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Abstract 

In the oil and gas industry, distributed fiber optics sensing (DFOS) has the potential to 

revolutionize well and reservoir surveillance applications. Using fiber optic sensors is becoming 

increasingly common because of its chemically passive and non-magnetic interference properties, 

the possibility of flexible installations that could be behind the casing, on the tubing, or run-on 

wireline, as well as the potential for densely distributed measurements along the entire length of 

the fiber. The main objectives of my research are to develop and demonstrate novel signal 

processing and machine learning computational techniques and workflows on DFOS data for a 

variety of petroleum engineering applications. This includes distributed pressure sensing using 

distributed temperature sensor (DTS) and distributed acoustic sensor (DAS) data, automated gas 

rise velocity detection, multiphase flow characterization, and fluid interface detection. The 

information obtained with DFOS installed in oil and gas wells contributes to improved efficiency, 

safety, and ultimate recovery. 

In this study, fiber-optic DAS and DTS data are applied for the first time on a big scale to 

predict pressure. The data pattern was characterized using a combination of machine-learning and 

signal processing approach, and the created model was subsequently applied to anticipate pressure 

data at various depths. Additionally, it was shown how low-frequency DAS and DTS might be 

utilized to track distributed pressure on a well-scale. In addition, a novel methodology was 

developed to automatically estimate the real-time gas influx velocity into a wellbore, which offers 

a significant improvement over current approaches in which the gas velocity is largely identified 

by surface-based methods that suffer from time-delay issues. Furthermore, two independent 

techniques (velocity band energy plus downhole pressure data and speed of sound) were used to 

estimate the gas void fraction. Gas void fraction is critical for flow characterization in different 



vii 

calculations such as two-phase viscosity, density, and pressure drop. A new analysis workflow is 

presented to delineate the gas-liquid interface in the presence of background noise caused by pump 

vibrations. Lastly, the effect of optical losses, fiber degradation, and noise on DFOS data quality 

are evaluated and quantified. In the final chapter of this dissertation, the overall findings of my 

work are summarized, and recommendations for future work are presented. The workflows and 

methods presented in this research will be beneficial to improve and validate fiber-optics-based 

interpretations and applications in petroleum engineering applications, including pressure 

prediction, flow characterization, and automated detection.  
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Chapter 1. Introduction 

Fiber-optic sensors have the potential to be a game-changer in well and reservoir surveillance 

applications in the oil and gas industry. The chemically passive and non-magnetic interference 

nature of fiber-optic sensors, the potential for versatile installations that could be behind the casing, 

on the tubing, or a wireline, as well as the possibility of densely distributed measurements along 

the entire length of the fiber, are all reasons for using this increasingly popular technology. 

Information obtained from distributed fiber-optic sensors installed in oil and gas wells contributes 

to improving efficiency, safety, and ultimate recovery. In this chapter, a brief overview and 

working principle of fiber-optic sensor technology and typical optical cable design configuration 

are presented. The common acquisition data file type, as well as the main data pre-processing steps 

are briefly discussed, some of which are common to all chapters. The current applications of DFOS 

in the oil and gas industry are also mentioned. Lastly, the objectives of this research, as well as the 

general structure of this dissertation, are outlined.  

1.1. Background 

1.1.1. An Overview of Fiber-Optic Sensor Technology 

Numerous fiber-optic sensing systems have been developed and commercially demonstrated over 

time. As shown in Figure 1, they can be divided into three main categories: interferometric sensors, 

grating-based sensors, and distributed sensors [1], [2]. Interferometric sensors work by inserting 

an intrinsic or extrinsic interferometric cavity along an optical channel [3]. Physical changes in the 

medium are reflected in changes in the optical phase difference between two interference light 

waves. Two well-known and practical interferometric sensors are Fabry-Perot interferometric 

sensors [3] and low-coherent interferometric sensors (SOFOTM interferometric sensors) [4]. It is 
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worth mentioning, though, those interferometric sensors are typically pointed sensors that can be 

multiplexed. 

 

Figure 1. An overview of popular fiber-optics sensing technologies.  

Fiber Bragg grating (FBG) sensors are the most well-established grating-based sensors with a 

wide range of applications [5]. An FBG sensor reflects a portion of the incoming light of a specific 

wavelength, known as the Bragg wavelength while allowing the rest of the incoming light to pass 

through unaffected. The Bragg wavelength is determined by the fiber's refractive index and grating 

pitch, which are both impacted by external factors such as vibration, strain, temperature, and other 

variables. Several measurands can be monitored with FBG sensors by observing the shift in Bragg 

wavelength.  Multiplexing of FBGs via wavelength division multiplexing or time division 

multiplying could result in measuring the measurands at multiple points. However, to obtain a 

continuous high spatial resolution of the measurand, fully distributed sensors need to be used for 
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many applications. Since this research will be focused on distributed sensors, this technology is 

described in more detail in the following sections. 

1.1.2. Distributed Fiber-Optic Sensing Technology Description 

1.1.2.1. Signal Propagation in Optical Fibers 

Distributed fiber-optics sensing (DFOS) is a cutting-edge non-invasive real-time sensing system 

that may convert data or measurements from the physical world, such as temperature, flow, 

pressure, or strain, into electronic signals [6]. In DFOS, the optical fibers serve as both the sensing 

component and the mode of conveyance for optical signals. They use optical time-domain 

reflectometry (OTDR), which utilizes the time-of-flight of the light to determine the location of 

the target measurand [7].  

In the OTDR method, a series of short pulses of highly intense light/laser are launched into 

the fiber, causing interactions with the inherently non-homogenous sections of the crystalline core 

of the fiber-optic cable, sending backscattered light to the surface-located interrogation unit. These 

molecule-level heterogeneities occur intrinsically and inadvertently during the manufacturing of 

the fiber, resulting in a non-uniform refractive index distribution in the fiber. The fiber sections 

with refractive indices that deviate from the mean could be called scattering spots. The interactions 

of the light with the scattering regions along the fiber-optic core detect thermal, vibration, and 

pressure variations and disturbances resulting from activities near the fiber-optic cable. 

 In addition to the scattering loss, light may also be attenuated by absorption mechanisms 

along the fiber cable. These are electronic absorption ultraviolet (UV) bands that occur around 100 

nm and molecular absorptions of mid-range infrared (IR) bands. Both the UV and IR absorption 

bands have tails that stretch into the visible light portion of the electromagnetic (EM) spectrum. 
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The power of the backscattered signal (𝑃𝐵𝑆) that is received at time t= 2z/vg at a distance z from 

the launching end can be calculated as [6], [8]: 

 
𝑃𝐵𝑆 =

1

2
 𝐶 × 𝛼𝑠 × 𝑣𝑔 × 𝜏 × 𝑃𝑖 × 𝑒−2𝛼𝑙 

1.1 

Where C is the capture coefficient, which is the fraction of the forward-moving ray that is 

returned during backscattering, 𝛼𝑠 is the Rayleigh scattering coefficient, 𝑣𝑔 is the group velocity 

in the fiber, 𝑃𝑖 is the input power, 𝛼 is the fiber loss coefficient, τ is the pulse width. The Rayleigh 

scattering coefficient is proportional to the inverse fourth power of wavelength, and in pure silica, 

its value is about 0.7 dB km-1µm-4. Therefore, at 1 µm for every meter of fiber that the light travels 

through, about 0.016% of the incident light is lost. 

 

Figure 2. Schematic of a typical  DFOS acquisition and the backscattered light spectrum. 

Rayleigh, Brillouin, and Raman components make up the spectrum of backscattered signals 

(Figure 2). The backscattered Raman component is typically used in the distributed temperature 

sensor (DTS) to measure temperature. The intensity ratio between the two Raman scattering 

wavelength ranges, one of which is temperature-dependent (anti-Stokes) and the other not 

(Stokes), is used to calculate the temperature. Distributed acoustic sensors (DAS) use the phase 
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shifts of the backscattered Rayleigh component, which has the same wavelength as the incident 

light, to measure vibrations, while the Brillouin component is used by Distributed Strain Sensors 

(DSS) to measure strain. [6], [9]. 

The fiber-optic cable is the transmission medium or waveguide for the light wave being 

propagated. The complete fiber cable that is ready for deployment usually contains at least the 

core, cladding, buffer, and jacket, as shown in Figure 3. Optical fiber coatings/buffers protect the 

glass fiber from mechanical and environmental stresses during different applications. The primary 

coating may be applied in a single or dual layer. Common coating materials are acrylate, silicone, 

polyetheretherketone (PEEK), and other popular polymers. There are two main types of fiber-optic 

cables single-mode and multimode. As shown in Figure 4, the single-mode fibers have very thin 

cores that cause the light to travel as a single ray. The multimode fibers, on the other hand, have 

larger diameters resulting in many different ray paths. The number of modes that are guided 

through the cable is related to a parameter called normalized frequency, V, which is related to the 

core radius a, the laser wavelength λ, and the numerical aperture (NA). The NA is related to the 

refractive indices of the core and cladding and is usually 0.2 or more [6]. The typical optical 

wavelength used in a single-mode core of 8 μm is around 1550 nm, whereas multi-mode fibers 

have typical core diameters of 50 or 62.5 μm, and wavelengths between 850 and 1300 nm are 

typically used. The number of guided modes is V2/4 for graded-index fiber  [10]. Furthermore, a 

thin fiber (8 μm diameter) that supports single-mode transmission at wavelengths above 1250 nm 

can also support multiple modes at shorter wavelengths.  

 
𝑉 =

2𝜋

𝜆
. 𝑎. 𝑁𝐴 

1.2a 

 
𝑁𝐴 =  √𝑛1

2 − 𝑛2
2 

1.2b 
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Figure 3. Optical fiber 

structure [6].  
          Figure 4. Schematics of multimode vs. single-mode fibers [6]. 

1.1.2.2. Fiber-optics Data Representation and Pre-processing. 

The raw DAS data that is received from the service acquisition company is usually in the SEG-Y 

or hdf5 format.  Both formats contain textual file headers, tape headers, and binary headers in 

addition to the trace numerical data. The time-series DAS vibration data are extracted in the form 

of a 2-dimensional time-depth matrix. One trace (each column of the matrix) corresponds to a 

single laser pulse traveling down the fiber cable in the well and back to the surface. Hence, 

sufficient time must be allowed for the pulse to travel and return to the surface before the next 

pulse is transmitted. This time interval is generally referred to as the sample interval or the 

sampling period. The inverse of which is referred to as the sampling frequency. The Shannon-

Nyquist [11] criterion requires that the sampling frequency is at least two times that of the 

maximum frequency expected in our signal. The DAS data analyzed in this research was acquired 

at 10 kHz, thus the maximum signal frequency that can be analyzed is 5 kHz and the sampling 

interval is 100 µs. The spatial samples typically correspond to the rows of the 2D matrix and a 

specific depth along the wellbore. Furthermore, the spatial resolution is the distance occupied by 

the pulse as it travels along the fiber. For example, a 10-ns pulse of light traveling at 0.2m/ns has 

a spatial resolution of 1 m. Spatial resolution, ∆z, of the measurement can be expressed as:  

 
∆𝑧 =

1

2𝑛𝑔
𝑐𝜏𝑝 

1.3 
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Where c is the light propagation speed in the fiber, 𝑛𝑔 is the group refractive index, 𝜏𝑝 is 

the pulse width. In the DAS data used in this study, the size of one SEG-Y file containing 10 s of 

data is about 920 MB. The full experimental matrix is formed by concatenating data from all SEG-

Y files corresponding to the times of interest. As a result, the data size is quite huge, necessitating 

data compression. The well-known Fourier transform is then used to compress the row data, 

representing each depth, by keeping the most crucial Fourier coefficients. The process called 

“frequency band energy” (FBE) computation involves isolating the different frequencies in the 

data, which can then be processed in frequency bands. For all bands, the FBE file generated per 

record length (10 s) reduces the size from 920 MB to roughly 90 KB. Mathematically, this FBE 

conversion can be described as shown in equation 1.4 below [12]: 

 
𝐹𝐵𝐸𝑘 (𝑏, 𝑑) =  

2

𝑁𝐹𝐹𝑇
 𝑥 ∑ |𝑋(𝑓, 𝑑)|2

𝑓=𝑓1(𝑏)

𝑓=𝑓2(𝑏)
 

1.4 

Where 𝑋(𝑓, 𝑑) is the FFT of the vibration data 𝑥(𝑡, 𝑑), 𝑓1(𝑏) and 𝑓2(𝑏) are respectively the lower 

and upper bounds of a pre-determined frequency band b, k is an integer used to differentiate the 

different bands considered, while 𝑁𝐹𝐹𝑇 is the number of samples in the recording length. 

1.1.2.3. Characteristics and Benefits of DFOS 

A. Fiber-optic sensors offer many advantages compared to conventional gauges and offer higher 

reliability for long-term deployment. They are [6], [13], [14]:  

a. chemically passive,  

b. electrically insulating,  

c. immune to corrosion,  

d. able to withstand high temperature and pressure conditions,  

e. non-intrusive (due to small fiber diameter),  
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f. fast and more sensitive since they use light to convey information.  

g. not sensitive nor cause electro-magnetic interference. 

