
Louisiana State University Louisiana State University 

LSU Scholarly Repository LSU Scholarly Repository 

LSU Historical Dissertations and Theses Graduate School 

1996 

Reverse Engineering Low-Level Design Patterns From Object-Reverse Engineering Low-Level Design Patterns From Object-

Oriented Code. Oriented Code. 

Chandra Shrivastava 
Louisiana State University and Agricultural & Mechanical College 

Follow this and additional works at: https://repository.lsu.edu/gradschool_disstheses 

Recommended Citation Recommended Citation 
Shrivastava, Chandra, "Reverse Engineering Low-Level Design Patterns From Object-Oriented Code." 
(1996). LSU Historical Dissertations and Theses. 6163. 
https://repository.lsu.edu/gradschool_disstheses/6163 

This Dissertation is brought to you for free and open access by the Graduate School at LSU Scholarly Repository. It 
has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU 
Scholarly Repository. For more information, please contact gradetd@lsu.edu. 

https://repository.lsu.edu/
https://repository.lsu.edu/gradschool_disstheses
https://repository.lsu.edu/gradschool
https://repository.lsu.edu/gradschool_disstheses?utm_source=repository.lsu.edu%2Fgradschool_disstheses%2F6163&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.lsu.edu/gradschool_disstheses/6163?utm_source=repository.lsu.edu%2Fgradschool_disstheses%2F6163&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu


INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI 

films the text directly from the original or copy submitted. Thus, some 

thesis and dissertation copies are in typewriter face, while others may be 

from any type of computer printer.

The quality of this reproduction is dependent upon the quality o f the 

copy submitted. Broken or indistinct print, colored or poor quality 

illustrations and photographs, print bleedthrough, substandard margins, 
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete 

manuscript and there are missing pages, these will be noted. Also, if  

unauthorized copyright material had to be removed, a note will indicate 

the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by 

sectioning the original, beginning at the upper left-hand corner and 

continuing from left to right in equal sections with small overlaps. Each 

original is also photographed in one exposure and is included in reduced 

form at the back of the book.

Photographs included in the original manuscript have been reproduced 

xerographically in this copy. Higher quality 6” x 9” black and white 

photographic prints are available for any photographs or illustrations 

appearing in this copy for an additional charge. Contact UMI directly to 

order.

UMI
A Bell & Howell Information Company 

300 North Zo* Road, Ann Aibor MI 48106-1346 USA 
313/761-4700 800/521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



REVERSE ENGINEERING LOW-LEVEL DESIGN PATTERNS 
FROM OBJECT-ORIENTED CODE

A Dissertation

Submitted to the Graduate Faculty of the 
Louisiana State University and 

Agricultural and M echanical College 
in  partial fulfillm ent for the degree of 

Doctor of Philosophy

in

The Department of Computer Science

by
Chandra Shrivastava 

BS in Physics, Fergusson College, Poona, 1987 
MS in Computer Science, Poona U niversity, Poona, 1989

May, 1996

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



UMI Number: 9628317

UMI Microform 9628317 
Copyright 1996, by UMI Company. All rights reserved.

This microform edition is protected against unauthorized 
copying undo: Title 17, United States Code.

UMI
300 North Zeeb Road 
Ann Arbor, MI 48103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



This work is dedicated to m y parents and my family

ii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



A cknow ledgem ents

I take this opportunity to record my gratitude towards the many people who 

touched my life in significant ways; particularly those who helped me during the 

tim e I was enrolled in the doctoral program at Louisiana State University.

My parents are amongst the wisest teachers I have and they have taught me 

the fine arts of survival, communication, and humanity. To convert my weaknesses 

into my strengths; to comprehend the importance of understanding fundamental 

concepts in their entirety; to fully realize the harm that any form of deception can 

cause; to learn to adapt to new environments and coexist with a wide cross-section 

of humanity; to always do my best in any endeavor I choose to undertake; to accept 

disappointments, rewards, appreciation and criticism with equanimity; to be honest, 

truthful, enterprising, resourceful and hardworking; these are some of the principles 

they strove to inculcate in all their children. Their single-minded dedication and 

commitment to the goal of ensuring a better future for their children by giving them 

the best and highest possible education has been a motivating and driving factor in 

all my endeavours. Their consistent and unconditional love and support have been 

my greatest source of solace, strength and security. The enormous effort, dedication 

and commitment required for a dissertation were revealed to me by my elder sister, 

Dr. Indira Shrivastava. Her gentle guidance and encouragement have helped me 

along. To my elder brother Major Rajesh K. Shrivastava I owe special thanks for 

urging me to complete my studies. I would also like to record my appreciation for 

the help extended and concern shown by Rajan Chandras towards my entire family.

in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Dr. Doris L. Carver, my advisor, guide and friend has shown me how won­

derful a student-teacher relationship can be. Her professionalism, versatility in 

the different branches of software engineering, enthusiasm to learn something new, 

intelligence and humanity have evoked my deepest respect and admiration. Her 

dedication and commitment to work and quality is a source of inspiration to me. 

She has always taken the time to listen to my ideas, has patiently answered my ques­

tions, both technical and otherwise and has helped me build my self-confidence. She 

has unhesitatingly lent her shoulder for me to lean on and I have gratefully accepted 

it. I am singularly fortunate to have interacted with a person of such strength and 

character. I would also like to thank her for allowing me to use the facilities and 

equipment of the Software Engineering Laboratory.

I would especially like to thank Jigang Liu for the smooth running of the 

SELAB computer network and for providing intellectually challenging discussions. 

I would like to thank all the members of the software engineering research group 

for their camaraderie and for the wonderful atmosphere in SELAB.

I would like to thank all the members of my doctoral advisory committee, Dr. 

Ghosh, Dr. Iyengar, Dr. Jones, Dr. Tyler and Dr. Smolinsky for taking the time 

to review my dissertation and offer their invaluable suggestions.

I owe very special thanks to Dr. Kraft for admitting me into the doctoral 

program in 1989 and again in 1991. The financial assistantship provided by Dr. 

Geske of the EDAF department is gratefully acknowledged. The decision of the 

assistantship committee in the Computer Science Department, to appoint me as 

a teaching assistant from January 1992 is very gratefully acknowledged. To Gina 

Mounfield and Jerry Weltman I owe very special thanks for their support and tol­

erance of my idiosyncracies and for accomodating many special requests. Without

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



the excellent systems management support provided by the hardworking group of 

Elias Khalaf, Deky Gouw and Amit Nanavati I would not have been able to meet 

many assignment and conference deadlines. The enthusiasm and readiness with 

which they addressed all my problems axe appreciated. I would like to thank Jane 

Crawford for keeping me abreast of paperwork and for being a wonderful friend 

and helping me through each semester. Special thanks are owed to Betty Rushing 

and Mary Adcock at Graduate School for their co-operation and help whenever I 

solicited it.

I would like to acknowledge Drs Wesley and Demetria Mcjulien for alleviating 

some of the homesickness and loneliness I felt when I first came to Baton Rouge. 

The concern and love shown by Mr. Morris Reynaud, Mrs. Jean Reynaud and Mrs. 

Ruby Lantz has also helped me adjust to Baton Rouge.

Vinayak Hegde, Sankar Krishnamurthy, Raghuram Yedatore, Dipti Sonak, 

Amit Nanavati and Sundax Vedantham made my stay at LSU a fun-filled expe­

rience; their wonderful company and friendship will be missed. Especial thanks to 

a dear friend of mine, Raghuram, for granting me many favors and coming to my 

aid whenever I requested his help. A special word of thanks to a very good friend 

of mine, Dr. Ramana Rao who helped me get the right perspective on several 

problems on more than one occasion. Sai Pinepalli’s pleasant company provided 

welcome relief.

My friends from Poona University, Ranjit Mavinkurve, Tapasi Ray, Dr. Vaxsha 

Apte and Vaishali Khandekax exercised every means of communication -  email, 

letters, telephone, photographs, visits, books, music, movies -  and often boosted my 

flagging spirits. Very special thanks to R. Venkatesh for his insightful comments and 

suggestions on inheritance and other class relationships. The selflessness with which

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



he helps and educates people have made a deep impact on me. He is responsible for 

teaching me the yes-no-black-white game and for sparking a deep interest in object- 

orientation. Philosophical interludes with Tapasi Ray have helped me mature and 

become more tolerant and patient.

To the faculty at Poona University I owe my deepest gratitude for enlightening 

me with their perceptions and ideas of the fundamental concepts underlying the 

fast-changing field of computer science. Especially worthy of mention axe Prof.

H.V. Sahasrabuddhe, Mr. S.N. Sapre, Dr. H.Diwakar, Mr. R.P. Mody and Prof. 

K.V. Nori. I am indebted to Mr. S.N. Sapre for sharing his depth of knowledge and 

expertise in wide-ranging areas with me.

The generous and enveloping love and understanding of my eldest sister-in- 

law, Cynthia D. Reynaud has made my life and stay in Baton Rouge a beautiful 

experience. The innumerable discussions we have had, have helped me understand 

and cross the wide gaps of culture, religion, language, diets, music, east and west. 

She, more than anybody else, taught me the beauty of abstraction. She has shoul­

dered my responsibilities thereby freeing me to devote my time to research. She is 

significantly responsible in helping me towards the doctor of philosophy degree.

My eldest brother, Dr. Rajendra K. Shrivastava has been a mentor and a 

role model since a very early age. I would not have been able to do this disserta­

tion without his moral support and guidance. I would like to acknowledge Nikhil 

Shyamani for giving me sound advice and for being a terrific friend. One of the 

best.

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C ontents

A ckn ow led gem ents.....................................................................................  iii

L ist o f T a b les.................................................................................................  xi

L ist o f F ig u r e s ..............................................................................................  xii

A b str a c t..........................................................................................................  xiv

Chapter
1 I n tr o d u c t io n .................................................................................................... 1

1.1 The P r o b lem ..............................................................................................  1
1.1.1 Understanding the Behavior of Software S y s te m s .................. 2
1.1.2 Understanding the Structure of Software S y stem s.................. 6
1.1.3 Graph Representations of Software S y s te m s ............................ 10
1.1.4 Understanding Software S y ste m s ............................................... 12

1.2 The C ontext.................................................................................................  13
1.2.1 Role of a Maintainer in the Software L ifecycle ........................  14

1.2.1.1 A nalysis...........................................................................  15
1.2.1.2 D esign..............................................................................  15
1.2.1.3 Implementation..............................................................  17
1.2.1.4 M aintenance.................................................................  17

1.3 Modeling Object-Oriented Software S ystem s........................................  20
1.3.1 Overview of LLSA and L L D P .....................................................  21
1.3.2 Design Rationale of the Low-Level Software Architecture Model 24
1.3.3 Using LLSA and LLDPs for Maintenance of Object-Oriented

S y stem s.......................................................................................... 25
1.4 P u lse ..............................................................................................................  25
1.5 Overall O rganization.................................................................................  27

2 M otivation  and Background ...................................................................  29
2.1 M otivation....................................................................................................  29
2.2 Issues in Understanding Object-Oriented S y stem s..............................  31
2.3 Inconsistent D ocum entation....................................................................  32
2.4 Maintenance A id s.......................................................................................  34
2.5 Background.................................................................................................  36

2.5.1 Software Engineering..................................................................... 36
2.5.2 Forward Engineering..................................................................... 39

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.5.3 Reverse E ngineering................................................................... 40
2.5.4 R estructuring...............................................................................  41
2.5.5 Reen§pneering...............................................................................  42
2.5.6 Representations of Program Structure......................................  42
2.5.7 Object-Oriented C oncepts.........................................................  45

2.5.7.1 A bstraction....................................................................  47
2.5.7.2 Encapsulation.................................................................  47
2.5.7.3 Inheritance....................................................................  48
2.5.7.4 Polym orphism .............................................................. 49

2.6 Object Oriented Design............................................................................  50
2.7 S u m m ary..................................................................................................  51

3 R elated  R e s e a r c h .........................................................................................  53
3.1 Programmer’s A p p ren tice...................................................................... 53
3.2 D e s ir e ......................................................................................................... 55
3.3 V a lh a lla .....................................................................................................  56
3.4 D em eter.....................................................................................................  57
3.5 O O TM E.....................................................................................................  58
3.6 CIA, XREF/XREFDB, S A M ...............................................................  59
3.7 B row ser.....................................................................................................  59
3.8 SCRUPLE..................................................................................................  60
3.9 PERPLEX..................................................................................................  61
3.10 R estructuring............................................................................................ 62
3.11 Related Research in Reverse Engineering............................................  63
3.12 S u m m ary..................................................................................................  65

4  Low-Level Softw are A rchitecture o f OO S y s t e m s .......................... 68
4.1 Introduction...............................................................................................  68
4.2 LLSA Conceptual M odel......................................................................... 69

4.2.1 Theoretical Model .....................................................................  70
4.2.2 Graph Representation and V ie w s ............................................  72

4.2.2.1 Control Flow Graph V ie w ..........................................  75
4.2.2.2 Component Domain Graph V ie w ..............................  76
4.2.2.3 Rooted Component Subgraph V iew ..........................  77

4.3 Low-Level Software Architecture of C ++ Program s.........................  79
4.3.1 Component Description ............................................................  80
4.3.2 LLSA Components of a C ++ Software System ........................ 80
4.3.3 Component Interface..................................................................  83
4.3.4 Component Interactions............................................................  86

4.4 Representational Support of L L S A ......................................................  91
4.5 How will LLSA be used ? ......................................................................... 92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.6 Summa r y .................................................................................................... 92

5 Low -Level D esign  P a t te r n s ...................................................................... 94
5.1 Introduction................................................................................................  94
5.2 Pattern L anguages.................................................................................... 95
5.3 Design P atterns..........................................................................................  97
5.4 Low-Level Design P atterns.......................................................................  99

5.4.1 Low-Level Design Pattern Structures....................................... 100
5.4.2 LLDP Structure that Exposes Hidden Dependencies 101
5.4.3 LLDP Structure Embedded in the LLSA Description of a

C om ponent...................................................................................  103
5.4.4 Low-Level Design Pattern Tem plate........................................... 103
5.4.5 Polymorphism................................................................................. 105

5.4.5.1 Ad-hoc Polym orphism............................................  105
5.4.5.2 Polymorphism And R eu se ......................................  108
5.4.5.3 Polymorphism Using Inheritance and Dynamic Bind­

ing ...................................................................................  108
5.4.6 Decoupling .................................................................................... I l l

5.4.6.1 Decoupling a Class from its Representation . . . .  113
5.4.6.2 Decoupling for Flexible D e s ig n ............................  113
5.4.6.3 Decoupling a Function from a C lass........................ 115

5.4.7 M essages..........................................................................................  115
5.4.7.1 Messages Between an Object and a SubObject. . . 117
5.4.7.2 Messages Between Objects of a C lass.....................117
5.4.7.3 Messages Between Objects of Different Classes . . . 120

5.5 Su m m ary...................................................................^ .................................120

6 U sing LLSA and LLDP for M aintaining OO S y ste m s.................  122
6.1 LLSA as an Aid for Software M aintenance..........................................  122

6.1.1 Using LLSA for Understanding the Structure ....................... 123
6.1.1.1 Logical and Physical O rganization ......................  123
6.1.1.2 Static and Dynamic Structure...............................  124

6.1.2 Using an LLSA Description to Understand a Component . . 126
6.1.3 Code N avigation ..........................................................................  128

6.2 LLDP as an Aid for Software M aintenance..........................................  128
6.2.1 Using LLSA and LLDP in Code M odifications.......................  130

6.3 Su m m ary...................................................................................................  132

7 R everse E ngineering L L D P s ..................................................................  134
7.1 Overall Architecture of p u lse.................................................................... 136
7.2 Symbol Table Organization .................................................................... 138

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



7.3 S ca n n er ....................................................................................................... 140
7.4 P a rser .......................................................................................................... 140

7.4.1 Fundamental Patterns and Program m ing Constructs . . . .  143
7.5 LLSA Generator .......................................................................................  144

7.5.1 Class Component L L S A ...............................................................  145
7.5.1.1 Static Interface.............................................................  145
7.5.1.2 Dynamic In terface.......................................................  147

7.5.2 Function Component L L S A ........................................................  150
7.5.3 Object Component LLSA ............................................................ 150

7.6 LLDP Recognizer........................................................................................ 153
7.6.1 Identification of the Polymorphism L L D P s..............................  154
7.6.2 Identification of the Decoupling L L D Ps..................................... 156
7.6.3 Identification of the Message L L D P s ........................................  158

7.7 Sample Session Using p u ls e ...................................................................  160
7.8 S u m m ary...................................................................................................  162

8 C o n clu sion ..............................................................................................  163
8.1 C ontributions............................................................................................. 163
8.2 Extensions and Future W ork...................................................................  169

B ib liograp h y .................................................................................................  172

Appendix : Session L is tin g ....................................................................... 180

V ita ................................................................................................................... 186

x

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



List o f Tables

1.1 Graph-theoretic Definition of a Call G raph................................. 6

1.2 Graph-theoretic Definition of a Dependency G r a p h ................. 9

3.1 Summary of Different Approaches................................................  63

4.1 Low-Level Software Architecture of Object-Oriented Systems . . . .  73

4.2 Transitive Closure of A R elation...................................................  75

4.3 Graph-theoretic Definition of a Rooted Component Subgraph . . .  77

4.4 Definition of an LLSA Graph in terms of Rooted Component Subgraphs 79

6.1 View Construction from LLSA Representation..........................  126

7.1 Fundamental Patterns and Programming Constructs ...................... 144

7.2 Class LLSA Interactions and Fundamental P attern s.................  150

7.3 Class LLSA Interactions H eu ristics.............................................  153

7.4 Function LLSA Interactions and Fundamental P attern s..........  153

7.5 Polymorphism LLDPs and LLSA Interactions..........................  156

7.6 Decoupling LLDPs and LLSA Interactions................................. 158

7.7 Message LLDPs and LLSA Interactions.......................................  158

xi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



List o f Figures
1.1 Call Graph Representation of a Software System ................................  5

1.2 A Software Maintenance Process M odel................................................  19

1.3 Views of a Software S y s te m ...................................................................  23

1.4 A Software Maintenance Process Model Using LLSA and LLDP . . 26

2.1 Abstract Representations of Software System Structure....................  43

4.1 Graph Representations of a Software S ystem ......................................  74

4.2 Object Component Description Tem plate.............................................  80

4.3 Class Component Description Template .............................................  81

4.4 Function Component Description Template ...................................... 82

5.1 Geometric P attern s...................................................................................  95

5.2 Relationship between LLDPs, LLSA, Fundamental Patterns and Lan­
guage C onstructs....................................................................................... 101

5.3 Low-Level Design Patterns Defined Over LLSA ................................ 102

5.4 Low-Level Design Pattern Tem plate......................................................  104

5.5 Polymorphism L LD P-1............................................................................  107

5.6 Polymorphism L LD P-2............................................................................  109

5.7 Polymorphism L LD P-3............................................................................  110

5.8 Decoupling LLDP-1................................................................................... 112

5.9 Decoupling LLDP-2................................................................................... 114

5.10 Decoupling LLDP-3................................................................................... 116

5.11 Messages LLD P-1......................................................................................  118

5.12 Messages LLD P-2......................................................................................  119

5.13 Messages LLD P-3......................................................................................  121

xii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



7.1 Overall Architecture of p u lse...................................................................  136

7.2 Symbol Table Data S tru ctu re................................................................  139

7.3 Algorithm to Compute the Static Interface of a C la ss ......................  148

7.4 Algorithm to Compute the Dynamic Interface of a C la s s ................ 149

7.5 Algorithm to Compute the Dynamic Interface of a Function . . . .  151

7.6 Algorithm to Compute the Dynamic Interface of an O b ject.................152

7.7 LLDP Recognizer Algorithm ..................................................................  155

7.8 Algorithm to Recognize Polymorphism L LD Ps................................... 157

7.9 Algorithm to Recognize Decoupling LLDPs.........................................  159

7.10 Algorithm to Recognize Message L L D P s............................................  160

7.11 A C ++ Software System ..............................................................................161

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



A bstract

The purpose of this research is to develop an automatically extractable abstract 

representation model of object-oriented (abbreviated as 0 0 )  software systems that 

captures the structure of the system and code dependencies in order to aid mainte­

nance. The research results include the development of two abstract representation 

models -  the low-level design pattern (LLDP) abstract model and the low-level soft­

ware architecture (LLSA) abstract model. The LLDP model is at a higher level of 

abstraction than the LLSA model. The LLSA model acts as an intermediate rep­

resentation between the LLDP model and an 0 0  software system. The design of 

the LLSA and LLDP representation models and the automatic extraction of these 

models from an 0 0  software system are significant contributions of this research.

An LLDP representation is a textual description of common 0 0  strategies. 

Three sets of LLDPs -  polymorphism, decoupling and messages are defined. LLDPs 

describe the structure, the benefits and consequences of a strategy. The design of 

the LLSA model considers the complexities inherent in 0 0  systems and the re­

quirements of a maintainer from such a model. The LLSA model defines software 

components, static and dynamic interfaces of components, and static and dynamic 

interactions between components. Software components are defined in terms of 0 0  

programming language constructs, and interactions between the components are 

defined in terms of 0 0  relationships that exist between the components. Under­

standing the relationships is necessary to understand what code dependencies occur 

and why they occur. The LLSA abstract model in conjunction with the LLDPs pro­

vides a view of software systems that captures the dependency relationships between 

code, the nature of the dependencies and the reasons why the dependencies must 

exist and be preserved. The LLSA model of C ++ software systems in particular

xiv
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are defined. The usefulness of the LLSA and LLDP models from the maintenance 

perspective axe explored.

A prototype CASE tool, pulse, was implemented to demonstrate the feasibility 

of automatic extraction of both models. Reverse engineering and code analysis 

techniques were developed to extract the LLSA relationships and interfaces and to 

recognize the LLDP model.

xv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C hapter 1

Introduction

1.1 The Problem

Understanding a software system is a difficult problem. To understand some­

thing is to know its meaning. In order to grasp the meaning of something fully, 

one must know the reason for its existence and its nature. The purpose of this re­

search was to design a model which represents the nature of object-oriented software 

systems to aid program understanding from the maintenance point of view.

Every software system has a reason for its existence. User requirements to 

automate some process or activity often results in the development of a software 

system. A user may be a person, a company, a programmer, a hardware device or 

another software system. The requirements of a user are analyzed in the light of 

many factors even before the decision to develop software is made. The objective 

of requirements analysis is to obtain a clear picture of the real needs of the user. 

The requirements are then closely examined to determine if they can be automated 

(called feasibility study) and the effort that would have to be expended in the au­

tomation (called cost analysis). This study of user requirements typically results in 

a collection of documents which contains a precise specification of the user’s needs. 

Software development is the activity of transforming the user’s needs into a soft­

ware system. Therefore, a software system meets the user’s needs and the user’s 

requirements justify the software’s existence. The intent of a software system can

1
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2

be gleaned from the requirements specification documents. Understanding the tech­

niques that were employed in designing the software is a much more complicated 

task.

There are two aspects to the complex nature of software system -  behavior and 

structure. The response of a system to some input is referred to as the behavior 

of the system. The structure of a software system is determined by the logical and 

physical organization of code and the relationships that exist within it. A thorough 

understanding of a software system is possible if the behavior and the structure 

can be explained. The behavior and structure of a system are mutually dependent 

aspects; the structure of the system permits the software to behave in a desired 

way and the behavior that is expected from a software is the reason the software is 

structured (or organized) in a particular way.

1.1.1 Understanding the Behavior of Software System s

A well-behaved software system is one that responds in a predictable manner 

to all conceivable inputs. An ill-behaved system is one that behaves erratically and 

with unpredictable responses on some or all inputs.

Understanding well-behaved systems can be done by perform ing an execution 

trace on various inputs and examining the input, the trace and the output. An 

execution trace of a software system is the complete path of execution that a soft­

ware system follows on a particular input. We perform a trace by starting from a 

particular function (or procedure), examining the functions that it calls, and then 

examining the functions that the called functions themselves call until a point where 

no more functions are called is reached. A trace therefore is a complete sequence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3

of function calls and this sequence explains the step-wise response of the software 

system to a particular input. We shall refer to this as a forward trace.

Understanding the behavior of an ill-behaved system is difficult because the 

trace of the system on some input is incomplete and provides partial information, 

whereas the trace of a well-behaved system contains complete information. There 

are at least two common situations that allow us to classify a software system as 

unpredictable -  abnormal termination and infinite looping. Abnormal termination 

of a system is the situation when the execution of the system is abruptly and 

externally terminated due to some violation performed by the system or due to 

some abnormal event created by the system. A system is said to be in an infinite 

loop if it performs the same set of instructions over and over again and the condition 

for the system to come out of the loop can never be true. In either event, locating 

the precise point (or function) at which the software started behaving abnormally 

is necessary. The point the software system reached before it started behaving 

erratically becomes the starting point in understanding why the system behaved 

abnormally. The function that is next examined is the function that called the 

function that caused the system to behave unpredictably. Thus, understanding 

of the behavior of ill-behaved software systems progresses in a direction opposite 

to that of understanding the behavior of well-behaved systems. We shall refer to 

this backward process as a backward trace. The starting point for understanding 

well-behaved systems is the starting point of execution, whereas the starting point 

of understanding ill-behaved systems is the termination point of execution or the 

point of endless execution.

Determining whether a software system is well-behaved or not is contingent on 

the inputs to the system and it is entirely possible for a system to be well-behaved
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with respect to some inputs and ill-behaved with respect to others. Determining 

if a software system is well-behaved under all circumstances and with respect to 

all input is virtually impossible. Therefore, any model that attempts to represent 

the behavior of a software system must aid in the understanding of both kinds of 

behavior.

A call graph is an abstract representation model of software that precisely cap­

tures all possible execution paths that exist in the system. The call graph of a 

program can be represented textually as well as graphically; both these represen­

tations are illustrated in figure 1.1. Figure 1.1 shows a program written in C (fig

1.1 (a)), a graphical representation of the call graph of the program (figure 1.1 (b)) 

and the graph-theoretic representation of the call graph of the program (fig 1.1 (c)). 

The program computes the ith number in the Fibonacci series. The call graph does 

not indicate the order in which the calls are made. The number of times a proce­

dure or a function is called is also not indicated in the call graph. For example, the 

function main in figure 1.1 (a) calls printf twice and the function fib calls itself re­

cursively twice but the graph shows one directed edge between main and printf and 

one arrow between fib and itself. In the graphical representation, the starting point 

of execution of a program is indicated as a double circle. A formal graph-theoretic 

definition of a call graph for a software system is defined in Table l . l . 1

In table 1.1, S  denotes a software system, and CG (S) denotes the call graph 

of S. The set of vertices V  is a collection of names of procedures or functions in S. 

E, the set of directed edges consists of tuples (u,-, Vj).  A tuple (u,-, Vj)  represents a 

call from procedure v, to procedure vj.

1 Figure 1.1 (b)adapted from The Study of Programming Languages by Ryan Stansifer [Sta94]
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raainQ { 
inti;
printfCWhich Hbonacd Number 'An"); 
scanf("l3W.&i);

printf(Tbe %dtb Hbonacd is %d\n"ifib(i));

}
imfibOnti) { 

intfibi;
if((i =  l)ll(i =  2)) 

return 1; 
else if 0 =  3) 

return 2; 
fibi = fibO-1) + fibO-2); 
return fibi;

(a) Recursive C program

printf.

scanf

(b) Call graph o f program

CG(S)  = (V .E)

V = {main, printf, scanf, fib }

E = { (main, printf), (main, scanf).
(main.fib). (fibjib))

(c) Graph-theoretic representation o f call graph

Figure 1.1: Call Graph Representation of a Software System
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Table 1.1: Graph-theoretic Definition of a Call Graph

V =  {V\ ,V2,  ...V k }
E =  { ( v i , V j )  | Vi , Vj  € V  and u,- calls v j )

CG {S) =  { V , E }

The call graph of a software system is a graph in which each function or proce­

dure in the system is represented as a node in the graph and each edge in the graph 

corresponds to a function call in the graph. The edge connects the caller function 

with the called function. Forward and backward traces can be easily performed 

on the graph by simply starting at a node and then traversing the edges to reach 

other nodes. Call graphs aid in understanding the behavior of a software system 

by depicting the different execution paths possible by function calls. Other graph 

representations of software systems are described in section 1.1.3.

