt2 + dx2 + dy2, (B.3)

and thus here λ plays the role of xmin = c2

a
which is the closest distance of approach from

the origin at x = 0, of a Rindler observer accelerating with a. To derive the Dirac equa-

tion in these two limits, I will write it using the most general metric (B.1). The Dirac

equation describing the evolution for massless or Weyl fermions in arbitrary spacetime is

as follows:

iγaeµa∇µψ̂(x) = 0 (B.4)

where ψ(x) is the massless Dirac spinor (or Weyl spinor) and can be written as a two

component spinor, which due to zero rest mass are decoupled from each other ψ̂T(x) =
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[
ψ̂R(x), ψ̂L(x)

]
. Also, the covariant derivative is defined as ∇µ = ∂µ − i

4
ωabµ σab, where

σab = i
2

[
γa, γb

]
, where the Dirac matrices satisfy the Clifford algebra

{
γa, γb

}
= 2ηab.

From the line element in (B.1), I can write down the metric components as follows:

gµν = diag

[
− c2

(
1 +

|x|
λ

)2

, 1, 1

]
, (B.5)

which is diagonal and hence simplifies our derivation. Tetrads are objects that take us

from an arbitrary metric to the local flat metric of the tangent space at a point. They are

as defined as:

gµν = eaµe
b
νηab, ηab =



−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


. (B.6)

where ηab is the Minkowski tensor. In our notation I make use of Greek (µ, ν, ..) indices to

denote curved spacetime labels such as (t, x, y), and Roman (a, b, ..) indices signify that we

are in the tangent space at a particular point in spacetime and therefore can take values

(0, 1, 2). By comparing (B.5) and (B.6) I get the following tetrads:

eaµ = diag

[
c

(
1 +

|x|
λ

)
, 1, 1

]
, (B.7)

These tetrads can now be used to derive the spin connections ωabµ which take into account

the spin-precession of fermions due to the curvature of spacetime. They are defined as fol-

lows:

ωabµ =
1

2
eνa
(
∂µe

b
ν − ∂νe

b
µ

)
− 1

2
eνb
(
∂µe

a
ν − ∂νe

a
µ

)
− 1

2
eρaeσb

(
∂ρeσc − ∂σeρc

)
ecµ. (B.8)
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which is manifestly anti-symmetric ωabµ = −ωbaµ . The only surviving components of the

spin connection in the metric of (B.1) are as follows:

ω01
t = −ω10

t =
c

λ
sgn(x), (B.9)

where sgn(x) is the signum function, i.e. it returns +1 for positive values and −1 for nega-

tive entries. Finally, I will be needing the Dirac matrices in the Weyl or Chiral representa-

tion:

γ0 =

 0 −I2

−I2 0

 , γi =

 0 σi

−σi 0

 , γ5 =

I2 0

0 I2

 , (B.10)

where σi are the Pauli matrices:

σ1 =

0 1

1 0

 , γ2 =

0 −i

i 0

 , σ3 =

1 0

0 −1

 . (B.11)

Plugging in the tetrads (B.7) and the spin-connection (B.9) pertaining to the metric (B.1)

into the massless Dirac equation (B.4), I get two decoupled Weyl equations for the left

and right handed fermions:

∂tψ̂L = c

(
1 +

|x|
λ

)
σ ·∇ψ̂L +

c sgn(x)

2λ
σxψ̂L,

∂tψ̂R = −c
(

1 +
|x|
λ

)
σ ·∇ψ̂R − c sgn(x)

2λ
σxψ̂R. (B.12)

In the limit of λ → ∞, the above set reduces to the Weyl equations for fermions in inertial

frames (B.2):

∂tψ̂L = cσ ·∇ψ̂L,

∂tψ̂R = −cσ ·∇ψ̂R, (B.13)
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which is the same as (4.17) describing massless fermions in a flat graphene sheet. In the

opposite limit λ → 0, I recover the Weyl equations for massless fermions in uniformly

accelerating frames:

∂tψ̂L =
c|x|
λ

σ ·∇ψ̂L +
c sgn(x)

2λ
σxψ̂L,

∂tψ̂R = −c|x|
λ

σ ·∇ψ̂R − c sgn(x)

2λ
σxψ̂R, (B.14)

which is the same as Eq. (4.24) that describes how electrons and holes evolve in a Rindler

strained graphene sheet.
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APPENDIX C. BCS THEORY

To understand BCS theory, I will start with the following Hamiltonian H = H0+H1

given in (5.1)-(5.2) which describes a Fermi gas kept in a spatial trap V (r) and chemical

potential µ:

H0 =
∑
σ

∫
d3r Ψ†

σ(r)
[ p̂2

2m
− µ+ V (r)

]
Ψσ(r), (C.1)

H1 = λ

∫
d3r Ψ†

↑(r)Ψ†
↓(r)Ψ↓(r)Ψ↑(r), (C.2)

where H0 is the kinetic part and H1 is the interaction part made up of Delta poten-

tial Û(r1, r2) = λδ(r1 − r2) which basically means that the interaction is largest

when two fermions approach each other. Ψ†
σ(r) and Ψσ(r) are field operators that can

create/annihilate fermions and σ represents spin. These field operators satisfy the anti-

commutation relation: {Ψσ(r),Ψ†
σ′(r′)} = δ

(3)
σσ′δ(r − r′). They can be Fourier decomposed

as:

Ψσ(r) =
1√
V

∑
k

eik·rckσ, (C.3)

Ψ†
σ(r) =

1√
V

∑
k

e−ik·rc†kσ, (C.4)

where 1√
V
eik·r are plane wave-functions that originate by assuming periodic boundary con-

ditions. This is known as the Bulk case. (c†kσ, ckσ) are creation/annihilation operators for

a fermion in a mode k. Plugging (C.3)-(C.4) into (C.1)-(C.2) I get the Hamiltonian in k-

space

H =
∑
kσ

ξkc
†
kσckσ + λ

∑
ki

δ3(k1 + k2 − k3 − k4)c†k1↑c
†
k2↓ck3↓ck4↑, (C.5)

where ki = (k1, k2, k3, k4). Now I apply mean field theory to get the gap equation. To do

this I start with a variational wavefunction |Ψ⟩ =
∏

k(uk + vkc
†
k↑c

†
k↓)|0⟩ where uk and vk
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are the variational parameters. I use this ansatz to get the ground state energy defined as

EG ≡ ⟨Ψ|H|Ψ⟩ which gives:

EG =
∑
k

ξk(|vk|2 − |uk|2 + 1) + λ
∑
k,k′

v∗kukvk′u∗k′ +
∑
k

Ek(|uk|2 + |vk|2 − 1), (C.6)

where in the last line I put in the constraint |uk|2 + |vk|2 = 1 which comes from normaliza-

tion condition ⟨Ψ|Ψ⟩ = 1. Then I extremize this ground state energy with respect to the

variational parameters that gives us the BdG equations: ξk ∆

∆∗ −ξk


uk
vk

 = Ek

uk
vk

 , (C.7)

where I have defined the quantity ∆ ≡ −λ
∑

k v
∗
kuk also called the level pairing ampli-

tude or the gap parameter. The energy eigenvalues of this equation are ±Ek were Ek =√
ξ2k + |∆|2 and the variational parameters are (uk, vk) =

(
1√
2

√
1 + ξk

Ek
, 1√

2

√
1 − ξk

Ek

)
.

Plugging these into the definition of the gap parameter I get the gap equation for zero

temperature:

∆ = −λ
∑
k

∆

2Ek
, (C.8)

where the sum on the right hand side is divergent.

I will renormalise this after I discuss its generalization to non-zero temperatures.

I start with (C.5) and set the indices as (k1 = k,k2 = −k,k3 = k,k4 = −k) because

pairing between two fermions with spins ↑ and ↓ is expected to be largest when they have

equal and opposite momentum. Then I make the mean field approximation in the k-space

i.e. define the level pairing amplitude or gap as ∆ = λ⟨ck↑c−k↓⟩ and its conjugate ∆∗ =
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λ⟨c†k↑c
†
−k↓⟩. This gives us:

H = −|∆|2

λ
+
∑
kσ

ξkc
†
kσckσ + λ

∑
k

(∆c−k↓ck↑ + ∆∗c†k↑c
†
−k↓), (C.9)

= −|∆|2

λ
+
∑
k

[
c†k↑ c−k↓

] ξk ∆

∆∗ −ξk


 ck↑
c†−k↓

 . (C.10)

Diagonalizing this Hamiltonian gives us:

H = −|∆|2

λ
+
∑
k

(
ξk − Ek

)
+
∑
kσ

Ekα
†
kσαkσ, (C.11)

where the new operators are defined as αk↑ ≡ ukck↑ + vkc
†
−k↓ and αk↓ ≡ ukc−k↓ − vkc

†
k↑,

and they follow anti-commutation relations {αkσ, α
†
k′σ′} = δkk′δσσ′ . Now to bring in tem-

perature I need to minimize the grand free energy:

Φ = U − µN − TS,

= ⟨H⟩ − TS,

= −|∆|2

λ
+
∑
k

(
ξk − Ek

)
+
∑
kσ

Ek⟨α†
kσαkσ⟩ − TS

= −|∆|2

λ
+
∑
k

(
ξk − Ek

)
+
∑
k

EknF (Ek)

+ 2kBT
∑
k

[
nF (Ek) ln(nF (Ek)) + nF (−Ek) ln(nF (−Ek))

]
(C.12)

where in the second line I have defined ⟨H⟩ ≡ U − µN , U being the internal energy and

N being the particle number. Then in the third line I have used (C.11) and in the fourth

line I used for entropy S = −2kB
∑

k

[
nF (Ek) ln(nF (Ek)) + nF (−Ek) ln(nF (−Ek))

]
, kB

being the Boltzmann constant. Now I will minimize (C.12) by setting its derivative zero

i.e. ∂Φ
∂∆∗ = 0, which upon simplifying gives us the gap equation at non-zero temperatures
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(see Eq. 5.4):

1

λ
= −

∑
k

tanh Ek

2T

2Ek
, (C.13)

where Ek is the quasiparticle(Cooper pairs) energy dispersion relation and ∆ is the gap

parameter which quantifies the amount of pairing in the system.
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APPENDIX D. PSEUDOPOTENTIAL

In this section, I first show why unlike the one-dimensional case, modeling interac-

tions using delta function does not work for the three dimensional case. Then I will intro-

duce the Fermi-Huang pseudopotential. To understand the problem with using delta func-

tion interactions in three-dimensions, let us look at the gap equation and the two-body

scattering relation:

∆m = −λ
∑
n

λ̂m,n
∆n

2En

, (D.1)

1

λ
=

m

4πas
−
∑
n

1

2ϵn
. (D.2)

where λ̂m,n = 1
L

(
1 + 1

2
δmx,nx

)(
1 + 1

2
δmy ,ny

)(
1 + 1

2
δmz ,nz

)
. Multiplying Eq. (D.2) with ∆m

and combining it with Eq. (D.1), I get:

∆m

(
− m

4πas
+
∑
n

1

2ϵn

)
=
∑
n

∆n

2En

(D.3)

The problem is that I cannot combine the sums since the gap ∆m is now level dependent.

Also the sum on the left hand side is divergent and I do not know how to regularize it.

Thus I see that modelling interactions by a delta function in a three dimensional box does

not help us solve the gap equation.

Thus I will regularize in a different way by changing the form of the interaction po-

tential to a pseudo-potential. In the bulk case, the pseudo-potential gives the same result

as delta-function interaction. I will be following the discussion given in [195]. I start with

the Schrodinger equation for two particles at positions r1 and r2 described by the wave-

function ϕ(r1, r2):[
− ℏ2

2m
∇2

1 + − ℏ2

2m
∇2

2 + V (r1, r2)

]
ϕ(r1, r2) = Eϕ(r1, r2), (D.4)
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interacting via a potential V (r1, r2) = V (r1 − r2) which is a function only of the dif-

ference of particle coordinates or the radial coordinate. In scattering theory, at low ener-

gies the scattering of a particle by a potential does not depend on the shape of the poten-

tial, but depends only on a single parameter obtainable from the potential: the scattering

length a. The total cross section at low energies is 4πa2. Hence a is the effective diameter

of the potential i.e. at low energies the scattering from a potential looks like that from a

hard sphere of diameter a. Thus I can use a hard sphere interaction to describe two par-

ticles scattering off each other. This system can have bound states or scattering states.

The Schrodinger equation and the wavefunction can then be separated into centre of mass

R = 1
2
(r1 + r2) and radial coordinates r = r2 − r1 i.e.

(∇2 + k2)ψ(r) = 0, r > a, (D.5)

ψ(r) = 0, r ≤ a, (D.6)

where k =
√

µ(Er−V )
ℏ2 is the relative wave number, Er is the radial part of energy eigen-

value, µ is the reduced mass and a is the scattering cross-section. Here I have used the

hard sphere potential:

V (r) = 0, r > a, (D.7)

= ∞, r ≤ a, (D.8)

This form of potential means that it allows the wavefunction to take certain form outside

a sphere of radius a but after that it is impenetrable. Thus it acts like a ‘hard spherical

wall’ and thus at the surface it acts like a boundary condition.