B. In addition to the above benefits, DFOS gives a high resolution of spatiotemporal data, which 

helps to detect and solve many problems in the oil and gas industry. This is because the entire fiber 

is a sensor; hence dynamic effects along the fiber can be seen.  

1.2. Applications of DFOS in the Oil and Gas Industry 

The different sectors of the oil and gas industry (upstream, midstream, and downstream) have 

implemented DFOS for a variety of applications. Pipeline inspection and process monitoring are 

the main applications of DFOS in the midstream and downstream sectors. Most of the applications 

are, however in the upstream industry.  The very first use case of the technology was the use of 

DTS for in-well monitoring in the early 1980s [15]. In recent times, the use of changes in the 

thermal profile obtained using DTS has been increasing rapidly in both the oil and gas as well as 

geothermal energy applications. The first application of DAS was completed in Canada in 2009 

for fracture monitoring [16]. Since then, several new applications have been added to the growing 

portfolio of DAS. This includes, fluid flow metering and calculation of in-situ phase fractions 

([17]–[20], hydraulic fracture propagation monitoring [21]–[25], vertical seismic profiling (VSP) 

and detecting microseismic activity [26]–[29], electrical submersible pump performance 

surveillance [30], tubular and pipeline leak detection [31], [32], high pressure/temperature and 

geothermal applications [33], and gas-lift and wax deposition monitoring  [34]. 

1.3. Test Well Description 

The test well utilized in this study is located at the Petroleum Engineering Research, Training, and 

Testing (PERTT) lab facility at Louisiana State University. It consists of a 9-5/8 in. casing and a 

2-7/8 in. production tubing, as shown in the schematic in Figure 5. In 2019, a DFOS control line 
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with pumped single-mode and multimode fibers for measuring DAS and DTS, respectively, was 

clamped to the outside of the 5025-ft-long production tubing. Both the single- and multimode 

fibers were pumped into the ¼” DFOS tube with 99.9% isopropyl alcohol (IPA) and then purged 

over 48 hours with nitrogen, before installation in the well. Table 1 summarizes the fiber 

specifications. Four downhole pressure and temperature gauges were also installed at 487 ft, 2023 

ft, 3502 ft, and 5024 ft for measurements in the annular region. Since the DFOS installation in 

2019, the wellbore has been exposed to different fluids such as water, nitrogen gas, and drilling 

mud. Several experiments using this setup have been performed since then. The maximum 

temperatures and pressures that have been recorded in the well are 130 °F and 3500 psi, 

respectively. In a static water column inside the test well, the geothermal gradient is 1.24 °F /100 

ft (or 0.689 °C /100 ft) while the hydrostatic gradient is 0.43 psi/ft. The DTS acquired in the well 

utilizes the Raman backscatter component to estimate the distributed temperature profile, while 

the DAS utilized in this study is based on the Rayleigh backscattered light. 

1.4. Aims and Objectives of this Research 

The main objectives of this research are to implement techniques and workflows for distributed 

pressure sensing and multiphase flow characterization using DFOS data.  More specifically, the 

objectives include: 

Objective 1: To estimate distributed pressure from DAS and DTS data using a combination of 

machine learning and signal processing approach. Giallorenzi et al. [35] were the first to stipulate 

the idea of the frequency dependence of the elastic properties of the optical fiber. More recently, 

Becker et al. [33] observed experimentally the variation in pressure sensitivity with the frequency 

of the signals detected. Hence, we first needed to confirm that such dependency exists on a larger, 
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more representative scale and then propose a workflow on how to predict pressures based on our 

findings. 

 

Figure 5. Test-well schematic showing the downhole instrumentations.  

Objective 2: Develop automated workflows for gas influx detection and velocity estimation 

Conventional gas-kick detection and monitoring generally suffer from time delay in the response 

between the occurrence of keep in the subsurface and its detection using surface-based techniques. 

This delay could lead to the loss of lives, massive investments, and environmental pollution; hence 
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the early detection of gas influx is crucial. This warranted us to seek solutions to help alleviate this 

problem.  We present a novel workflow for the automated detection of gas-kick and estimation of 

the gas influx velocity using the real-time DAS data from the test wellbore used in this study. 

Objective 3: Estimation of gas void fraction and detection of fluid interfaces using the pressure-

difference method, speed of sound estimation, and velocity band energy methods  

Understanding the exact location of the interface of fluids and, in effect, the gas slug height along 

a well is very important for several applications such as flow monitoring, gas influx detection, gas-

oil contact determination for reserves estimation, gas lift operation optimization, and other 

remedial operations. The speed of sound changes depending on the composition and nature of the 

fluids through which the sound wave is traveling. This fundamental phenomenon is leveraged in 

the calculation of void fraction. In addition, we investigate the possibility of using an algorithm 

involving advanced signal processing and filtering steps to delineate the gas-liquid interface in the 

wellbore. 

Objective 4: Fiber degradation analysis and signal-to-noise (SNR) estimation  

The ability of the DFOS to provide accurate and repeatable information depends on the quality of 

the signal returning from the point of interest, optical losses, and the system noise. Thus, it is 

necessary to evaluate these effects periodically to ensure high-DFOS data quality and the ability 

to detect the signal of interest. The SNR is estimated on well-scale experimental data to monitor 

the displacement of a gas slug (gas-liquid mixture region) in a wellbore. Since the vibration and 

temperature changes introduced by the slow-moving gas bubbles in a circulating column are often 

very small, the optical losses, fiber degradation, and noise can impede our ability to detect gas in 

a circulating fluid, such as during gas-in-riser monitoring. These effects are analyzed qualitatively 

and quantitively.   
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1.4.1. Dissertation Structure 

This dissertation is organized into self-contained chapters. The common background material for 

all chapters is provided in Chapter 1. Additional and more specific background is provided in each 

subsequent chapter. 

• In Chapter 2, titled “Distributed Pressure Sensing Using DTS And DAS” the objective-1 

of the dissertations is addressed in detail. 

• In Chapter 3, titled “Automated Detection and Quantification of Gas Influx Velocity in 

Wellbore from Fiber-Optic Sensor Data”, objective-2 is addressed in detail. 

• In Chapter 4, titled “Interface Tracking and Estimation of Gas Fraction Using Fiber-optic 

and Pressure Data estimation of gas fractions and liquid holdups” the objective-3 is 

addressed. 

• In Chapter 5, “Fiber degradation and SNR Estimation” objective-4 analysis is addressed. 

• In Chapter 6, titled “Conclusions and Recommendations for Future Work”, the main 

conclusions based of this doctoral research and recommendations for future work are 

presented. 
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 Chapter 2. Distributed Pressure Sensing 

2.1. Introduction  

Over the past few years, the oil and gas industry has seen a rapid increase in the deployment of 

DFOS, particularly DTS and DAS.  However, the use of DTS and DAS to estimate distributed 

pressure has not been demonstrated and is the first objective of this doctoral study. Furthermore, 

an extensive literature review conducted as part of this study appears to indicate that, currently, 

most of the major oilfield service companies do not offer a commercially available distributed 

pressure measurement capability. While there is evidence of ongoing research in this area, 

examples of commercially successful applications of the technology were not readily found. In 

this chapter*, a well-scale demonstration of a detailed workflow that aims to predict pressures from 

DAS and DTS is presented.  

2.2. Background 

2.2.1. Rayleigh-Based Distributed Pressure Sensing 

As briefly described earlier, an OTDR device measures the photocurrent of the detector generated 

by the optical signal arriving at the detector at the sampling time. The optical signal that is received 

by the detector is defined by the electric field of the optical wave that results from the continuous 

backscattering of the probe pulse as it propagates along the fiber cable. It can be characterized by 

the following phasor [8]: 

 𝐸 ̇ (𝜏) = 𝐴(𝜏)𝑒𝑗∅(𝜏) = |𝐸 ̇ (𝜏)| . 𝑒𝑥𝑝{𝑗. 𝑎𝑟𝑔[𝐸 ̇ (𝜏)]}                                       2.1 

 

 

* Most of this chapter was previously published Ekechukwu, G.K., Sharma, J. Well-scale demonstration 

of distributed pressure sensing using fiber-optic DAS and DTS. Sci Rep 11, 12505 (2021). 

https://doi.org/10.1038/s41598-021-91916-7 
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Where 𝐸 ̇ (𝜏) is the electric field of the optical wave, τ is the two-way time of flight of the 

probe pulse, A(τ) is the amplitude, ϕ(τ) the phase and 𝑗 = √−1.  Based on the sensing mechanism 

employed, Rayleigh-based techniques can be further classified into pressure-induced strain 

techniques and pressure-induced birefringence techniques.  Birefringence is an optical property 

that is described by the presence of distinct refractive indices for two given orthogonally polarized 

light waves propagating in the fiber [6], [36]. A.J. Rogers [36], [37] was the first to propose the 

use of the polarization optical time-domain reflectometry (POTDR), which is the very first 

documented distributed optical fiber sensor ever proposed. The use of POTDR for pressure sensing 

is still an active area of research but here we would only discuss the pressure-induced strain in 

conventional fibers since that is the principle that was used in the method presented here. The 

following sets of equations describe the working principle of the pressure-induced strain in 

conventional fibers. When light travels through a fiber of length L and refractive index of n, the 

optical phase is given as: 

 ∅ = 𝑛𝐾𝐿 2.2a 

where 𝐾 = 2𝜋 𝜆⁄  2.2b 

Direct pressure exposure induces changes in a phase differential which changes the properties of 

the optical fiber. The changes in the phase induce strain, modifies the index of refraction of the 

material (the photo-elasticity effect), and cause waveguide dispersion as shown below [38], [39]: 

 𝑑∅ ∅⁄ =  𝑑𝐿 𝐿⁄ + 𝑑𝑛 𝑛⁄ + 𝑑𝑘 𝑘⁄                                        2.3 

Hocker [39] demonstrated that the third term, representing the consequence of mode dispersion, 

is insignificant. The delay in the phase due to the induced strain is shown below [35], [40].  

 𝑑𝜙

𝜙
= 𝜀𝑧𝑔 −

𝑛2

2
[(𝑃11 + 𝑃12)𝜀𝑟𝑔 + 𝑃12 𝜀𝑧𝑔]                                       2.4a 

hence 𝑑𝜙 𝜙⁄ = 𝜉𝜀𝑧𝑔 2.4b 
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where 
𝜉 = 1 −

𝑛2

2
[𝑃12 − 𝑣𝑔(𝑃11 + 𝑃12)𝜀𝑟𝑔] 

2.4c 

Where Pi is the elasto-optic strain or Pockels coefficients, for silica, for example, P12 = 0.27, 

P11 = 0.12, 𝜉 = 0.79 at typical wavelengths used in Rayleigh scattering.  

Hence, 𝑑𝜙 = 2𝜋𝑛𝐿𝜉𝜀𝑧𝑔 𝜆⁄                                         2.5 

Accounting for the double transit (𝐿 = 2𝐺) and rearranged to show the strain sensitivity below 

[41]: 

 𝜀𝑧𝑔 = 𝜆𝑑𝜙 4𝜋𝑛𝐺𝜉⁄                                        2.6 

Budiansky [38] then added the following expression for pressure sensitivity as a result of  the 

induced strain:  

 𝜀𝑧𝑔 𝑝⁄ = −
1−2(1−𝑓)𝑣𝑝−2𝑓𝑣𝑔

𝑓𝐸𝑔+(1−𝑓)𝐸𝑝
                                       2.7 

The expression has been deemed accurate for 𝑓 = (𝑎/𝑏)2 ≪.  Where 𝜀𝑧𝑔 is the axial component 

of the induced strain, a is the radius of the fiber, b is the radius of the coating, 𝐸𝑔  and 𝑣𝑔 are 

Young’s modulus and Poisson ratio of the glass and 𝐸𝑝  and 𝑣𝑝 are Young’s modulus and Poisson 

ratio of the polymer coating. 

Rogers et al. [14] investigated the potential of Rayleigh-based distributed sensing systems 

in measuring pressure. In particular, he estimated that a pressure of approximately 0.1 MPa should 

produce a phase shift equivalent to 1µε. Becker et al. [33] evaluated the use of Rayleigh-based 

fiber-optic DAS to measure the oscillatory strain rate along a standard fiber-optic cable caused by 

pressure waves at mHz-frequencies. Ultimately, the tests showed that this approach works for 

hydrostatic pressure waves with short oscillation periods (< 10 s). Schenato et al. [42] proposed a 

highly sensitive distributed pressure-sensing cable that employs standard single-mode fibers. The 

cross-section of the cable has two arched meandering rubber profiles that enclose an elastic band 
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embedding the fiber. The pressure sensitivity and spatial response of the cable were characterized 

by a commercial optical frequency domain reflectometer (OFDR). In particular, the cable showed 

an intrinsic spatial resolution of about 8.5 cm, with a mean sensitivity of -30 GHz/kPa. The spectral 

shift resolution and corresponding pressure resolution were 150 MHz and approximately 5 Pa 

respectively, while the root-mean-square accuracy was limited to 5 hPa, mainly due to cable 

manufacturing imperfections. 