1.1.2 Understanding the Structure of Software System s

There is no simple definition for describing the structure of a software system. 

Software structure has two aspects to it -  organization and relationships within 

the system. There are two kinds of organization in a software system -  logical and 

physical. The logical organization of code is the outcome of mapping and preserving 

the logical design of the system. The logical design of a system is the representation 

of the solution in terms of interacting logical components. Logical components are 

determined by the overall approach or paradigm adopted for software development. 

Hence, in the object-oriented approach the logical design of a system is expressed in 

terms of interacting objects and classes, key concepts in object orientation. Logical 

organization of code refers to the distribution of behavior over different components
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and the subsequent interaction between the components to realize the original needs 

of a user.

The physical organization of code corresponds to the allocation of code to dif­

ferent files and the organization of the files. Typically, the physical organization 

of code does not correspond to the logical organization of code and determ ining  

the logical structure from the code itself becomes a difficult task. Both logical and 

physical organizations produce logical and physical dependencies between code frag­

ments; alternatively, the logical and physical dependencies respectively determine 

the logical and physical organization embedded in the code.

Static and dynamic relationships are the two kinds of relationships that can 

exist between logical components of a system. A static relationship is a fixed, un­

changing relationship that establishes a strong and predictable connection between 

components. A dynamic relationship is indicative of a weak association between 

components. Components associate dynamically with each other in the context of 

some event. An event is some occurrence that causes the system to change its con­

figuration or state. Events cause components to associate dynamically in order to 

effect the change in configuration. Once the configuration has changed, the associa­

tion is no longer necessary and ceases to exist. Thus different events cause different 

dynamic relationships between components and determining dynamic relationships 

is based on understanding the events that can occur in the system. The statically 

related components lay the groundwork for dynamic interactions to occur in a sys­

tem and therefore the dynamic relationships that are possible can be discerned from 

the code itself.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



8

Experienced programmers develop techniques that combine programming lan­

guage constructs and features in elegant ways so that the software system is well- 

structured and the static and dynamic relations specified in the logical design of 

the system axe realized in the software implementation. An experienced program­

mer often spends long hours devising a technique that will enable the system to 

behave in a specific way as well make the system flexible, reusable and maintain­

able. Programmers are likely to reuse good techniques and therefore maintainers 

should study and understand the existing techniques, the structure, the benefits 

and consequences of the techniques so that any code modification performed as a 

part of the maintenance activity does not destroy the techniques employed by the 

original developers. In order to detect all possible dynamic relations that exist in 

a software system, a maintainer must first be aware of all dynamic relations that 

can exist in a software system and then discover the techniques that develop the 

static frameworks that allow dynamic interaction between components. Static and 

dynamic relationships cause complicated and non-trivial dependencies in the code.

A well-structured software system exhibits a logical design and the physical 

organization of code follows the logical decomposition to the extent possible. A 

well-structured system is a system that is well-designed and properly implemented. 

A well-designed system is a system that possesses desirable design properties. De­

sirable design properties are listed in section 1.2.1. An ill-structured system is one 

that has either an unclear or complicated logical structure, or one in which the 

implementation differs vastly from the original design.

A dependency graph is a representation model of software systems that captures 

static and dynamic code dependencies as well as logical and physical code depen­

dencies. The nodes in a dependency graph represent some program m ing entity (for

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



9

example, a function or a variable) and the edges connecting nodes represent dif­

ferent kinds of dependencies that exist among the connected nodes [WHH89]. The 

call graph model is a special kind of dependency graph.

Notation : Let 5  denote a software system, and DG(S) the dependency graph 

of S. Let the set V N  represent the names of all the variables in S  and the set P N  

represent the names of all procedures and functions in S. Let the set of vertices V 

represent the collection of names of of programming entities (procedure or variable) 

in S. Let Di represent a dependency relationship between program m ing entities. 

Each Di consists of of tuples (u,-, uy). A tuple (vi,vy) represents a dependency from 

entity v, to entity uy. Let the set of directed edges E  be the set of all directed edges 

in the graph. A formal set-theoretic definition of a call graph for a software system  

is defined in table 1.2.

Table 1.2: Graph-theoretic Definition of a Dependency Graph

VN = {Ui,U2,-Ujk}
P N = {Pl,P2,— P*}
V = V N  U P N

Di {(®i:®j) 1 Vi, Vj E V and Vi calls Vj}
d 2 = {(v u v j ) | v h  Vj e V and Vi defines Vj )
D3 — { (Vi , Vj )  | Vh  Vj  € V and Vi m odifies Vj}

Dk { ( v i , v j )  | Vi, v j  e V  and Vi depends on uy}
E = c II M &

DG (S) = { V , E }

A dependency graph is called a directed multigraph due to the multiple kinds 

of dependency edges that connect nodes in a dependency graph.
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1.1.3 Graph Representations of Software System s

There axe two kinds of graph representations of program s -  (i) flow graphs and 

(ii) data-flow graphs. Flow graphs model the control flow structure and dependen­

cies in a software system [ASU86, FOW87, GJM91]. A flow graph consists of nodes 

and directed edges. A node (vertex) in a flow graph is a basic block of statements 

and expressions. A basic block as defined in [ASU86] is

A basic block is a sequence of consecutive statements in which flow of 
control enters at the beginning and leaves at the end without halt or 
possibility of branching except at the end.

A node B1 is connected to another node i?2 by a directed edge if control can 

flow from Bi to i ?2 iQ some execution sequence. Flow of control can be transferred 

by the if-then, if-then-else, while loop, goto, function call statements. In [ASU86], 

algorithms for partitioning a program into basic blocks and constructing flow graphs 

from the partions are found.

The nodes in a flow graph represent a block of sequential computation and 

the edges represent a transfer of flow of control. In essence, a flow graph abstracts 

multiple statements as a single basic block and models transfer of control (irre­

spective of precisely how the transfer was achieved in the software) as an edge 

between the blocks. If the basic blocks are restricted to be procedures or functions 

only, the flow graph is referred to as a call graph. The call graph of a program 

depicts the functional decomposition of the program, and captures the calls/uses 

relationship between functions and the dependencies between the functions. From 

the maintenance point of view, in addition to providing an abstract view of function 

decomposition, call graphs are also useful in d eterm ining the functions that will be 

affected by code modifications.
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Ghezzi et al [GJM91] provide a different definition of control-flow graphs; in 

their definition, the nodes represent entry into and exit from a single statement (for 

example an if-then statement) and the edges between nodes represent the statement 

itself. The conventional view of control-flow graphs is that given in [ASU86] where 

nodes represent a set of statements and edges represent transfer of control-flow.

Besides the computational basic blocks, there axe other entities (such as vari­

ables, data structures) present in a software system which axe not represented in 

a flow graph since the nodes in a flow graph represent computation and not data 

storage. Data-flow graphs model the modification of data in a program and em­

phasize data flow over control flow. A data flow diagram (or data flow graphs) as 

defined by DeMarco [DeM78] is :

A Data Flow Diagram is a network representation of a system. The 
system may be automated, manual or mixed. The Data Flow Diagram 
portrays the system in terms of its component pieces, with all interfaces 
among the components indicated.

A data flow graph has five graphical symbols; a bubble represents a function, an 

arrow represents data flow, a data store is indicated as an open box and I/O boxes 

represent input/output operations that result in data initializations. An arrow 

between two function bubbles indicates data flow between the functions. Ghezzi et 

al [GJM91] give an overview of data flow diagrams.

Data flow diagrams describe the functions that access and modify the data 

in a system. The relationship connecting functions is the data that is exchanged 

between the functions. This graph provides information about the data structures 

in a program, the functions in a program and the relationship between functions 

and data structures. Such information is useful in determining the functions that 

are affected when data structures are modified.
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Program dependence graphs or system dependence graphs [LC93, FOW87] cap­

ture more than one relationship (such as control flow and data flow relationships) 

between the nodes in the graph (see table 1.2 for a formal definition of depen­

dence graphs). A node in a program dependence graph can be any programming 

construct such as declarations, assignment statements, control statements. Edges 

between the nodes represent different kinds of dependencies between the nodes. A 

program dependence graph is referred to as a multigraph since it has more than one 

kind of edge connecting the nodes. Program dependence graphs aid in understand­

ing the system design, exposing dependencies between components in a system, 

aiding maintenance [LR92, LC93].

Yau and Tsai provide a graph-theoretic definition of a software component 

interconnection graph (CIG) in [YT87]. The CIG captures the interconnection be­

havior of the software components of a large-scale software system. The labeled 

nodes in the graph are abstract representations of software components and the 

labeled arcs represent the allowable inter-connection among subsystems. The nodes 

can represent a compilable unit of a procedural program m ing language, a module, 

a file, a procedure, a function, a data file or a com m and procedure. The inter­

connections permitted between the nodes are determined by the implementation 

language.

1.1.4 Understanding Software Systems

Understanding a software system is an activity that includes understanding the 

software system’s overall structure, current design and architecture, behavior, docu­

mentation, maintenance records, implementation language, development paradigm, 

popular strategies and techniques peculiar to its implementation language and its
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paradigm, dependency relationships, the logical, physical, static and dynamic as­

pects of its design as well as the design rationale.

Understanding software systems is aided by understanding the information con­

tained in simple abstract representation models such as the call-graph and depen­

dency graph models explained in sections 1.1.1, 1.1.2 and 1.1.3 . The construction 

of these models is a complex and time-consuming process. The aim of the mod­

els is to aid human understanding of the system itself and not to understand the 

construction of the model itself. The process of reverse engineering extracts infor­

mation from an existing software system and constructs the abstract representation 

model [CC90]. The goals of reverse engineering techniques are to design abstract 

representation models of software systems that aid understanding and to automate 

the construction of the abstract representation.

The focus of this research is :

1. To determine and analyze the factors that contribute to the complexity of 

object-oriented systems.

2. To design an abstract representation model of object-oriented software sys­

tems that aids program understanding from the software maintenance point 

of view.

3. To design techniques which enable the automatic extraction of the model from 

a software system.

1.2 The Context

The program understanding problem is considered in the context of object- 

oriented software maintenance. In order to understand the problems faced by a
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maintainer, we must understand the overall software development process and the 

activities a skilled software maintainer is expected to perform.

1.2.1 Role of a Maintainer in the Software Lifecycle

The object-oriented software life-cycle is comprised of four major phases (i) 

analysis, (ii) design, (Hi) implementation (iv) maintenance. Each phase is per­

formed by a team of software engineers and it is not unusual to find the same team 

participating in more than one phase. Each of the first three software development 

phases - analysis, design and implementation, results in some output, for example 

textual documents describing characteristics of either the problem or the solutions. 

Each output has significant implications for the software maintainer. Though a clear 

distinction between the phases is useful for understanding the software development 

process, in practice the boundaries between the phases are not precise.

Several object-oriented methodologies describe the object-oriented approach to 

software development. Rumbaugh’s Object Modeling Technique [RBP+91], Booch’s 

Object-Oriented Analysis and Design [Boo93], Jacobsen’s Use-Cases Approach are 

representative methodologies. Each of these methodologies advocate the same 

object-oriented principles and techniques, but differ significantly in specifying the 

order in which the techniques must be applied. Describing each object-oriented 

methodology is beyond the scope of this work; instead we provide a brief overview 

of each phase and the significance of the output of each development phase on the 

maintenance phase.
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1.2.1.1 Analysis

The analysis phase consists of understanding the nature of the problem, decom­

posing it into its subproblems to reduce the complexity of the problem, understand­

ing, representing and partially solving each subproblem and finally composing the 

solutions to give an integrated solution to the entire problem [Boo93]. The central 

concern of object-oriented analysis is to discover the components of the problem; 

component discovery results in the identification of objects in the problem domain. 

The object identification process is referred to as object-oriented decomposition 

where data abstractions are considered to be more important than procedural ab­

straction.

Object-oriented analysis results in specification documents which contain in­

formation pertaining to what the system is expected to do. These documents serve 

to explain and specify the expected behavior of the system. Specification docu­

ments provide an overview of the purpose of the software and give some insight 

into the problem being solved and the issues that were identified and addressed 

in the analysis phase. Object-oriented analysis often results in a object model dia­

gram [Boo93, RBP+91] which models the problem in terms of interacting objects. 

In the object-oriented approach, behavior of the system is described in terms of 

collaborations among the objects.

1.2.1.2 Design

The object model produced as a result of object-oriented analysis is scrutinized 

from the perspective of object-oriented design. Designers accomplish the difficult 

task of providing a solution to a problem with the added constraints of endowing
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the solution with desirable properties like low-coupling, high cohesion, information- 

hiding, flexibility, extensibility, reusability, readability, understandability, maintain­

ability, efficiency, and performance [GJM91]. In essence, it is not sufficient for the 

design team to simply provide a working solution; it is their responsibility to inves­

tigate as many possible alternatives as they can devise and then provide a stable 

design.

The design team commits itself to designing a solution with some subset of the 

desirable properties and this subset constitutes design goals. The final design is the 

outcome of a process of elimination in which each alternative solution is subjected to 

a thorough and critical examination from the perspective of each desirable property. 

Each solution is either accepted or rejected. This design-phase commitment to 

obtaining a “good” or “elegant” design may result in a larger and more complicated 

object model than that produced by the analysis team. One of the goals of a good 

design is to aid software maintenance by ensuring that the software possesses certain 

qualities.

Design documents can be a combination of textual and graphic descriptions of 

the system. These documents which explain how the system achieves its expected 

behavior and functionality, axe useful in understanding the design architecture of 

the system. For example, class diagram models, state transition models, interaction 

models, state-transition models, data-flow models, dynamic models and object mod­

els axe the typical outcome of the analysis and design phases of the object-oriented 

software development methodologies.
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1.2.1.3 Implementation

Implementation of the design involves transforming or realizing the design as 

actual executable code. This transformation addresses the question of how to pre­

serve the design and its associated properties in the implementation. Some of the 

design-level concepts may be directly supported by the language of implementation 

and some may not. Lack of direct implementation support of design-level concepts 

results in strategies that map design-level concepts to combinations of program­

ming language concepts. We shall call design-preserving strategies programming 

techniques. Programming techniques may result from actually mapping design- 

level concepts to implementation or from ensuring some desirable property of the 

design.

1.2.1.4 Maintenance

The job of a maintainer is to maintain software and it is the software or code 

itself that is the maintainer’s prime concern. Maintaining software is a generic term 

that encompasses a wide variety of activities such as adding functionality to the 

software system, adapting the system to a new environment, correcting defective 

code, or modifying the system. Each activity implies performing modifications on 

the software system. Code modifications can be performed after precisely determin­

ing and locating the actual code fragments that must be modified. The maintenance 

process model [GL91] 2 (see figure 1.2) depicts how a maintenance request is per­

formed. Initially, a maintenance request is analysed and classified as a request that 

requires existing code to be modified or a request that requires new code to be

2Reproduced from Using Program Slicing in Software Maintenance [GL91], IEEE Transactions 
on Software Engineering, Aug 1991.
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added or a request that requires existing code to be deleted. The goals of a good 

maintenance strategy axe to -  (i) minimize the introduction of defects as a result 

of code modifications (ii) m inim ize  the time, effort and manpower expended on 

maintenance (iii) reduce the cost of maintaining software (iv) maximize customer 

satisfaction. The change is then performed after pending requests and their prior­

ities have been examined and the priority of the request is ascertained. Changing 

software is comprised of two activities -  (i) understanding the existing software 

system and (ii) incorporating changes in the software to accommodate the main­

tenance request, subject to the maintenance constraints stated above. The reval­

idation phase consists of two steps -  (i) testing and validating the changes before 

integrating them into the system (ii)testing and validating the integrated system. 

The revalidation phase consists of ensuring that the system meets its original and 

new objectives as well as determining if code modifications adversely affected the 

original functionalities or performance of the system.

Understanding software systems is necessary in order to perform careful, structure- 

preserving maintenance. A maintainer must be aware of the effect of a modification 

on the rest of the software system. The components affected by a modification can 

be determined from the dependency graph of the software system. Determining the 

code to be modified is possible if the logical structure is known to the maintainer, 

whereas the physical structure of the system enables the actual location of the code 

fragment. Understanding the various dependencies that exist in the code as well as 

the overall structure of the code is crucial to the maintenance activity. Among the 

constraints any structure-preserving maintenance activity must fulfill are:

1. Software maintenance must be performed in such a manner that the struc­

ture and properties of the system prior to maintenance are retained in the
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Figure 1.2: A Software Maintenance Process Model
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modified code to the extent possible. Retaining structure is only possible if 

the structure is known to the maintainer; once the structure is known, mod­

ifications must be performed in a manner that preserves the structure of the 

system. Determining how to perform modifications in a structure-preserving 

manner requires knowledge and experience in programming and programming 

techniques.

2. Maintenance must ensure that the modifications made to code axe minimized 

and localized. This constraint forces the maintainer to closely examine and 

understand the various kinds of dependencies that exist within the software 

system. Maintainers spend a considerable amount of time devising techniques 

to perform maintenance in a way that localizes and minimizes the effect of 

maintenance.

1.3 M odeling Object-Oriented Software Systems

This research is aimed at providing software maintainers with a conceptual 

model of the architecture (or the structure) of a software system in order to aid 

structure-preserving software maintenance. The low-level software architecture model 

(LLSA) defined in chapter 4 is an abstract representation of object-oriented software 

systems. The LLSA representation of an object-oriented software system consists 

of textual descriptions of software components, the interfaces of each component 

and the interactions between components. The low-level design patterns (LLDP) 

model represents a collection of the textual description of some object-oriented pro­

gramming techniques. The LLDP representation is at a higher level of abstraction

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



21

than the LLSA model. Both models of representation aid in software maintenance 

and an overview of each is provided in section 1.3.1.

1.3.1 Overview of LLSA and LLDP

Two abstract representations of software structure axe presented -  (i) low-level 

software architecture representation and (ii) low-level design patterns (see fig 1.3). 

At the bottom of the figure the software system is viewed as source code. Source 

code consists of multiple lines of code possibly distributed over separate files. Each 

file can be viewed as a module. In a well-structured software system, each file 

specifies the library support it requires and the external functions that it requires. 

This information establishes a physical (or a compilation) dependency between the 

modules. Physical dependencies do model logical relationships and dependencies to 

some extent; however, implementation limitations and restrictions make it difficult 

for an implementor to model the software organization to totally reflect logical 

dependencies.

We define an abstract view of source code (the LLSA) that captures physical 

and logical dependencies between software components. In the LLSA model, a 

software component is defined to be a specific set of programming constructs. The 

rationale for selecting certain constructs over others is provided in sections 1.3.2 

and 4.3. The components of a software architecture represent logical concepts in 

the design of the system. Each software component has an interface. The interface 

describes the static and dynamic behavior of the component. Software components 

interact with each other and these interactions set up logical relationships and 

dependencies between the components. The LLSA model represents relationships 

between components by including information pertaining to the relationships in the
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description of software components. A detailed explanation of the design of the 

model and its uses is provided in chapter 4. The LLSA model provides a structured 

view of a software system capturing important components and relationships present 

in the software system.

At the next higher level of abstraction, we define a collection of low-level de­

sign patterns. Low-level design patterns describe programming techniques that oc­

cur repeatedly in a software system. LLDPs are constructed over the components, 

interfaces and relationships defined in the LLSA model. An LLDP has a name and 

a distinctive structure. The name indicates the program m ing technique being de­

scribed and the structure of an LLDP enables identification and recognition of the 

technique in the software system. The structure of an LLDP is comprised of compo­

nents and the logical relationships connecting the components. LLDPs explain the 

reason for the connections between components. LLDPs interact among themselves 

to create more complex relationships. LLDPs are therefore useful in software main­

tenance because they introduce the maintainer to existing program m ing techniques 

and enable the maintainer to check if a modification can either reuse the technique 

or if a modification disrupts a structure that destroys the technique used by the 

original developers. The collection of LLDPs is shown as an open system because it 

is a collection that can be extended by including more programming techniques. It 

represents a higher level of abstraction in which the information content of the pat­

terns in the model corresponds to programming experience and expertise. LLDPs 

axe explained in detail in chapter 5.
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1.3.2 Design Rationale of the Low-Level Software Architecture Model

Investigation of object-oriented analysis and design revealed that that object- 

orientation places emphasis on relationships between components.

In a software system, all the design concepts (class, object, state, module, 

interaction) and relationships that are described in design documents co-exist si­

multaneously and are specified in terms of the constructs of the language of im­

plementation. The simultaneous presence of multiple relationships is one of the 

reasons for the complex nature of object-oriented software systems. Determining 

the dependencies between code fragments is contingent on being able to identify 

the relationships between the code fragments and the dependencies that come into 

being as a consequence of the relationships. Code fragments may be related in more 

than one way and consequently there may be more than one kind of dependency 

between them. Moreover, different relationships may interact to create some com­

plicated dependencies. From the maintenance point-of-view, it is the dependencies 

between code fragments that are of interest and not the relations themselves; ie. 

the design documents serve to specify how the components are related; they do not 

specify the ensuing dependencies and the consequence of a relation on the static 

or dynamic structure of the system. From the maintenance point of view, code 

fragments, or components, and the nature of dependencies between them are of 

central interest. A model that captures dependencies in a software system must 

therefore concentrate on determining the information content in the representation 

of components.
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1.3.3 Using LLSA and LLDPs for Maintenance of Object-Oriented Sys­

tems

The software maintenance process model described earlier can now be modi­

fied as shown in figure 1.4. In this model, the maintainer uses the automatically 

extracted LLSA description of a software system to understand the low-level de­

pendencies and relationships in the system. The LLDP and LLSA descriptions, 

in addition to the existing system documentation and source code, can be used to 

understand the system and locate the code that must be modified. The design of 

the change to be performed is done in the context of the existing system. The mod­

ifications may result in structural changes to the code. With the support of LLSA 

and LLDP, the maintainer can perform structural changes, obtain the LLSA of the 

changed system and compare it with the original LLSA to check for the impact the 

modifications may have on the structure of the system. The LLDPs aid in main­

tenance by documenting existing techniques which a maintainer may be unaware 

of.

1.4 Puke

The information contained in the LLSA description can be gathered manually 

by the maintainer or it can be extracted automatically from the source code. One 

of the goals of reverse engineering is to automatically extract the abstract represen­

tation model from source code. Automatic extraction requires the development of 

non-trivial code analysis algorithms that are capable of extracting the information 

represented in the abstract model. A prototype software tool, pulse, was developed 

to determine the feasibility of automatically extracting the LLSA model. Pulse
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uses reverse engineering techniques in its design and implementation to identify 

software components and to construct the interfaces and interactions of each com­

ponent. There axe two phases in pulse -  (i) phase I is the synthesis phase where 

information is collected extracted from the source code and (ii) phase II denotes 

the analysis phase wherein algorithms to compute the interfaces and interactions 

of a component are used. In addition, phase II also uses algorithm s to recognize 

LLDPs in the system. The architecture, implementation issues and code analysis 

algorithms of pulse axe discussed in chapter 7.

1.5 Overall Organization

Chapter 1 provided an overview of the problem, the situation in which the 

problem manifests itself (ie. software maintenance) and the abstract representation 

models LLSA and LLDPs. Justification for investigating the problem was provided 

by explaining the difficulty in understanding and maintaining software systems in 

sections 1.1.1, 1.1.2, 1.1.4 and 1.2.1. The motivating factors and background for 

this research are discussed in chapter 2. Chapter 3 provides an overview of re­

lated research in the areas of software maintenance in general, reverse engineering 

projects and approaches, issues in understanding object-oriented software, restruc­

turing techniques and maintenance aids for object-oriented software. Chapter 4 

describes the theoretical framework underlying the low-level software architecture 

model and defines the low-level software architecture of C ++ software systems. 

Chapter 5 introduces and describes pattern languages, design patterns and low- 

level design patterns. The usefulness of both, LLSA and LLDP is explained in 

chapter 6. Chapter 7 explains the overall architecture of the prototype pulse which
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reverse engineers the LLSA and recognizes instances of LLDPs in the source code. 

Chapter 8 lists the contributions of this research and future work for this research.
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C hapter 2

M otivation  and Background

The motivating factors for this work can be briefly enumerated as follows :

1. The tim e and effort expended by the software industry and by maintainers on 

software maintenance.

2. The complexities inherent in the process of understanding object-oriented 

software systems.

3. The unreliable nature of documentation

4. The lack of sophisticated tools and approaches that aid software maintenance.

Sections 2.1, 2.2, 2.3 and 2.4 elaborate on each of the motivating factors.

2.1 M otivation

The job of a software developer in the software industry now consists of develop­

ing software components that can be combined with other components (as opposed 

to developing complete programs from scratch)and more commonly of maintaining 

existing software. The task of a maintainer is to understand the overall structure of 

a software system, referred to as software architecture, and the programming logic 

that went into the development of the system. Studies indicate that programmers 

spend more than half of their time on maintenance [Sam90, GS89, GW90].

29
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Investigations conducted by concerned software organizations revealed some 

interesting statistics about the role of maintenance in a software organization. The 

most important results were that maintenance activities accounted for 67 % of the 

total software life-cycle phases and that organizations spent upto 60 % of their bud­

get on software maintenance [GJM91, Par86]. Parikh [Par86] reports the following 

statistics on the state of maintenance :

1. Most companies spend 50% of their budgets on maintenance.
2. Most program m ers spend 50% (and in some cases 80%) of their 

time on maintenance.

3. The worldwide annual expenditure on maintenance is S30 billion 
(Martin and McClure, 1983, p. 15).

4. This is debatable, but it is even stated that in a software life cycle, 
new development is only 33%, the remaining 67% is maintenance.

It is also interesting to note that the most difficult aspect of software main­

tenance is the phase that involves understanding the original developers’ intent. 

Maintainers are reported to spend 50% of their time on the comprehension activity 

[Par86, Sam90]. The statistics and the task of grasping the overall structure of a 

system are compelling reasons to investigate and analyze the complexities inherent 

in program understanding and software maintenance in general. The growing pop­

ularity of object-orientation and C ++ are the reasons we focussed on determ ining  

the complex nature of C ++ systems. However, the representation models LLSA 

and LLDPs are applicable for object-oriented software systems developed in other 

object-oriented programming languages such as Smalltalk [Gol83] or Eiffel [Mey88].
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2.2 Issues in Understanding Object-Oriented Systems

The object-oriented principles of polymorphism, inheritance and dynamic bind­

ing are the most common object-oriented features that make object-oriented systems 

difficult to understand [LMR91, WMH93, WH91, CvM93]. These principles are ex­

plained in sections 2.5.7.4, 2.5.7.3 respectively. Polymorphism, inheritance and 

dynamic binding are powerful features that enable a software system to be flexible, 

reusable, extensible and maintainable, (each software system feature is defined in 

section 2.5.1). However, these principles do not make the system understandable.

Wilde and Huitt [WMH93] noted that the dispersion of logic into small pro­

gram fragments buried in class hierarchies of object-oriented systems is a hinderance 

to program understandability. The original intent of the programmer must be re­

constructed by identifying and examining small program fragments distributed over 

classes. Furthermore, the object-oriented principles of polymorphism, inheritance 

and dynamic binding encourage delocalized and decoupled logic. In the presence of 

such mechanisms, a program understander must painstakingly trace long sequences 

of message requests to locate the source code that actually implements a specific 

functionality. Inheritance complicates the determination of the calling and dataflow 

dependencies in a class hierarchy. Dynamic binding and polymorphism make it 

practically impossible to precisely determine the actual source code being executed. 

Even the determination of the set of methods that may possibly be executed is 

difficult. Knowledge of inheritance rules is required to determine the possible set 

of methods. Lejter, Meyers and Reiss [LMR91] document inheritance and dynamic 

binding as two factors that complicate the understanding of object-oriented systems. 

Crocker and Mayrhauser [CvM93] include the dynamic creation/deletion of objects
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and the overloading of operation names as factors in object-oriented program m ing  

languages that affect maintenance, in addition to inheritance and polymorphism.

Kung et al [KGH+94] address the issue of complex relationships in the class 

structure of object-oriented systems. Understanding the functionality of individual 

classes and member functions is not difficult, particularly since the code contained 

in them is small. Understanding the combined functionality of classes and member 

functions is very difficult. According to Kung et al [KGH+94] the factors that com­

plicate maintenance of object-oriented software are (i) understanding the combined 

functionality of member functions (ii) understanding complex class relationships 

and (iii) understanding data dependencies, control dependencies and state-behavior 

dependencies.