For low energies however, this problem i.e. equation (D.5)-(D.6) can be recast into
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a single differential equation with an inhomogeneous source term at r = 0, which auto-

matically incorporates the hard sphere boundary condition. This is what I mean by the

method of pseudo-potentials first introduced by Fermi [193] and then later extended by

Huang and Yang [194]. In order to understand this let us look at what equations (D.5)-

(D.6) look like for low energies i.e. k → 0:

1

r2
d

dr

(
r2
dψ

dr

)
= 0, r > a,

ψ(r) = 0, r ≤ a,

whose solution is:

ψ(r) = χ
(

1 − a

r

)
, r > a, (D.9)

ψ(r) = 0, r ≤ a, (D.10)

where χ is a constant which can be fixed either by normalizing the wavefunction or by us-

ing some boundary condition at r → ∞. Note that the wavefunction vanishes at r = a. I

will now define a new wavefunction ψ̃(r) such that it satisfies:

(∇2 + k2)ψ̃(r) = 0,∀ r except r = 0, (D.11)

ψ̃(a) = 0, (D.12)

where (D.12) is the hard sphere boundary condition. Equation (D.11) is valid for all

points except r = 0 since I expect singular behaviour(∼ 1
r
) for radial wave-functions when

the two particles are very close to each other(r → 0), and thus the Laplacian acting on

it should give us a Dirac delta instead of zero. Before I get to r = 0 I can see that the

solution of (D.11) is simply ψ̃(r) = χ
(

1 − a
r

)
. Note that this time I will determine the
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constant χ by:

χ =
∂

∂r
(rψ̃)

∣∣∣∣
r=0

. (D.13)

The advantage of doing this will be clear soon. Now to study the behaviour near the ori-

gin r → 0, I will make the Laplacian act on the solution of (D.11) i.e. ψ̃(r) = χ
(

1 − a
r

)
and using (D.13):

∇2ψ̃(r) = 4πaδ(r)χ

= 4πaδ(r)
∂

∂r
(rψ̃)

∣∣∣∣
r=0

. (D.14)

Now I can see that instead of writing a differential equation like (D.5) or (D.11) and then

worrying about the various boundary conditions, one can simply concentrate on one dif-

ferential equation which incorporates all the desired boundary conditions in the form of a

pseudo-potential operator δ(r)∂r(r·):

(∇2 + k2)ψ̃(r) = 4πaδ(r)
∂

∂r
(rψ̃). (D.15)

For low energies and for r > a, ψ̃ satisfies the same equation and boundary conditions

as ψ and thus I can say that ψ̃ safely captures the physics of ψ as long as we are looking

outside the scattering length.

As I discussed in the last section, the pseudopotential is an alternate method of

solving the two body problem by replacing the hard sphere interaction and its bound-

ary condition by one Schrodinger equation involving a potential of the form V (r)ψ(r) ∼

∂r(rψ(r)). The argument of this potential is arranged in such a way that whatever singu-

larity comes in the wavefunction i.e. ϕ(r) → 1
r

as r → 0, it will be removed upon multi-

plication by r and then applying the derivative ∂r. It turns out that this way of regular-

ization is useful and has given rise to universal relations (i.e. independent of the details of
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the short-range interactions, except the scattering length a) for Fermi gases [211, 212, 213,

214, 215]. The first relation states that the internal energy E of a two-component Fermi

gas as a function of its momentum distribution is given by [211]:

E =
ℏ2ΩC
4πam

+
∑
kσ

ℏ2k2

2m

(
nkσ −

C

k4

)
, (D.16)

C ≡ lim
k→∞

k4nk↑ = lim
k→∞

k4nk↓, (D.17)

where the second line means that at high energies the tail of momentum distribution of

fermions depends only on C, called Tan’s contact [211, 212, 213], which is a universal

number. Here Ω is the volume of space, nkσ is the average number of fermions with wave

vector k and spin σ, m is the mass of the fermions and a is the scattering length. The sec-

ond relation [212] states that the contact C is proportional to the adiabatic derivative of

the energy with respect to the reciprocal of the scattering length:

dE

d(−1/a)
=

ℏ2ΩC
4πam

(D.18)

This is called the ‘adiabatic sweep theorem’. The third relation [212] is about the pressure

of the uniform Fermi gas with large scattering length and equal populations of the two

spin states, in thermal equilibrium:

P =
2

3
ρE +

ℏ2C
12πam

(D.19)

where ρE ≡ E/Ω is the energy density. These relations are independent of whether I have

a few-body or many-body system, equilibrium or non-equilibrium, zero temperature or fi-

nite temperature, superfluid state or normal state, attractive or repulsive interactions and

balanced or imbalanced spin populations. This contact C has now been measured [216]
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and thus it confirms that such universal relation exist. However all this work on pseudopo-

tentials has been done for the bulk case only and it would be interesting to see what hap-

pens to these universal relations when the Fermi gas is trapped in a box.
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