One of the major shortcomings of almost all he experimentally tested optical fibers, 

especially those used in the POTDR, is that they were performed on bare fiber cables. These bare 

fibers are not suitable for field deployment, and they need to be coated with single or multi-layers 

of cladding, depending on the applications. Besides, the effect of the external signal frequency on 

pressure sensitivity has not been deeply explored. We intend to explore this dependence in greater 

detail. Lastly, despite the huge benefits of Rayleigh-based distributed sensing, its use poses some 

unique challenges, in particular, how to handle the vast amount of data generated (several GBs per 

minute) in a multi-km deep wellbore. This data volume must be managed effectively to extract the 

information needed in a timely manner. Hence, also in this work, an integrated approach that 

involves spectral decomposition and other signal processing techniques will be used first to 

compress the data and then to extract meaningful information that could be applied for real-time 

field operations monitoring and decision-making. Before discussing our computational approach 

to Distributed Pressure Sensing (DPS), we first discuss the applications of pressure measurement 

in the oil industry. 

2.2.2. Potential Applications of DPS in Petroleum Engineering 

The pressure acquired by DPS can be used for a variety of oil and gas applications. It is worth 

noting that DPS data not only provides an equivalent benefit to those of currently used single-point 
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pressure gauges, but it provides a plethora of applications in which the dense spatial data can be 

used; some of these applications are highlighted briefly below. 

1. Inflow Performance Estimation: 

The Productivity Index (PI or J) is a measure of the ability of a well to produce. It is the ratio 

of the liquid flow rate to the pressure drawdown defined below [43], [44]: 

 𝑃𝐼 =
𝑞𝑜

𝑃𝑅−𝑃𝑤𝑓
 =

𝑞𝑜

∆𝑃
                                       2.8 

For performance analysis of oil wells, engineers often assume that the flow rate is directly 

proportional to pressure drawdown. It is a reliable indication of the well productive capacity 

only if the well is produced during a pseudo-steady-state flow regime. 

2. Pressure Transient Analysis: 

 𝑃𝑤𝑓(𝑡) = 𝑃𝑖 −
162.6𝑞𝜇𝐵

𝑘ℎ
[𝑙𝑜𝑔 (

𝑘𝑡

∅𝜇𝑐𝑡𝑟𝑤
2 ) − 3.23 − 0.87𝑠]                                       2.9 

Simple equations allow us to estimate permeability and skin factor once the correct semi-log 

straight line is identified and its slope, m, is estimated. These equations apply to both 

drawdown and buildup tests. The following equations are used for oil wells [45]: 

 

 

2.10 

 

 

2.11 

3. Artificial Lift Monitoring:                                                                                                                      

Artificial lift methods are usually applied to assist or supplement the natural reservoir 

pressures, which may no longer be sufficient to push the fluids in the well bore to the surface. 

This can be achieved using gas lifting, which involves reducing the density of the liquid in 

the well bore or using different varieties of submersible pumps. The accuracy of the 
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pressures in the pumps is very important for optimizing pump efficiencies [46]. Actual DPS 

data can be used to diagnose faulty gas lift valves as well as early indications of the need to 

service submersible pump motors. This is of extreme importance, especially with downhole 

water separation techniques for water coning solutions [47], [48] where complicated 

downhole completions and accurate distributed downhole pressures are needed. 

4. Monitoring of Packer Integrity: 

Production packers provide barriers that ensure the reservoir fluids pass through the tubing, 

completions fluid is not contamination and properly isolates different production zones. The  

ability to monitor the pressures around these packers can be used to measure the integrity of 

the packers [15]. The spatial pressure information will help to precisely identify the leak/failure 

points. 

5. Interference Testing: 

An adjacent wellbore's impact on another well within the field can be assessed through 

interference testing. During a conventional interference test process, the well is shut-in and 

given time to attain a stable pressure. The pressure within the shut-in wellbore would then be 

monitored while a nearby wellbore was injected with a fluid (water), to ascertain how long it 

would take for the shut-in well's pressure to be influenced. 

6. Identification of oil-water, gas-water, and gas-oil contacts: 

Distributed pressure sensing provides an opportunity for real-time monitoring of fluid contacts. 

DPS can provide value by reduction of production deferment – the use of real-time monitoring 

prevents the repeat of previous situations in which radiometric surveys missed the thinning and 

the lowering of the fluid contacts. [49]. Figure 6 shows a schematic of how this can be done. 

7. Leak detection or gas ingress into the wellbore: 
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Gas leaks due to damaged casing and poor cementing jobs can also be detected by using the 

novel DPS technique proposed.  Leaks lead to a decrease in pressure from what is expected 

and hence will be picked up by the DPS system.  

 

Figure 6. Distributed pressure sensing for oil-rim movement monitoring. 

2.3. Methodology 

Two-phase (water and nitrogen gas) flow studies were carried out in a test well described in section 

1.3. Frequency band energy (FBE), also known as pre-specified frequency bands, are created by 

applying the fast Fourier transform to the acquired data (FBE), as mentioned earlier in section 

1.1.2.2.  This investigation looked at seven distinct frequency bands - Band-LF (0 to 2 Hz), Band-

0 (2 to 5000 Hz), Band-1 (2 to 10 Hz), Band-2 (10 to 50 Hz), Band-3 (50 to 200 Hz), Band-4 (200 

to 500 Hz), and Band-5 (500 to 1000 Hz). Our dataset contains little acoustic energy above 1000 

Hz, so we have not analyzed these.  
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Using two separate experimental datasets, the suggested distributed pressure measuring 

methodology using DTS and DAS was shown in this chapter. In the first experiment (referred as 

Dataset #1), the wellbore was initially filled with water, and then a fixed volume of nitrogen gas 

was injected down the tubing and allowed to rise to the surface through the annulus. In the second 

experiment (referred here as Dataset #2), water is injected soon after the gas is injected to drive 

the gas down the tubing and eventually through the annulus and back to the surface. The datasets 

correspond to different gas injection volumes, water circulation rates, backpressure, and injection 

methods, as given in Table 1. Figure 7 displays the waterfall graphs for bands 0 and 1. Figure 8 

and Figure 9, respectively, display the pressure and temperature readings for Datasets 1 and 2. 

Table 1. Parameters used in the case study experiments  

Dataset 

Water Injection 

Rate [GPM] 

 

Injected Gas 

Volume [BBL] 

Injection 

Method 

Backpressure [PSI] 

1 0 2 Injection Line Choke closed 

2 100 5 Tubing 300 

 

2.3.1. Analysis Workflow 

The proposed analysis workflow developed in this study is illustrated in Figure 10 and described 

as follows [52] : 

1) The data preparation step starts with time and depth matching the pressure gauge, DTS, and 

DAS data. 

2) Single-Depth Analysis: The machine learning model is implemented separately at the four gauge 

depths (487 ft, 2023 ft, 3502 ft, and 5025 ft). The input parameters for the model at each depth are 

DAS (one frequency band at a time) and DTS data, and the desired output variable is the change 

in pressure relative to the initial pressure at the first time-step (P). For model training, 30% of the 
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data were picked at random, while the remaining 70% were used for blind testing. The performance 

of each frequency band is examined independently to select the best one for pressure prediction. 

This analysis is done for the two experimental datasets across all four gauge depths and seven 

frequency bands. 

3) DAS Frequency Band Selection: The best-performing frequency band for each dataset is 

determined via a single-depth analysis for each of the four gauge positions. This frequency band 

is used in the distributed pressure analysis. 

4) Distributed Pressure Analysis: The objective is to forecast pressure at various depths using DAS 

and DTS data. To estimate pressures at gauge depths other than those used for training, the machine 

learning model is first trained using data from any two gauge depths. The input features are DTS, 

DAS (only the frequency band chosen in (3)), and time, and the target predicted is a change in 

pressure (∆P). 

Preliminary Comparative Analysis. 

A preliminary comparative analysis using different machine learning algorithms to select the most 

robust technique was conducted. The algorithms used to build different models are Random Forest 

(RF), gradient boosting (GB) [53], [54], extreme gradient booking (XGBoost) [55], support vector 

regression (SVR) [56], [57] and different architectures of shallow ANN [58], [59]. Figure 11 shows 

a summary of the performance of the models. The values shown are the mean values across the 

four gauge depths using the DAS Band-LF (0 to 2 Hz) for Dataset 2. The Random Forest model 

(Figure 12) used in the main body of work consistently showed similar or better performance (i.e., 

high R2 and low RMSE) compared to the other techniques investigated in all seven frequency 

bands analyzed in both datasets. The architecture of all the models used in the preliminary analysis  
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(a) Band-LF [0-2 Hz] (b) Band-0 [2-5000 Hz] 

Figure 7. Waterfall plots showing the DAS values in the different frequency bands for Dataset-1. 

 

Figure 8. Pressures from downhole gauges and DTS at the four gauge locations for Dataset-1. 

 

Figure 9. Pressures from downhole gauges and temperature from DTS at the four gauge locations 

for Dataset-2.  
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Figure 10. Combination of machine learning and signal processing workflow for pressure 

prediction using DTS and DAS [52]. 

is shown in Figure 13. In should be noted that the ANN architecture when deep enough may also 

give improved results but the computational time inhibits its usage. 

Random Forest Algorithm 

Compared to the other four machine learning algorithms investigated for our process, the random 

forest approach was chosen as the model of choice in the main body of this work due to its 

consistently strong performance (high R2 and low RMSE) and low computing time. 
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Figure 11. R2 and RMSE of the predictions obtained using the different 

machine learning algorithms for Dataset-2 [52]. 

Random forest is a multi-decision tree ensemble machine learning technique [60], [61]. 

The dataset must first be divided into training and testing datasets, as shown in Figure 13. 

Following that, the training set is randomly sampled based on the number of decision trees to be 

trained. The training set is then subdivided into training and validation datasets for each subgroup 

(otherwise known as out-of-bag samples). Each decision tree creates its own model and evaluates 

it using the validation samples. 
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Figure 12. Schematic illustration of the random forest algorithm [50]. 

 

Figure 13. Machine Learning models used in the preliminary model evaluation [50]. 

2.4. Results  

The input and output features for the machine learning models for the single-depth and distributed 

pressure modeling phases are summarized in Table 2. 
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Table 2. Machine learning model features for the single-depth and distributed pressure modeling.  

Random Forest Model 

Predictor  

(Input Variables) 

 

Target  

(Output Variable) 

Number of Datapoints  

(Training / Testing Data) 

Single-Depth Analysis DAS (all frequency bands), DTS ∆P 

2668 / 1144 (Dataset-1) 

553 / 238 (Dataset-2) 

Distributed Depth Analysis DAS (Band-LF), DTS, Time ∆P 

7624 / 7624 (Dataset-1) 

1582 / 1582 (Dataset-2) 

 

2.4.1. Single-Depth Predictive Modeling 

The R2 of the Band-LF ranged from 0.90 to 0.99, with an average performance of 0.97 across all 

depths, whereas the R2 of the higher frequency bands ranged from 0.81 to 0.83 across all depths. 

Similarly, the RMSE values for the Band-LF ranged from 0.8 to 11.4 psi, whereas the RMSE 

values for the higher frequency bands ranged from 8 to 23 psi. The results show that for Dataset-

1, the low-frequency DAS data provides a more accurate pressure forecast. The R2 values for the 

Band-LF in Dataset-2 ranged from 0.90 to 0.96, with an average of 0.94 at all depths. For the 

higher frequency DAS bands, the average R2 values varied from 0.64 to 0.75. Similarly, the RMSE 

values for the Band-LF ranged from 6.7 to 11.3 psi, whereas the higher frequency bands had RMSE 

values ranging from 12.3 to 39.5 psi. Figure 14 shows the R2 and RMSE for the test set for a single 

gauge depth while Figure 15 shows the pair plot of predicted and actual values. 
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Figure 14. The RMSE and R2 values for the testing subsample at each gauge depth for Dataset-1 

[52]. 

 

 (a) Band-LF [0-2 Hz] (b) Band-0 [2-5000 Hz] (c) Band-1 [2-10 Hz] 

(c
) 

3
5
0
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 f
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Figure 15. Pressure prediction using DAS Bands LF, 0, and 1 for the testing set for Dataset-1 

(RMSE in psi) [52]. 

2.4.2. Distributed Pressure Predictive Modeling 

The single-depth pressure modeling findings clearly showed that the low-frequency DAS (or 

Band-LF) performed consistently better than the higher-frequency DAS bands. As a result, we 

employed the DAS Band-LF, DTS, and elapsed time as input characteristics for the distributed 

pressure modeling, and the change in pressure from the initial pressure as the output for the random 

forest model. The model was trained using datasets from any two gauge depths, and the model was 

then used to estimate pressures at the other two depths.  
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In Figure 16, for example, DTS, DAS, and pressure data were used to train the random 

forest model at 487 ft and 2023 ft, and the trained model was utilized to forecast pressures at 3502 

ft using the DAS Band-LF and DTS at that depth. For Dataset-1, the R2 values for all eight 

situations were greater than 0.99, with the RMSE ranging from 2.5 to 4.2 psi. In Dataset-2, strong 

model performance was seen in all situations, with R2 more than 0.95. 