2.3 Inconsistent Documentation

Motivation for reverse engineering representations from the code itself instead 

of relying on existing documents can be attributed to inconsistent documentation. 

Documentation of software design and analysis may be produced manually or auto­

matically. Manual documents are prepared by teams consisting of technical writers 

and software developers who often document source code (or the design of a software 

system) either after the software has been developed or in parallel with the design 

and development of the software [And86]. Describing the design of a software system  

and the functionality and purpose of each software component is a daunting task. 

The task of documenting “live” software or software that is in the process of being 

developed is orders of magnitude more difficult than documenting existing software 

because the developers introduce changes in code very rapidly and documenting
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each change is not feasible. Automatic documentation is performed by CASE tools 

that extract information from software and produce textual and sometimes graph­

ical information about the software. The limitation of automatic documentation is 

that it does not always provide sufficient information about the software; what is 

more worthy of concern is that the documenting CASE tool may provide inaccurate 

or unreliable information about the system. Maintainability and understandability 

of large-scale software systems is hindered by the inaccurate record of the overall 

system structure and the interactions between software components of the system  

[YT87].

Inconsistencies in design documentation arise from the transformation of design 

to implementation. Two key characteristics of the transformation process from 

design to implementation are:

1. A refinement of the high-level design to a more realizable prototype. This re­

finement exposes implementation subtleties, unrealistic designer assumptions 

and subproblems which may be quickly designed and implemented by the im­

plementor directly. This is a severe problem because the original design does 

not record these changes, leading to inconsistent documentation.

2. A loss of organizational information. Few program m ing languages concern 

themselves with organization because it is not directly useful in program m ing. 

Component organization and determining component interrelationships is an 

important part of the design activity. This information may be well docu­

mented in design documents, but how the organization and interrelationships 

are captured in the implementation depends on program m ing style, program­

ming conventions and source code documentation. Style, conventions and
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documentation axe features that are not enforced by a program m ing language 

and differ from programmer to programmer and axe subtly responsible for re­

taining design information. Part of the process of understanding code consists 

of being acquainted with the styles and conventions adopted by the original 

developer.

2.4 M aintenance Aids

The complex nature of software systems necessitates multiple views of the 

system to enable understanding of the software system. Dependency graphs, call 

graphs axe representations of software that have aided maintenance in the past. 

These representations were designed for software systems developed using the struc­

tured paradigm. The call graph model is based on functions and the connections 

between functions represent the transfer of control between functions. Object ori­

ented software has more than one component (ie. class and object in addition to 

function) and more than one mechanism for transferring control between compo­

nents (ie. sending messages to objects and function calls). The call graph model is 

not very useful since it does not capture many essential aspects of object-oriented 

software.

Schneidewind [Sch87] provides a list of software CASE tools that are required 

for maintenance. These tools describe the structure of a software system. He 

elaborates on the different aspects of the term software structure and the need for 

understanding each aspect. The tools include those that represent and manage the 

following aspects of a software system :
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1. Procedural structure, control structure, data organization, data-flow structure 

and input/output structure of the software system

2. Aliases of data; i.e. the different names associated with the same data

3. Multiple versions of a software system

4. Dynamic behavior of the system

5. Test cases for validation purposes

6- Low-level symbolic execution information useful for debugging

Crocker and Mayrhauser [CvM93j advocate the use of CASE strategies for the 

maintenance of object-oriented software. They provide a list of tools that will aid 

in the maintenance of software. The toolchest that they advocate consists of tools 

that are classified as framework tools, mundane tools, knowledge tools and change 

tools. The framework took are intended to provide representational support and 

their function is to interface between the other kinds of tools and the software sys­

tem. The intention of the mundane tools is to gather information from the software 

system but not to analyze the information. These tools include control-flow gener­

ators, structure chart generators, cross-reference generators, test driver generators 

and test coverage generators. The knowledge tools are intended to aid in under­

standing the object-oriented software. These took include aids to understanding 

inheritance hierarchies, aiding in the creation of new abstract classes and the modi­

fication of the interfaces of classes, code browsers and code slicers. The last group of 

took, change took, are intended to aid in the actual modification of code. Automat­

ing code modification includes took that perform consistency checks, inheritance 

generator in the case of programming languages that do support inheritance, test
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case selector, metrics generator and ripple effect analyzer. Each tool is intended to 

provide a restricted view that aids in understanding some of the aspects of object- 

oriented software. The toolset proposed in [CvM93] was an ambitious project and 

therefore the authors provided an overview of what each tool was expected to do. 

However, the toolset is yet to be developed and to the best of our knowledege, the 

toolset does not exist. The need for tools and aids for maintenance activities is 

evident and the absence of tools which meet the needs of a maintainer adequately 

is one of the motivating factors for this research.

2.5 Background

This research includes concepts in software engineering, forward and reverse 

engineering processes, abstract representation models, principles of the object- 

oriented paradigm, object-oriented design and object-oriented programming lan­

guages. These concepts are developed in the following sections.

2.5.1 Software Engineering

Software engineering is a field of computer science whose concerns are the devel­

opment and management of large complex software systems. In the area of software 

development, the ongoing effort is to discover the principles and laws that will make 

automatic production of reliable software a reality. The management of complex 

software systems deals with the problems of software maintenance and software evo­

lution. The focus of software management is to reduce software complexity in order 

to facilitate software evolution. Software engineering could not be more concisely 

explained them in [GJM91]
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Software engineering is a field of computer science that deals with the 
building of software systems which axe so large or so complex that they 
are built by a team or teams of engineers. Usually, these software sys­
tems exist in multiple versions and axe used for many years. During 
their lifetime, they undergo many changes—to fix defects, to enhance 
existing features, to add new features, to remove old features, or to be 
adapted to run in a new environment.

The goal of software engineering is to develop reliable software. The prop­

erties present in a software product determ ine  its quality, design and longevity. 

A well-designed, high-quality, well-maintained software product is more likely to 

be accepted and used than one that is not. Terms used to describe the desirable 

properties of a software system are discussed below.

• Coupling

Coupling is a term used to refer to the degree of connectivity between mod­

ules (or components) of a software system. Connectivity between components 

is established by the interactions that occur between the components. In­

teractions between components cause dependencies between the components. 

High degrees of interaction between components complicate the overall struc­

ture of a software system and make it less understandable [GJM91, Pre92]. 

Low coupling is a desirable property in a software system.

• Cohesion

Cohesion denotes the interactions that occur within a module or component. 

A high degree of cohesion within a component is indicative of a well-designed 

component because every subcomponent has a clearly defined purpose and 

is required by the other subcomponents. A cohesive component reflects a 

the grouping of logically related subcomponents that interact to achieve the
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overall purpose of the component [GJM91, Pre92]. High cohesion is a desirable 

property in a software system.

•  Flexibility

The flexibility of a software system is a measure of the effort (in terms of 

tim e, cost and manpower) required to change an operational software system  

[Pre92]. A highly flexible system is one in which changes can be introduced 

with minimum effort and high flexibility is a desirable property for a software 

system to possess.

•  Reusability

The reusability of a software system is the measure of the degree to which 

parts of a software system can be reused in the development of other software 

systems[Pre92, GJM91]. The principles of the object-oriented paradigm are 

particularly suited for the development of reusable software [Boo93, CAB+94].

• Understandability

The understandability of a software system is the ease with which the behav­

ior and the structure of the system can be analysed and predicted [GJM91, 

Pre92, Boo93]. Properties closely related to understandability are -  readabil­

ity and maintainability. A readable program is one which is written to aid a 

human reader’s understanding of the program. Typically, readable programs 

follow established formats and styles of programming that include meaningful 

names, good documenting strategies, logical decomposition and flow of con­

trol, reduced code duplication and simple, elegant code. A program that is 

readable and understandable program is more maintainable [GJM91, Pre92].
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The significance of readability and understandability on maintainability is 

succinctly captured by Einbu in [Ein89] :

... most crucial problem of software engineering: bow to make a 
program understandable. This problem is best approached from an 
architectural point of view, rather than from a program-engineering 
point of view. How should a program be composed so that its 
meaning becomes apparent from a reading of the program listing ?

The term forward engineering is used to refer to the software development 

aspect of software engineering whereas the concerns of reverse engineering, reengi­

neering and restructuring lie in the areas of software maintenance and management.

2.5.2 Forward Engineering

Forward engineering is responsible for the traditional software development 

process of analysis-design-implementation where the term forward refers to the di­

rection of the process—from requirements to implementation. Various software 

development tools, automated program generators, program generators generators, 

computer-aided software engineering (CASE) tools fall under the umbrella of for­

ward engineering. Program translators [ASU86] are especially worthy of mention 

here, for their historical value and the impact they had on programming and soft­

ware development. A translator is a complex software package whose purpose it to 

provide a semantics-preserving translation of a program written in a high-level lan­

guage into a low-level language program. Forward engineering as defined in [CC90] 

is

Forward engineering is the traditional process of moving from high- 
level abstractions and logical, implementation-independent designs to 
the physical implementation of a system
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2.5.3 Reverse Engineering

As the term suggests, reverse engineering is in the opposite direction - from 

implementation to requirements. Pressman [Pre92] attributes the origin of the term  

to the disassembling of hardware products by competitors to understand the design 

and properties of the hardware product. The reverse engineering process in the 

software field implies the analysis of source code in order to represent code at a 

higher and more understandable level of abstraction [Pre92]. Recovering the design 

of a system is also referred to as the reverse engineering process [Pre92, Big89]. 

In summary, reverse engineering can be described as the process of extracting and 

assimilating information from code in order to conclude a general property of the 

code. In [CC90] reverse engineering is defined as

Reverse engineering is the process of analyzing a subject system to

•  identify the system’s components and their interrelationships and

•  create representations of the system in another form or at a higher 
level of abstraction

The focus of reverse engineering is to aid program understanding. In order to 

meet this single goal, reverse engineering has the following objectives [CC90].

1. To develop methods that reduce software complexity.

2. To provide multiple views of software system.

3. To recover information about the design of the system.

4. To expose unwanted system properties.

5. To synthesize higher level abstractions and to facilitate reuse.
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Reverse engineering approaches discussed in chapter 3 meet the objectives listed 

above. Reverse engineering or extracting the design from code is an invaluable aid 

to maintenance because it provides important, maintenance-related information. 

The many advantages of reverse engineering as given in [GLG92] are:

1. identifying, documenting and classifying reusable software compo­
nents.

2. salvaging the lost knowledge implemented in the code and not doc­
umented.

3. recovering design information from code and using it to implement 
a new version of the system.

4. generating an up-to-date documentation of the system.

5. checking consistency between the design and code and verifying 
that both conform to standards.

6. validating the system by detecting unplanned dynamic sequences 
due to errors in the initial design and/or to side effects of mainte­
nance operations.

The term reverse engineering is typically used to refer to processes and tech­

niques that usually extract information primarily from source code and represent 

the information in an abstract representation model that captures design informa­

tion about the software system. Techniques that modify or change the structure of 

a system are classified as restructuring or reengineering techniques.

2.5.4 Restructuring

The goals of the restructuring process are different from reverse engineering. 

The restructuring process is the process whereby the structure of a system is changed 

in order to simplify the system and reorganize the components and interconnec­

tions in the components without altering the behavior of the system. Restructuring 

sometimes implies the replacement of a complicated subsystem by a simpler, more
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abstract, cohesive component [Opd92, Cas92]. Identifying such structural replace­

ments that do not alter the semantics or the behavior of the system in any way 

is one of the non-trivial tasks of the restructuring process. Restructuring deals 

with analyzing the structure of code and reorganizing code, without affecting the 

functionality of the system, in order to reduce complexity or to enhance under­

standability.

Restructuring is the transformation from one representation form to an­
other at the same relative abstraction level, while preserving the subject 
system’s external behavior (functionality and semantics) [CC90].

2.5.5 Reengineering

Reengineering incorporates reverse engineering and restructuring. This term 

is employed when a system is studied and analyzed for the explicit purpose of 

rebuilding it anew. Reengineering involves redesigning and reimplementation. In 

order to do this, the original design and structure of the code is examined to analyze 

its advantages and drawbacks.

Reengineering, also known as both renovation and reclamation, is the 
examination and alteration of a subject system to reconstitute it in a 
new form and the subsequent implementation of the new form [CC90].

2.5.6 Representations of Program Structure

A large software system is comprised of interrelated subsystems. The structure 

of a software system is denoted by the organization of code. The organization or 

structure of a system can therefore be explained in terms of the subsystems and the 

interrelationships between them. Software structure can be represented at different 

levels of abstraction. The degree of abstraction in a model refers to the amount of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



43

/  Formal \  

Specifications

Design Diagrams 

and Descriptions

Software Architecture, ME. 
Software Configurations

Low-Level Software Architecture
Entity-Relationship Model

Program Dependence Graphs

Call graphs. Symbol Table look-ups

Source Code

Figure 2.1: Abstract Representations of Software System Structure

detail present in the model [RC93]. Based on the degrees of abstraction, we classify 

software system structure as shown in figure 2.1. Different definitions of the term 

subsystem gives rise to different representations of structure. An encapsulated piece 

of code or a file can be viewed as a subsystem. A structure representation defined 

in terms of code fragment subsystems is more detailed and less abstract than a 

representation defined in terms of files. The level of abstraction required in the 

representation is determined by precisely analyzing how the representation will be 

used.

The most complete and detailed (and the least abstract) representation of a 

software system is source code itself. Call graph models, which represent the flow- 

of-control between procedures and variable-use (or symbol table look-up) models,
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which provide symbol cross-referencing facilities axe at the next higher level of 

abstraction [RC93].

A flow graph [ASU86, FOW87] abstracts multiple statements as a single ba­

sic block and models transfer of control (irrespective of precisely how the transfer 

was achieved in the software) as an edge between the blocks. Program dependence 

graphs [LC93, FOW87] represent programming constructs such as declarations, as­

signment statements, control statements as nodes. Edges represent different kinds 

of dependencies between the nodes. The information content of program depen­

dence graphs and flow-graphs is more comprehensive than that of call-graphs and 

vaxiable-use models. They axe therefore placed higher in the abstraction hierarchy.

Representation models that attempt to capture overall structure and dependen­

cies amongst higher-level programming concepts axe at a higher level of abstraction 

than program dependence graphs. The LLSA model presented here falls in this 

category of representation models.

Software architecture [GS93] is a design-level description of the overall struc­

ture of a software system. At this level of abstraction, the interactions permitted 

in the architecture are determined by the architectural style of the system instead 

of the programming language used for implementation of the system. For repre­

sentation models at lower levels of abstraction, the interactions are dictated by the 

implementation language. Software configurations [NS87] of systems also describe 

the arrangement of software components and their interdependencies. Module In­

terconnection Languages (MIL) are used to specify these configurations.

Design diagrams and descriptions represent the rationale, logic and design prop­

erties of the software system [Boo93]. Formal specifications represent the behavior, 

functionality and constraints of the system [Pre92].
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2.5.7 Object-Oriented Concepts

The object-oriented paradigm attempts to model a problem in terms of an ob­

ject model which is comprised of objects and their interactions. The construction 

of the object model is based on certain object-oriented principles in order to attain 

desirable properties. Introduction to object-oriented concepts are concisely and 

lucidly explained in [Pre92, Wil93]. More detailed explanations of object-oriented 

analysis and design, the nature of object-oriented principles, the benefits and conse­

quences of using object-oriented techniques for software development are elaborated 

in [RBP+91, Boo93, CAB+94].

The central concepts of object-orientation axe the notions of object, class and 

messages. An object may be an entity, an abstract concept, or a physical, tangible 

thing. Typically, an object has a representation associated with it, and a set of 

properties. Envisaging real-world entities as objects is very straightforward -  a 

stone, a circle, a book are all examples of the object concept. Some other non- 

intuitive examples of objects axe processes, tasks, agents fulfilling a designated role 

in a large organization. These axe more difficult to envisage as objects because they 

represent actions and roles in the real world. Objects have an identity associated 

with them which enables a person to distinguish between similar objects and refer 

to each object separately. Associating an identity with an object corresponds to the 

notion of labeling items in order to make the activities of referring and accessing 

the items easier. For example, books in a library axe each labelled with a unique 

series of letters and digits. Objects also respond to stimuli (external or internal) 

and this response may manifest itself in the form of changes in the attributes of 

the object. For example, a stone when subjected to heat expands and the volume 

of the stone increases. This change in attributes in response to stimuli is referred
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as behavior. The collection of values of each attribute of an object at any given 

point in time is referred to as the state of an object. For example, the state of an 

expanded stone is different from the state of a stone at room temperature because 

the values associated with the volume and temperature attributes axe different for 

the two stones. The definition of object adopted in this work is the one given in

[Boo93] ([CAB+94] provides a sim ilar definition):

O bject: Something you can do things to. An object has state, behavior, 
and identity; the structure and behavior of similar objects are defined in 
their common class. The terms instance and object are interchangeable.

A class represents a set of similar objects [Boo93, CAB+94]. Objects may be 

similar in structure (representation), or behavior (properties). The class serves as 

a template for the common specification of the attributes of similar objects. Wilkie 

[Wil93] explains a class as a mechanism to describe the attributes and interface of

an object. The definition of a class given in [CAB+94] is:

Class : A set of objects that share a common structure and a common 
behavior. A class is an abstraction, which represents the idea or general 
notion of a set of similar objects.

Objects are capable of sending and receiving messages. A message is a means 

of communication between objects [Pre92, Wil93, CAB+94, Boo93, RBP+91]. The 

request is made by a client object and a server object complies with the request by 

executing the requested operation. The description of the message passing mecha­

nism as given in [Cox86] is:

An object is requested to perform one of its operations by sending it a 
message telling the object what to do. The receiver [object] responds to 
the message by first choosing the operation that implements the message 
name, executing this operation, and then returning control to the caller.

The four fundamental principles of the object-oriented paradigm abstraction, 

encapsulation, inheritance and polymorphism axe described next.
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2.5.7.1 Abstraction

Abstraction is the mechanism whereby the fundamental aspects of a concept 

axe concisely expressed. Abstraction brings the core attributes to the forefront, 

relegating unnecessary detail to the background, emphasizing the basis and the 

rationale for the existence of the concept. The decision of what comprises important 

attributes and what comprises unimportant detail depends on what abstraction is 

required from the concept. Thus for example, whereas a moving car represents a 

means of transport to a computer scientist, to a physicist it represents an example 

of the application of the laws of motion and various interacting forces. The focus 

of the object-oriented paradigm is data abstraction. Abstraction in the object- 

oriented sense manifests itself in the form of abstract classes. An abstraction has to  

satisfy the conflicting constraints of characterizing representative (and thus typical) 

traits and distinctive traits. This definition of abstraction is concisely expressed in 

[Boo93].

An abstraction denotes the essential characteristics of an object that 
distinguish it from all other kinds of objects and thus provide crisply 
defined conceptual boundaries, relative to the perspective of the viewer.

2.5.7.2 Encapsulation

Encapsulation is a mechanism to group related attributes of a concept into a 

single unit. This association of concepts and their attributes is an important step 

towards organized and structured systems. Encapsulation inhibits the improper 

usage of the attributes and encourages decomposability and the separation of con­

cerns [GJM91]. Since encapsulation hides the internal details of a concept, it is 

often referred to as information hiding . Class represents an encapsulated unit in
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the object-oriented paradigm. [PJ92] discusses the effect of encapsulation on soft­

ware structure and maintenance. The definition of encapsulation used in this work 

is adapted from [Boo93].

Encapsulation is the process of hiding all of the details of an object that
do not contribute to its essential characteristics.

2.5.7.3 Inheritance

Inheritance is the outstanding contribution of the object-oriented paradigm to 

software development and is the one principle which is not supported by the struc­

tured programming paradigm. Inheritance is best -understood in the genealogical 

sense and the terminology used in the literature bears testimony to it. Inheritance 

is mechanism that permits the composition of classes. A child class inherits the 

structure and behavior of its parent classes . Examples of classes with a single par­

ent are instances of single inheritance while classes having more than one parent 

class exhibit multiple inheritance . In the analysis and design phase, inheritance 

serves as a classification tool and helps group related classes together. Imposing a 

hierarchy establishes abstract classes and forces a parent-child relationship amongst 

classes thus clarifying the role of each class and its position in the software archi­

tecture. Designing a hierarchy is not an easy task since there are several other 

relationships that exist between classes that must be taken into consideration. An 

inheritance graph corresponds to the notion of a family tree. Ideally, the root of 

the inheritance graph is an abstract class representing the general concept that 

the classes in the graph attempt to model. This abstract class is referred to as a 

generalized class and its descendants are called specialized classes. Object-oriented 

programming languages view inheritance as a class composition mechanism that
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allows code sharing, code reuse, and incremental programming. [Weg87] provides 

an excellent and thorough treatise on inheritance. [BGM89] provides a discussion 

on inheritance in combination with other principles. [WZ88] investigates the sibling 

relationship between classes. Inheritance as defined in [Boo93] is:

Inheritance : A relationship among classes, wherein one class shares 
the structure or behavior defined in one (single inheritance) or more 
(multiple inheritance) other classes.

2.5.7.4 Polymorphism

The word polymorphism means more than one form (from poly =  multi and 

morph =  form). In the object-oriented sense, polymorphism is the mechanism 

whereby a programming entity can refer to objects of more than one class [Mey88]. 

The messages accepted and executed by the objects participating in polymorphism 

depend on the class of the object. Polymorphism is a very useful mechanism that 

makes a system flexible and extensible. For example, consider a robotic arm that 

can lift rectangular and spherical objects from a table. The shape of the object to 

be lifted determines the orientation of the clasping fingers of the the arm. Since 

the arm is capable of lifting two different kinds of objects, the robot arm system is 

exhibiting polymorphism.

Object-oriented languages support polymorphism by using overloading or late- 

binding techniques [CM91]. The definition of polymorphism adopted in this work 

is the one provided in [Boo93].

Polymorphism : A concept in type theory according to which a name 
(such as a variable declaration) may denote objects of many different 
classes that are related by some common superclass; thus, any object de­
noted by this name is able to respond to some common set of operations 
in different ways.
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2.6 Object Oriented Design

Object-oriented analysis (domain analysis) [SM89] results in the identification 

of objects and classes. An important activity of object-oriented design is the iden­

tification of relationships between classes and objects. This is the key step towards 

organization and structure within the object-oriented framework. The process of 

establishing relationships results in determining the functionality of classes, similar­

ities and differences amongst classes, class interactions, the purpose of each object 

and object interactions.

There axe three basic relationships between classes generalization, aggregation 

and association [Weg87, Boo93, CAB+94, CY90]. The generalization relationship, 

more accurately the generalization-specialization relationship, establishes a kind-of 

relationship between classes. For example, a dog is a kind-of animal and is a kind- 

of mammal. In this example, animal and mammal represent generalized classes 

whereas dog is a specialization of both. The aggregation relationship exemplifies 

the part-of relationship between classes. For example, a tail is a paxt-of a dog. 

Association is an abstract relationship that exists amongst classes that axe used to 

model a laxger concept. Association at a rather basic level may be said to capture 

the uses relationship amongst classes. For example, a dog uses a frisbee to play. 

Thus the unrelated classes of dog and frisbee conjure up a larger picture of an 

airborne dog and a flying frisbee. [Boo93] provides a comprehensive discussion on 

class and object relationships.

In the Booch object-oriented methodology [Boo93], design documents consist 

of class diagram models, state transition models, object models, interaction models. 

A class diagram consists of classes, the name, attributes and operations of each class
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and the class relationships between classes. Association, inheritance, has, using are 

examples of class relationships. A state transition diagram specifies the states that a 

class (or an object of a class) can assume and event/action pairs that cause a class to 

change state. An event denotes a situation which triggers the associated action and 

this event/action pair results in the change of state of the class. The state transition 

diagram can be viewed as states that axe connected (or related by) event/action 

pairs. An object diagram consists of objects and links between the objects. The 

name and attributes of each object are represented in the diagram. A link between 

two objects represents a concrete instance of the class association relation between 

the corresponding classes of the objects. A link establishes a bidirectional means 

of communication between the objects. Sequenced messages associated with a link 

denote the order in which operations axe invoked on objects. An object diagram 

therefore represents the collaborations that occur between objects (in the form of 

messages sent to objects) to fulfill a specific system requirement. In the object 

diagram, the objects can be viewed as components and messages between objects 

represent the object collaboration relationship. A comparison of various existing 

object-oriented analysis and design techniques is provided in [MP92].

2.7 Summary

Motivation for research in the areas of object-oriented software maintenance 

and reverse engineering can be attributed to four factors -  (i) cost of maintenance 

in terms of tim e and money expended by a company, (ii) complex nature of object- 

oriented software systems and the time spent by maintainers in understanding the 

overall structure of the system (iii) loss of information between the design and
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implementation phases and (iv) the need for better tools and aids for software 

maintenance.

Understanding software structure is a basic requirement of software mainte­

nance. Software structure can be represented and understood at different levels of 

abstraction. Designing an abstract representation model is an important activity 

in the reverse engineering process.

Class, object and message-passing between objects are key object-oriented con­

cepts. The object-oriented principles of abstraction, encapsulation, inheritance and 

polymorphism make an object-oriented system flexible, extensible, reusable and 

maintainable. The same principles are responsible for the complex nature of object- 

oriented systems.

The next chapter discusses related approaches to the problems of object-oriented 

software maintenance and reverse engineering the design of a software system.
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Chapter 3

R elated  Research

Research in the area of maintenance of object-oriented systems addresses issues 

in understandability of object-oriented systems, automatic restructuring of class hi­

erarchies and maintenance tool support. Sections 3.1-3.9 of this chapter discuss 

research projects that are closely related to the the areas of program comprehen­

sion and software maintenance. Table 3.1 presents a comparison of the various 

approaches including the one adopted in this research. Restructuring techniques 

and issues are presented in section 2.5.4. An overview of issues and research in the 

areas of reverse engineering and software maintenance is presented in section 1.3.1.

3.1 Programmer’s Apprentice

The goal of the Programmer’s Apprentice research project [RW88], was to de­

velop a theory that would logically explain the techniques that expert programmers 

employ in analyzing and understanding programs. An application of such a theory 

was perceived to be the elimination of software problems by the introduction of 

automatic programming. Consequently, this research would typically classify un­

der forward engineering. However, the results, concepts and techniques that were 

produced from this research work proved to be useful in the area of reverse engi­

neering. This research introduced the notion of a cliche [RW90, SWC93]. A cliche, 

as defined in [RW90, SWC93], is a commonly occurring programming structure or 

a common pattern that is used repeatedly.

53
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Data structures and algorithms provide solutions to program m ing problems. 

Data structures address the issue of data organization for ease of information re­

trieval and storage, algorithms define precise computation methods that may require 

specific data structures. An experienced program m er is able to develop sophisti­

cated data structures and algorithms (called cliche in [RW90]). Program m ers test 

the applicability of common data structures and algorithms by using them in a va­

riety of situations. Experienced program m ers who are familiar with a large number 

of cliches understand programs by identifying and recognizing the cliches that were 

used in the development of the program.

Rich and Wills [RW90] describe a system, the Recognizer, that automatically 

detects a cliche in a program and constructs a hierarchical description of the pro­

gram in terms of cliches. Initially, the Recognizer accepts a program as input and 

translates it into a graph-based representation. The graph-based abstract represen­

tation of a program is referred to as Plan Calculus. The Recognizer then matches 

the graph representations of cliches againts subgraphs in the graph representation 

of the program. The plan calculus representation is a language-independent repre­

sentation of programs that enables the recognizer to identify the structure of the 

cliche despite syntactic variations that may be present in the implementation of the 

cliche. The essence of this work is captured in the following sentence from [RW90]:

Essentially, a plan is a directed graph and cliche recognition identifies 
subgraphs and replaces them with more abstract operations.

The identification and representation of cliches and the automatic recognition 

of cliches are significant contributions to the field of reverse engineering, program 

comprehension, and software maintenance. The recognizer was demonstrated to 

work on small Common Lisp programs [RW90]. The cliches present in [RW88] axe
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useful for maintenance of structured software systems but not for object-oriented 

software systems.