Training 

depth 

Testing depth Testing depth 

487 ft, 

5024 ft 

  

Figure 16. Comparison of the predicted and the actual pressure profiles obtained for the 

distributed pressure analysis for different combinations of training and testing depths for Dataset-

1 (RMSE in psi). 

2.5. Summary  

This study presents the first well-scale application of fiber-optic DAS and DTS data for 

pressure prediction. We used a combination of machine-learning and signal processing to analyze 

the pattern in the data before using the trained model to forecast pressure data at different depths. 

In an oilfield, surface and downhole pressure gauges are commonly available and can be utilized 

for model training. 

The findings are in line with those of several recent research, which have found that low-

frequency DAS has a superior correlation with pressure. In their laboratory-scale experiment, 

Becker et al. [33] found that the low-frequency DAS band (100mHz) was more sensitive to fluid 

pressure. The pressures evaluated in our well-scale tests reached up to 3200 psi, whereas the 
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greatest pressure in the Becker study was less than one psi. This research shows how low-

frequency DAS paired with DTS may be utilized to monitor distributed pressure on a well-scale. 
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Chapter 3. Automated Detection and Quantification of Gas Influx Velocity 

3.1. Introduction  

Undetected gas kicks during drilling or completion are to be blamed for many disastrous incidents 

in the oil and gas industry. As a result, early detection of gas influx (or kick) into the wellbore is 

critical to avoid the loss of lives and valuable assets, such as the rig, as well as environmental 

damage. Traditional gas-kick monitoring techniques such as pit gains, increases in flow rate from 

a well at constant pump speed, and pumps-off flow from the well are surface indicators that suffer 

from time delay in detecting conditions between the surface and the downhole. These surface-

based approaches may also have inadequate accuracy when dealing with small overflows.  

In this chapter†, a unique workflow is proposed that identifies gas-kick and estimates gas 

influx velocity using real-time downhole data from DAS deployed in a wellbore. The Hough 

transform, which is a feature extraction approach for grouping edge points into object candidates 

via a vote operation across a set of parameterized picture objects, is employed in the workflow 

[62]. The Hough transform is applied to frequency-wavenumber (f-k) graphs to estimate the gas 

influx velocity in real-time, as discussed in the next section. 

3.2. Methodology 

Figure 17 depicts the workflow, which includes the processes of data collection, processing, and 

interpretation. First, a 2-dimensional time-depth matrix is created from the raw time-series DAS 

vibration data (recorded in SEG-Y format). The data from each duration of the recording is then 

 

 

† This chapter was previously published as G. K. Ekechukwu and J. Sharma, "Automated 

Detection and Quantification of Gas Influx Velocity in Wellbore from Fiber-Optic Sensor Data," 

in OSA Optical Sensors and Sensing Congress 2021, paper JTh6A.11. 
DOI:10.1364/AIS.2021.JTh6A.11 

 

http://dx.doi.org/10.1364/AIS.2021.JTh6A.11
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concatenated to form a larger matrix that corresponds to the times of interest. A single SEG-Y file 

for a recording length of 10s is about ~920 MB in size, equating to ~330 GB per hour or ~8 TB 

per day. As a result, the data size is quite huge, necessitating data compression. The Fourier 

transform is used as the typical data compression approach for each depth (trace or row data) for 

each recording length. For all bands, the FBE file generated per record length (10 s) reduces the 

size from 920 MB to roughly 90 KB. The FBE data created in the preceding phase is transformed 

into frequency-wavenumber (or f-k) space in the next stage of the pre-processing steps [12]. The 

maximum wavenumber and frequency values in the new domain are given by the Nyquist equation 

as: 

 
𝑘𝑚𝑎𝑥 =

1

2∆𝑥
 

3.1a 

 
𝑓𝑚𝑎𝑥 =

1

2∆𝑡
 

3.1b 

Currently, the gas rise velocities are visually identified and manually calculated. Sharma, et al. 

[12] have shown this approach of visual detection and manual calculation utilizing low-frequency 

DAS (the red rectangle in Figure 17a).  Manual estimations of gas velocities, on the other hand, 

can be subjective, time-consuming, and difficult to execute in continuous monitoring for several 

wells, making it impossible to make time-sensitive decisions, such as monitoring gas kick. This 

research offers a possible solution. The Hough transform was applied on the f-k plots of the low-

frequency DAS FBE data to find straight lines, as shown in Figure 17b, and the gas velocity was 

determined using the slope of the straight line. A line can be represented in the conventional Hough 

transform as the point of intersection of the slope (m) and intercept (c), as indicated in equation 

3.2. 
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(a)  

(b)  

Figure 17. (a) Overview of the workflow (b) Details of the automated portion for estimation of 

gas rise velocity [63]. 

As shown in Figure 17, the Hough transform is applied on the f-k plots of the low-

frequency DAS FBE data to detect straight lines, and then the gas velocity was estimated by the 

slope of the straight line. In classical Hough transform, a line can be represented as the point of 

intersection of the slope (m) and intercept (c) as shown in equation 3.2. However, this m-c form 

will not be able to represent vertical lines and therefore the polar coordinate formulation was used 

as shown in equation 3.3. 

 𝑦 = 𝑚 ∗ 𝑥 + 𝑐 3.2 
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 𝑟 = 𝑥 𝑐𝑜𝑠 𝜃 + 𝑦 𝑠𝑖𝑛 𝜃 3.3a 

 
𝑦 = − 

𝑐𝑜𝑠 𝜃

𝑠𝑖𝑛 𝜃
𝑥 +

𝑟

𝑠𝑖𝑛 𝜃
 

3.3b 

The mapping of a fixed point (x,y) to a sinusoidal line in the Hough space is a particularly 

important variant. As a result, points on the same line in cartesian space will correspond to the 

Hough parameter space intersection point of their respective sinusoids. The Hough accumulator is 

used to find places where the Hough space sinusoids intersect most frequently. When a point on a 

cartesian plot is modified, the accumulator's bins for all lines that pass through that point are 

increased. Lines are then discovered by applying a threshold to the accumulator matrix's maximum 

value. 

3.3. Results  

The suggested approach was tested on DAS data from well-scale gas-kick experiments carried out 

in a 5163-feet deep test wellbore described in section (1.3. Test Well)  [64], [65]. When compared 

to high-frequency DAS, Sharma et al. [2] found that low-frequency DAS (> 2 Hz) resulted in better 

detection of the gas rise (2-5000 Hz). As a result, the low-frequency DAS was used to create the 

proposed automated workflow. Figure 18a depicts the gradient of the low-frequency DAS FBE 

with respect to time across an eight-hour time segment. The f-k and Hough transforms were applied 

across 53 windows covering the bottom parts of the FBE. 
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.

 

Figure 18. (a) Visualization of the sliding window on the FBE data (b) F-K transform space (c) 

Hough space representation.  

Each window is propagated from the left to the right of the FBE plot and covers a 

predetermined length of time series interval. The f-k plot of one of the windows where gas was 

identified is shown in Figure 18b, while the Hough space representation is shown in Figure 18c. 

Only a few areas of the original FBE would show the presence of gas based on real experiments 

[12], [64]. Such windows will be detected by the automated workflow, which will then estimate 
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their rise velocities. Using the confusion matrix (or error) concept, the number of true positives 

(TP), false negatives (FN), false positives (FP), and true negatives (TN) is 7, 1, 0, 45, giving an  

accuracy of roughly 98 % in predicting gas presence. However, due to the data imbalance in the 

number of samples with and without gas in the dataset, the accuracy metric may not fully capture 

the performance of the methodology. The recall (another machine learning-based metric) can be 

used instead. The recall is the fraction or percentage of actual positive results that were detected 

as indeed positive. Hence, the recall for the positive case (i.e., when gas is present) in this example 

will be 7/8 or 87.5%.  The ground truth was obtained by identifying windows containing gas from 

other methods such as pressure drop and DTS. Furthermore, a comparison of the velocity 

computed using the workflow and manual calculations reveal good agreement. 

3.4. Summary  

This study shows how to automatically identify the real-time influx of gas into a wellbore, which 

is an improvement over current approaches in which the gas velocity is largely identified by 

surface-based methods that have time-delay issues. Additional datasets can be used for further 

validation of the proposed workflows, which will also address the data imbalance issue  
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Chapter 4. Interface Tracking and Estimation of Gas Fraction Using 

Distributed Fiber-Optic Sensor and Downhole Pressure Data 
 

4.1. Introduction  

Multiphase flow is encountered in various industrial and engineering applications, such as in the 

chemical, geothermal, nuclear, petroleum, and space industries. The use of DFOS for fluid 

composition analysis and interface tracking has been gaining more attention recently. This chapter 

presents the estimation of gas fraction along the wellbore's depths using different techniques. The 

findings of our research will be beneficial to improve and validate fiber-optics-based production 

logging algorithms, detection, and quantification of gas leak volumes in the wellbore, and pipeline 

flow monitoring. Gas fraction or void fraction is the volume of space occupied by the gas in 

multiphase flow scenarios. It is one of the most fundamental parameters required in different flow 

calculations, such as two-phase viscosity, density, and pressure drop calculations. Many 

experimental studies and several correlations have been proposed to estimate this essential 

parameter in two-phase flow.  

This chapter prevents workflows to calculate the gas fraction along the wellbore in real-

time. The gas fraction at different sections of the wellbore will be estimated using two independent 

methods. The first method that will be explored is the use of combined pressure-difference and 

DFOS data to estimate gas fraction. The second method will investigate the application of the 

speed of sound (SOS) in mixture for determining the gas fraction in the wellbore. The parameters 

needed as input for both gas void fraction methods described above were obtained using a novel 

analysis workflow comprising of several signal processing and filtering steps. Some previous 

authors have experienced some challenges in using SOS for phase fraction estimations. Paleja et 

al. [19], in their experimental study, found the SOS in an air-water mixture to be 10-20 m/s, which 
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was less than that of water (1450 m/s) or air (300 m/s), hence was not able to estimate the gas 

fraction. Other previous studies, e.g., Bukhamsin et al. [66] that have also explored the SOS 

method, had inflow control devices (ICDs) in their wellbore that created restrictions in the 

wellbore. Flow-through ICDs created enhanced perturbations that would be easier to detect using 

DAS. In our test well setup, there are no restrictions in the wellbore, hence we have a more 

challenging experimental setup since the self-generating pressure waves may not be strong enough 

[67]. The two proposed workflows address this challenge in our experimental setup. More details 

about the two methods are described below. 

4.2. Methodology 

4.2.1. Gas Void fraction Estimation 

Method 1: Pressure Difference Method (PDM) 

The gas fraction can be estimated from the modified hydrostatic pressure equation shown below: 

 ∆𝑃𝑖𝑗 = 0.052 ∗ 𝛼 (𝜌𝑤 − 𝜌𝑔)  ∗ ℎ𝑠 4.1 

 
𝛼 =

∆𝑃𝑖𝑗

0.052 ∗  (𝜌𝑤 − 𝜌𝑔)  ∗ ℎ𝑠

 
4.2 

Where ∆𝑃𝑖𝑗 is the pressure difference of the two pressure gauge readings in between which the 

gas-liquid mixture region has been identified. Here, ℎ𝑠 is the gas-water mixture height, 𝜌𝑤 and 𝜌𝑔 

are water and gas densities, respectively, and  𝛼 is the gas void fraction that is to be calculated, and 

0.052 is the unit conversion factor from the SI unit when the units of the pressure, density, and 

height are psi, ppg, and ft, respectively. Figure 19 shows the schematic of a gas slug (gas-liquid 

mixture) rising in the annulus of a well. As time progresses from t1 to t3, the gas moves from the 

bottom of the well to the top of the well.  
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Figure 19. Schematics showing the gas rise in the annulus of the well. 

The gas-water mixture length at different times and depths along the wellbore can be estimated 

using the velocity band energy methodology described later in the chapter.  

Method 2: Speed of Sound (SOS) Approach 

The method described in this section follows the procedures that were described by Chaudhuri et 

al. [18] and Bukhamsin et al. [65]. The SOS in a fluid is given by the Newton-Laplace equation: 

 

𝑐𝑚 =  √
𝐾𝑚

𝜌𝑚
 

4.3 

Assuming that the average density of a fluid mixture can be estimated using arithmetic mean as: 

 𝜌𝑚 =  𝛼𝑔𝜌𝑔 + (1 − 𝛼𝑔)𝜌𝑤 4.5 

and the fluid mixture bulk modulus can be approximated by the harmonic mean of the two fluids 

as follows: 
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𝐾𝑚 =  [

𝛼𝑔

𝐾𝑔
+

(1 − 𝛼𝑔)

𝐾𝑤
]

−1

 
4.6 

If the geometry of the pipe (diameter (d) and wall thickness (t)) and elastic properties such as 

Young’s modulus (E) effects are accounted for, the equation above becomes. 

 
𝐾𝑚 =  [

𝛼𝑔

𝐾𝑔
+

(1 − 𝛼𝑔)

𝐾𝑤
+ 

𝑑

𝐸𝑡
]

−1

 
4.7 

Substituting Eqns 4.5 and 4.7 into 4.3 will give: 

 

𝑐𝑚 =  {[ 𝛼𝑔𝜌𝑔 + (1 − 𝛼𝑔)𝜌𝑤] [
𝛼𝑔

𝐾𝑔
+

(1 − 𝛼𝑔)

𝐾𝑤
+ 

𝑑

𝐸𝑡
]}

−
1
2

 

4.8 

The gas and water moduli can be substituted as 𝐾𝑔 =  𝑐𝑔
2𝜌𝑔 and 𝐾𝑤 =  𝑐𝑤

2 𝜌𝑤,𝛼𝑔respectively. The 

gas void fraction 𝛼𝑔 can then be calculated by solving the quadratic equation: 

 
𝛼𝑔 =  

−𝐵 ±  √𝐵2 − 4𝐴𝐶

2𝐴
 

4.9a 

Where the coefficients are defined as:  

 
𝐴 =  (

1

𝑐𝑔
2

−  
𝜌𝑔

𝜌𝑤𝑐𝑤
2

) (1 −
𝜌𝑤

𝜌𝑔
) 

𝐵 =  
𝜌𝑔

𝜌𝑤𝑐𝑤
2

+  
𝜌𝑤

𝜌𝑔𝑐𝑔
2

−
2

𝑐𝑤
2

+
𝜌𝑔𝑑

𝑡𝐸
−

𝑑

𝑡𝐸
 

𝐶 =
1

𝑐𝑤
2

−
1

𝑐𝑚
2

+
𝜌𝑤𝑑

𝑡𝐸
 

 

4.9b 

4.9c 

 

4.9d 

 

The SOS in a fluid mixture as a function of the composition of the fluid mixture is shown in Eqns 

4.8 and 4.9 above. The SOS curve is also dependent on the pressures and temperatures encountered 

at each depth because they affect the fluid properties. This is demonstrated  In Figure 20 a-d, which 
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were obtained at gauge depths of 487 ft (with P = 211 Psi and T = 90 °F), 2023 ft (with P = 890 

Psi and T = 95 °F), 3502 ft (with P = 1528 Psi and T = 104 °F), and 5025 ft (with P = 2180 Psi and 

T = 105 °F), respectively.  

(a) 

(b) 

(c) (d) 

Figure 20. The SOS in a fluid mixture as a function of the fluid composition. 

The corresponding pressure and temperature values were obtained from the downhole gauges 

corresponding to hydrostatic conditions in the PERTT test well. The plot shows that the minimum 

values of the SOS curve are highly dependent on the pressures and temperatures and hence on the 

depth of the gas slug (gas-liquid mixture region) as well. 

The first step is to estimate the SOS of the mixture (cm) at the depth of interest. The cm value is 

then traced horizontally to intersect the SOS curve. Finally, the corresponding gas fraction at the 
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point of intersection is determined. For instance, if the cm is 1500 ft/s, as shown in Figure 21, the 

gas void fraction will be estimated to be 0.9. For SOS values that give two possible gas fraction 

solutions from this approach, additional information is utilized to select the right answer, such as 

using mass balance consideration or another domain knowledge. 

 

Figure 21. Illustration of gas fraction estimation estimated using SOS curve. 

4.2.2. Gas-Liquid Interface Tracking 

The gas-liquid interface tracking is achieved using the velocity band energy or VBE workflow 

described next: 

Velocity Band Energy (VBE) Workflow 

Figure 22 shows the workflow employed for estimating the gas-water mixture height, ℎ𝑠, as well 

as the SOS in the mixture 𝑐𝑚. Both parameters are obtained from the DAS data, and act as inputs 

to the gas fraction estimation methods discussed above.  The gas-water mixture height ℎ𝑠 is used 
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in the pressure-difference estimation method while 𝑐𝑚 is used in the SOS estimation technique. 

The VBE workflow, as shown in Figure 22, is divided into two phases; phase one of the workflow 

starts with getting a representative 2D DAS vibration input sample. The mirror boundary condition 

is then applied to remove boundary artifacts. Next, a gradient with respect to time is performed to 

remove the horizontal streaks in the data which are a result of the non-uniform coupling of the 

fiber to the tubing. The last step in phase 1 of the workflow is to apply frequency and wavenumber 

filtering. For the frequency filtering, a high-pass Butterworth filter is applied in the time direction. 

The high -pass filter is used to remove the horizontal lines (the DC components of the signal) as 

well as the pump noise in the circulation case, whereas, for the wavenumber filtering, the 

Butterworth filter is applied in the depth direction. This is to ensure that long wavelengths are 

removed from the data to optimize the visualization of the gas-water mixture. The Butterworth 

filter is a time-domain filter in which the frequency response is as flat as possible in the bandpass. 

The result at the end of phase 1 is used for estimating the SOS in the gas-water mixture by tracing 

the slope of the up-going and down-going waves observed in the filtered plot. The phase two of 

the workflow starts with the application of the automatic gain control (AGC). The AGC  is a 

popular seismic processing technique [66] that is applied to enhance the weak signals in the data 

(make it uniform across the fiber). This was achieved by multiplying the DAS values with a scaling 

factor 𝑔(𝑥). The scaling function for each depth is the inverse of the root mean square of all the 

DAS values at that depth for each time window considered which can be represented as:  

 
𝑔(𝑥) =  

1

√1
𝑁

∑ 𝐴𝑖
𝑁
1

 
4.10 

Where 𝐴𝑖 are the DAS values, and 𝐍 is the total number of samples in each depth. 
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Figure 22. The velocity band energy workflow. 

The phase velocity filtering part of the workflow can be summarized as shown in Figure 23. The 

input into the VBE workflow is the AGC-processed data. 2D FFT is applied to the AGC data, and 

a velocity map is created. The velocity at each cell in the velocity matrix is the ratio of its 

corresponding frequency to the wavenumber. A velocity range of interest is then specified to create 

a velocity mask. To obtain the gas-VBE-RMS plot, the velocity range of 900-1200 ft/s is specified, 

while for the water-VBE-RMS plot, the range of 4900-5200 ft/s is specified, based on the SOS 

observed in  Figure 20. The velocity map is then multiplied with the created velocity mask to 

obtain the velocity-filtered data. Lastly, the inverse Fourier transform is applied to present the 

time-space version of the data. 

The phase velocity-filtered data is then passed through an autocorrelation function. The 

autocorrelation function is a special type of cross-correlation function. The cross-correlation 

function is used to compute the degree of similarity or dissimilarity between two analytical signals 

𝑥(𝑡) and 𝑦(𝑡), which can be mathematically expressed as shown in Eqn. 4.11 below [68]: 

𝑅𝑥𝑦(𝜏) =  ∫ 𝑥(𝑡)
∞

−∞
𝑦(𝑡 + 𝜏)𝑑𝑡 =  ∫ 𝑥(𝑡 − 𝜏)

∞

−∞
𝑦(𝑡)𝑑𝑡                                                              4.11 

Where 𝜏 is the time lag. The cross-correlation is a summation of the 𝑦(𝑡) lagged by 𝜏 multiplied 

by 𝑦(𝑡). 
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Figure 23. Phase velocity filtering computation steps. 

If the result of the cross-correlation is large, then the two signals are very similar, but a smaller 

value shows a high degree of dissimilarity. Autocorrelation, on the other hand, is used to check 

the degree of similarity of the 𝑥(𝑡)  is given by: 

𝑅𝑥𝑥(𝜏) =  ∫ 𝑥(𝑡)
∞

−∞
𝑥(𝑡 + 𝜏)𝑑𝑡 =  ∫ 𝑥(𝑡 − 𝜏)

∞

−∞
𝑥(𝑡)𝑑𝑡                                                                 4.12 

Calculating the autocorrelation of the signal 𝑥(𝑡)  is the same as the square of the amplitude 

spectrum in the frequency domain. In order words, taking the power spectrum of 𝑥(𝑡)  in the 

frequency domain is another way to compute the autocorrelation function. 

ℑ{𝑅𝑥𝑥(𝜏)} = 𝑅𝑥𝑥(𝜔) =  𝑋(𝜔). 𝑋(𝜔) = |𝑋(𝜔)|2                                                                           4.13 

Where 𝜔 is the angular frequency. In this work, the autocorrelation was computed at each depth 

in the frequency domain, and then the inverse Fourier transform was applied to convert the result 

back to the time-space domain, which is then stacked before the root mean square is computed. 

The 10-second long 2D DAS data is split into 1-second chunks and then stacked for better signal 

enhancement. RMS is then computed on the stacked 2D data. The computed RMS could also be 

normalized using the min-max approach to clearly see the intersection of the gas-VBE-

RMS/water-VBE-RMS plots. 

Measurement of the gas-water mixture height  

The gas-water mixture height that is used in this study is estimated based on the full width at half 

maximum (FWHM) [69] using the gas-VBE-RMS/water-VBE-RMS plots. The FWHM is the 
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difference between the two values of a variable (in our case, height) at which the other variable in 

a plot (in our case, RMS) is equal to half of its maximum. As illustrated in Figure 24, the value of 

the gas-water mixture height will be ℎ2 − ℎ1 based on the gas-VBE-RMS plot. The average of the 

heights estimated from the gas-VBE-RMS and water-VBE-RMS plots will be used as the gas-

water mixture height value that will be used in equation 4.2 to calculate the gas void fraction. The 

value of the average is very close to the heights obtained from the intersection of the normalized 

gas-VBE-RMS and water-VBE-RMS plots as shown in Figure 25 to Figure 27 below. 

4.3. Results  

4.3.1. Gas Void Fraction Estimation (No Circulation Dataset) 

Both the gas void fraction estimation methodologies described above were used to estimate the 

gas fraction and demonstrated on two well-scale datasets. In the first trial, nitrogen gas is injected 

into a well that is initially occupied by water. Ten (10) bbl. of nitrogen gas was injected through 

the chemical line, a choke back pressure of 300 psi was applied, and then the gas was allowed to 

migrate in a static water-filled annulus. Figure 25, Figure 26, and Figure 27 show the results of the 

analysis done when the gas was located at the bottom, middle, and top of the annulus of the well, 

respectively. The (a) part of the figures shows the 2D matrix of the DAS SEGY file corresponding 

to a 1-second data frame, and the (b) part shows the data after frequency-wavenumber (f-k) 

filtering has been applied. The (c) part of the figures shows the AGC-processed data, while the (d) 

shows the normalized gas-VBE-RMS and water-VBE-RMS cross plots. As mentioned earlier, for 

the gas-VBE-RMS plot, the range of 900-1200 ft/s is specified in the phase velocity filtering, while 

for the water-VBE-RMS plot, the range of 4900-5200 ft/s is specified, corresponding to the 

respective SOS values. 
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Figure 24. Gas-water mixture height calculation method using FWHM. 
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(a) Original DAS segy data. 

 
(b)  F-K filtered DAS segy data. 

 
(c) AGC-filtered DAS segy data. 

 
(d)  Gas-vbe-rms vs water-vbe-rms crossplot. 

Figure 25. Results of the analysis when gas is at the bottom of the well. 
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(a)  Original DAS segy data 

 
(b) F-k filtered DAS segy data. 

 
(c) AGC-filtered DAS segy data. 

 
(d)  Gas-vbe-rms vs water-vbe-rms crossplot. 

Figure 26. Results of the analysis when gas is in the middle of the well. 

Figure 28 shows the pressure difference between two consecutive gauges as the gas migrates from 

the bottom to the top of the annulus during the first trial. The values of the pressure difference 

combined with the gas-water mixture heights were used to estimate the gas fraction in the three 

timesteps selected. To apply the SOS approach for gas fraction calculation, the SOS of the mixture 

was estimated by the average of the different down going, and upgoing waves identified in the f-

k filtered plot, for example, those shown in Figure 29. The resulting gas fractions at different 

depths are displayed in Figure 30. The plots were obtained using the gauge pressures and 

temperatures obtained during the actual trial run. 
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(a) Original DAS segy data. 

 

(b)  F-k filtered DAS segy data. 

 

(c)  AGC-filtered DAS segy data. 

 

(d)  Gas-vbe-rms vs water-vbe-rms crossplot. 

Figure 27. Results of the analysis when gas is at the top of the well. 

A summary of the gas estimates from both the techniques is given in Table 3. The estimated gas 

void fraction using the pressure difference method ranged from 6% to 8%, with a slightly high gas 

fraction at the bottom than at the top. The gas fraction estimate obtained using the SOS method 

ranged from 5% to 7%. 4.3.2. Gas-liquid Interface Tracking (With-Circulation Case Studies). The 

gas-liquid interface tracking workflow is demonstrated on DAS datasets from two different 

scenarios as described below.  
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Figure 28: Pressure difference plots at different gauge depths located along the well. 
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Figure 29: SOS estimation method from f-k filtered plots (a) is an example of an f-k filtered plot 

(b) is the same f-k plot as in (a) but with examples of red lines whose slopes were used to 

estimate the gas mixture SOS. 
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(a) (b) 

 
(c) 

Figure 30. Gas fraction estimated from the SOS method at different depths.  