3.2 Desire

The goal of the Desire (from design recovery) system was to aid program un­

derstanding for maintenance. Biggerstaff [Big89] presents a basic design recovery 

process method to aid maintenance and reuse. According to Biggerstaff, the de­

sign recovery process consists of the recreation of the design of a software system  

from an analysis and study of existing code, design documentation, personal expe­

rience and general knowledge about problem and application domains. Therefore, 

the automation of the design recovery process must model and incorporate these 

activities.

The notion of a conceptual abstraction is introduced and explained in [Big89]. 

A conceptual abstraction is an informal representation of design information for 

human understanding. A conceptual abstraction has two properties -  (i) structural 

property and (ii) a semantic or associative property. The structure of a conceptual 

abstraction is the pattern of connections between the lower-level (code level) con­

structs that were used to implement the conceptual abstraction. Structural patterns 

enable the identification and recognition of conceptual abstractions. The semantic 

properties of a conceptual abstraction aid in understanding the purpose and use­

fulness of the abstraction. These conceptual abstractions axe defined as idioms in 

[Big89]. Desire produces a dictionary containing information on functions, global 

variables, comments in C source code and the relationships between functions and 

variables. The information is presented as a hypertext document and additional
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browsing support tools facilitate the examination of call-graphs and definition-use 

graphs of a C program.

3.3 Valhalla

The factors that complicate the understanding of object-oriented software sys­

tems axe concisely formulated and expositioned in [WMH93]. Wilde and Huitt 

[WMH93] examine the idea of using dependency analysis to aid in understanding 

object-oriented software systems. Wilde et al [WHH89] present tools that exploit 

the concept of dependency graph to illustrate software relationships and the effect 

of modifications on various software components.

The notion of context-of-use is defined in [WMH93] and used to represent a 

method’s semantics. The Valhalla object-oriented development environment advo­

cates the use of object animation to enable understanding of complex class and 

object interactions. The Valhalla animator is capable of displaying message se­

quences between objects. The animation of message sequences is an invaluable aid 

to maintainers because it reveals the identity of each object, the sequence of each 

interaction and the nature of each interaction. However, the animation is not de­

tected automatically by the Valhalla system; the animation sequence is provided 

as input to the Valhalla environment and it simply provides a graphical animation 

of the input. The automatic detection of message sequences is one of the difficult 

goals of the Valhalla project. The Valhalla environment aids in the development 

and understanding of C ++ source code.
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3.4 Dem eter

Lieberherr et al [LH89, LX93, Opd92] conducted research to investigate meth­

ods in which the overall productivity of object-oriented designers and program­

mers could be improved. One of the outcomes of their research was the language- 

independent Law of Demeter. This law lays down guidelines for good programming 

styles for object-oriented software systems. The law defines the ways in which 

classes should depend on each other in terms of the methods that classes invoke on 

each other. A class is said to depend on another class if it calls a function defined 

in the other class. Some of the goals within the Demeter system are to reduce 

dependencies between classes and to ensure modular well-behaved software. Their 

approach defines good style and ensures it by providing techniques to transform 

code written in a bad style into code having the quality of good style. The law 

is specified for systems developed in the object-oriented programming languages 

C + + , Common Lisp Object System (CLOS), Eiffel, Flavors and Smalltalk-80.

In [LX93] the concept of ■propagation patterns is introduced. A single propa­

gation pattern is an abstract specification of a collection of similar object-oriented 

programs. Propagation patterns are a mechanism to represent programs at a higher- 

level than that allowed by programming languages. The abstraction available per­

mits more adaptable software. The authors also present the concept of growth 

plans which are means of specifying, recording and testing incremental changes in 

a software. With the aid of propagation patterns and growth plans, smaller, adapt­

able, extensible and reusable software can be developed. Software development and 

maintainability is aided by allowing incremental development of software such that 

each change (or increment) in the software is recordable and testable.
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3.5 OOTME

The object-oriented test model environment (OOTME) [KGH+93, KGH+94] is 

a graphic model that represents a reverse engineering approach for testing object- 

oriented software systems. The relationships between software components of an 

object-oriented software system are captured in three abstract representations -

(i) object relation diagram (ORD) (ii) block branch diagram (BBD) (iii) object 

state diagrams (OSD). The ORDs of a system establish inheritance, aggregation 

and association relationship between classes. BBDs of a system represent the call 

graphs of functions and methods of a class. OSDs model the state transitions of 

objects. Each diagram aids in testing a specific part of the system. The ORD, BBD 

and OSD representations were also intended to be used by knowledge-based tools 

as an extension to the environment.

In [KGH+94] different types of code changes that can occur in an object- 

oriented class library axe described. A class firewall represents the set of affected 

classes when changes axe made in a class library or an object-oriented program. The 

OOTME system is a powerful and useful maintenance tool that captures class rela­

tionships and class dependencies and aids in software maintenance by automating 

the identification of different kinds of the code modifications and the components 

that are affected by the modifications.

The information content in the OOTME graphic model representation of object- 

oriented software system resembles the information content in the LLSA model pre­

sented in chapter 4. However, the LLSA model presents a more uniform representa­

tion of components and the LLSA model also provides for defining the interfaces of 

each software component in addition to the interactions between the components.
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3.6 CIA, XREF/XREFDB, SAM

The C information abstraction system [CNR90] represents the structure of C 

programs as a relational database. The conceptual model underlying the abstract 

representation is an entity-relationship model. This model consists of five domains 

-  file, macro, data type, global variable, function. Elements are connected by the 

includes and refers relationships. The abstract representation of C software systems 

enabled the development of at least five aspects of program structure -  (i) graphical 

views of function call structure (ii) compilable subsystems (iii) function layering (iv) 

dead code detection (v) used data bindings. CIA++ [GC90] extends CIA to support 

the language features of C ++.

The XREF/XREFDB system developed by Lejter et al [LMR91] also stores the 

structure of an object-oriented software system in the form of a relational database. 

The system provides various cross-referencing facilities such as determining the 

locations a function is called, the locations where a variable is defined or used, the 

location of the declaration/definition of a symbol. The interface of a class is also 

obtainable from the system.

Ketabchi explores the database approach to software maintenance in [M.A90]; 

this paper discusses a software analysis and maintenance system (SAMS) that in­

tegrates analysis and maintenance functions and provides facilities such as cross- 

referencing and configuration management.

3.7 Browser

Sametinger presents a tool for the maintenance of C ++ programs [Sam90] that 

eases the process of navigation in the source code. Source code is represented as
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“chunks of information” together with relationships that connect the chunks. The 

primary focus of the code browser developed by Sametinger is on classes, methods 

in a class and global declarations. The chunks of information and their relationships 

are represented as a hypertext document.

3.8 SCRUPLE

Paul and Prakash [PP94] present SCRUPLE, a system that accepts a specifica­

tion of a program pattern and locates all occurrences of the pattern in source code. 

The program fragment to be located is specified in a specification language which 

they refer to as a pattern language. This specification language is an extension of 

the programming language being used.

One of the assumptions underlying the approach taken in [PP94] is that pro­

grammers hypothesize about the purpose of a code fragment and then attempt to 

locate the code fragment in existing code. For example, a program m er may hy­

pothesize that the typical code for matrix multiplication involves the use of three 

nested iterative loops. The specification for the matrix multiplication code is input 

to the SCRUPLE system as is some existing source code. SCRUPLE matches the 

specification to the code and reports the locations of all occurrences of the code 

fragment. The maintainer can then proceed with code modification or replacement 

and the SCRUPLE system effectively reduces the time and effort a maintainer may 

have to spend in locating the fragment. SCRUPLE does not help a maintainer in 

understanding the structure of the system.

The SCRUPLE system transforms source code into a syntax-tree represen­

tation. The program pattern specification is transformed into a special-purpose
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non-deterministic automaton (NDFA). The syntax-tree representation is then fed 

to the non-deterministic automaton which reports successful matches between the 

pattern to be located and the source code being searched. The prototype system 

SCRUPLE is demonstrated for two languages C and PL/AS (a PL/1 variant).

3.9 PERPLEX

Multiple views of a software system aid in understanding the system [Boo93, 

KM94]. Kinloch and Munro [KM94] extend the work of Haxrold and Malloy [HM91] 

and present an intermediate graph representation of C programs. The representa­

tion model is called the combined C graph (CCG). The CCG representation enables 

the construction of multiple views such as program slices, call graph, definition-use 

etc.

The CCG is a dependency graph representation model that captures control- 

flow and data-flow dependencies in a C program. The CCG of a C program is 

constructed using the PERPLEX code analysis tool. This tool extracts information 

from C source code and stores it in the form of a Prolog fact base. The CCG is 

constructed from the fact base by executing Prolog queries on it.

A summary of the different approaches presented in sections 3.1-3.9 is given 

in Table 3.1. The first column contains the name of the project. The second col­

umn presents the significant contributions of the project by stating the abstract 

representation model and concepts that the project introduced. In the case of the 

Demeter project, the significant contribution is the Law of Demeter, which is not a 

representation model, but a specification of good programming styles and guidelines 

for the object-oriented paradigm. Most of the projects have been demonstrated to
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work for software systems implemented in a particular programming language. The 

third column specifies the programming language of the source code for which the 

research has been shown to be useful. Approaches have been classified as -  (i) for­

ward engineering (ii) reverse engineering (iii) building databases and (iv) pattern 

specification. Each approach has an associated technique that is employed to con­

struct the representation model. The techniques are -  (i) information extraction

(ii) database query and (iii) pattern matching. Thus the Program m er’s Apprentice 

project was a forward engineering project that constructed a plan calculus repre­

sentation of a Lisp program and used pattern matching techniques to match the 

plan against a plan representation of a cliche.

3.10 Restructuring

Restructuring of class hierarchies to reflect simplified and organized relation­

ships is a necessary aid to object-oriented software maintenance. Restructuring 

requires code modification and these modifications are performed by a maintainer. 

Automating class code modifications allows the prevention of human-programming 

errors and automatic determination of the impact of a modification. Modifications 

to class hierarchies can be classified as -  (i) data member change (ii) method change

(iii) class change (iv) class library change [KGH+94j. D eterm ining  the impact of a 

modification on the remaining classes is complicated by inheritance and other class 

relationships.

Casias [Cas92] provides an incremental class reorganization algorithm. The 

algorithm decomposes existing class relationships and restructures them by ab­

stracting common properties into an abstract super class. Opdyke [Opd92, OJ92]
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P roject R epresentation  
M odel and Term s

Program m ing
Language

Approach

Programmer’s
Apprentice

Plan Calculus, Cliche Lisp Forward Engineering 
Pattern Matching

Desire Parse Trees,
Conceptual Abstraction

C Reverse Engineering 
Extraction

Demeter Law of Demeter, 
Propagation Patterns

C++,CLOS, 
Eiffel,Flavors, 
Smalltalk

Forward Engineering 
Pattern Matching 
Pattern Matching

Valhalla External Graph 
Object Animation

C ++ Reverse Engineering 
Extraction

OOTME Parse Trees, 
ORD,BBD,OSD

C ++ Reverse Engineering 
Extraction

CIA Relational Database c Building Databases 
Query

XREF Relational Database c Building Databases 
Query

SCRUPLE NDFA, Syntax Trees c Pattern Specification 
Pattern Matching

PERPLEX CCG, Prolog fact base c Reverse Engineering 
Extraction

pulse LLSA, LLDP C ++ Reverse Engineering 
Extraction

presents algorithms to refactor class hierarchies and introduce abstract super classes, 

specialized subclasses and aggregate classes.

3.11 Related Research in Reverse Engineering

Software reuse is concerned with the development of software which can be used 

repeatedly without making any modifications; reuse is an attempt to bring pluga- 

bility to the field of software engineering. Since the code comprehension activities
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performed in reuse and maintenance are similar, Basili provides three maintenance 

models (quick-fix, iterative-enhancement and fnll-reuse) and analyses them from the 

reuse point of view in [Bas90]. He proposes a reuse framework to enable the selec­

tion of appropriate maintenance models and advocates an improvement paradigm, 

reuse-oriented environment and automated support to support the reuse-oriented 

view of maintenance.

Rugaber et al [ROJ90] address the issue of design decisions by suggesting that 

the loss of continuity between the design and implementation phases is attributable 

to the lack of expressivity of design representations and the failure of design method­

ologies to provide a mechanism to express the constraints and conditions that guided 

the decision. Programming constructs and programming style guidelines are used 

to guide the abstracting of design from code.

Hausler et al [HPLH90] describe a function abstraction method to explain pro­

gram behavior. They provide algorithms that determine the purpose (or function) 

of specific code fragments. These algorithms are called sequence abstraction, al­

ternation abstraction, iteration abstraction, program slicing and pattern matching. 

Howden and Pak [Pak92] discuss problem domain, structural and logical abstrac­

tions and describe a method to extract functional specifications from COBOL code.

Choi and Scacchi [CS90] provide an algorithm that extracts and constructs a 

hierarchical design structure from source code. The design description extracted 

by this algorithm describes intermodule relationships in terms of the resources ex­

changed (this is called a resource-flow diagram—RFD ) and the hierarchical rela­

tionship between system, subsystems and modules via resource-structure diagrams 

— RSD. The design description algortihm transforms an RFD into an RSD which
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they refer to as system restructuring. The reverse engineered design is described in 

a module interconnection language, NuMIL.

Reconstruction of low-level design documents from code is the focus of the 

work of Antonini et al presented in [ABCC87]. This paper describes the informa­

tion abstraction process and the low-level design documentation process employed 

by them. Soloway et al [SPL+88] propose a documentation strategy to compensate 

for delocalized plans. Canfora et al put forth the idea of using interactive anima­

tion techniques to support reverse engineering in [GLG92]. Colbrook and Smythe 

present a tool that structures code in terms of data and control flow in [CS89]. 

Gulla advocates the use of a software repository to store multiple versions of soft­

ware and associated documentation to aid maintenance. The repository can be used 

by visualization techniques for displaying information computed from the different 

versions [Gul92]. Gillis and Wright describe a software package that reverse engi­

neers structure charts and module specifications from existing FORTRAN source 

code in [GW90].

3.12 Summary

Though reverse engineering has made significant progress in with structured 

software systems, work in the field of reverse engineering of object-oriented systems 

is still in the nascent stages. Object-oriented software maintenance requires new 

technology, tools, and methods of analysis.
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One of the goals of reverse engineering (see section 2.5.3) is to provide an ab­

stract conceptual representation model of software systems [CC90, RC93]. The pri­

mary purpose of a conceptual model (or a mental model) is to aid in program com­

prehension. Experienced programmers understand code in terms of known concepts. 

An experienced programmer anticipates the presence of some common programming 

patterns and tries to locate these patterns in source code [PP94, RW88, RC93]. The 

information content in an abstract conceptual model must mimic the information 

content grasped by experienced programmers and the design of the model is a cru­

cial aspect of reverse engineering projects.

The focus of maintenance tool support is to aid the actual execution of mainte­

nance activities. The design of the representation model used by maintenance tools 

is driven by the facilities required by a maintainer to perform code modification; 

these facilities could include code navigation, location of affected components, lo­

cation of specific code fragments, code modification, testing and validation of code 

modifications. The primary concern of maintenance tools is the facilities or the op­

tions that they must provide. A primary concern of reverse engineering techniques 

is to provide a representation of the system that aids a maintainer in grasping the 

overall architecture of the software system.

The conceptual model underlying the CIA, CIA++, XREFDB/XREF and code 

browser representations is the entity-relationship model and information is repre­

sented as a database of some kind. A relational-database representation is limited by 

the nature of the queries it can support, namely, relational queries. The architecture 

of a software system is better represented as a graph and the LLSA model that we 

present in chapter 4 is based on graph-theoretic concepts. A graph representation 

is capable of supporting many of the features of the above-mentioned maintenance
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tools; in addition, a graph representation lends itself to graph algorithms such as 

traversal, reachable vertices, transitive closures [Liu85] which provide useful depen­

dency information about the software. Graph representations axe more amenable 

to the automatic detection of dependencies than entity-relationship models.

The OOTME system described by Kung et al in [KGH+94] uses graph repre­

sentations for member functions and classes. The LLSA model provides a uniform 

component-based description of classes, objects and functions and the various in­

teractions that axe possible between these three kinds of components.

Low-level design patterns (LLDPs) represent com m on object-oriented struc­

tural patterns. LLDPs describe the structure of a recurring pattern as well as the 

semantics and usefulness of the pattern. An LLDP is a textual description of a 

common object-oriented strategy. LLDPs axe described in chapter 5
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C hapter 4

Low-Level Software A rchitecture o f OO System s

4.1 Introduction

Perceiving a clear picture of the overall structure and architecture of the soft­

ware system is crucial to any kind of maintenance activity involving code modi­

fication, debugging or extending the system’s functionality [Rom87, RC93]. This 

research is aimed at reducing the complexities inherent in the process of under­

standing and maintaining the overall structure of an object-oriented software sys­

tem. A conceptual model to represent the overall structure of an object-oriented 

software system is described here. This conceptual model is referred to as the low- 

level software architecture model (LLSA). The LLSA of systems developed in the 

object-oriented language C ++ is defined in this chapter in terms of the concepts and 

interactions permissible by C ++. C ++ is a programming language whose syntactic 

and semantic rules are defined in [ES92].

Maintenance of large software systems requires software tools which perform a 

static analysis of code and use reverse engineering techniques to automatically pro­

duce useful design information [Pre92, ABCC87]. The development of an appropri­

ate maintenance support “toolchest” (see [CvM93]) requires a careful requirements 

analysis of the needs of maintainers, the complexities inherent in the maintenance 

process and the complex nature of software systems. Polymorphism, inheritance

68
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and dynamic binding are the most common object-oriented features that make 

object-oriented systems difficult to understand [CvM93, LMR91, WMH93, WH91].

Designing a conceptual model to aid the understanding of software systems is 

an important activity in the reverse engineering process. As stated in [RC93], the 

conceptual model developed must address the issues of

1. Information content

2. degree of abstraction,

3. modeling support

4. how the representation will be used

The information content and degree of abstraction of the LLSA model is provided 

in section 4.2. Modeling support and the usefulness of the LLSA of C ++ systems 

are described in sections 4.4 and 4.5, respectively.

4.2 LLSA Conceptual Model

A software system is a complex entity comprised of interacting components. 

The basic software architecture model as defined in [AAG93, Sha94, AG94, GP94, 

KBAW94] is

software architecture =  components +  connections

A component is an architectural element or design module having an interface. 

The components of a software architecture may be a programming construct (such 

as a procedure or a function) or a group of programming constructs (such as a mod­

ule or a file). Components interact with each other directly or via their interfaces.
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The interface of a component provides a basis for connections between components. 

A collection of similar components is called the domain of the components.

Interactions between components connect components. Interactions may occur 

between components belonging to the same domain or to different domains. A 

function call is an example of a simple interaction.

4.2.1 Theoretical Model

Terms and notations that we use to describe the low-level software architecture 

of object-oriented systems are defined here. The three essential concepts in an 

object-oriented program are class, object and function. There are three domains in 

our model -  class, function and object domain, denoted by C ,F,0  respectively.

The rationale for selecting class, function and object as the domains of the 

representation is given below.

1. A class, a function and an object are each a higher-level programming concept. 

Both, objects and variables have state, behavior and identity associated with 

them [Boo93]. However, the only way to change the state of a variable is by 

using it in lower-level constructs, like expressions or statements. The state 

of an object can be changed by sending it a  message and requesting it to 

execute an operation that modifies its state; ie. state changes in a  variable 

are accomplished by performing predefined program m ing language constructs 

whereas state changes in an object are accomplished by the messages that the 

object chooses to accept. These messages are defined by a  program m er and 

not the programming language. This important distinction makes an object 

a  higher-level concept.
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2. Both class and function axe encapsulating constructs. A class encapsulates 

data and member functions; a function encapsulates object declarations and 

statements. A compound statement is the only other encapsulating construct 

which encapsulates a series of statements; for example the body of a while loop 

is a compound statement. Compound statements, however, cannot appear 

outside the scope of a function or a member-function and therefore do not 

have any independent role to play in software structure.

3. Object-oriented design uses the concepts of class, object, message, function 

extensively. The object-oriented design of a system does not specify the 

computations that should be performed or how the computations must be 

performed; object-oriented design documents instead model components and 

relationships between the components.

Based on the above analysis, classes, functions and objects were designated to be 

the components in the LLSA model.

Each component has an internal part which is its own concern, and an external 

part which is the view the rest of the software has of that component. The external 

part of a component is what we refer to as the interface of the component. A compo­

nent in our model can exhibit static and dynamic behavior. A component therefore 

has static and dynamic interfaces. The static interface of a component is the inter­

face which can be statically determined. The dynamic interface is a collection of 

all possible interfaces that can be associated with the component dyna.m ica.11y.

An interaction connects two components. One of the components must initiate 

the interaction (the initiator) and the other component should be able to respond 

appropriately (the recipient) to the interaction. For example, a function fi interacts
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with another function f j  by performing a call to fj. This call interaction establishes 

a connection (or a dependency) between the two functions.

An interaction is classified as static if both of the participants in an interaction 

can be statically determined on the basis of the static information available in the 

code. The interaction is deemed dynamic if the recipient cannot be pinpointed 

statically.

Notation : Let P  denote an object-oriented program, C  be the domain of

classes in P, F  the domain of functions in P  and O the domain of objects in P. 

Let Cj, fi, Oi represent a single class, function or object in P, respectively. We 

use et- to denote a programming entity (such as class, function or object) without 

its interface and s,- to denote a component (ie. an entity and its interface). Let 

In ts denote a static interaction and In ti  a dynamic interaction. In t denotes all 

interactions (static and dynamic). The low-level software architecture of a program, 

denoted LLSA(P) is defined in terms of components and their interactions. The 

notations and definitions are summarised in Table 4.1.

4.2.2 Graph Representation and Views

The LLSA of a software system is defined as a directed graph. We refer to this 

graph as the LLSA-graph. A directed graph consists of nodes and directed edges 

[Liu85]. Nodes in the LLSA-graph symbolize software components and the directed 

edges denote interaction. The existence of multiple relationships in a software 

system necessitates definitions of different kinds of edges. Thus if there are three 

kinds of relationships in a system, three kinds of edges must be defined. The LLSA- 

graph of a system, shown in figure 4.1 (a), depicts three kinds of interactions -  

control flow, uses, data flow. The components in the system are uniformly referred

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



73

Table 4.1: Low-Level Software Architecture of Object-Oriented Systems

c — {Ci,C2, ...Cjfc}
F — { f l i f i i h ,  —//}
0 = {0I5 02? <*3, —Om}
P = C  U F  U 0

In terface^ ) — { static/dynamic interface o f  c,}
Interface(fi) = { static/dynamic interface o f  fl}
Interface(oi) — { static/dynamic interface o f  0,}

Component = {<  e, In terface(e)>  \ e € P }

In ts (sj, Sj) { all static interactions from  s,- to Sj}
Intj, ("S,, Sj) = { all dynamic interactions from  st- to s j}
Interactions = USi,3j Int (Si,Sj) | S{, Sj € Component

LLSA  (P) = { <  Si,S2 ,In t (s{,Sj) >  | Si, S2  €  Component, 
Int (Si,Sj) € Interactions}

to as Ci, C2, —, C7 irrespective of the domain they belong to. A directed edge 

between two components represents an interaction from an initiator to the recipient; 

for example, the edge from C\ to C2 conveys the information that control flows from 

component C\ to component C2.

Graph representations (see section 1.1.3) are useful in understanding the dif­

ferent views of a software system. Three possible views are shown in figure 4.1 

(b)-(d) -  (i) control flow graph, (ii) domain graph (iii) rooted component subgraph. 

Each of these views can be constructed from the LLSA-graph. The construction 

and analysis of each view from the perspective of overall structure and maintenance 

are explained below.
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(a) Low-Lerd Software Architecture

Component Name-----------
Component Interface-------- w
Uses Interaction-------►
Control Flow Interaction -
Data Flow Interaction ......

Legend

(c) Component Graph View

(d) Component Subgraph Rooted at C

(b) Control Flow View

Figure 4.1: Graph Representations of a Software System
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4.2.2.1 Control Flow Graph View

The control flow graph view can be obtained from the LLSA graph by per­

forming a transitive closure operation on the control flow relationship (interaction). 

The transitive closure of a relation R results in a subgraph that consists only of 

components that interact with each other via the relation R. The transitive closure 

of the control flow relation for object-oriented systems is formally defined in table 

4.2.

Notation : Let the control flow interaction between components st- and sj 

be denoted as Int£* (si,Sj) where the d denotes a dynamic interaction and c f  

denotes control flow. Let C { ln t^  ) denote the transitive closure of Intf*  (s*,Sj). 

Component denotes the set of all components of an object-oriented program P  as 

explained in section 4.2.1 and s,- denotes a component.

Table 4.2: Transitive Closure of A Relation 

In ti  (Si,Sj) =  { control flow s from  s,- to  s ,}

C(Intdcf ) =  { sjt | s* €  Intdcf{si,sk) or,
__________________ sk € Int (sk, Sj) V Sj £  Component}

The subgraph in figure 4.1 (b) is obtained by starting from a component, say 

C i, and including those components that Ci interacts with via the relation con­

trol flow. This results in the inclusion of components C2 and C7. Components C2 

and C7 do not have a control-flow interaction with any other component and so 

the next component to be examined is C3. C3 interacts with C2 and is included 

in the view. Component C4 is examined next. C4 interacts with C3, C5, C7; C5 is 

the only unexamined component remaining. C5 does not interact with any more
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components. The transitive closure operation stops after all nodes have been ex­

amined. The transitive closure of the system shown in figure 4.1 (b) consists of 

{ C i, C2, C3, C4, Cs, C7}. Component C& is not in the transitive closure of the con­

trol flow interaction because there is not transfer of control to or from C&. A view 

based on any other relationship can similarly be obtained by performing a closure 

operation on the relationship of interest.

We shall refer to views obtained by performing a transitive closure on a re­

lationship as a relation closure view. The transitive closure view could contain a 

subset of the total set of components in a software system. For example, component 

Cs is not represented in the control flow graph view. Even if the component was in­

cluded as an isolated, unconnected node in the view, its role in the software system 

is not evident from this view because of the absence of other relations. This view is 

therefore not useful from the perspective of understanding the overall architecture 

and the roles of different software components.

4.2.2.2 Component Domain Graph View

Since the absence of relations in the previous control flow graph view obscures 

the role of a component in the software system, we take an alternate approach 

and define another view. In this view, we restrict the graph to contain only nodes 

belonging to the same domain (ie. the nodes represent components belonging either 

to C, F, or 0 ) and include all the interactions between these nodes. For example, 

we can restrict the nodes to belong to the class domain C  and examine the class 

subgraphs in the system (see fig 4.1 (c)). Restricting the nodes to F  or O will give 

the function subgraphs and object subgraphs respectively. A fairly comprehensive
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picture of the overall structure can be obtained by examining the collection of all 

the domain graph views of the system (ie. all the layers in the system).

We refer to such a restricted-component view as the component domain graph 

view or the layered view of the system. The layered view provides a more compre­

hensive view of the structure of a software system than the relation closure view de­

scribed above. A limitation of the layered view is the loss of information concerning 

interactions between components belonging to different domains. This limitation 

leads us to define the third view which does capture the software architecture of a 

system.

4.2.2.3 Rooted Component Subgraph View

Both, the relation closure view and the component domain view have their 

drawbacks since there is some information loss in both the representations. We 

therefore concentrate on defining a view that eliminates the information loss in 

the transitive closure view and the component domain graph view. The rooted 

component subgraph view captures all the information pertaining to a component 

that is available in the transitive closure and the component domain graph views 

as well as more information about the component that may not be present in the 

other two views. The rooted component subgraph is defined as follows (see Table 

4.3).

Table 4.3: Graph-theoretic Definition of a Rooted Component Subgraph

V =  {* }  U { S j  I S j  e  In t ( s i , S j )  V S j  € Int ( s j , S i ) }

E =  { ( s i f S m ) I S i ,  s m  €  V A 3 Int ( s i , s m ) 3 I =  i V m =  i }

RCG  (si) =  { V , E }
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Notation: Let st- denote a component of a program P. Let RCG(si) denote 

the component subgraph rooted at component s,-. The vertex set V  of a rooted 

component subgraph RCG{si) of component s,- consists of the component s,- and 

all the components that s, directly interacts with or that interact directly with st-. 