 

4.3.2. Gas-liquid Interface Tracking (With-Circulation Case Studies) 

The gas-liquid interface tracking workflow is demonstrated on DAS datasets from two different 

scenarios as described below.  

Scenario 1: No circulation plus artificial noise 

In the first scenario, three DAS traces representing the case when gas is at the bottom, middle, and 

top of the well, respectively, are used as test cases. In all cases there is no fluid circulation and gas 
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migrate in a static water-filled annulus. The 2D DAS data of the selected traces are shown in Figure 

31 below; these will be referred to as the “signal data”. 

Table 3: Summary of gas void fractions estimates for the case study. 

Pressure difference estimation method Speed of sound method 

Gas located Gas-water 

mixture 

height (ft) 

Pressure drop 

(Psi) 

Gas fraction 

𝛼𝑔 

Speed of 

sound (ft/s) 

Gas fraction 

𝛼𝑔 

Between 487 

and 2023 ft 

740 22.42 0.06 1310 0.05 

Between 2023 

and 3502 ft 

774 19.78 0.07 1680 0.06 

Between 3502 

and 5025 ft 

1058 25.18 0.08 1750 0.07 

 

The 2D background noise data that will be added to the signal data is shown in Figure 32. A 

fraction of the background noise is progressively added to one of the 2D signal data (in Figure 31) 

as follows: 

𝐼𝑛𝑝𝑢𝑡𝑑𝑎𝑡𝑎 = 2𝐷 𝑠𝑖𝑔𝑛𝑎𝑙 𝑑𝑎𝑡𝑎 +  𝛼 ∗  2𝐷 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 𝑑𝑎𝑡𝑎                                                    4.14 

𝛼 is the fraction of the background noise that is added to the 2D signal data to evaluate the effect 

of the addition of noise on the efficacy of gas-liquid interface detection.  Both the 2D DAS signal 

and background noise data are first normalized so that the values fall between 0 and 1 before the 

addition takes place. The  𝐼𝑛𝑝𝑢𝑡𝑑𝑎𝑡𝑎 is then passed through the other steps of the analysis 

workflow shown in Figure 22, starting with the mirror boundary condition. Figure 33 – 35 shows 

the output of the analysis workflow described by Eqn. 4.14. above. 
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Figure 31. SEGY DAS samples used as test cases in scenario-1 corresponding to gas-water 

mixture location at the top, middle, and bottom of the annulus. 

The approximate location of the gas along the well is characterized by the presence of relatively 

higher RMS values. The noise threshold for this background noise for each of the test cases is 

determined when the peak RMS is no longer in the depths containing gas. For the case when the 

gas is located at the bottom of the well, the noise threshold is 50%. The noise thresholds for when 

the gas is at the middle and top of the well are 30% and 10%, respectively. The noise thresholds 

are reduced as the gas travels to the top of the well. These results show that it is difficult to detect 

the gas location of gas directly from the 2D raw DAS data when the pumps are on.  
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Figure 32. Background noise added to the signal data. 

Scenario 2: With-circulation case study 

In the second scenario, we demonstrate the interface detection workflow on a DAS data acquired 

in an experimental trial that involved 10 bbl. of gas injection while the water was continuously 

circulated at 100 gpm rate. The 2D DAS SEGY data corresponding to this trial is shown in Figure 

36. Here, the pumps are switched on to inject water down the tubing to circulate the gas up the 

annulus. As can be seen, it is difficult to clearly identify the location of the gas. However, after 

applying the correction shown in Eqn. 4.15 below, the results (i.e., the ability to identify the gas) 

were greatly improved, as demonstrated in Figure 38. The background noise used is the same as 

that in Figure 32, which was also used in scenario-1 described above. 

𝐼𝑛𝑝𝑢𝑡𝑑𝑎𝑡𝑎 = 2𝐷 𝑠𝑖𝑔𝑛𝑎𝑙 𝑑𝑎𝑡𝑎 −   2𝐷 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 𝑑𝑎𝑡𝑎                                                   4.15 
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Figure 33: Effect of noise when the gas is located at the bottom of the well. 
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Figure 34: Effect of noise when the gas is located in the middle of the well. 

The interface tracking workflow gave promising results when the gas was in the middle of the well 

but, unfortunately, did not give good results when the gas was located either at the bottom or top 

of the well. At the top of the well, the gas is more dispersed, and the signal is weak. While at the 

bottom of the well, the noise is very high; this could be due to the fiber degradation that we have 

observed in our well, as described in the next chapter. 

4.4. Summary  

Two independent techniques were demonstrated to estimate the gas void fraction using DAS data. 

The gas void fraction results were within the range of acceptable error uncertainties. The findings 

of our research will be beneficial to improve and validate fiber-optics-based production logging  
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Figure 35. Effect of noise when the gas is located at the top of the well. 

algorithms, detection, and quantification of gas leak volumes in the wellbore, as well as pipeline 

flow monitoring. The VBE workflow was also applied for gas-liquid interface tracking in noisy 

DAS data. The results show that the background noise threshold (at which the workflow is unable 

to detect the gas-liquid interface) for the analyzed datasets could range from 10-50%, with 50% 

being at the bottom of the well. Applying the analysis workflow on the DAS data with-circulation 

(i.e., pumps on) test cases only gave promising gas location identification when the gas when 

present in the middle of the well likely due to the low SNR at the bottom of the well due to fiber 

degradation (discussed in the next chapter) and extremely dispersed gas at the top.   

Good results were obtained using the proposed analysis when the pumps are off. These scenarios 

are common in the oil industry operations where using DAS vibration data can still provide value, 

for instance, during drilling operations, no circulation cases are observed after drilling a stand of  
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Figure 36. 2D DAS SEGY when the gas is located in the middle of the well (between 2500 to 

3000 ft). 

 

Figure 37. The result of applying the VBE workflow on the 2D data. 
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Figure 38. The result of applying the VBE workflow on the raw 2D data minus the background 

noise. 

drill pipes (approximately 90 ft); this is to allow the drilling crew to make connections. This time 

window provides a great opportunity for us to apply the workflow and detect any gas ingress and 

their locations in real-time.  
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Chapter 5. Fiber Degradation Analysis and SNR Estimation 

5.1. Introduction  

The main objective of this chapter is to analyze the unexpected degradation observed in both the 

single-mode and multimode fibers, which are in a low-temperature (<130 °F) and low-pressure (< 

3500 psi) environment in the test well used in this study. A root-cause analysis was performed to 

understand the main cause of this degradation as well as to study the impact of the degradation on 

the DAS and DTS data quality over time, both qualitatively and quantitatively.  

There are only a few case studies involving fiber degradation in the field. Blount et al. [70] 

described a fiber-optic health monitoring scheme used to explain DFOS failures in numerous 

instrumented wells, principally through time-lapsed OTDR measurements. OTDR traces in the 

problematic fiber-optic cables showed a variety of failure scenarios, including hydrogen 

darkening, fiber bending, and a cable breach. Oulundsen et al. [71] developed ways for creating 

low-loss fibers in a hydrogen-rich, high-temperature environment. One way is to coat the fiber 

with a hermetic material, the most common of which is carbon. Because the carbon layer is 

substantially less permeable to hydrogen than other coating materials, the rate of hydrogen 

diffusion into the fiber is significantly slower. However, using carbon has two disadvantages: (1) 

it loses its hermeticity at temperatures above 170°C, and (2) hydrogen will seep through the carbon 

layer and reach the core fiber over time. The second approach is to coat fibers with materials that 

can significantly reduce the impacts of OH absorption peaks, such as polyimide, which can operate 

at temperatures as high as 300°C with no signal deterioration at the relevant wavelengths. 

However, losses caused by free hydrogen will continue to occur. When exposed to a high-

temperature hydrogen-rich environment, the pure silica core graded-index multimode fiber cables 

demonstrated much less induced attenuation than Ge-doped multimode fiber. The fundamentals of 
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macrobending and microbending in optical fibers were outlined by Jay et al. [72].  They looked at 

how mode field diameter (MFD) and wavelength affected macrobending. They discovered that for 

fibers with high MFD, attenuation was constant below a certain wavelength and rapidly rose above 

that wavelength. Lower MFD fibers showed a significantly diminished response following the 

wavelength cut-off. To design a fiber with a reduced mode field diameter, the refractive index 

difference between the core and cladding must be increased while the core diameter must be 

decreased. The "MAC number" is the MFD to fiber cut-off wavelength ratio. They also discovered 

that when a particular "MAC number" was exceeded, attenuation increased exponentially. In their 

work, they also examined the standards for measuring macrobending and microbending. 

Other research groups have investigated employing attenuation losses as a sensing technique. 

Guzowski [73], for example, investigated the use of microbending as a pressure-sensing method. 

Based on the fiber microbending principle, Wu et al. [74] suggested a system architecture for 

monitoring concrete cracks. In the sensitized fiber sensor network, a quantitative link was 

established between optical loss and crack width. Njegovec et al. [75] exploited the microbending 

technique to create an optical fiber sensor for detecting and localizing corrosion events on metal 

surfaces. Zheng et al. [76] created an optical fiber crack sensor based on macrobending loss to 

detect crack opening displacement. Cheng et al. [77] developed an optical splitter-enhanced U-

shaped-wound fiber macrobending loss crack sensor. Lopez et al. [78] created a distributed fiber-

optic bending sensor for detecting petroleum hydrocarbons using the coherent optical frequency 

domain reflectometry approach. A sensitive polymer was utilized, which swells selectively in the 

presence of hydrocarbons and causes bending losses in the fiber. Roman et al. [79] demonstrated 

a thin-core high-numerical aperture fiber with minimal macrobending loss that is suited for 

applications that require the fibers to bend sharply. 
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One of the novelties aspects of our methodology is that the exact specifications of the fiber were 

documented in detail, making it conceivably the only field-scale case study examining single-mode 

and multimode fiber degradation over time. The manufacturers and end users of fiber optics would 

benefit from having a better understanding of the reasons behind fiber degradation and from being 

able to apply what they have learned to new projects. This study is also unique in that it examines 

multimode fiber degradation utilizing time-lapse measurements of temperature-sensitive (TTS) 

and non-temperature-sensitive (NTS) Raman backscatter patterns. Additionally, we have 

examined the impact of fiber deterioration in both water- and oil-based drilling mud wellbore 

fluids. This becomes extremely important to assess the effect of fiber exposure during wellbore 

drilling and completion. Using DFOS to monitor gas kicks during drilling, completion, and 

workover activities is being explored by both industry and academia. However, the performance 

or degradation of the installed fiber in the presence of drilling and completions fluids (typically, 

water- or oil-based muds) has not been explored. Additionally, this chapter seeks to close this 

information gap. Potential Causes of Fiber Degradation. In fused silica glass fiber, signal 

degradation is frequently caused by optical losses caused by scattering, bending (microbending 

and macrobending), attenuation, dispersion, absorption, and optical splices and connectors. These 

phenomena are explained shortly below. 

Attenuation: This is the measurement of optical energy loss as it goes through the fiber. 

Attenuation is often measured in decibels per kilometer (dB/km). As seen in Figure 39, these losses 

are wavelength-dependent, and the value of the attenuation is highly dependent on the fiber 

material and manufacturing tolerances. Scattering and absorption both contribute to attenuation. 

Scattering Loss: When light interacts with the inhomogeneities within the glass core, it scatters, 

which is usually what causes normal loss in the fiber cable. When energy is moved from the 
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dominant mode to the adjacent mode, linear scattering takes place. The linear scattering in the 

dominant mode is directly correlated with the input power. The scattered wave's frequency does 

not change in a linear scattering process [6]. There are two different linear scattering mechanisms: 

Mie scattering and Rayleigh scattering. The primary type of linear scattering brought on by 

smaller-than-wavelength scatterers created during the fiber production process is known as 

Rayleigh scattering. The inverse of the fourth power of wavelength is directly related to the 

Rayleigh scattering coefficient [81]. Mie scattering occurs in inhomogeneities such as core-

cladding refractive index variations over the length of the fiber, impurities at the core-cladding 

interface, strains or bubbles in the fiber, or diameter fluctuations. In commercial fibers, the effects 

of Mie scattering are insignificant, and they can be reduced by carefully removing imperfections 

from the glass material and controlling the quality and cleanliness of the manufacturing process. 

Non-linear scattering losses occur in an optical fiber that is operating in non-linear mode when the 

optical power at the output of the fiber does not change proportionally with the power change at 

the input of the fiber. Stimulated Raman scattering and stimulated Brillouin scattering are two 

categories of non-linear scattering losses caused by the nonlinearity of a medium.  

Absorption: The composition of the fiber and its fabrication results in absorption losses which 

depend on the wavelength of light. Electronic UV (ultraviolet) absorption bands that occur at 

shorter wavelengths (with high values around 100 nm) and molecular IR (mid-range infrared) 

absorptions are the main contributors to intrinsic absorption losses. The tails of the electromagnetic 

(EM) spectrum's UV and IR absorption bands extend into the visible light region. [82].  The 

theoretical low-loss wavelengths are around 1550 and 1310 nm, which are two commonly utilized 

laser wavelengths [6]. Impurities in the fiber during manufacture cause extrinsic absorption. When 

metal impurities such as iron, nickel, and chromium are introduced into the fiber during the 
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fabrication process, absorption may occur because of metal ions transitioning to higher energy 

levels. Metal ion losses can be decreased to a very low level by purifying the glass mixture to an 

impurity level of less than 1 part per billion (ppb). 

Hydrogen Darkening: The exposure of an optical fiber to hydrogen can result in the degradation 

of the fiber’s performance and optical losses at specific wavelengths due to the absorption of a 

variety of hydrogen-related species [83]. These losses typically originate from two sources: the 

reaction of hydrogen with fiber defects and free molecular hydrogen (H2) dissolved in silica. The 

magnitude of these losses depends on temperature, hydrogen concentration, partial pressure of 

hydrogen, and exposure time [84]. Hydrogen can react with the glass matrix to form hydroxyl ions 

(OH-) that interfere with the passage of light through the glass. Absorption losses occur in the 

presence of OH-, which can result in significant optical attenuation at specific wavelengths. 

 This typically happens at defect sites along the fiber where the oxygen atoms are not fully 

bonded. These losses are permanent since the chemical reaction cannot be reversed. Absorption 

peaks due to OH- are strong at 1383 nm and, to a lesser extent, at 945 nm and 1240 nm (Figure 

40). However, the OH- absorption band is narrow enough that ultrapure fibers can achieve losses 

of less than 0.2 dB/km at 1550 nm. The addition of germanium oxide to the glass core alters the 

effect of OH- impurities by creating additional absorption peaks at slightly different wavelengths. 

When fused silica glass fiber is exposed to hydrogen gas, the hydrogen molecules can also diffuse 

through the polymer materials to the fiber cladding and core at room temperature just within days. 

These H2 molecules will occupy interstitial sites that have specific absorption peaks [71]. These 

effects cause a reversible loss because once the fiber is removed from the hydrogen environment, 

the hydrogen molecule can diffuse back out. The rate of response and recovery depends on the 

temperature. Figure 40 shows the absorption spectrum resulting from molecular hydrogen 
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dissolved within silica optical fiber illustrating a fundamental peak at 2420 nm and the first 

overtone at 1240 nm. Other absorptions of interest can be observed at 1590 nm and 1640 nm [84]. 

The resulting fiber losses can reach hundreds of decibels per kilometer, which makes it unusable 

for any optical transmission application.  

 

(a) 

 

(b) 

Figure 39. (a) Attenuation in silica optical fiber as a function of wavelength (b) Spectral 

attenuation in Graded index (GI) multimode and Stepped Index (SI) multimode fibers [82].  

 

(a) 

 

(b) 

Figure 40. (a) Absorption spectra of molecular hydrogen [84] (b) Attenuation profiles with 

increasing hydrogen exposure [6]. 

The hydrogen that interacts with optical fiber can come from a multitude of sources, including 

ambient atmospheric hydrogen, evolution or dissolution from cable material (e.g., hydrocarbon 

polymers and metals), a galvanic reaction between dissimilar metals in the cable, general 
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oxidation/corrosion, and due to sulfate-reducing bacteria, or direct fluid influx due to poor 

termination or hole in the fiber control line [85].  Hydroxyl ions may be formed due to the 

dissociation of water into hydronium ions (𝐻3𝑂+) and OH-. However, very few water molecules 

undergo this dissociation (about one water molecule in half a billion dissociates into an OH-) [86]. 

Therefore, if water touches the fiber, there is a small chance of the OH- diffusing through the 

coating through the cladding to the core, thereby causing some adverse effects.  

One way to prevent hydrogen darkening is the application of hermetic coatings on the fiber 

surface to create a hydrogen barrier. Metal, ceramics, and carbon coatings have been explored for 

this application. Of these, carbon coatings are considered the most attractive, especially at 

temperatures above 100°C, as shown in Figure 41 [87]. At these temperatures, the saturation 

lifetimes with respect to hydrogen ingression are on the order of years, and the mean strength is 

sufficient for most applications. Hydrogen-capturing gels have also been used to buffer the fiber, 

and other proprietary techniques may be used to prevent hydrogen atoms from reaching the glass 

fiber via the cable sheath [88]. 

 

(a) 

 

(b) 

Figure 41. (a) Standard graded index multimode fiber before hydrogen exposure (b) carbon-

coated hermetic fiber after hydrogen exposure [87]. 
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Bending Losses: The optical signal traveling through the fiber can also be affected by bending 

losses, as illustrated in Figure 42. There are categorized into two types, namely: macrobending and 

microbending.  

Macrobending Losses:  This typically occurs when the fiber cable is folded or physically bent, 

and the curvature of the bend is larger than the fiber diameter, as shown in Figure 42a. When this 

occurs, there will no longer be a total internal reflection at that point, as the angle of refraction is 

now less than the critical angle; hence light will leak out through the cladding. The degree of light 

leakage is proportional to the magnitude or radius of curvature of the bent fiber cable. The loss 

due to macro bending is wavelength-dependent, and the value of the loss will increase at higher 

wavelengths. OTDR traces obtained at longer wavelengths (such as 1625 nm) can be used as 

indicators for macrobending [72].  In general, macrobending losses should be insignificant for 

bends up to 10 times the outside diameter [81]. 

Microbending Losses:  This type of loss is caused by very small-scale bends in the core-cladding 

interface (typically <1 mm) along the waveguide [72]. These localized bends can develop during 

the deployment of the fiber or can be due to local mechanical stresses placed on the fiber, such as 

stresses induced by cabling the fiber or wrapping the fiber on a spool or bobbin [81]. They can 

also form because of defects in the manufacturing process. Other potential causes of microbending 

would be a differential expansion of the optic fiber and the surrounding coating material. If the 

fiber gets cold, it will shrink and get shorter. If the core/cladding is not shrinking at the same rate, 

then there is a possibility of microbending. Irregularities in the coating materials, coating surface 

slickness, the reaction of the coating material with some solvents such as isopropyl alcohol, and 

the presence of particles such as those in the pigments of color coatings, may result in 

inconsistencies in how mechanical stress is transmitted through the polymer coatings to the 
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fiberglass which can contribute to microbending losses. External factors, such as temperature and 

humidity, can also affect the sensitivity of the fiber to experience this type of loss. Microbending 

exhibits attenuation across a large wavelength band and shows less wavelength dependency, as 

shown in Figure 42b. The set of perturbations that causes bending can be viewed as a spectrum. 

Some factors that can contribute to microbending loss are described in the equation below [72]. 

𝜆 = 𝑁〈ℎ2〉
𝑎4

𝑏6∆3
(

𝐸

𝐸𝑓
)

3/2

                                                                  (5.1) 

Where 𝜆 is the attenuation, N is the number of bumps of average height h per unit length; a is the 

radius of the core, b is the overall fiber diameter, ∆ is the difference in the refractive index while 

𝐸 and 𝐸𝑓 are the modulus of elasticity of the fiber and coating, respectively. As can be seen from 

the equation above, several parameters can affect microbending. Smaller core size and large 

refractive index differences can contribute to reducing microbending attenuation.  

Dispersion Losses: This type of optical signal loss results from the spreading out of a light pulse 

as it propagates down the fiber, which leads to a reduction in the effective bandwidth available for 

optical transmission. Dispersion in optical fiber includes modal dispersion, chromatic dispersion, 

and polarizing mode dispersion. Of these, the model dispersion is not a problem in single-mode 

fibers since there is only one light mode that can travel in the fiber. 

Connector and Splice-induced Losses: One of the major extrinsic contributors to optical signal 

losses are connectors and splices. No matter how good the connection or splicing, these losses are 

inevitable. Connector losses or insertion losses are the losses of optical power resulting from the 

insertion of a device in a transmission line or optical fiber. Mechanical misalignment of connectors 

scratched or pitted glass end face, or foreign debris on the fiber end face can be contributed to 

these losses. 
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(a) 
 

 
(b) 

 

Figure 42. (a) Schematics of macrobending and microbending (b) The wavelength dependency 

of microbending and macrobending [72]. 

The quality of the fiber splicing affects the splicing losses. Acceptable fusion splicing losses of 

multimode fiber range from 0.1 to 0.5 dB, while they are typically less than 0.05 dB in single-

mode fiber [89]. The typical accepted range for multimode connector losses is between 0.2 to 0.5 

dB and less than 0.75 dB for single-mode connectors. The field engineer or technician responsible 

for the fiber installation is responsible for ensuring that these losses do not contribute to exceeding 

the optical budget. 

5.2. Fiber Degradation Analysis Methodology 

The optical budget or the link budget is the estimation of the two-way loss of optical signal 

considering all the signal losses experienced along the optical fiber path [90]. This is usually done 

to ensure that the signal that returns to the receiver is not too weak, which will then make it difficult 
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to be separated from the background or instrument noise. In the context of DFOS, the cumulative 

signal losses due to factors intrinsic and extrinsic to the optical fiber should not exceed the 

maximum loss permitted by the DFOS acquisition unit or interrogator used. As optical losses are 

inevitable, there is a maximum level of an acceptable loss outlined for various processes. For the 

test well setup used in this study, the maximum cumulative losses (connectors, splice, and 

downhole fiber) for the DTS acquired using the multimode fiber should not exceed 12 dB while 

the maximum cumulative loss for the DAS acquired using the single-mode fiber should not exceed 

5 dB [91]. In addition, the measured attenuation along the installed downhole multimode fiber 

should not exceed 3 dB/km and 1 dB/km for 850 nm and 1300 nm wavelengths, respectively. For 

the single-mode fiber, the measured attenuation should not exceed 0.5 dB/km and 0.4 dB/km for 

1310 nm and 1550 nm wavelengths, respectively [89]. To ensure that the optical losses in the 

DFOS installed in the test well are within the acceptable limits as described above, multi-

wavelength OTDR measurements and optical backscatter signal analysis was performed.  

5.2.1. Multi-wavelength OTDR Measurements  

OTDR is optoelectronic equipment used to characterize the total two-way signal losses 

experienced by the light traveling through the fiber. It provides a plot of distance versus signal 

level, which is useful for locating defects and quantifying signal losses at different points along 

the fiber. Since many of the optical loss mechanisms are wavelength-dependent, as described 

previously, most OTDRs allow measurements at different laser wavelengths, pulse widths, and 

distance ranges. Time-lapse OTDR measurements were taken in the single-mode and multimode 

fibers installed in the test well to measure cumulative losses over time across the fiber length in 

the well. There is a splice and connector at the junction box at the wellhead and the single- and 

multimode fibers are terminated using epoxy inside the bottom of the DFOS control line (at 5025 
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ft). There are no other optical splices or connectors along the DFOS control line in the tubing. All 

the OTDR plots were visualized starting from the wellhead splice (at 0 ft i.e., top of the test well) 

up to the fiber termination point at 5025 ft (which is indicated by the far-end Fresnel reflection). 

Repeated OTDR measurements were acquired at 850 nm and 1300 nm for the multimode fiber to 

encompass the DTS interrogator probing wavelength of 1064 nm. Similarly, the OTDR in the 

single-mode fiber was acquired at 1310 and 1550 nm wavelengths, considering the operating 

wavelength of 1550 nm for the DAS interrogator. Once the degradation was observed in the fibers 

in the form of higher-than-expected optical losses, OTDR at other wavelengths was also acquired 

to conduct a root-cause analysis, in addition to the conventional wavelengths employed in single-

mode and multimode fibers. The special wavelengths included 1244 nm, 1310 nm, 1383 nm, and 

1625 nm. Increased losses at higher wavelengths, such as 1625 nm, can be used as an indicator for 

possible macrobending issues. The 1244 nm wavelength is used for measuring the “water peak” 

region of high attenuation in a fiber’s spectral attenuation curve. If the water peak attenuation 

grows due to unusual chemical activity within the fiber, then the 1310 nm operating band can also 

become affected [92]. The OTDR readings at 1383 nm can be used as an indicator for permanent 

hydrogen damage as the loss values will be higher at these wavelengths than at nearby lower 

wavelengths in the case of hydrogen-induced degradation. 