The directed edges set E  of RCG(s,-) consists of all the interactions between the 

components in V.

The rooted component subgraph view (see figure 4.1 (d)) is obtained as follows. 

Initially a single component is selected and included in the subgraph. This selected 

component is referred to as the root component. Next, all the components that 

the root component interacts with axe included in the subgraph. Finally, all the 

components that interact with the root component are included in the subgraph.

Rooted subgraph view gives insight into all the roles of the root component since 

all the interactions in which the component participates axe represented. Addition­

ally, the dependency of other components on the root component is also apparent 

since the nodes that interact with the root component axe also represented. A tex­

tual description of a rooted subgraph must contain the name of the component, the 

names of interactions that the component can participate in, and the names of the 

components that the root component interacts with. A collection of such textual 

documents provides the textual description of the LLSA of a system.

The collection of subgraphs rooted for every software component in the system 

aptly captures the LLSA of the system. The LLSA of a software system can hence 

be represented as a collection of rooted component subgraphs for each component 

in the system. Hence an equivalent definition of the LLSA of a system, in terms of 

the the rooted component subgraph definition is :
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Table 4.4: Definition of an LLSA Graph in terms of Rooted Component Subgraphs

[ LLSAjP)  =  L)SiRCG{Si) 1

To summarize, the LLSA graph is a comprehensive representation of a software 

system that captures multiple relationships in the system and expresses the system  

in terms of components. Dependence graphs and layered views of software systems 

can be constructed from the LLSA representation; but the LLSA of a software 

system cannot be completely determined from the dependence graphs or layered 

views of a system.

4.3 Low-Level Software Architecture of C + +  Programs

An abstract representation model of C ++ systems, based on the conceptual 

LLSA model described in the previous section, is presented.

The C + +  language [ES92] consists of syntactic constructs for expressing con­

stants, basic types, expressions, statements, declarations and definitions. A basic 

type is a type that is directly supported by the language itself -  such as integer. An 

object is an instance of a class, a variable is an instance of a basic type. Class decla­

rations in C ++ encapsulate the representation, behavior and properties of objects. 

Member functions of a class specify operations that can be performed on objects of 

that class. Function definitions manipulate objects to provide an object-oriented 

solution. Objects accept messages and comply with the request by executing the 

requested member function.
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N am e Name of the object and its scope

S ta tic  T ype Name of the class in the declaration of this object

D ynam ic T ype Names of descendant classes of the static type

P h ysical location  Files in which the object is declared, defined and used.

S ta tic  Interface Nonvirtual member functions of the class associated with the object

D ynam ic Interface Virtual member functions of the class associated with the object

D ynam ic Interactions
Sends Messages To Objects: Set of <  object,qualified member function name 
> . In case of pointer objects, qualified member name is a set. The object name 
in the tuple is obtained from the actual parameter list of the member function in 
the tuple that is invoked on this object.

Figure 4.2: Object Component Description Template

4 .3 .1  C om ponent D escription

The description template of each component is given in figures 4.3, 4.4, 4.2. 

The description of each component is essentially a textual representation of the 

rooted component subgraph view explained in section 4.2.2. The design of each 

description template is based on the analysis of components, their interfaces and 

interactions given in section 4.3. The LLSA of an object-oriented software system  

is represented as a collection of the textual descriptions of each component (class, 

function, object) in the system.

4 .3 .2  LLSA C om ponents o f a C + +  Software System

O bject C om ponent: Each object has a name and is either a global object or a 

local object of some function. In the case of local objects, the name of the 

enclosing function is the scope of the object component. In the LLSA model,
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N am e Name of the class

Physical location Files in which the class is declared and used.

Static Interface Qualified public member functions of the class.

Dynamic Interface Collection of tuples <  ancestor, qualified public member func­
tions that are available for the ancestor >

Static Interactions .
Ancestor Classes : Classes that this class inherits from 
Descendant Classes : Classes which inherit from this class 
Container Classes : Classes which contain this class.
Contains Classes : Classes which are contained in this class 
Friendly With Classes : Classes in which this class is a friend class 
Friend Classes : Classes which are friend classes of this class 
Object Family : Objects that are instantiations of this class 
Calls Functions : Functions that are called by member functions of this class 
Creates Objects of Classes : Classes such that the constructor function of the 
class is implicitly or explicitly invoked in a member function of this class 
Created By Classes : Classes that create objects of this class by invoking the 
constructor.

Dynamic Interactions
Associated With Classes : Classes such that this class has a pointer object of 
that class as a data member
Associate Classes : Classes which are associated with this class
Uses Members Of Classes: Classes such that a member function of this class
uses a member function of the other class.
Used By Classes : Classes that use a member function of this class

Figure 4.3: Class Component Description Template
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N am e Name of the function
Physical location Files in which the function is declared and defined.

Static Interface Classes that occur in the parameter list

Dynamic Interface Descendant classes of classes in the static interface

Static Interactions

galls Functions: Functions that this function calls 
ailed By Functions: Functions that call this function 
Creates Objects Of Classes : Classes such that the constructor function of the 

class is implicitly or explicitly invoked by this function 
Used By Classes : Classes whose member functions use this function

Dynamic Interactions
Sends Messages To Objects: Set of < object,qualified member function name >. 
In case of pointer objects, qualified member name is a set. The member function 
in the tuple is invoked on the object in the tuple.

Figure 4.4: Function Component Description Template

there are two kinds of objects -  a simple object (we call this an object) and 

a pointer object. Simple objects are instances of some class. Pointer objects 

point to an object of a class. All other object declarations can be classified in 

these two broad categories. Reference objects are simple objects. An element 

of an array of objects is a simple object, an element of an array of pointers 

is a pointer object. Pointers to functions are not represented as objects in 

the LLSA model. Objects have a static type associated with them which is 

the name of the class in the declaration of the object. Pointer objects have a 

static and a dynamic type associated with them. The static type is the name 

of the class in the declaration of the pointer object and the dynamic types are 

the set of classes that derive from the static class type.
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C lass C om ponent: There are four kinds of classes -  simple class, base class, de­

rived class and abstract class. A simple class is a standalone class that has no 

inheritance relationship with any other class. A base class is the term used to 

refer to a parent class in an inheritance relationship. Derived class is the term 

used to refer to child classes in an inheritance relationship. Abstract classes 

are classes that do not have any instances or objects. Abstract classes can 

only have pointer objects associated with them.

Function C om ponent: A function has a name and a parameter list. The param­

eter list specifies the type of the object (ie. the basic type or a class name) 

and the kind of object (ie. object, pointer object, array object etc.) The name 

of the function and its abstract parameter list are represented in the LLSA 

model.

4 .3 .3  C om ponent Interface

C lass Interface: A class declaration in a C ++ program consists of data members 

and member functions (collectively referred to as members). Members are 

segregated into three sections -  private, protected, public. Public members 

can be accessed by any other component in the program. Access to protected 

members of a class is limited to derived classes. Private members cannot be 

accessed by any other component and are restricted to the class itself. Data 

members of a class specify the representation of the objects of that class. C ++  

places no restriction on whether or not data members should be private or 

public. However, it is considered good practice to “hide” the representation 

of an object to ensure encapsulation and usually data members are private 

to a class. Data members of a class do not play any direct significant role
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in the overall structure of the system. Therefore we define the interface of 

a class solely in terms of the member functions of the class and ignore data 

members. The interface of a class is defined to be the collection of all member 

functions of the class. The textual description of a class component contains 

the qualified name of a member function. The qualified name of a member 

function is the name of the class in which the member function is defined and 

the name of the member function itself.

C ++  supports dynamic binding via virtual member functions of a class. The 

actual virtual member function that is bound to an object depends on the 

dynamic class type of the object. Non-virtual member functions are statically 

bound to an object depending on the static type of the object. Determina­

tion of the static/dynamic nature of a member function is possible from an 

examination of class declarations. For derived classes, determ in ing the nature 

of a member function may require an examination of all the classes in the 

inheritance hierarchy associated with the derived class.

Objects of a derived class exhibit the characteristics of the derived class and 

the characteristics of all the ancestors of the derived class. If we view a class 

as defining a type, then the type associated with the object is the derived 

class type and the ancestor class type. The member functions that can be 

invoked on the object depend on whether we view the object as having the 

type of the derived class or the type of the ancestor classes. Pointer objects 

can dynamically assume the type of the ancestor classes or the derived class 

type. Hence, the static type of a pointer object is the derived class itself, 

whereas its dynamic type is the set of ancestors of the derived class. This
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leads us to define the static interface and dynamic interface of a class in terms 

of the static and dynamic types of a pointer object of the class.

1. Static interface of a class : The static interface of a class c,- is the col­

lection of all the member functions defined in the class and the member 

functions of ancestor classes that can be accessed via this class.

2. Dynamic interface of a class : The dynamic interface of class c,- is a set 

of tuples <  Cj, dynamic — interface o f Cj >  where Cj is an ancestor 

of c,-. The dynamic interface of Cj in c,- is the set of methods that can 

be invoked on an pointer object of type c,- when viewed as an object of 

type Cj. If Ci has no ancestors, then its static and dynamic interaces axe 

identical.

Function Interface: We define the interface of a function to be its abstract pa­

rameter list. The abstract parameter list consists of the types (class names) 

of each parameter and the kind of parameter (object or pointer object). This 

represents the static interface of the function.

Since C ++ allows class conversion between a derived class and its ancestor 

classes, it is possible for multiple types to be associated with a pointer object 

parameter. The types that can be associated dynamically with a parameter 

are the descendant class types of the static class type.

1. Static interface of a function : The collection of tuples <  c,-, object/ 

pointer object >  where c; is the name of a class.

2. Dynamic interface o f a function : The dynamic interface of a function is 

set of tuples <  Cj, objed/pointer object >  where cj is a descendant of a
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class Ci in the static interface of the function. The dynamic interface is 

identical to the static interface if there are no pointer object parameters 

in the static interface of the function.

O bject Interface: The interface of an object is the set of messages it can accept. 

These messages may statically or dynamically bound to an object. Statically 

bound messages constitute the static interface of an object and dynamically 

bound messages constitute the dynamic interface of the object.

1. Static interface of an object : The static interface of an object is the 

collection of methods that are statically bound to it; ie. the non-virtual 

member functions in the static class type of the object.

2. Dynamic interface of an object : The dynamic interface of an object 

is the collection of methods that are dynamically bound to it; ie. the 

virtual member functions in the dynamic class type of the object.

4 .3 .4  C om ponent Interactions

An interaction is viewed symmetrically so that information about the interac­

tion is represented in the initiator and the recipient components. Each interaction 

is represented as a collection of the names of components with which a component 

interacts.

C lass Interactions: There are three class relationships that are used in object- 

oriented design -  (i) inheritance, (ii) aggregation, (Hi) association. Inheri­

tance is directly supported in C++; aggregation and association are simulated 

by using language features.
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Inheritance establishes a parent-child dependency between classes. Changes 

in ancestor classes may affect the dynamic interface of child classes. Changes 

in derived classes can affect the behavior of functions that interact with the 

ancestor classes. Inheritance is represented as the ancestor/descendant inter­

actions in the LLSA model of C ++ systems.

Aggregation establishes containment relationship between classes; ie. a class 

contains another class or is contained by another class. Aggregation is not di­

rectly supported by C ++. It can be easily modeled by including an object as 

a data member in the container class. The class type of the contained object 

indicates the class that is contained within the container class. Aggrega­

tion creates dependencies between classes that may be in different inheritance 

hierarchies. Changes in a contained class, its ancestors or its descendants 

may affect the class that contains it. This relationship is represented as a 

contains/contained-by interaction in the textual description of the class com­

ponent.

Association permits dynamic interaction between classes. Dynamic proper­

ties in software are realized via the concept of indirection or delayed binding. 

Pointer objects axe used to implement dynamic associations in object-oriented 

software systems. We classify the presence of a pointer object in a class as 

an indication of an association connection between the classes and represent 

it as a dynamic interaction. The association relationship we have defined for 

the LLSA of C ++ systems models a dependency between classes belonging to 

distinct inheritance hierarchies. It is represented as the associates/associated 

witk interaction.
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Member functions of a class can use the members of another class directly 

via the friend feature of C ++ . This feature is a convenience provided by 

C ++ to allow classes to use the private restricted part of another class. The 

friend construct connects classes that belong to separate inheritance hierar­

chies and hence friends/friendly with are class interactions that are included 

for representation.

To a lesser extent, classes also interact with functions and objects. The invo­

cation of a function in the body of a member function represents class-function 

interaction. This interaction is referred to as the calls functions interaction. 

Information regarding the collection of objects associated with a class is useful 

in determining the effect of a change in the class on the objects. This implicit 

class-object interaction is represented as the object family interaction.

Member functions can create objects and send messages to objects. These 

capabilities of member functions are represented as interactions between the 

classes that contain the member functions and the classes of the objects that 

the member functions operate upon. This gives rise to two kinds of interac­

tions creates objects/created by and uses members/used by. As a result of the 

analysis, the following static and dynamic interactions are defined for a class 

component.

1. Static Interactions: The following interactions can be precisely deter­

mined by performing a static analysis of the code -  ancestors/descendants, 

containers/contains, friends/friendly with, object family,uses functions 

and creates objects/created by.
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2. Dynamic Interactions For the following interactions, the precise class 

with which a class component interacts cannot be determined statically. 

The possible set of classes with which a class interacts is determinable 

and is represented in the textual description. The dynamic interactions 

for a class axe associates/associated with and uses/used by.

Function Interactions: Functions interact with one another by performing a. func­

tion call. Each function call results in the transfer of control from the caller 

function to the called function. Function calls can be statically determined 

and are classified as static interactions. This interaction is represented as the 

call/called by interaction.

Creation of objects within functions can be viewed as a function-class in­

teraction. This interaction establishes inter-component dependencies and is 

recorded as the creates objects of class interaction.

Functions send messages to objects. In the case of an object, the sends mes­

sages relationship is static because the member function (both, virtual and 

non-virtual) that is invoked can be statically determined. For pointer objects, 

the type of the pointer object and the actual member function that is bound 

to the object axe both determined dynamically. The sends messages interac­

tion is classified as a dynamic interaction because of the dynamic nature of 

method-binding to pointer objects. The static and dynamic interactions that 

a function component is capable of exhibiting are :

1. Static Interactions The collection of functions that a function invokes 

called functions and the set of functions that call a function caller func­

tions.
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2. Dynamic Interactions The sends messages to objects interaction is rep­

resented as a collection of tuples. The tuple <  object, qualified member 

name >  represents a member function that is statically bound to an ob­

ject. For pointer objects, the tuple represents the complete set of possible 

member functions that can be bound.

O bject Interactions: Object-oriented design models its solution in terms of mes­

sages exchanged between objects. There is no direct construct in C + +  that 

supports message exchange between objects. Objects can only receive mes­

sages. However, objects can interact with each other indirectly. This indirect 

interaction is achieved by passing an object as a parameter to a message that 

is sent to another object. The static and dynamic types of an object can be 

viewed as implicit object-class interactions.

There is no direct interaction between objects and functions. But there are 

dependencies between objects and functions. Functions manipulate objects 

by sending messages to them. Therefore, objects can be modified and acted 

upon by functions. Due to the aliasing problem it is difficult to determine the 

functions that modify an object if the object occurs outside the context of the 

function. We therefore do not represent any interaction between an object 

and a function and rely on the interaction between a function and an object 

for producing meaningful information. An object component participates in 

the following static and dynamic interactions:

1. Static Interactions There are no static interactions initiated by objects.
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2. Dynamic Interactions A dynamic interaction between two objects o,- and 

Oj is represented as a tuple <  Oj, member function  > . The class c, of ob­

ject Oi has a member function  which has a parameter of type cj, where 

Cj is the class of object oj. The collection of such tuples sends messages 

to objects partially represents information about messages exchanged be­

tween objects. This is a partial representation because objects can ex­

change messages in other more indirect ways.

4.4 Representational Support o f LLSA

The LLSA text description of each component represents the micro-architecture 

associated with the component. The information provides a direct lead to the 

components that may be investigated next (such as function main).

The inclusion of the names of interacting components in the LLSA description 

of a component is a significant contribution towards code navigation and code com­

prehension. An examination of a class declaration reveals the purpose of the class 

and the services it provides. Determining the protocol to be followed when using 

the class requires the examination of at least one object of that class. The messages 

that axe sent to the object and the order in which the messages axe sent establish 

the protocol that must be followed. Information about this protocol is available in 

functions that send messages. The LLSA associated with an object that appears 

in the object family of a class LLSA reveals the location (file and function) of the 

object. The LLSA of the function reveals the messages sent to the object.
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As explained in section 4.2.2, various views can be constructed over the LLSA 

model to highlight certain aspects of software structure. This view capability is 

additional modeling support provided by the LLSA model.

The model also lends itself to further abstraction. Clustering techniques can 

be used to group related components together into a subsystem; relationships can 

then be defined over the subsystems to give rise to an abstract design-level software 

architecture representation.

4.5 How will LLSA be used ?

The LLSA model can be used to perform structure-preserving maintenance. 

Different types of code changes in a class are defined in [KGH+94]. The impact 

of a code change in a component can be expressed in terms of the change in the 

static/dynam ic interfaces of the components and the static/dynamic interactions 

of the component. If the LLSA obtained after the change does not match the 

LLSA of the original unchanged component, then the structure of the system has 

been affected and the affected components can be directly determined by comparing 

the interactions of the changed component with the interactions of the unchanged 

components.

4.6 Summary

An abstract representation model for object-oriented software systems that de­

picts the components and interrelationships between the components was defined. 

The information content in the LLSA model is comprehensive and rich in structural 

information. Views of software systems can be easily defined and determined from
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the LLSA representation. The LLSA model abstracts structure-significant aspects 

of object-oriented software systems and ignores statement-level computational de­

tail. The behavior of the system, in terms of its LLSA representation, is expressed 

in terms of the static and dynamic interactions between the components. The ef­

fect of code changes to a software system can be expressed in terms of the effect on 

individual components, their interfaces and their interactions. Structure-preserving 

maintenance is therefore aided by the LLSA representation which can show the 

effect of code modifications on the overall structure of the system.
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C hapter 5

Low-Level D esign Patterns

5.1 Introduction

Notionally, a pattern is a recurring structure, a leit-motif. A pattern has a 

name, elements and relationships between elements. To illustrate, consider two 

simple geometric patterns, a star and a hexagon (see figure 5.1).

The first geometric pattern (figure 5.1.a) has the name star. It has six vertices. 

Each vertex is connected to two other vertices. The structural rule governing the 

connections is that adjacent vertices cannot be connected. The second geometric 

pattern (figure 5.1.b) has the name hexagon. It has six vertices. Each vertex is 

connected to two other vertices. The structural rule governing the connections is 

that adjacent vertices must be connected.

It is interesting to note that the two geometric patterns -  star and hexagon 

have the same number of elements (namely, vertices and edges) and some similar 

properties (each vertex is connected to two other vertices) yet very different struc­

tures. The structure of a pattern can therefore be informally defined as the rules 

governing the connection between elements. The rules may specify the kind of con­

nection that is permitted between the elements and the nature of the connection. 

Structural rules are designed to imbue the pattern with desirable properties. For 

instance, the star pattern can be viewed as being composed of triangles or of lines 

and vertices whereas the hexagon can only be viewed as being composed of lines

94
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(b) Hexagon (c) Star in a Hexagon(a) Star

Figure 5.1: Geometric Patterns

and vertices. The star pattern thus has the desirable property of two possible meth­

ods of construction. The structure of a pattern is a significant characteristic that 

allows one to identify and classify patterns as well as reason about the structural 

properties of the pattern.

Patterns can be composed to form more complex patterns (see figure 5.1.c). 

Composability has two significant consequences -  (i) a complex and large structure 

can be incrementally constructed by composing simpler and smaller patterns (ii) 

a large complex structure can be understood by decomposing it into smaller and 

simpler structures that are easier to understand and analyze.

5.2 Pattern Languages

Patterns as used in the object-oriented community has its origins in Christopher 

Alexander’s work in architectural patterns [Ale77, Ale79, Lea94, Coa92]. Alexander 

et al [Ale77] define a pattern language to be an ordered collection of patterns. A 

pattern describes a commonly occurring problem, the solution to the problem and 

the patterns with which this pattern is connected. Connections between patterns 

establish an order between the patterns and connections also provide each pattern
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with a context. Larger patterns are more completely described by smaller patterns. 

Smaller patterns are useful in the context of the larger patterns. Requiring a pattern 

to specify and justify its existence in the context of other existing patterns forces 

the pattern language formulater to design solutions that fit coherently and elegantly 

with each other.

The solution in a pattern describes the bare essential characteristics that any 

solution to the problem must have but leaves ample room for variation. The varia­

tions permitted are such that the core of the solution is not affected by them. For 

example, the solution in a pattern description of the human hand would specify the 

bone structure of the hand, the positioning of each bone with respect to the others, 

the number of joints necessary for flexibility and the degrees of movement for each 

finger. The length of each bone, the precise angle between the bones the shape of 

each bone are all factors that can be varied. Therefore, comparison at the level of 

bone structure leads one to say that one human hand is very much like another; 

but at a finer and more detailed level of comparison, there are plenty of distinctive 

features in human hands that distinguish them from one another and allow one 

to say that no two hands are alike. The solution in a pattern can therefore be 

described as an abstract, general solution whose goal is to identify the invariant or 

unchanging aspects of any solution to the problem. It may not always be possible 

to find such a core solution in which case the solution in the pattern represents one 

of a possible set of solutions.

In essence, a pattern language provides a series of patterns of varying levels 

of abstraction, each of which can be selected and combined with other patterns to 

provide a single coherent solution to a large problem. The basic concepts underlying
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the theory and definition of Alexander’s patterns have been found to be useful and 

applicable in the design of software systems too.

Patterns occur in various phases of software development, and a program can 

be viewed as being composed of a hierarchy of patterns, where each higher level 

represents a more abstract view of the program. The set of patterns that make 

up a program are variously referred to as a pattern language of the program, a 

framework of the program, or the architecture of the program.

5.3 D esign Patterns

Design patterns [GHJV93, GHJV94] capture solutions to commonly occurring 

problems in object-oriented design. A design pattern is an informal textual descrip­

tion of the problem, its context, the solution and the consequences of applying the 

design pattern [GHJV94]. The textual description of'a design pattern follows a for­

mat specified in a design pattern template (see [GHJV93, GHJV94] for the design 

pattern template). The template is a comprehensive and informative representa­

tion of the problem addressed by the designers, the nature of the solution and its 

motivation, the applicability and consequences of the solution and the participants 

in the solution. The relationships between the participants as well as the nature of 

the relationships are captured in the form of structure and collaborations between 

the participants. A design pattern is a succinct and comprehensive representation 

of design information which can be viewed as a microarchitecture or a small subsys­

tem. Design patterns may be used in conjunction with one another to solve a larger 

object-oriented design problem. Idioms [Cop92] are language-specific patterns.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



98

Gamma et al have devised a catalog of design patterns that address a variety 

of object-oriented design problems. The solutions proposed in the design patterns 

presented in [GHJV94] themselves use some common techniques and object-oriented 

principles to lend the properties of extensibility and reusability to the patterns. One 

of the techniques used is the strategy of decoupling components in order to reduce 

dependencies amongst them and create a flexible extensible solution (see Abstract 

Factory (87) in [GHJV94]). While decoupling is easily understood as a useful design 

concept, it must be implementable in an object-oriented language in order to retain 

the benefits of a decoupled design. Low-level design patterns capture such low-level 

programming techniques that recur in the design pattern descriptions.

A design pattern describes the problem, the constraints that a solution must 

fulfill and the solution to the problem. The solution is specified so that all the 

elements and the interrelationships that axe necessary for the solution are fixed (ie. 

the structure of the solution is specified). Identifying or recognizing the occurrence 

of a design pattern in a software system is an activity that can be completed if (i) 

the design pattern is known (ii) the structure of the design pattern is distinctive 

and unique (iii) the elements axe identifiable. The structure of a design pattern is 

often quite complex; moreover, structures of different design patterns share some 

common substructure. This substructure can be viewed as a recurring pattern 

across design patterns. Low-level design patterns correspond to common object- 

oriented techniques that have distinctive structures. From the software architecture 

representation viewpoint, a design pattern has the following useful characteristics.

•  The description of a design pattern lists the participating classes and objects 

in the P articipants section. This information is useful in determ ining the 

components that are likely to be affected if one of the participants is modified.
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•  The D iagram  (D iagram  has been replaced with Structure in [GHJV94]) 

section describes the static structure connecting the participants. This is 

useful in determining the nature of the dependencies and relationships between 

the participants.

•  The C ollaborations section explains the order in which the participants 

interact and the precise nature of the interactions. This section is therefore 

useful in understanding why the participants are structured in a particular 

way.

•  The design pattern description partially captures inter-design-pattem rela­

tionships in the See also section by listing the names of patterns that a 

design pattern can combine with.

A set of patterns of a program provides insight into the logic and design ratio­

nale underlying a software system. A pattern language of a software system also 

describes the overall architecture of the system.

5.4 Low-Level Design Patterns

We define a low-level design pattern (LLDP) to be an informal textual rep­

resentation of a com m on object-oriented strategy occurring in a software system. 

LLDPs describe the structure of a recurring strategy as well as the structure, seman­

tics and usefulness of the strategy. Three sets of LLDPs -  polymorphism., decoupling 

and messages are presented. The LLSA abstract model provides a view of software 

systems that captures the dependency relationships between code, and the nature 

of the dependencies. LLDPs provide the reasons that the dependencies must exist 

and be preserved.
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The connection between LLSA interactions and the structure of an LLDP is 

explained in section 5.4.1, a description of the textual template designed for defining 

LLDPs is given in section 5.4.4. The definitions of the polymorphism LLDPs, 

decoupling LLDPs and messages LLDPs axe provided in sections 5.4.5, 5.4.6, and 

5.4.7 respectively.

5.4.1 Low-Level Design Pattern Structures

As explained in chapter 4, the LLSA textual description of a component of a 

system depicts those component relations that can be completely determined from 

an examination of the source code and a thorough understanding of the syntax 

and semantics of the programming language used for the implementation of the 

source code; ie. for each interaction described in the LLSA model, there exists a 

corresponding syntactic construct (or group of constructs) in an object-oriented pro­

gramming language. The syntactic constructs of an object-oriented program m ing  

language that correspond to LLSA interactions are referred to as fundamental pat­

terns of interactions in this work. Fundamental patterns for the C ++ program m ing  

language are described in section 7.4.1.

LLDPs are at a higher level of abstraction than the LLSA model (see figure

1.3 in chapter 1). The structure of an LLDP is expressed in terms of the LLSA 

interactions. The relationship between the structure of an LLDP, LLSA interac­

tions, fundamental patterns of interactions and programming constructs is shown 

in fig 5.2. The structure of an LLDP is defined in terms of one or more LLSA 

interactions, each LLSA interaction is defined in terms of one or more fundamental 

patterns of interactions, each fundamental pattern of interaction is defined in terms 

of one or more programming construct. There axe two kinds of structures an LLDP
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Structure 
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Patterns of 
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Figure 5.2: Relationship between LLDPs, LLSA, Fundamental Patterns and Lan­
guage Constructs

can exhibit -  (i) structure that spans the LLSA descriptions of two or more com­

ponents and thus exposes hidden dependencies and (ii) structure that is confined 

to the interactions within the LLSA description of a single component. Both these 

structures are shown in figure 5.3.

5.4.2 LLDP Structure that Exposes Hidden Dependencies

Consider the LLSA graph of program P  in figure 4.1 of chapter 4. Let us exam­

ine the rooted component subgraph views of component C\ and Cs (RCG(Ci) and 

RCG(Cs) are shown in figure 5.3 (a) and (b) respectively). The LLSA of component 

Ci does not show any interaction with C$ and vice-versa. Thus, from the LLSA 

representation model, it appears that there is no dependency between components 

Ci and C5. However, an examination of the complete LLSA graph in figure 4.1 

reveals an indirect dependency between Ci and C$ via the components Cz and C4. 

In essence, it is possible for an object-oriented strategy to organize the components 

C i, C3, C4, C5 in such a way that there is no direct syntactic dependency between 

Ci and C5 and yet if Ci is modified then Cs is likely to be affected by the mod­

ification. Such an object-oriented strategy (LLDP) whose structure is distributed 

over the LLSA component descriptions of more than one component is said to incur
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(d) LLDP Structure completely within C . LLSA

Figure 5.3: Low-Level Design Patterns Defined Over LLSA
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hidden dependencies. One such example is the polymorphism, LLDP which incurs 

dependencies between classes, objects and functions.

5.4.3 LLDP Structure Embedded in the LLSA Description of a Com­
ponent

The structure of an LLDP can be completely embedded in the LLSA descrip­

tion of a single component; ie. it is possible for the structure of an LLDP to 

correspond to a single LLSA interaction. In such cases, the difference between an 

interaction and an LLDP may appear trivial but in essence the benefit of the LLDP 

over the interaction is that the LLDP description documents the probable purpose 

of the interaction. Understanding the rationale or purpose behind the particular 

organization of code is necessary in maintenance. For example, the structure of the 

decoupled classes LLDP corresponds to the the associates class interaction.

5.4.4 Low-Level Design Pattern Template

In this section we describe the low-level design pattern template. The template 

serves as a mechanism for expressing those aspects of a technique that are useful 

* ..from the maintenance perspective. This template is given in figure 5.4.

A low-level design pattern is comprised of Name, Intent, Elements, Collab­

orations, Example, Benefits, Changes, and Consequences. The Name and Intent 

sections together describe what the technique does. If the applicability of the tech­

nique is not obvious, then a situation where the technique may prove to be useful 

is provided in the Intent section. The Elements section of an LLDP is comprised 

of the components of the LLSA model. The Collaborations entry in the template 

describes the structure of the LLDP and the nature in which LLSA components
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N am e Name of the low-level design, pattern

Intent Purpose of the pattern (document properties)

E lem ents Entities that play a significant role in this technique.

C ollaborations Description of how the elements cooperate to achieve the objec­
tive; also give the sequence of interactions.

E xam ple The actual code implementing this technique

B en efits The desirable properties of this LLDP

C hanges List of modifications on this LLDP and their impact on the elements

C onsequences An analysis of some of the negative aspects of the LLDP that 
complicate code understanding from the maintenance perspective.

Figure 5.4: Low-Level Design Pattern Template

and their interactions co-operate to achieve the intent of the LLDP. Example gives 

actual code illustrating the technique. The Benefits section attempts to explain the 

rationale underlying the technique and the benefits of using the technique. The 

benefits of a technique may be illustrated by comparing the technique with alter­

native strategies and comparing the merits and demerits of the strategies. Changes 

lists valid syntactic and semantic modifications that can be made and the effect of 

the changes on the technique. The Consequences section presents an analysis of the 

technique from the program comprehension aspect.

The Name, Intent, Elements and Consequences sections of the LLDP are 

language-independent aspects of the LLDP. The Collaborations, Example and Changes 

sections of the LLDP template are necessarily language-dependent. The techniques 

described in sections 5.4.5-5.4.7 are expounded and explained in detail (including
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examples illustrating their applicability) in [GHJV94, Str91, ES92, Cop92, Ste93, 

Mey88, Gol83j.

5.4.5 Polymorphism

An overview of the concept of polymorphism is provided in section 2.5.7.4. 

This section defines three different kinds of polymorphism in the context of object- 

oriented programming. The LLDPs are presented in figures 5.5, 5.6, 5.7.

5.4.5.1 Ad-hoc Polymorphism

The simplest kind of polymorphism is ad-hoc polymorphism. Ad-hoc polymor­

phism is defined and explained in [Weg87, Jon87, CM91, Boo93]. Ad-hoc polymor­

phism is the mechanism whereby the meaning (or the semantics) associated with 

an expression depend on the context that the expression appears in. Typically, 

the term ad-hoc polymorphism is used to denote overloaded language constructs. A 

classic example of overloading is the different program m ing language semantics as­

sociated with the operator ’+ ’• In the program m ing language FORTRAN, operator 

’+ ’ is overloaded to mean integer addition, floating-point addition, double floating 

addition or complex addition [Mac87]. In C-t—(-, the operator ’+ + ’ is overloaded to 

mean post-increment and pre-increment depending on whether the operator follows 

and expression or precedes an expression respectively. Some program m ing lan­

guages allow the programmer to overload operators; examples of such program m ing  

languages are C ++ and Ada [Seb93j. C ++ and Ada allow one or more functions 

to have the same name. Consider the problem of writing a program that requires 

a subroutine for sorting strings and another for sorting integers. The basic sorting 

strategy used in the two sorting procedures is likely to be the same; two subroutines
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are required because the data to be sorted is of different types -  strings and integers. 

In such a situation, overloading procedure names is a useful technique for grouping 

related subroutines by giving them the same name. The subroutines are differenti­

ated by the types of the parameters that they accept. The number of parameters, 

the types of each parameter of a function and the order in which the types appear 

form the signature of the subroutine. The signature of each overloaded subroutine 

can also include the return type of the subroutine and is unique.

When a compiler encounters a function call to an overloaded function, it re­

solves the call by examining the types of the parameters in the call with the signa­

tures of each overloaded function and determining the best possible match between 

the call and the overloaded functions. A program reader must perform the com­

piler’s resolution process when he or she attempts to understand code that includes 

a call to an overloaded function. For the human reader this is a time-consuming 

and difficult job that entails remembering type conversion rules, and the compiler 

resolution algorithm. The advantages of this technique, from the program m ing per­

spective axe listed in the benefits section of figure 5.5. The effect this LLDP has on 

program understanding axe listed in the consequences section.

Modifications that can adversely affect the structure of this LLDP axe simple 

and avoidable. The modifications are explained in terms of the example shown in 

figure 5.5. Function / i  calls function /2  where function f t  is an overloaded function. 

Suppose a maintenance request requires the code in function f i  to be modified and 

one of the changes is a change in the type of a parameter that is sent to fi-  Changing 

the type could result in the invocation of a different overloaded fz  than the original 

one, leading to an undetected change in the behavior of f i  and an introduction of
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N am e Overloading Procedure Names

Intent To simulate polymorphism in a statically typed language 

E lem ents Functions / i  and / 2

C ollaborations Function f i  calls / 2; function / 2 is overloaded. 

E xam ple
f2( char c. char * str) {

printf f%c %s\n’,c.str): \sE~z))
}
f2 (int a, double d, chare) { (o3)

/*....*/
}
«(){ LLDP Structure

f2( 12,35.6,'c');
}

B en efits (i) Programmer does not have to think of new names (ii) Compiler auto­
matically determines which overloaded function to invoke (iii) Allows proce­
dures with similar functionality to share the same name thus aiding in read­
ability (iv) Overloading can be used to produce the same result for parameters 
of different types.

C hanges (i) Parameter type change changes the signature of an overloaded func­
tion (ii) Function call must be carefully coded (iii) Errors can be introduced 
if a parameter is misplaced or missing altogether

C onsequences (i) It is difficult for a program reader to determine which function is 
invoked (ii) Behavior of caller can depend on the function that is invoked (iii) 
Ensuring that the overloaded functions have similar functionality is difficult; 
involves a detailed analyis of each overloaded function

Figure 5.5: Polymorphism LLDP-1
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a bug. Similarly, changes in the types of the parameters of one of the overloaded 

fz  functions could result in a change in the behavior of f \.

5.4.5.2 Polymorphism And Reuse

Consider a situation where a class has been defined and is commonly used. For 

example, the class implementing the concept of string, say class String is commonly 

used and string operations such as strcmp for comparing strings, strlen for obtaining 

the length of a string, are defined and encapsulated in the class. Now, a class must 

be defined that has a string as one of its data members. Let us refer to the new class 

as class Person. Class Person has a data member Name which stores the name of 

a person as a string of characters. One of the operations class Person must provide 

is a comparison of different objects to determine if two people have the same name. 

In such a situation, instead of coding the logic of strcmp and providing an operation 

for class Person, a more general and better solution is to treat Person objects as 

String objects and use all String operations on Person objects. Such a solution is 

feasible in C ++ where conversion between objects of different classes is possible by 

overloading a special member function of a class -  the constructor, or by providing 

an explicit conversion operator. In essence, class String can provide a constructor to 

convert Person objects to strings, or class Person can provide a conversion operator 

which converts Person objects to String objects. The structure, benefits, changes 

and consequences of using this LLDP are listed in figure 5.6.

5.4.5.3 Polymorphism Using Inheritance and Dynamic Binding

Polymorphism as explained in section 2.5.7.4 is very easily and directly sup­

ported in Smalltalk [Gol83]. Eiffel and C ++ use rely on inheritance and dynamic

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



109

N am e Reusing a polymorphic function

Intent To make an existing piece of code work on a new type with minimum 
modifications.

E lem ents classes ci, C2,

C ollaborations Class Ci allows objects of class C2 to be converted into objects of 
class ci.

Example
class ci {

/•_.*/ __________
}
class e2{ b» \  /  static imertice

operator cl ( ) { T  _.*/) ( T )

}
(2( class cl otfl{ tlDPSuoeue

obpnC):
)
«<H

class c2 o2:
tt(o2);

)

B en efits (i) The operations provided by class ci can be used on objects of class 
C2.(ii) The use of this technique reduces code duplication across classes (iii) 
The functions that accept and manipulate objects of class Ci can do the same 
with objects of class C2- The functions do not have to be modified or changed 
in any way. Hence, the functions that operate on objects of class Ci are reused, 
(iv) the class C2 is in a different class hierarchy than Ci.

Changes (i) Any changes made to operations of class ci affect the behavior of 
objects of class C2. One of the most drastic code change that can adversely 
affect objects of class C2 is a change in the representation of class ci objects. 
The effect of such a change can be mollified if the conversion function is also 
modified to accomodate the new representation of ci objects.

C onsequences (i) The use of this technique effectively allows an objects to have 
aliases. For example, a Person object, due to this technique, has a String 
alias, (ii) Employing this technique requires a detailed understanding of the 
type conversion rules of the language, (iii) understanding it requires an under­
standing of how the compiler actually implements and supports constructors.

Figure 5.6: Polymorphism LLDP-2
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N am e Polymorphism in OOPL

In ten t To implement a polymorphic function in C ++

E lem en ts classes ci,C2, functions / i , / 2, object 01,02

C ollaborations function f \  accepts object 01 of type c%. function f i  sends a 
message to 01. class C2 inherits from class ci ana accepts messages specified 
in c i’s interface. Function / 2 invokes function f i  passing object o2 as the 
parameter. 02 is an object of class c2.

Example
class cl {pubGc:

virtual injm( ); / y - 0 \  inherits fron»
} (  1 * j - Cclasses: pubBc e1 {

pubSe:
j  Wm( ) ;
<2(dasscl *obj)t

uses\ V A a6c interface

( J
obt->m(V.

) LLDPSutxttre
11 (H

class c2*o2;
12(02):

)

B en efits (i) The polymorphic function f i  can accept objects of any class that 
derives from class Ci- (ii) Reusing function f \  is a simple matter of defining a 
new class, say class c* that inherits from class ci and class Cn redefines method 
draw.

C hanges (i) Dynamic binding can be lost by the removal of a keyword thus in­
troducing a bug and changing the behavior of the system. (ii)Because of the 
limitations in the language, f i  must accept pointer objects to exploit dynamic 
binding, (iii) If f \  is modified to accept objects of class C2 instead of c i, the 
function will be restricted to accept objects of classes that derive from class 
c2 instead of class ci.

C onsequences (i) For derived classes that use multiple inheritance, determining 
the actual method that is invoked is a difficult task that involves examining 
all the classes in the inheritance hierarchy and using the semantic rules of the 
implementation language to resolve the method.

Figure 5.7: Polymorphism LLDP-3
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binding to support polymorphism. Consider a function, Display whose purpose is 

to draw an object of any shape on the screen; ie. function Display should be poly­

morphic and should be able to accept objects of any shape. This function takes in 

an object of class Shape and sends the message draw to the object and the object 

draws itself on the screen. In order to implement such a function in C ++ or Eif­

fel, the program must make proper use of inheritance and dynamic binding. Class 

Shape represents a general abstract class, and class circle and class square derive 

from class shape. Class Shape includes the draw operation in its interface but the 

actual implementation (or definition) of the draw operation is deferred to classes 

that derive from class Shape by using a special keyword (virtual in C ++ and rename 

in Eiffel). Hence classes circle and square each define the draw operation to draw 

their characteristic shapes. Type conversions between derived and base classes in 

C ++ and Eiffel allow objects of class circle and class square to be treated as objects 

of class Shape. Hence when circle or square objects are passed to function Display, 

the draw function invoked on these objects is determined by the type of the object 

due to dynamic binding. This LLDP is shown in figure 5.7.

5.4.6 Decoupling

As explained in chapters 1 and 2, a software system exhibiting low coupling is 

considered to have a good design. This section discusses LLDPs that demonstrate 

when decoupling of components leads to a flexible design and the benefits and 

drawbacks of decoupling. The decoupling LLDPs are presented in figures 5.8, 5.9,

5.10.
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N am e Decoupling A Class From its Representation 

In ten t To allow flexible data-structure organizations 

E lem en ts Classes Ci,C2

C ollaborations Class Ci is associated with c2 and Ci creates0bjects o f c2. For 
every object of class ci, an object of class C2 (or any class that derives from 
C2) is created. Representation is a private data member.

Example
dasscl { 

public: 
c2*rep;
c1 () {rep = newc2;}

}
classes { 

r __•/
}
dass c3: dass c2 {

} r “  '  
dass cn: dass c2 {

a a ta  otijeasofcbss
.associated with

LLDPStrocunt

B en efits (i) Customizable data representation (ii) Objects of class c2 axe not re­
stricted to a single representation; instead they can choose from the represen­
tations offered by class C2 and its descendant classes.

C hanges (i) If the representation is changed from a pointer object to a simple 
object, this technique is destroyed, (ii) In the interests of encapsulation and 
information hiding, the representation must be private to class c2. (iii) The 
representation is typically created by a method of class c2, but it is possible 
for it to be created outside class c2. Creating the representation in class c\ is 
a logical design strategy.

C onsequences (i) The presence of this tecnique complicates code understanding 
because it is not easy to determine the representation associated with an 
object of class c2. (ii) After understanding the concept of class as being a 
specification for the common structure and behavior of similar objects, this 
technique forces one to accept that similar objects can have different struc­
tures! (iii) Due to this technique the behavior of an object will be partially 
determined by its representation. Understanding the behavior of objects and 
consequently the system is further complicated by the use of this technique.

Figure 5.S: Decoupling LLDP-1
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5.4.6.1 Decoupling a Class from its Representation

Consider a situation where three possible data structures are being tested to 

determine their effectiveness. One way to perform such a test would be to im­

plement three classes each with their own data structure representations and test 

each class. A better and more general approach would be to decouple a class from 

its representation and create three objects such that each object had its own data 

structure representation. Decoupling the representation of a class from the class is 

referred to as object composition in [GHJV94].

This technique involves classes Ci, and C2 such that class Ci contains a pointer 

object of class C2. Whenever an object of class c\ is created, a corresponding object 

of class C2 or descendant classes of C2 are created. This enables objects of class c\ 

to have dynamic and different representations.

5.4.6.2 Decoupling for Flexible Design

Object oriented analysis and design often establish an association relationship 

(see sections 1.1.2 and 2.6 for an explanation of association) between classes. As a 

consequence of this relationship between classes, objects of the classes can connect 

with each other dynamically. Consider a software system that is designed to handle 

exceptions. For each kind of exception there is an associated exception handler. 

Every time an exception occurs, the appropriate exception handler is invoked to 

cater to the exception. An object-oriented design of such a system would have a 

class Exception and another class ExceptionHandler. Assume there axe three kinds 

of exceptions; correspondingly there axe three kinds of exception handlers. There 

can be any number of exception objects in this system; but exactly three exception 

handler objects. Each exception object will be associated with its corresponding
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N am e Associative Classes
In ten t To support the dynamic association of objects 

E lem en ts Class ci,C2 

C ollaborations class Ci associates with c-i 

E xam ple
dasscl { 

public: 
c2*m:
cl (c2 * n) {m = n;}

}
dassc2 {

/*._*/
}
dass c3: dass c2{

r  */
}

with

LLDP Structure

B en efits (i) Ensures a decoupled and flexible design of classes, allowing weakly 
related classes to be associated with another, (ii) Allows objects to connect 
with each other at run-time, (iii) This technique allows a system to be easily 
extended because the classes axe decoupled.

C hanges (i) If the data member is changed from a pointer object to a simple 
object, this technique is destroyed, (ii) In the interests of encapsulation and 
information hiding, the representation must be private to class ci.

C onsequences (i) It is possible for more than one object of class ci to be associ­
ated with a single object of class C2. The object of class C2 can therefore be 
manipulated via any of the objects of c\. This complicated code understand­
ing because it is difficult to predict the behavior of the object of class C2. (ii) 
The destruction of the object of class c2 is an event that must be broadcast 
to all objects that axe associated with it so that they realize that the ser­
vices of the destroyed object are not available, (iii) Understanding the design 
rationale underlying some of the association relationships between classes is 
a non-trivial task if the association relationships are different from the ones 
that the program reader imagines they should be.

Figure 5.9: Decoupling LLDP-2
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exception handler object. The creation of the ExceptionHandler objects occurs 

independent of the creation of Exception objects. The structure of this LLDP 

(shown in figure 5.9) appears to be similar to the structure of the Decoupling LLDP- 

1 shown in figure 5.8. The difference between these two techniques is that there 

is only one interaction between class Ci and class C2, namely, the associates with 

interaction whereas in the previous technique, there are two relationships between 

the classes -  associates with, creates objects of class.

5.4.6.3 Decoupling a Function from a Class

Functions in object-oriented languages can accept objects. The interface of the 

class of the object determines the messages that can be invoked on the object. An 

object-oriented strategy that allows flexible, extensible and decoupled code to be 

developed is to design a general class (also called an abstract class) whose interface 

reflects the most general services that may be expected from objects of that class 

or objects of classes that derive from it. Functions are then defined to accept 

objects of the general class so that the function components are decoupled from 

specific classes and restricted to interact only with the most general classes. Such 

a strategy ensures that changes in class design do not affect functions. Changes in 

the interface of the general class will affect functions. This LLDP is shown in fig

5.10.

5.4.7 Messages

Message passing is a significant feature of the object-oriented paradigm. Object- 

oriented analysis and design methodologies have developed notations to represent 

message passing between objects and classes. The message passing model supported
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N am e Decoupling a function from child classes 

In ten t To reduce dependencies and enhance low-coupling 

E lem en ts Function / i ,  class C\

C ollaborations At run-time, 02 is an object of class C2. f i  accepts a pointer to 
class Ci as a parameter. functionsendsmessagetoo2 . The method that is 
actually executed as a result of the message is in class C2 and not in class ci.

E xam ple
d a s s c l  { 

public: 
int m ( ) ;  

j int ml ( ) ;

class c 2 : public c1 { 
public: 

j int mm1 ( ) ;

f2( class c1 * obj) { 
obj->m1 (); 
obj->m2();

inherits from

LLDP Structure

B en efits (i) Function f \  deals with class ci only; ie. the messages that f \  can send 
are specified in the interface of class ci. (ii) Function f i  is decoupled from the 
classes that actually receive and act upon the messages.

C hanges (i) If Function f[s  parameter type is changed from ci to c2, function f i  
becomes less general. Such a change may make the additional services of class 
c2 available to f u  but this comes at the cost of / i  being restricted to accept 
objects of class C2 and classes that derive from C2 whereas previously / i  was 
capable of accepting objects of class ci and classes that derive from Ci which 
is a larger hierarchy than the one rooted at class C2.

C onsequences (i) This technique enforces the rigid interface of the general class Ci 
on functions and obscures the specific class that the function actually interacts 
with. Once again, determining the actual class and method that is used 
requires understanding the semantic rules of the implementation language, 
(ii) The general interface of class c\ is often a union of the interfaces of the 
classes that derive from it. In the case of a badly designed class hierarchy this 
results in a cumbersome and complex interface. Understanding the class, the 
interface and the purpose of each method becomes a difficult task.

Figure 5.10: Decoupling LLDP-3
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by object-oriented programming languages such as C+-1-, Eiffel and Smalltalk is 

more primitive than the message passing models used in the analysis and design 

stages. Consequently, programming techniques bridge the gap between the more 

powerful object-oriented design message passing model and the primitive imple­

mentation language message passing model. The LLDPs in figs 5.11, 5.12 and 5.13 

describe some of these techniques.

5.4.7.1 Messages Between an Object and a SubObject

The simplest message exchange between objects is the communication that is 

possible between the object of a parent and an object of a child class since they share 

attributes and data members. A message is effectively communicated to a parent 

object by changing the contents of a shared attribute; i.e. the normal mechanism 

of invoking operations on an object is bypassed and the shared attribute is directly 

modified. There are several uses for this simple technique that is directly supported 

in Smalltalk, C ++ and Eiffel. The structure of this LLDP is simple because the 

technique is directly supported by most implementation languages. This simple 

message-LLDP is shown in fig 5.11.

5.4.7.2 Messages Between Objects of a Class

Objects of the same class can communicate with each other in a special way 

in C + + . The static data member feature of C ++  allows objects of a class to share 

data members. An object can therefore read and write information to the shared 

data member that can be accessed and used by other objects of the same class. 

This LLDP is shown in fig 5.12.
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N am e Communication between parent and child objects 

Intent To let the child get control of the parent object 

E lem ents object oi 

C ollaborations none

Example _________________________________
dassc l { 

public:
 ̂ int data_mem;

class c2 : public c1 { 
public:
int method () {data_mem = 10;}

}
<2 ( ){  

c2 o1;
o1 .method ( );

}

LLDP Structure

B en efits (i) An object with multiple roles can communicate via the parent object 
(ii) This technique can be used for debugging purposes to keep track of the 
state changes in the object.

C hanges none

'C onsequences (i) This technique complicates program understanding because the 
location of the modified data member requires a search through the complete 
inheritance hierarchy. Once all definitions of the data member are located in 
the hierarchy, the resolution algorithm of the implementation language must 
be used to determine precisely which data member is modified.

Figure 5.11: Messages LLDP-1
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N am e Communication between objects belonging to the same class 

In ten t Broadcast to similar objects 

E lem en ts Classes cj, objects 01,02

C ollaborations ex has a static data member and Ox, 02 axe objects of class ci. 

E xam ple
d assc l {

(g)public: 
static int data_mem;
int method ( ) { data_mem ++;} S t _X

} / « i \  ( S i
12( M

c1 o1,o2;
o1 .method ( ); LLDP Structure
o2.method ( );

}

B en efits (i) Broadcasting an event by changing the contents of the shared data 
members, (ii) Since data is shared between objects, this technique helps in 
saving space, (iii)

C hanges (i) The keyword static must be associated with the data members. In 
the absence of this keyword, the data members are no longer shared between 
the objects and changes made to the data members are local to an object.

C onsequences none

Figure 5.12: Messages LLDP-2
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5.4.7.3 Messages Between Objects of Different Classes

There is no direct syntactic construct for supporting message-passing between 

objects. Objects are capable of receiving messages but not dispatching messages. In 

order to establish communication between objects, a message must be sent to one of 

the objects, oi, with the second object, 02 as a parameter. The message received by 

Oi must in turn send a message to 0 2  with 01 as a parameter. The LLDP is shown in 

figure 5.13. This technique is referred to as double-dispatch in [GHJV94] because the 

message is accepted by two objects. In multiple dispatch, [GH JV94] multiple objects 

accept the message. The multiple-dispatch (and hence double-dispatch) technique 

is directly supported in the object-oriented language CLOS (Common Lisp Object 

System). Smalltalk and C + +  directly support the single-dispatch technique where 

a single object accepts a message. This LLDP describes how double-dispatch can 

be simulated in programming languages that have only single-dispatch.

5.5 Summary

The notions of pattern languages, design patterns and idioms in the context 

of object-orientation were introduced in this chapter. A low-level design pattern 

(LLDP) is defined to represent an object-oriented technique. The relationship be­

tween the structure of an LLDP and LLSA interactions is explained and defined in 

section 5.4.1. The three sets of LLDPs -  polymorphism, decoupling and messages 

are defined axe commonly used object-oriented strategies that enable a software 

system to have the desirable design properties of being flexible, extensible, reusable 

and decoupled. The significance and usefulness of LLDPs from the maintenance 

point of view is examined in the next chapter.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



121

N am e Message passing between objects (double dispatch)

In ten t To allow com m unication between objects 

E lem en ts Objects 01, 02, class ci,C2, function f i

C ollab oration s f \  sends a message to object 01; the message includes 02 as a 
parameter. The invoked message sends a message to object 02, passing object 
oi as a parameter.

Example
d a s s c l  { 

public:
int method{c2 * p ) {p->method(this);} 

j void print();

class c2{
pubfic:

int method(c1 *p){p->print();}
}
<2 ( ){ 

cl o1;c2o2:
01 .method (&o2);

LLDP Structure

B en efits (i) This technique models communication between objects and is there­
fore useful in the translation of design diagrams to implementation code if the 
diagrams depict com m unicating objects, (ii) This technique can be extended 
to support two-way communication between objects.(iii) This technique can 
be generalized to include multiple participating objects.

C hanges (i) If the message to the parametric object is removed from the method of
class c i, this technique is destroyed, (ii) Establishing a friendship relationship
between the classes enables the classes to use more member functions in each 
other’s interfaces, thereby enhancing the usefulness of this technique.

C onsequences Very difficult to understand this elaborate scheme which is doing 
something really simple.

Figure 5.13: Messages LLDP-3
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C hapter 6

U sin g  LLSA and LLDP for M aintaining OO 
System s

The purpose of the representation models presented in chapters 4 and 5 is to aid 

in understanding object-oriented software systems from the maintenance* perspec­

tive. This chapter addresses issues that complicate the process of understanding 

object-oriented programs and expounds on how LLSA and LLDPs serve as an aid in 

understanding object-oriented programs. The usefulness of LLSA has been briefly 

touched upon in sections 1.3.3 and 4.5. The direct and indirect benefits of the LLSA 

and LLDP models are explained in detail in sections 6.1 and 6.2 respectively.

6.1 LLSA as an Aid for Software M aintenance

The various ways in which the LLSA representation model aids in understand­

ing the structural aspects of an object-oriented system from the maintenance per- 

spective is explored in this section. The usefulness of the LLSA model with respect 

to code organization and the static and dynamic structures in a system are addressed 

in section 6.1.1. Sections 6.1.2 and 6.1.3 discuss the applicability of LLSA in the 

areas of understanding the role of a component and code navigation respectively.
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6.1.1 Using LLSA for Understanding the Structure

As explained in 1.1.2, the structure of a software system has two aspects -  

organization and relationships. The LLSA component descriptions aid in under­

standing the logical and physical organization of code as well as some of the static 

and dynamic structure of the system.

6.1.1.1 Logical and Physical Organization

The physical organization (or allocation) of code is apparent from an exami­

nation of the multiple files of a software system. The physical organization of code 

provides a rudimentary view of the structure of the system. An implementor is 

faced with the difficult task of physically organizing code such that a combination 

of compilation dependencies, uses dependencies, and logical dependencies between 

components is accurately reflected by the physical allocation of code. The depen­

dency relationships often conflict with one another and eventually the implementor 

is constrained to satisfactorily represent a subset of the dependency relationships 

in the physical organization.

For example, an implementor may decide to group functions A , B  in the same 

file because function A  calls function B. In this case, the physical organization 

is modelling a calling relationship by allocating a file for each function and the 

functions it calls. Alternatively, another implementor may decide to make use of 

the separate compilation feature available in object-oriented languages and separate 

the two functions in order to minimize compilation dependencies. In the second 

organization, the allocation of code reflects compilation dependencies (ie. code 

fragment A, B  are allocated to the same file if code modifications to A  require B  

to be recompiled). In essence, the physical organization of code is not a useful
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aid in understanding the logical structure and dependences of a system. In the 

absence of a suitable abstract representation model, a maintainer is constrained 

to examine and understand the components of the software system by using the 

physical organization as an indicator of logical organization of code.

The LLSA abstract representation model overcomes the shortcom in gs of physi­

cal structure by presenting the logical structure of the system in terms of interacting 

logical components that correspond directly to object-oriented design concepts, such 

as class, function and object. Moreover, the explicit listing of logical relationships 

between the components, as described in each LLSA textual description template, 

aids the maintainer in grouping and understanding logically related components. 

The LLSA model provides a maintainer with a view of the logical structure of the 

system which enables the maintainer to obtain a clear picture of logical depen­

dencies between components. The LLSA model therefore overcomes the rigidity 

imposed by physical organization and displays the embedded low-level logical de­

sign of a system. The LLSA of a software system lists the name of each component, 

classifies it as a function, a class or an object, lists the modules in which the com­

ponent is used, and the names of the components that a component interacts with. 

The logical organization in an object-oriented system can be inferred by grouping 

components related by the LLSA interactions.

6.1.1.2 Static and Dynamic Structure

There are many static and dynamic substructures (or views) in an object- 

oriented software system. The class inheritance hierarchies, class diagrams mod­

elling part-of or associative relationships, call-graphs modelling the call structure 

of a system, are all examples of static substructures in an object-oriented system.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



125

Each of these static substructures enhance the understanding of the logical, object- 

oriented decomposition and design inherent in the system.

The automatic construction of call-graphs and class relationship graphs from 

source code is a non-trivial task and their contributions to maintenance have been 

stated in sections 1.1.1, 3.6, 3.7. The LLSA representation model permits the auto­

matic construction of several views of software structure. Because the information 

content in the model is rich in terms of object-oriented relationships, several views 

can be provided by the simple means of performing a transitive closure operation 

(transitive closure is defined in section 4.2.2.1) on an LLSA interaction. Each static 

substructures can be constructed by performing a transitive closure operation on the 

appropriate LLSA interaction. Table 6.1 lists the substructures and classifies them 

as providing a static or dynamic view of the code. The last column provides the 

name of the LLSA interaction over which a transitive closure must be performed.

The call-graph structure of an object-oriented system can be constructed by 

performing the transitive closure operation over the Calls Function interaction in 

the LLSA description of function components. Some of the views require transitive 

closures of more than one interaction. For example, to obtain the class diagram, 

the transitive closure operation must be performed over several LLSA interactions 

of the class component.

The class structures depict the static structure and associations between com­

ponents of an object-oriented software system. Objects and the messages sent to 

messages truly reveal the dynamic behavior of an object-oriented system. The ob­

jects that axe present in a system axe difficult to identify, especially objects that 

have a short-lived dynamic existence. The object creation view of object-oriented
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Table 6.1: View Construction from LLSA Representation

V iew C om ponents C lassification LLSA Interaction
Call
Graph

Functions Static Transitive closure of 
Calls Functions in 
Function Component

Inheritance
Hierarchy

Classes Static Transitive closure of 
Descendant Classes in 
Class Component

Object
Creation

Classes,
Functions

D ynam ic Transitive closures of 
Creates Objects of Classes 
in Class & Function 
Components

Class
Diagram

Classes Static Transitive closures of 
Container Classes,
Friend Classes,
Associated With Classes, Uses 
Members of Classes 
of the Class Component

systems pinpoints the creator of all objects that may come into existence dynami­

cally. This object creation view is an invaluable aid for maintenance because it gives 

some insight into the dynamic aspects of the system and the class organization of 

the system.

Some other views that can be constructed are views obtained by simply clus­

tering similar components together and examining each cluster of like components 

separately. This is similar to the layered view of a software system discussed in 

chapter 4.

6 .1 .2  U sing an LLSA D escription to  U nderstand a  C om ponent

Understanding the purpose and role of a component of a system is a necessary 

subactivity in the process of understanding the structure and behavior of a system.
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The purpose of a component can be partially gleaned by a thorough examination 

of the actual code associated with the component. If the component makes use of 

other components, then a thorough understanding of the component under consid­

eration requires an examination of the associated components as well. Locating and 

identifying the associated components in the case of object-oriented software sys­

tems is a non-trivial task especially in the presence of features such as overloading 

and dynamic binding.

The LLSA textual description of a component corresponds to the rooted sub­

graph view of the component. The rooted subgraph has the following interesting 

characteristics :

1. There are arrows directed away from the root component (we shall refer to 

these arrows as outward arrows). The outward arrows represent the com­

ponents that the root component uses or depends upon in some way. An 

examination of the components used by the root component may be required 

by maintainer in order to gain a clearer picture of the functionality of the root 

component. The information represented by the outward arrows is also useful 

in determining the effect that modifications on these components has on the 

root component.

2. There are arrows directed into the root component (we shall refer to these 

arrows as inward arrows). The inward arrows represent the components that 

use or depend on the root component in some way. An exa.mina.tion of the 

components that use the root component establish a context-of-use (a term 

defined in [WMH93]) for the root component. The context-of-use of a compo­

nent gives insight into the role the component plays in the overall structure of
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the software system. The information represented by the inward arrows is also 

useful in d eterm ining  the components that will be affected by modifications 

on the root component.

6.1.3 Code Navigation

The classification of code fragments as function, class and object components 

as well as the LLSA description associated with each component helps in code un­

derstanding and code navigation. The LLSA description of a component lists the 

names of interacting components. This inclusion of the names of components pro­

vides the maintainer with a means of navigating by simple name-lookup techniques. 

Essentially, a maintainer reading an LLSA component description can use the name 

of associated components to examine the LLSA component description of the asso­

ciated component. The navigation facilities of the LLSA representation model are 

more general than those provided by browsers (see section 3.7) because the LLSA 

model allows navigation between different kinds of components whereas browsers 

typically restrict themselves to one kind of component, either class or function.

6.2 LLDP as an Aid for Software M aintenance

The LLSA model aids in understanding the logical structure of an object- 

oriented software system. The logical structure of a system aids in understanding 

the design of the system. Another important aspect of understanding the design 

of a system is understanding the reason why components relate to each other. The 

process of understanding a software system includes understanding the original re­

quirements and the analysis and design that went into the creation of the software
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solution. As a result, a maintainer often develops a mental model of what the 

design of the software system should be and how the components should interact 

[RW88, RW90, RC93]. The maintainer’s mental model may be quite different from 

the actual existing design of the software system. One of the difficult tasks for a 

maintainer, from a psychological viewpoint, is to discard the design that he/she 

would like the system to have and accept the existing design. Accepting the ex­

isting design becomes easier if the benefits and the rationale of the strategies and 

techniques employed in the existing design are explained to the maintainer. The 

purpose served by LLDPs is to document existing object-oriented strategies, pri­

marily so that a maintainer can build his/her awareness of these techniques, and 

secondarily so that the maintainer can evaluate and improve upon the techniques 

as well as develop more techniques.

Often, a maintainer must analyse code to evaluate it from the perspectives of 

extensibility, reusability, flexibility, modularity in order to make decisions regarding 

maintenance requests. Such evaluations require the maintainer to understand and 

evaluate the design of the system. In order to perform a meaningful evaluation, 

a maintainer should be aware of commonly used programming techniques that are 

used to transform the design of a software system to actual code. In essence, 

the evaluation and analysis of a software system requires program m ing experience. 

The LLDPs presented in chapter 5 concisely explain object-oriented techniques, 

their benefits and consequences. The information content of an LLDP is useful for 

evaluating the usefulness and applicability of the technique.

It is impossible to predict the rationale behind every inter-component relation­

ship. However, with the help of LLDPs, a maintainer is able to understand and
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identify certain commonly occurring composition of relationships between compo­

nents. LLDPs such as the polymorphism LLDPs, explain the reason why and how 

class, function and object components cooperate in order to achieve certain de­

sirable properties in a software system. LLDPs therefore enable a maintainer to 

understand groups of components. The difference between the LLSA model and 

the LLDP model is that in the LLDP model, a group of components is viewed col­

lectively as a single unit, whereas a component is a single unit in the LLSA model. 

Effectively, LLDPs abstract a group of components from the LLSA model and this 

is the reason that the LLDP model is depicted as a model containing a higher degree 

of abstraction than the LLSA model (see figure 1.3).

6.2.1 Using LLSA and LLDP in Code Modifications

Subsequent to the processes of understanding, analysing and evaluating source 

code and the maintenance request, a maintainer may decide to actually modify code. 

The various subactivities involved in code modification and the ways in which LLSA 

and LLDPs aid each subactivity are examined below. Code modification is classified 

as (i) addition of new code, (ii) deletion of existing code, (iii) modification of the 

structure of existing code such that the original logic and meaning is preserved. A 

maintainer must determine whether code needs to be added, modificed or deleted. 

The performance of a maintenance request may often involve all three. The sub­

activities of code addition, deletion and modification separately are each described 

below.

1. Addition of Code : The addition of new code is a decision that is arrived at 

after the maintainer has ascertained that none of the existing code can be 

reused for the purposes of satisfying the maintenance request. The addition
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of new code requires an evaluation of the best strategy to be employed by the 

maintainer such that the logical distribution of functionality in the system and 

the functionality of individual components are preserved. The LLSA serves as 

a means to compare the logical structure of the system before the addition of 

code and after the addition of code. The LLDPs serve to check if the structure 

of a technique in the existing code is broken as a result of adding new code.

A maintainer must also determine which components of software are affected 

by the addition and which components must be recompiled in order to inte­

grate the new code into the system; the LLSA descriptions aid the maintainer 

in determining this information. The LLSA of the original system and the 

system with new code can be compared to determine if the static or dynamic 

interfaces of components have changed or if the static and dynamic interac­

tions of a component have changed. Any change in the LLSA description of 

a component indicates that the behavior of the component has changed. The 

maintainer can examine the LLSA description to determine if the change has 

occurred in a desirable or undesirable way.

Lastly, the maintainer may use one or more LLDPs in the new code; ie. the 

new code to be added may incorporate an existing technique.

2. Deletion of Code : Code is deleted if it is determined to be unused, redundant 

or if a maintainer determines a cheaper and more effective solution. Deletion 

of code usually spawns compilation discrepancies and requires a careful read­

justment of code that depends on the deleted code. In the case of unused code, 

deletion can be performed easily. In the case of components that depend on
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the code to be deleted, the LLSA model is useful in determ in ing the compo­

nents that should be modified and recompiled because of the deletion of code. 

LLDPs can be used to determine if the deletion results in the deformation of 

a technique in the code.

3. Modification of Code : Code modification is an activity that spans changes 

such as simple name replacement in code (ie. renam ing a variable or a func­

tion) to reordering of code for purposes of enhancing readability or to optimize 

the code. The purpose of this activity is to enhance the system’s capabilities 

and properties without affecting its functionality. Code modification can eas­

ily be viewed as an activity comprised of the deletion of code and then the 

replacement of the deleted code by new code that has the required modifica­

tions. The ways in which LLSA and LLDP can be used in code modification 

are exactly the same as the ways in which they axe used in the addition and 

deletion of code.

6.3 Summary

This chapter demonstrates the many uses of both the abstraction models, LLSA 

and LLDPs from the maintenance perspective. The LLSA model serves as a useful 

aid in modelling and understanding the structure of an object oriented system. 

The LLSA component textual description contains information that enables the 

maintainer to understand the role, the functionality and the dependencies of the 

component. LLDPs aid in providing the maintainer with some insight into the 

rationale behind the low-level relationships between the components. LLDPs also 

serve to enlighten the novice or unaware maintainer about some of the existing
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techniques in the field. Apart from aiding the understanding process, LLSA and 

LLDPs can also be used in the actual modification of code. The next chapter 

discusses the reverse engineering processes consisting of the extraction of the LLSA 

of an object-oriented system and the identification of LLDPs in the system.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C hapter 7

R everse Engineering LLDPs

As explained in section 2.5.3, the focus of the reverse engineering process is to 

aid program understanding. In order to meet this objective, a reverse engineering 

effort must address the two central issues in reverse engineering, namely, knowledge 

representation and automated extraction of the knowledge representation model. 

The two issues will be referred to as (i) the representation problem and (ii) the 

automation problem [CC90, Big89, RC93].

In [RC93], Rugaber and Clayton distinguish between mental model and rep­

resentation. This distinction is useful in understanding the relationship between 

the LLSA model and the LLDP model presented in chapters 4 and 5 respectively. 

A mental model represents the informal insights, knowledge and comprehension 

processes that a programmer employs in understanding code. The objective of a 

mental model is to explicitly represent the comprehension activities of a programmer 

[RC93]. In contrast, the focus of a representation model is the design of the results 

of the comprehension activities. In essence, the concerns of the mental model axe the 

explicit representation of mental processes, whereas the concerns of the representa­

tion model are the representation of the results of the mental processes. The LLDP 

representation model is a representation of the informal strategies and techniques 

used by programmers to develop and understand object-oriented software.

134
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The objective of the second issue, the automation problem, is to ensure that the 

representation model designed as part of a reverse engineering process is automat­

ically extractable from source code [Pre92]. Program slicing [GL91], code analysis 

and dependency analysis [JOR92, LC93, LR92, WHH89] techniques and algorithms 

axe an outcome of the automation effort in a reverse engineering project. The term 

code analysis will be used in a generic sense to collectively refer to program slicing, 

code analysis or dependency analysis.

Code analysis algorithms are designed by investigating the information content 

of the representation model, investigating the syntax and semantics of the program­

ming language used in the implementation of the software system, and analysing 

the correspondence between the two. The correspondence between the information 

required by the abstract representation model (the LLSA and LLDP models for ex­

ample) and the implementation language of the software system (C ++ for example) 

reveals the information that can be correctly inferred and automatically obtained 

from source code. The next step in devising code analysis algorithm s consists of 

devising strategies and methods to establish the correspondence between the two 

kinds of information. One of the outcomes of the code analysis algorithm  devel­

opment phase is the identification of the information content of the representation 

model that can be automatically extracted and that which cannot. The code anal­

ysis phase therefore serves to modulate the information content and the level of 

abstraction in the representation model.

Both, the extraction of components and the abstract representation of infor­

mation are non-trivial aspects of reverse engineering. Chapters 4 and 5 defined two 

representation models of object-oriented software systems. This chapter discusses 

the issues involved in the automatic extraction and analysis of information from
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Figure 7.1: Overall Architecture of pulse

an object-oriented software system. A prototype software tool, ■pulse, developed as 

part of this research work, extracts the LLSA of a system and recognizes LLDPs 

in the system. The architecture, subcomponents, algorithms and data structures in 

pulse are described in the following sections.

7.1 Overall Architecture o f pulse

The reverse engineering process (see figure 7.1) employed in the design of puke 

consists of two phases. In phase I, information is extracted from source code, 

and stored in a symbol table. In phase II, the LLSA textual description of each
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component is generated, and the components that collaborate to implement an 

LLDP are identified. In phase I, the source code is scanned and parsed and the 

information obtained from these two activities is stored in the symbol table. The 

parser recognizes certain syntactic constructs and updates the appropriate symbol 

table entries and the data structures associated with the symbol table entry with the 

information recognized. This correspondence of syntactic constructs and associated 

information is described in the form of a table, called the fundamental patterns 

correspondence table. This table is useful for understanding the parser and its 

actions. The scanner and parser are necessarily language-dependent components of 

pulse.

The purpose of the analyser and synthesizer is to compute the static and dy­

namic interfaces of each component identified by the extractor, to establish the static 

and dynamic interactions between the components and to recognize LLDPs in the 

code. The activities comprised of the generation of LLSA descriptions and LLDP 

recognition are performed after all the source files have been scanned and parsed and 

all relevant information has been extracted. The second phase is decoupled from 

the first phase. The LLSA generator computes the static and dynamic interfaces of 

each component, in some cases using algorithms similar to the semantic-checking 

algorithms of a compiler. In order to generate the static and dynamic interactions, 

the LLSA generator uses an LLSA interactions correspondence table. The LLDP 

recognizer uses the information contained in the interface of a component and a 

LLDP structure correspondence table to recognize the structure of an LLDP. The 

components that actually collaborate with each other to implement the technique 

are also recognized by the LLDP recognizer. The LLSA generator and LLDP rec­

ognizer are largely language-independent.
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The symbol table is an important data structure that stores information about 

symbols identified in the source code. This data structure is explained in section 

7.2. The correspondence tables serve to document the rules used in pulse for the 

extraction, analysis and synthesis of information. Each table is described in the 

relevant section.

The output of pulse consists of LLSA textual descriptions of each component 

and the names of LLDPs along with participating components. A separate docu­

ment consisting of all the LLDPs and their descriptions is provided to the main- 

tainer.

7.2 Symbol Table Organization

The data structure organization of the symbol table is shown in figure 7.2. The 

symbol table is a simple array of symbol entries. Each entry in the table has three 

fields. The first field stores the name of the symbol, the second field the nature 

of the symbol (ie. function, class, object). The information associated and stored 

with a symbol depends on the nature of the symbol. For example, a function has 

a parameter list associated with it, whereas a class or an object symbol does not. 

Due to the varying nature of information associated with each symbol, the third 

field in the entry, called a representation pointer, is dynamically allocated to store 

information relevant to the symbol. The third field is called the representation field. 

The representation information stored with a class component consists of lists of the 

names of different kinds of symbols. For example, the field Objects stores the names 

of objects that are instances of this class and the field Bases stores the names of 

base classes. In some cases, the list is more complex. For example, the information
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associated with a single member function consists of the name of member function, 

the name of the file in which it appears and the parameter list associated with 

the member function. Each item in the list of member functions has information 

pertaining to a member function.

7.3 Scanner

The scanner is the component that actually reads in the characters from the 

source code and forms tokens by using the rules specified by the language in which 

the source code was implemented. A token is a sequence of characters delimited 

from other characters by certain syntactic rules. The purpose of the scanner is to 

correctly recognize tokens in the input. The scanner used for pulse was automat­

ically generated by the scanner generator software tool lex. Lex [LS86] accepts a 

specification of tokens and generates a finite deterministic automaton that recog­

nizes the specified tokens. The specification of C+-1- tokens is available in [ES92]. 

The tokens formed by the scanner are used by the parser.

The scanner is responsible for identifying and adding identifiers in the source 

code to the symbol table. The scanner maintains context-sensitive information to 

determine the scope that is started by a syntactic construct. Scope information is 

used by the parser to update the appropriate data structure. The scanner is quite 

primitive and does not recognize comments or preprocessor directives.

7.4 Parser

The parser component of pulse recognizes syntactic constructs according to the 

syntax rules of C ++ . The sequence of tokens supplied by the scanner are matched
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against syntax rules, the sequence is accepted as a valid construct or rejected, and an 

error is reported. The parser itself is generated by the parser generator tool YACC, 

which is an acronym for yet another compiler compiler. The generator accepts a 

grammar specification as input and produces a push down automata based bottom- 

up left recursive (henceforth abbreviated as LR) parser [Joh86]. The YACC tool 

used for the implementation of pulse was an adapted version of Berkeley YACC. 

This adapted version has a special debugging feature which was invaluable in the 

implementation of pulse. This feature is particularly useful in desigining the actions 

that enable the incremental extraction of information.

The specification rules specify the structure of syntactic constructs. YACC 

allows actions to be associated with rules. This option is useful in the incremental 

extraction and storage of information and construction of data structures. The 

activities of the parser component of pulse are divided into the following categories:

•  Maintaining Context (Scope): A significant amount of information that pulse 

extracts is context-sensitive; ie. the nature of the information depends on the 

context in which it appears. To illustrate, the expression obj— >  metkod( ), 

when appearing in the body of a function, is interpreted to mean that the func­

tion sends a message to an object. The same expression, when appearing in a 

class, is interpreted to mean that the class uses the interface of another class. 

Due to the context-sensitivity of the information, the parser must keep track 

of the context in which a construct is parsed. The parser makes use of vari­

ables CurrScope and PrevScope to identify the current and previous scopes. 

There are five possible scopes CLASS-SCOPE, FUNC-SCOPE, MEM-FUNC- 

SCOPE, GLOBAL-SCOPE, FILE-SCOPE. The file enums.h contains an enu­

merated type that specifies the different scopes.
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•  Incrementally Extracting Information : The information that is required for 

the construction of the LLSA descriptions is dispersed over the source code 

and often over different syntactic constructs. One of the difficult aspects of 

the parser component is identifying the grammar rules with which actions 

must be associated in order to construct intermediate data structures. This 

aspect of identifying significant grammar rules was aided by the DEBUG 

option available in YACC. The debug option creates a derivation tree for every 

construct that is parsed. The derivation tree enables one to identify which 

grammar rule is being used by the parser in the derivation of the construct. 

The information extraction and storage action can therefore be appropriately 

associated with the help of the derivation trees output by the parser.

•  Building Lists : A significant aspect of the parser is building lists of symbolic 

names and attaching them to the correct symbol entry on the basis of the 

current scope. Due to the bottom-up nature of the parser, the contents of the 

list are available before the nature of the list can be determined. For example, 

the symbol A could represent a parameter in a function call (in which case it 

is part of a parameter list) or it could represent the name of an object in a 

declaration statement (in which case it is a part of an object list). Because 

the information regarding the nature of the list is available after the list is 

constructed, the parser is forced to build generic symbol lists and each item  

in the generic list is populated with information after the nature of the list is 

determined.

•  Building Expression Trees : An expression tree is a data structure that stores 

an operation (such as the addition operation or the — > operation) and its
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operands. There are four expressions that axe of interest to pulse -  a function 

call, a dot-expression (ie. obj.member()), an axrow-expression (ie. obj— >  

member()) and an expression using the allocation operator new. One of the 

operands for each of these operations is a parameter list of actual parameters. 

A function symbol entry (or a member function symbol entry) has a list of 

expression trees associated with it.

•  Elision of information : The grammar specification of puke is a general speci­

fication that is capable of recognizing every syntactic construct of C + + . How­

ever, the LLSA model represents an abstraction of the system, wherein certain 

constructs are required and others are not. The parser in pulse recognizes all 

the syntactic constructs in the source files and also constructs data structures 

with them. The parser collects information which is not required by the LLSA. 

This information must be discarded by the parser, which means that the data 

structure must be destroyed when it is identified as useless information.

7.4.1 Fundamental Patterns and Programming Constructs

Fundamental patterns represent information that can be directly gathered from 

source code. A fundamental pattern set [SC95] is defined to be the set of all in­

teractions between two components that are permissible and directly supported by 

the implementation language. For example, a function call is an interaction be­

tween two function components that is directly supported by most program m ing  

languages. The associates relationship between classes is an example of an interac­

tion between classes that is not directly supported by object-oriented programming 

languages. Hence, a function call is represented as a fundamental pattern whereas 

the associates relationship is not a fundamental pattern.
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The fundamental patterns correspondence table describes a fundamental pat­

tern and its associated programming constructs. This table essentially shows the 

context-sensitive information that is gathered by the parser and is useful in deter­

mining the gram m ar rules with which actions should be associated. If more than 

one fundamental pattern is associated with the same construct (s) then they are 

grouped together in the same row.

Table 7.1: Fundamental Patterns and Program m ing Constructs

Fundam ental P attern A bstract C + +  S yn tax o f C onstructs
A is an ancestor of B 
B is a descendant of A

class B : A { ... };

A contains B 
B is contained in A

class A { class B obj ; };

A is friendly with B class B { friend class A; };
C is a friend of A class A { friend class C; };
0  is an object of A class A { ... } 0; 

or
class A 0 ;

A calls function F A::m ethod() {  F ( ) ; . . .  }
F calls P 
P is called by F

int F ( ) {  P ( ) ; . . .  }

F creates 0  of class A int F ( ) { . . .  0  =  new A; }
F sends message to 0 int F ( ) { ... 0-£method( ) ; } 

or
int F ( ) { ... O .m ethod() ; }

7.5 LLSA Generator

The collection of LLSA component text descriptions describe the low-level soft­

ware architecture of the source code. The task of the LLSA generator consists of 

collecting information pertaining to a single component and generating the LLSA
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textual description of the component. In order to do this, the generator computes 

the static and dynamic interfaces of a component and determines the components 

that interact with each other. The information contained in an LLSA text descrip­

tion is either inferred directly from the fundamental pattern set or computed by 

using the fundamental pattern set and additional rules. The LLSA correspondence 

table has four columns. The first column denotes the LLSA interaction that is being 

determined, the second the fundamental patterns that are used in determ ining it, 

the third column classifies the interaction as being computed or directly inferrable 

from the fundamental patterns, and the last column gives a short description of the 

algorithm used to determ ine  the interaction.

The generation of the LLSA description of each type of component -  class, 

function and object -  is individually addressed in sections 7.5.1, 7.5.2, 7.5.3 respec­

tively.

7.5.1 Class Component LLSA

The name of a class component and its physical locations are directly obtained 

from the symbol table. The static and dynamic interfaces of a class component 

are computed by using algorithms that are closely related to semantic analysis 

algorithms employed by a compiler.

7.5.1.1 Static Interface

The symbol table entry associated with a class stores the names of all the mem­

bers of the class. If the class is a derived class, then the members of all ancestor 

classes are also a part of the derived class. Computing the union of the interfaces 

of ancestor classes and the interface of the derived requires the ambiguity resolution
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algorithm [SC94], which was developed as part of this research. The ambiguity res­

olution algorithm can be used by compilers for object-oriented languages to resolve 

name conflics that arise as a result of attributes in ancestor and derived classes. A 

name conflict occurs when the attributes in ancestor and derived classes have the 

same name. The conflict is resolved by using semantic rules that the implemen­

tation language specifies for the name conflict problem. The resolution algorithm 

also locates the definition of a member.

The ambiguity resolution algorithm uses three data structures -  dominates set, 

base search order list, and discard list. The dominates set establishes a dominance 

relationship between the classes in an inheritance hierarchy. The base search order 

list denotes the order in which base classes must be searched to located a member. 

The discard list is used to record the classes that have been visited in a previous 

step. Associated with the ambiguity resolution algorithm are two data structure 

algorithms for the construction of the dominates set and the base search order list -  

CreateJDomJSet, Create-BaseSearch-Order. The ambiguity algorithm establishes 

a dominance relationship between classes and constructs a base search order list on 

the basis of the dominance relationship. The base search order list thus constructed 

makes the algorithm more efficient in certain situations. The complete description of 

the ambiguity resolution algorithm and its associated data structures and algorithms 

can be found in [SC94].

The algorithms for the construction of various lists in the symbol table (see 

section 7.4) in phase I of pulse use algorithms similar to the Create-DomSet and 

Create-BaseJSearchJOrder algorithms. The algorithm to compute the static inter­

face of a class component uses conflict resolution semantic rules and inheritance 

rules of the implementation language. In particular, for the extraction of the LLSA
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of C + +  systems, the static interface algorithm uses a technique similar to that used 

by the ambiguity resolution algorithm. The static interface construction algorithm 

for a class component is described below. The LLSA generator invokes this algo­

rithm if the current symbol table entry that it encounters is a class symbol. In 

essence, the static interface algorithm performs a restricted union of the interfaces 

of the ancestor classes and the interface of the derived class. This algorithm is 

presented in figure 7.3.

7.5.1.2 Dynamic Interface

The algorithm for computing the dynamic interface performs an intersection 

of the static interfaces of the ancestor classes with the interface of the derived 

class. This algorithm assumes that the static interfaces of all classes axe available 

in the symbol table. If the static interface is not yet computed, the static interface 

algorithm is invoked to create it. C  represents a generic class whose dynamic 

interface is computed by this algorithm. This algorithm is presented in figure 7.4.

The class interactions that axe computed on the basis of fundamental patterns 

axe given in table 7.2. This correspondence table establishes the relationship be­

tween LLSA interactions and fundamental patterns. The fundamental pattern set 

described in section 7.4.1 is used by the parser to extract information and even­

tually store it in data structures. The LLSA-fundamental correspondence tables 

documents the LLSA interactions that can be inferred directly from the informa­

tion associated with fundamental patterns. Some of the LLSA interactions axe 

computed using other information available in the symbol table. These LLSA in­

teractions are listed separately. The class LLSA interactions that axe heuristically 

inferred axe given in table 7.3.
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Let C represent the class, S represent its static interface, QML its list of 
qualified names of member functions, AL the list of names of ancestor 
classes and QMLA the list of qualified names of member functions of an 
ancestor class. MF denotes a member function.

Input: Class C, Ancestor List AL, Member Function List QML

Output: Static Interface of Class

Algorithm:

1. S QML

2. For each class A € AL do
For each MF in QMLA of A do

(a) if MF £ S then {

(b) Use C + +  semantic rules to determine if MF is accessible 
from class C

(c) if MF is accessible from C then 
S ^ S U M F
}

Figure 7.3: Algorithm to Compute the Static Interface of a Class
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Let C represent the class, S represent its static interface, D its dynamic 
interface, AL the list of names of ancestor classes, A an ancestor class, 
SA and DA the static and dynamic interfaces of an ancestor class A in 
class C. MF is a member function

Input: Class C, Ancestor List AL, static interface S of class C, static 
interface SA of each ancestor class A

Output: Dynamic Interface of Class

Algorithm:

1. D <*= <C,S>

2. For each ancestor class A in AL do

(a) DA <= SA fl S
(b) For each MF in DA do

if MF is not dynamically bound then 
prefix MF with A 
if  MF is dynamically bound then 
copy the qualified name of MF from S

(c) D <A,DA>

Figure 7.4: Algorithm to Compute the Dynamic Interface of a Class
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Table 7.2: Class LLSA Interactions and Fundamental Patterns

LLSA Class Interaction Fundam ental P attern s
Ancestor Classes A is an ancestor of B
Descendant Classes B is a descendant of A
Contains Classes A contains B
Container Classes B is contained in A
Friendly With Classes A is friendly with B
Friendly Classes C is a friend of A
Object Family 0  is an object of A
Calls Functions A calls function F

F sends message to 0

7 .5 .2  Function C om ponent LLSA

The static interface of a function corresponds to its formal parameter list. This 

list is constructed in phase I and the LLSA generator does not have to compute 

the static interface of a function. The algorithm to compute the dynamic interface 

of the function is given in figure 7.5. The correspondence table for function LLSA 

interactions and fundamental patterns is given in table 7.4.

7 .5 .3  O bject C om ponent LLSA

The static interface of an object is constructed by examining the static interface 

of the static type class of the object and selecting those member functions that 

axe not dynamically bound. The dynamic interface is built using more complex 

rules. The algorithm is presented in fig 7.6. There axe no fundamental patterns 

corresponding to object LLSA interactions.

The computation of the Sends Messages to Objects interaction between objects 

is based on the following heuristic- if a message sent to an object contains another
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Let F represent the class, S represent its static interface, D its dynamic 
interface, PL the formal parameter list of F, CL the actual parameter list 
passed to F in a function call, PO a parameter that is a pointer object 
and C the static class type of PO, DL the descendant list of C.

Input: Function F, static interface of S of F

Output: Dynamic interface of D of F

Algorithm:

1. For each PO in PL do

(a) Search Symbol table for the entry storing C
(b) If the symbol table entry was found then 

create the tuple <PO,DL>
(c) D «= <PO,DL>

Figure 7.5: Algorithm to Compute the Dynamic Interface of a Function
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Let O represent an object, SO represent a simple object and PO a pointer 
object. Let S represent the static interface of O and D its dynamic inter­
face. Let C represent the static class type of O and DL the descendant 
class list of C. CD represents a descendant class in DL. SC represents the 
static interface of class C and SCD the static interface of a descendant 
class CD. MF is a member function. TL represents a temporary list data 
structure.

Input: Object O, static type class C of O, static interface of C, descen­
dant list DL of C.

Output: Dynamic interface of O

Algorithm:

1. Determine if O is a simple object (SO) or a pointer object (PO).

2. D <= {  }

3. If O is a simple object (SO) then {
For each MF in S of C do
if MF is dynamically bound then 
D<s=DU MF 
}

4. If 0  is a pointer object (PO) then {
For each CD in DL do
TL SCD n S
if TL is not empty then {
For each MF in TL do 
if MF is dynamically bound then 
D < = D U  MF  
}

Figure 7.6: Algorithm to Compute the Dynamic Interface of an Object
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Table 7.3: Class LLSA Interactions Heuristics

LLSA C lass Interaction H euristics
Associate With Classes 
(A is associated with B)

class A contains a pointer 
object of class B

Associate Classes 
(B is an associate of A)

class B contains a pointer 
object of class A

Creates Objects of Class 
(A creates B objects)

Constructor of A creates 
objects of class B

Created By
(A objects created by B)

Constructor of B creates 
objects of class A

Uses Members 
(A uses B)

Member functions of A use 
members of class B

Used By
(A is used by B)

Member functions of B use 
members of class A

Table 7.4: Function LLSA Interactions and Fundamental Patterns

LLSA Function Interaction Fundam ental P attern s
Calls Functions F calls P
Called By Functions P is called by F
Creates Objects of Classes F creates 0  of class A
Sends Messages To Objects F sends message to 0
Used By Classes A calls F

object as a parameter, then it is likely that the receiving object will send a message 

to the object sent as an actual parameter.

7.6 LLDP Recognizer

The LLDP recognizer module performs the function of detecting LLDPs in 

an object oriented system. The recognizer requires information collected in the 

synthesis phase as well as the information generated by the LLSA generator. These
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information requirements of the LLDP force it to be the last module that is executed 

in pulse.

The recognizer has two primary functions -  (i) detecting an LLDP by rec­

ognizing its structure (ii) identification of the actual components that participate 

in an LLDP. The automation of both these tasks is discussed in more detail in 

this section. The identification of the names of actual components that partici­

pate in LLDPs with simple structures (ie. the LLDP structure is entirely contained 

within the LLSA representation of a component) is directly obtained from the LLSA 

descriptions of the component. For LLDPs with complicated structures, an identi­

fication algorithm must visit multiple components to detect the complete structure. 

The LLDP recognizer algorithm is given in figure 7.7. The recognizer visits every 

single component in the symbol table and attempts to detect the LLDP structures 

that may be associated with the component.

The LLDP recognizer uses the correspondence tables and algorithms given 

in sections 7.6.1, 7.6.2 and 7.6.3 to identify the structure of an LLDP. Sections 

7.6.1, 7.6.2 and 7.6.3 discuss the correspondence between LLSA interactions and 

the polymorphism, decoupling and message LLDP structures, respectively. The 

correspondence table documents the interactions that axe used in the algorithms to 

recognize the structures.

7.6.1 Identification of the Polymorphism LLDPs

The LLSA interactions and component interfaces that axe required for the 

identification of the structures of polymorphism LLDPs axe given in table 7.5. The 

LLDP recognizer examines the calls functions list and the called by function list of 

a function component and determines if a called function is overloaded. If the called
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Let O represent an object, C a class and F a function. SO, SC, SF rep­
resent the static interfaces of an object, class and function component 
respectively. DO, DC, DF represent the dynamic interfaces of an object, 
class and function respectively.

Input: Symbol Table

Output: LLDP names and the participating components in the LLDPs 

Algorithm:

1. For each symbol S in the symbol table do {

(a) If S is an object then
Check for message LLDP-1, LLDP-2,LLDP-3

(b) If S is a class then
Check for decoupling LLDP-1, LLDP-2, Check for polymor­
phism LLDP-2

(c) If S is a function then
Check for polymorphism LLDP-1, LLDP-3 
Check for decoupling LLDP-3

>

Figure 7.7: LLDP Recognizer Algorithm
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Table 7.5: Polymorphism LLDPs and LLSA Interactions

LLD P LLSA Interactions
and C om ponent Interfaces

Polymorphism LLDP-1 Calls Functions, Called by Functions
Polymorphism LLDP-2 Uses Members, Used By Classes
Polymorphism LLDP-3 Calls Function, Called by Functions, 

Ancestor Classes, Descendant Classes, 
Sends Messages to Objects,
Dynamic interface of Class

function is overloaded, the LLDP recognizer reports the identification of polymor­

phism LLDP-1. For the identification of polymorphism LLDP-2, the recognizer uses 

the information contained in the uses members and used by classes lists to detect 

the presence of member functions that permit type conversion between the classes. 

If type conversion member functions axe found, the recognizer reports the identifi­

cation of polymorphism LLDP-2. The recognizer uses information in the dynamic 

interface of a class to detect dynamically bound member functions in order to recog­

nize the structure of polymorphism LLDP-3. The algorithm to identify the LLDP 

structures and the participants is given in fig 7.8. Since the algorithm in figure 7.8 

uses a function component as a starting point, it recognizes polymorphism LLDP-1 

and LLDP-2 and decoupling LLDP-3. Polymorphism LLDP-2 is recognized by the 

algorithm in 7.9 which uses a class component as a starting point.

7 .6 .2  Identification  o f th e D ecoupling LLDPs

The LLDP recognizer uses the LLSA interactions given in table 7.6 to recog­

nize the decoupling LLDPs. Decoupling LLDP-1 is identified by the recognizer if 

two classes associate with each other and one of the classes creates objects of its
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Let F represent a function, CL the list of functions F calls, CBL the list 
functions that call F, P  a pointer object parameter of F, C the static 
class type of P, DL the descendant list of C. UL and UBL represent 
the list of classes whose member functions are used by C and the list 
of classes that use C’s member functions respectively. Let CF represent 
a called function and CBF a function that calls F. Let A represent an 
actual pointer object parameter in a function call. Let M represent a 
message to an object

Input: Symbol table entry of function F.

Output: Polymorphism LLDP-1 or LLDP-2 or Decoupling LLDP-3 

Algorithm:

1. Identification of Polymorphism LLDP-1

(a) For each called function CF in the CL of F do 
if CF is overloaded then
report the identification of Polymorphism LLDP-1, participants 
F and CF

2. Identification of Polymorphism LLDP-3

(a) If F has a P then {
(b) For each function CBF in the CBL of F do

if A in CBF has static class type D and D € DL of C then 
report the identification of Polymorphism LLDP-2, participants 
F, D and C

3. Identification of Decoupling LLDP-3

(a) For each P of F do
For each M sent by F to P do 
For each D in the DL of C of P do 
if M € dynamic interface of D then
report the identification of Decoupling LLDP-3 and partici­
pants F,C,D

Figure 7.8: Algorithm to Recognize Polymorphism LLDPs
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Table 7.6: Decoupling LLDPs and LLSA Interactions

LLD P LLSA Interactions
and C om ponent Interfaces

Decoupling LLDP-1 Associate Classes, Associated With Classes, 
Creates Objects of Classes

Decoupling LLDP-2 Associate Classes, Associated With Classes
Decoupling LLDP-3 Calls Function, Called by Functions, 

Ancestor Classes, Descendant Classes, 
Sends Messages to Objects,
Dynamic interface of Class

associate class. If the two classes associate with each other but the creates ob­

jects of classes relationship does not exist between them, the recognizer reports 

the identification of LLDP-2. The interactions used to identify decoupling LLDP-3 

are similar to the interactions used for the identification to polymorphism LLDP-3. 

To identify decoupling LLDP-3, the recognizer determines the dynamically bound 

member functions from the dynamic interface of a class and checks to see if the 

function sends a dynamically bound message to the object.

7.6.3 Identification of the Message LLDPs

Table 7.7: Message LLDPs and LLSA Interactions

LLDP LLSA Interactions
and C om ponent Interfaces

Message LLDP-1 None
Message LLDP-2 None
Message LLDP-3 Sends Messages to Objects, 

Uses Members of Class
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Let C represent a class, CA and CU represent classes in the associates 
with and uses members of classes lists of C respectively.

Input: Class C

Output: Identification of Decoupling LLDP-1, LLDP-2 and Polymor­
phism LLDP-2

Algorithm:

1. Identification of Decoupling LLDP-1

(a) For each class CA in the associates with classes list of C do 
if CA appears in the creates objects of class list then 
report the identification of Decoupling LLDP-1, participants 
C,CA

2. Identification of Decoupling LLDP-2

(a) For each class CA in the associates with classes list of C do 
if CA does not appear in the creates objects of class list then 
report the identification of Decoupling LLDP-2, participants 
C,CA

3. Identification of Polymorphism LLDP-2

(a) For each class CU in the uses members of classes list of C do 
if CU contains a conversion member function for class C then 
report the identification of Polymorphism LLDP-2, participants 
C,CA

Figure 7.9: Algorithm to Recognize Decoupling LLDPs
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Let O represent an object, C its static class type, S represent its static 
interface and D its dynamic interface. Let MF represent a member func­
tion and P a parameter of MF.

Input: Function F

Output: Identification of Message LLDP-3 

Algorithm:

1. For each object O in the sends messages to objects list of F do 
For each MF associated with O in the sends messages list of F do 
if there is a P in MF then 
if MF sends a message to P then
report the identification of Message LLDP-3 with participants O 
and OA, where OA is determined from the symbol table entry of F.

Figure 7.10: Algorithm to Recognize Message LLDPs

The identification of message LLDP-1 and LLDP-2 does not require LLSA 

interaction information. The information contained in the sends messages to objects 

and the uses members interactions is used in the identification of message LLDP-3.

7.7 Sample Session Using pulse

Pulse views a set of files containing source code as a software system. Typically, 

for C + +  software, there are two kinds of files -  header files containing declarations 

of objects and classes, and code files that contain the actual code that implements 

member functions and functions. Header files have a .h extension and code files have 

a .C extension. Pulse accepts both kinds of files. The input to pulse consists of the 

names of all the files in the software system. Pulse scans and parses each file in the
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HEADER FLES

requests

d a s s  Request {
PapetColors request_color;
RequestType kind_of_request; 

public:
Request (PaperCotors c, RequestType i); 
PapeiCokxs Color ( ) ;

}:
d ass RequestQueue {

Request req_anrf100]; 
int num_of_reqs: 

public: 

int Add (Request &);
Request & Delete ();

COOERLES

| people.C |

int ProfessorcPlaceRequest ()  {
Request * r =new  Request ( PINK. PHOTO); 

return RequeslTray.Add( *r);

}
int ProfessorcProcRequest ( )  {

Request r = FtequesfTray.Detete<); 
if (r.Color ( )  != PINK)

RequestTray.Add( r ); 
return 1;

}

requesLC | 

int RequestQueuecAdd ( Request & r) { 
if (num_of_reqs < 100) { 

req_arr [num_of_reqsJ = r. 
num_of_reqs++;

return num_of_reqs:

)

| main.C |
RequestQueue RequestTray; 
voidm ain(){

Professor p1 (3000,60000. PROF); 
OfficeAsst s i  (5.30000. SECRETARY); 
Simulate (&p1. &s1);

):
Simulate (Person *p1, Person *p2) { 

int mum = rand (); 
while ( 1 )  {

(mum < 10)?  p1->PlaceRequest();
p2->PlaceRequest (); 

p1->ProcRequest (); 
p2->ProcRequest ();

):
}:

peopleJi

d a ss  Person { 
int salary, rank; 

public:
Person (int s . int r); II constructor 
virtual intPlaceRequest()«0; 
virtual int ProcRequest 0  = 0;
3:
d a s s  Professor: public Person { 

int grant; 
public:

virtual int PlaceRequest (); 
virtual int ProcRequest (); 
virtual int ShowGrant ();

}:
d ass OfficeAsst: public Person {

int NumOfRequests; 
public:

virtual int PlaceRequest (); 
virtual int ProcRequest ();

Figure 7.11: A C ++ Software System
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order specified by the user. The output produced by pulse consists of three ascii files 

- Class.LLSA, Functions.LLSA, Objects.LLSA File Class.LLSA contains the LLSA 

textual descriptions of all classes in the system. Similarly, files Functions.LLSA 

and Objects.LLSA contain the LLSA textual descriptions of functions and objects 

respectively. The file System.LLDP contains the name of an LLDP and the names 

of participating components. The LLDPs themselves are available as a reference 

document.

Sample C + +  source code is shown in figure 7.11 and the LLSA textual de­

scriptions generated by pulse for this source code by pulse is shown in below. The 

complete input source code and the LLSA generated for the input source code is 

given in Appendix A. The LLDPs recognized in this input are also listed in Ap­

pendix A.

7.8 Summary

This chapter provided the overall architecture of the prototype tool pulse, the 

code analysis algorithms necessary for the generation of the LLSA descriptions and 

the recognition of LLDPs and the design and implementation details relevant to 

the implementation of pulse. The design and development of the code analysis 

algorithms is a significant contribution towards the reverse engineering of low-level 

design patterns.
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Chapter 8

Conclusion

This research was undertaken to study the issues that complicate the process of 

understanding object-oriented software systems and to investigate and use reverse 

engineering techniques to aid in program comprehension and software maintenance. 

The contributions of this research are summarised in section 8.1. The extensions 

and future work possible in this research are explored in section 8.2.

8.1 Contributions

The LLSA representation is an abstract representation model that uses con­

cepts from the areas of software architecture and graph theory. The LLSA model 

can be viewed as a graph consisting of nodes and edges, where the nodes corre­

spond to the notion of an LLSA component and the edges correspond to an LLSA 

interaction. The LLSA model is more informative than a graph model because an 

LLSA component is defined to have an interface whereas a node in a graph is not 

similarly defined. The definition of a component provided in the software architec­

ture model served as a useful abstraction mechanism in the definition of the LLSA 

component. The interface of an LLSA component is classified as static or dynamic. 

The interfaces of a component are useful in understanding the static and dynamic 

behavior of the component. Defining nodes to have an interface is an idea that was 

borrowed from the area of software architecture.
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The analysis and design underlying the LLSA textual description of a com­

ponent utilized graph-theoretic concepts, and the notion of a rooted component 

subgraph, as defined in this research, was identified as being ideal for describing 

each LLSA component. Algorithms for performing depth-first traversal, breadth- 

first traversal, determining connected components, determ ining the transitive clo­

sure of a component, determining the minimum spanning tree of a connected graph 

(see [Liu85, MT81] for an introduction to concepts and algorithms in graph the­

ory) already exist. The applicability and usefulness of graph algorithms is also 

well-known. By modelling the abstract representation along graph-theoretic lines, 

the LLSA model lends itself to graph algorith m s. In essence, the LLSA model is 

designed to reap the benefits of the areas of software architecture and graph theory.

In the theoretical LLSA model, a component is permitted to interact with any 

other component and each interaction is symmetrically represented in the textual 

descriptions of both the participating components. In practice, the interactions 

permitted between components are determined by the implementation language. 

An interesting feature of the theoretical model is that the number of interactions in 

the model are determined by the number of components in the model; ie. if there 

are N  components in the model, there are N 2 kinds of interactions. The higher the 

number of interactions, the more complex the representation. An obvious measure 

to reduce the complexity of the LLSA model is to choose the components carefully 

and minimize the number of components in the model.

The practical LLSA model defined for C ++ software systems consists of three 

components and hence there are nine kinds of interactions. An analysis of the 

practical issues revealed that each kind of interaction could be refined to depict 

a more appropriate interaction. For example, from the theoretical point of view,
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there is only one class-to-class kind of interaction between two class components. 

However, from the practical point of view, it is useful to distinguish between a 

inherits — from  interaction between classes and a part — o f  interaction between 

classes. Hence, the theoretical model provides some basis for judging the potential 

complexity of the practical LLSA model, but the measure is not very reliable. The 

contributions arising from the LLSA model axe listed below.

•  The low-level software representation model for object-oriented systems is a 

significant and original contribution of this research because it uses concepts 

from software architecture and graph theory whereas most other abstract rep­

resentation models are based on the entity-relationship model. The low-level 

software architecture model supports multiple views of software. A view can 

be a call-graph or a dependency graph. These views are easily obtained from 

the LLSA model by performing a transitive closure operation on the appropri­

ate LLSA interactions. In order to obtain information regarding dependencies 

among software components from an entity-relationship model, the program 

database must be correctly queried. The dependency information thus ob­

tained is subject to the relations stored in the database and the nature of 

the query. In contrast, the LLSA model provides a single general method of 

obtaining dependency information -  the transitive closure of an LLSA inter­

action.

•  A significant contribution of this research is the collection of code analysis 

algorithms that enable the LLSA model of a C ++ system to be reverse en­

gineered. The code analysis algorithms presented in chapter 7 are a unique
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contribution of this reverse engineering effort that demonstrate the feasibil­

ity of automatically extracting the LLSA and LLDP models. The ambiguity 

resolution algorithm and the algorithms to compute the static and dynam ic  

interfaces of a class axe particularly significant because each algorithm solves 

a complex data analysis problem. The prototype, pulse, uses these algorithms 

to extract the LLSA and LLDPs of C ++ systems.

•  The definitions of static and dynamic interfaces of a component enable a better 

view of the structural and behavioral aspects of each component and even­

tually of the software system. The static interface of a component provided 

information about the static behavior of the component and the dynamic 

interface provides information about the potential roles the component is ca­

pable of dynamically playing. The definition of a component with static and 

dynamic interfaces is an original and significant contribution of this research.

•  The notion of interactions was borrowed from the software architecture model. 

The classification of interactions as static and dynamic, in addition to the 

static and dynamic interfaces of a component, aids in obtaining a view of the 

static and dynamic structure of a software system in a unique way.

•  The practicality and feasibility of the LLSA model was demonstrated by defin­

ing the LLSA model of C ++ systems. The information content of the LLSA 

model of C ++ system is useful in various activities of maintenance that in­

clude understanding the logical and physical organization of code and the 

static and dynamic aspects of a system.
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•  The LLSA representation of an object-oriented system provides comprehen­

sive information to the maintainer. The automatic extraction of the informa­

tion reduces maintenance effort, ensures the validity of the information and 

eliminates the maintainer’s need to apply complex semantic rules to obtain 

the information.

•  The LLSA model supports graph-theoretic algorith m s. Views of software that 

use graph-theoretic concepts and techniques can be easily derived from the 

LLSA representation of the software system. In particular, the transitive 

closure operation can be used to obtain views of the software that focus on 

a single LLSA interaction. For example, the call graph of a software system  

can be obtained by perform ing a transitive closure operation on the calls 

functions, called by functions LLSA interaction of the function component. 

The class inheritance graph can be obtained from the ancestor, descendant 

interactions. A particularly useful view that is afforded by the LLSA model 

is the object creation graph. This graph can be constructed over the creates 

objects LLSA interaction of classes. The representation models of CIA++, 

XREFDB/XREF and code browsers (see chapter 3 do not support the object 

creation relationship. This is a significant advantage of the LLSA model.

•  The LLSA model lends itself to further abstraction; for the next level of 

abstraction, a clustering operation can be used to group related components 

to form a component at the higher level of abstraction, and interactions at the 

higher level of abstraction can be a combination of LLSA interactions. This 

property, whereby further abstraction can be achieved, is a significant aspect 

of the LLSA model.
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•  LLSA is a language-independent representation model. The decision to de­

fine software components in terms of object-oriented concepts as opposed to 

object-oriented program m ing language constructs contributes to the language- 

independence of the LLSA model. The generality achieved as a consequence of 

language-independence makes the LLSA model a useful representation model 

for more than one object-oriented software systems.

The design patterns [GHJV93, GHJV94] approach for representing the design 

and architecture of an object-oriented system has been an influential factor in the de­

sign of the LLDP template. The collection of design patterns in [GHJV94] provides 

a wide variety of carefully analysed design solutions to commonly occurring prob­

lems and the authors of the collection expect the design patterns to be commonly 

used in object-oriented software development. Understanding a design pattern is a 

non-trivial task. Identifying a pattern in a software system is also a difficult task. 

From the maintenance perspective, the automatic identification and classification 

of a design pattern from object-oriented software system would be extremely use­

ful. This research work makes a contribution towards the reverse engineering of 

design patterns in the form of reverse engineering LLDPs. The design of an LLDP 

template was influenced by the design pattern template. The information content 

of an LLDP was influenced by two major considerations -  (i) determ ining what 

information would be useful from the maintenance perspective and (ii) determining 

the feasibility of automatically extracting and correctly inferring the information. 

The contributions arising from the LLDP model are listed below.

•  The design of the LLDP template is an original contribution of this research. 

The LLDP template was designed by investigating and understanding the
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Design Pattern template (see [GHJV93, GHJV94]) and adapting it to the 

needs of a software maintainer. An LLDP is an abstract representation of 

low-level object-oriented design. Nine LLDPs were presented in this research. 

Each LLDP represents a com m on object-oriented strategy. Several literature 

sources on object-oriented program m ing describe these strategies. However, 

providing the structure of the strategy such that the strategy can be identified 

and recognized is an original contribution of this work.

•  An analysis of the benefits and consequences of a strategy from the point of 

view of desirable properties associated with the strategy and from the point 

of view of understandability is a contribution towards aiding maintenance.

•  The automatic recognition of LLDPs was made possible by representing the 

structure of an LLDP in terms of LLSA components and interactions. This 

is a  significant research contribution towards reverse engineering because it 

demonstrates the correlation between techniques and program m ing constructs. 

The correlation was established by defining an LLDP structure in terms of 

LLSA components and interactions which in turn axe defined by program m ing  

constructs.

8.2 Extensions and Future Work

The extensions for this work include :

•  The design information that is recovered is low-level. A maintainer often 

requires low-level information. However, to address the general problem of 

understandability, this work can be extended to extract design information at 

a higher-level of abstraction.
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•  The prototype implementation, pulse, is could be adaptapted to other object- 

oriented programming languages. Despite the decoupling between phase I and 

phase II, there axe dependencies between the two phases that make it difficult 

to change the scanner and the parser without affecting the LLSA generator 

and LLDP generator.

•  The LLSA model can be enriched with more low-level information to aid in 

debugging activities.

•  The prototype pulse can be extended with transitive closure operations so 

that views of a software system can be an added feature.

•  The C+-1- LLSA model can be extended by analysing the effect of other fea­

tures such as overloaded operators, templates, exception handling on the un­

derstandability and complexity of object-oriented systems.

•  Developing a formal specification language to specify the LLSA of software 

systems implemented in a specific programming language would be an invalu­

able extension of this work.

•  The possibility of correlating the structure of design patterns with the struc­

ture of LLDPs is a possible area of future research. Establishing such a cor­

relation would aid in the reverse engineering of design patterns.

•  The design of a maintenance methodology that uses the LLSA model for code 

comprehension and code modification is a possible area of future research.

•  An area worthy of investigation and research is the possibility of automating 

code modifications to reduce programmer errors.
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•  The applicability of LLSA and LLDP in the area of reusability is envisioned 

as a future research area.
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Appendix  

Session  L isting

Class Component 0 

[Name] : Person
[Physical .Location] : ../test-suite/peoplereq.h.pulse

[Static Interface]:
Person::Person ()
Person::placeRequest ()
Person::procRequest ()

[Static Interactions]

Descendant Classes :

class Professor 
class OfficeAsst

[Dynamic Interactions]
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Class Component 1

[Name] : Professor
[Physical Location] : ../test-suite/peoplereq.h.pulse

[Static Interface]:
Person::Person ( )
Professor::Professor ( )
Professor::placeRequest ( )
Professor::procRequest ( )
Professor::showRequest ( )

[Dynamic Interface]:

Class Person 
Person::Person ( )
Person::placeRequest ( )
Person::procRequest ( )

[Static Interactions]

Ancestor Classes :
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<Person,Public>

[Dynamic Interactions]

Class Component 2

[Name] : OfficeAsst
[Physical Location] : . ./test-suite/peoplereq.h.pulse

[Static Interface]:
OfficeAsst::OfficeAsst ( )
OfficeAsst::placeRequest ( )
OfficeAsst::procRequest ( )
Person::Person ( )

[Dynamic Interface]:

Class Person 
Person::Person ( )
Person::placeRequest ( )
Person::procRequest ( )

[Static Interactions]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



183

Ancestor Classes :

<Person,Public> 

[Dynamic Interactions]

Class Component 3 

[Name] : Request
[Physical Location] : . ./test-suite/peoplereq.h..pulse

[Static Interface]:
Request::Request ( )
Request::color ( )
Request::Request ( )

[Static Interactions]

[Dynamic Interactions]

Class Component 4
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[Name] : RequestQueue
[Physical Location] : . ./test-suite/peoplereq.h.pulse

[Static Interface]:
Request Queue:: Request Queue ( )
RequestQueue::add ( )
RequestQueue::remove ( )

[Static Interactions]

[Dynamic Interactions]

Obj ect Component 5

[Name] : requestTray 
[Physical Location] : ../test-suite/main.C.pulse

Function Component 6

[Name] : simulate
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[Physical Location] : ../test-suite/main.C.pulse

[Static Interface]
<pl,Person> <p2,Person>
[Dynamic Interface]

[Static Interactions] :

Function Component 7

[Name] : main
[Physical Location] : ../test-suite/main.C.pulse

[Static Interactions] :

Polymorphism LLDP 3 Identified 
Participants : simulate, Person 
Polymorphism LLDP 3 Identified 
Participants : simulate, Person
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