5.2.2 Raman Spectra Analysis 

The DTS interrogator deployed in this study utilizes the anti-Stokes and Stokes components of 

the Raman spectrum to evaluate the distributed temperature profile. Therefore, the degradation in 

the multimode fiber (used for DTS acquisition) was also evaluated by analyzing the change in the 

Raman backscatter profiles over time. The Stokes component of the Raman spectrum is non-

temperature sensitive (NTS) and mainly contains the fiber loss information, while the anti-Stokes 
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component of the Raman spectrum contains temperature-sensitive (TTS) information which is 

affected by both the temperature and the optical fiber losses. Eq. 2 shows how the DTS temperature 

profiles are computed for a single-ended multimode fiber installation from the NTS and TTS band 

trace data. The temperature calculated by the DTS interrogator at any point x (Tempx) along the 

fiber is a function of the Stokes and the anti-Stokes ratio at x to the Stokes and anti-Stokes ratio in 

the reference coil (c), the temperature of the reference coil (RCT), the fraction of fiber length (Z), 

and a sensitivity parameter (SLE). The equation also shows how the light loss in a single-ended 

multimode fiber is corrected in a single laser pulse DTS interrogator by setting a differential loss 

correction or DLC factor. The DLC factor inputted assumes that the optical loss is constant along 

the fiber which may not be valid in some cases due to variations in fiber manufacturing, purity of 

the fiber, control bands during installation, fiber deterioration with time, new connections, etc. 

Over time, the single-ended temperature measurements can change as the light loss characteristic 

of the fiber changes due to fiber deterioration, etc. In this situation, the absolute accuracy of the 

DTS temperature profile can be corrected post-acquisition by calibrating the DTS temperature to 

a known gauge temperature using the DLC adjustment method.  

1
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(5.2) 

As the fiber installation in the test well is single ended, if the fiber degradation is the same for 

the NTS and the TTS signals (in other words, there is no change in the differential loss), then the 

DTS temperature measurements are not impacted, and therefore correct. Consequently, to evaluate 

the degradation in the multimode fiber, the NTS and TTS signals over time were analyzed, and the 

observed DTS measurement was also compared with the temperature measured using the four 

downhole gauges in the test well 



74 

5.3 Fiber Degradation Analysis Results and Discussion 

5.3.1 Multi-Wavelength OTDR Measurements 

5.3.1.1 Multimode Fiber Analysis 

At the time of DFOS installation in the test well in June 2019, the attenuation for the multimode 

DTS fiber was found to be 3.48 dB/km and 1.874 dB/km at 850 nm and 1,300 nm OTDR 

wavelengths, respectively for the total length (5025 ft) of the downhole fiber. As it has been 

reported in the literature [6], [70], [89] the fiber loss is wavelength dependent, and the optical fiber 

attenuation decreases with longer wavelengths. This means that the fiber attenuation and losses 

seen by the DTS interrogator unit operating at the acquisition wavelength of 1,064 nm would be 

lower than the values measured by the two-way OTDR at 850 nm wavelength but higher than the 

1300 nm wavelength Figure 43a and Figure 43b shows the plot of the time-lapse OTDR acquisition 

obtained in Jun 2019, Jan 2022, and Feb 2022, recorded at 850 nm and 1300 nm, respectively. 

From the plots, we see an inflection point at roughly 2500 ft where the OTDR profiles start to 

deviate away from the initial profile at installation. The optical losses over time in the top half of 

the multimode fiber appear to be overlaid and have similar attenuation rates (indicating no 

significant change over time). However, the attenuation rate at the bottom half of the fiber appears 

to be increasing with time. The cumulative optical loss values for the OTDR profiles across the 

entire fiber and only the bottom half of the fiber length are summarized in Table 5 . The attenuation 

at 1300 nm is lower than those at 850 nm, which is expected because attenuation decreases as the 

probing light wavelength increase until certain wavelengths when the attenuation caused by 

infrared absorptions starts to increase.  

To further understand the cause of increased degradation at the bottom part of the fiber 

observed during the periodic OTDRs, loss measurements at additional OTDR wavelengths were 
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acquired in June 2022, as shown in Figure 44. The attenuation values for both the total length and 

the bottom half of the multimode fiber are summarized in Table 6. If hydrogen darkening was 

causing the fiber degradation, the attenuation at 1244 nm would have been at least an order of 

magnitude higher than the attenuation at the other wavelengths. Similarly, if hydroxyl ion was the 

culprit, the attenuation at 1383 nm would have been at least an order of magnitude higher than the 

attenuation at the other wavelengths. In the hydrogen darkening example by Blount et al. [70], 

both free hydrogen and hydroxyl ions affected the fiber cable, and the attenuations at 1244 nm and 

1383 nm were an order of magnitude higher than those at other wavelengths. 

As recommended and observed by Oulundsen et al. [71], fiber-optic cables with carbon and 

polyimide coatings, similar to the one used in the fiber installed in the test well, are not expected 

to be affected by the presence of hydrogen in the range at which DTS operates (between 1014 nm 

to 1114 nm) and low-temperature conditions in the test well. Fiber degradation due to the ingress 

of wellbore fluid into the DFOS control line due to pin holes or poor termination can also be ruled 

out since no significant change in OTDR profile was observed when the fluid in the test well was 

switched from water to synthetic oil-based mud (OBM) in February 2022. The properties of the 

mud are shown in Table 7, and the particle size distribution of the solids in the OBM is shown in 

Figure 45. The ratio of the oil/water ratio of the mixture is 70/30. If there were fluid ingress into 

the DFOS control line, the pumping of fluid with solids with likely cause more abrasiveness of the 

fiber coating, which could greatly increase the attenuation. Comparing the multi-wavelength 

OTDRs taken before and after the mud switch did not show any dramatic change in the attenuation, 

which rules out fluid ingress as the likely cause of the observed fiber degradation and high optical 

losses.  
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Figure 43. Time-lapse OTDR for multimode fiber at (a) 850 nm and (b)1300 nm. 
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Figure 44. Multi-wavelength OTDR for the multimode fiber taken in Jun 2022. 

 

If macrobending was the main cause of the degradation, increased losses would have been 

observed at a higher wavelength (1625 nm). For example, the macrobending example by Blount 

et al. [70] is not observed in our case. The multi-wavelength analysis suggests that macrobending 

and the presence of hydrogen or hydroxyl ions cannot be blamed for the observed degradation. 

Since there are no optical connectors or splices along the fiber installed along the tubing in the test 

well, microbending appears to be the only other possible cause of the observed degradation.  
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Figure 45. Particle size distribution of the mud in the well. 

 

Table 4. Specification for the single-mode and multimode fibers installed in the test well. 

 Single mode Multimode 

Material   

Hermetic coating Carbon Carbon 

Coating Polyimide Polyimide 

Core Pure Silica Pure Silica 

Geometry   

Core diameter (µm) 10 ± 0.5 50 ± 1 

Clad diameter (µm) 125 ± 2 125 ± 1 

Coating Diameter (µm) 155 ± 2 155 ± 1 

Measurement Metrics   

Range (km) 16 15 

Operating Temperature 

(°C) 

-40 to 200 < 175 

Spatial Resolution (m) 1.5 1.2 

Sampling Interval (m) 0.77 0.5 

Recording Length (s) 10 12 
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Table 5.  The attenuation in dB/km for the total length as well as the bottom half of the downhole 

multimode (MM) fiber at 850 nm and 1300 nm. 

  850 nm 1300 nm 

Date 
Total length  

(0-5025 ft) 

Bottom Half 

(2512-5025 ft) 

Total length 

(0-5025 ft) 

Bottom Half 

(2512-5025 ft) 

  Attenuation (dB/km) Attenuation (dB/km) 

6/14/2019 3.48 2.474 1.874 0.475 

1/28/2022 4.02 3.602 2.079 1.451 

2/14/2022 4.906 4.908 3.139 2.778 

 

Table 6. Attenuation readings from multi-wavelength OTDR for the total length and bottom half 

of the MM fiber taken in Jun 2022. 

  

Total length 

(0-5025 ft) 

Bottom Half 

(2512-5025 ft) 

Wavelength (nm)  Attenuation (dB/km) 

1244  2.037 2.68 

1310 1.862 2.559 

1383 1.945 2.659 

1550 1.538 2.222 

1625 1.439 2.096 

 

Table 7. Oil-mud mud properties. 

Mixture Properties Unit Values 

Measured Mud Weight sg 1.013 

Plastic viscosity cp 16 

Yield Point  lb. /100ft2 16 

Oil/Water Ratio %/% 70/30 

LGS  % By vol 2.6 

HGS  % By vol 9.7 

Brine   

Brine SG sg 1.025 

Water Concentration bbl. 0.272 

Salt Concentration lb. /bbl. 2.384 

 

 



80 

5.3.1.2. Single-mode Fiber Analysis 

Time-lapse OTDR measurements were also acquired for the single-mode fiber that is used for 

DAS. Figure 46 shows the optical loss profiles repeated at different times between the initial fiber 

installation in 2019 and 2022 obtained at the probing wavelength of 1310 nm (Figure 46a) and 

1550 nm (Figure 46b). The results show clear degradation beyond 1500 ft from the top of the 

single-mode fiber for both wavelengths, which appears to be worsening over time. The spike in 

attenuation at the bottom of the fiber (around 5025 ft) is due to the fiber termination and Fresnel 

reflection. Table 8 shows the attenuation values from the repeated OTDR measurements obtained 

at 1310 nm and 1550nm. Compared to the multimode fiber, the attenuation seen in the single-

mode fiber are higher.  

To further understand the cause of the increased optical attenuation, OTDR measurements were 

acquired at additional wavelengths. Figure 47 shows the profiles for the multi-wavelength OTDR 

obtained in Jun 2022, and the optical loss results are summarized in Table 9. An increase in optical 

loss is observed below 3000 ft for all wavelengths. Like the multimode fiber, neither hydrogen 

darkening nor macrobending seems to be culprits here since a significant increase in losses is not 

observed at 1244 nm, 1310 nm, 1383 nm, or 1625 nm, as would be expected for those mechanisms. 

As shown in Figure 40, the single-mode fiber also has carbon and polyimide coatings which are 

hermetic and will be resistant to hydrogen darkening, especially at temperatures below 170 °C. 

The maximum temperature that the fibers have been exposed to in the test well is less than 130 °F, 

so it is expected that the coatings should still be effective even if they are in an environment with 

hydrogen, which we do not expect in our case. Like the multimode fiber case, no significant change 

in OTDR profiles was observed after the change in wellbore fluid from water to OBM in February 
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2022, which rules out degradation due to fluid ingress in the DFOS control line from pin holes or 

poor termination at the bottom. 

Table 8. The attenuation in dB/km for the total length as well as the bottom half of the downhole 

single mode fiber at 1310 nm and 1550 nm OTDR. 

  1310 nm 1550 nm 

  

Total length 

(0-5025 ft) 

Bottom Half 

(2512-5025 ft) 

Total length 

(0-5025 ft) 

Bottom Half 

(2512-5025 ft) 

  Attenuation (dB/km) 
 

Attenuation (dB/km) 

6/14/2019 0.577 0.4 0.712 0.313 

12/2/2021 5.013 8.6 4.431 7.563 

1/28/2022 5.065 8.276 4.621 7.669 

2/14/2022 5.169 8.423 4.632 7.786 

6/20/2022 5.197 8.531 4.633 7.881 

 

Table 9. Multi-wavelength optical attenuation readings for the total length and bottom half of the 

single-mode fiber acquired in Jun 2022.  

  Dec-21 Jun-22 

  

Total length 

(0-5025 ft) 

Bottom Half  

(2512-5025 ft) 

Total length 

(0-5025 ft) 

Bottom Half 

(2512-5025 ft) 

Wavelength 

(nm)  Attenuation (dB/km) Attenuation (dB/km) 

1244  - -  5.515 8.749 

1310 5.013 8.25 5.197 8.331 

1383 4.901 8.126 5.147 8.247 

1550 4.431 7.463 4.633 7.481 

1625 4.447 7.438 4.539 7.459 

 

Since there are no splices or optical connectors across the fiber installed in the tubing, this leaves 

microbending as the only viable cause for the degradation. 
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(a) 

 

(b) 

Figure 46. Periodic OTDR measurements at (a) 1310 nm and (b) 1550 nm. 
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Figure 47. Multi-wavelength OTDR for the single-mode fiber acquired in Jun 2022. 

Microbending in the single-mode and multimode fibers in the test well can result from the 

degradation of the fiber coating due to the mechanical stress caused by the roughness of the control 

line’s inner wall and/or IPA damage solvent damage of the coating material. As can be seen from 

equation (2), several parameters can affect microbending. Smaller core size and large refractive 

index differences can contribute to reducing microbending attenuation. But these are usually 

standardized because they affect other optical parameters as well. The coating diameter, however, 

can be a major design parameter implicit in the “b” parameter in equation 2. Increasing the coating 

diameter increases the stiffness of the coated fiber hence also reducing the tendency for 

microbending. The coating diameter can be seen as a low-pass filter of small radius external 

perturbations. Jay [72] showed that as the coating diameter increased, the microbending sensitivity 

reduced with coated fiber diameter. The worst performer was the fiber with a core diameter of 

~250 µm. The overall fiber diameter for both the multimode and single-mode fibers is ~155 µm. 

Hence there is a higher tendency that they would have high microbending sensitivity. 



84 

  

(a) 

  

(b) 

Figure 48. The effect of single-mode fiber degradation on DAS data for gas injection in the 

tubing shows low SNR at the bottom in: (a) high-frequency DAS FBE (b) low-frequency DAS 

FBE. 

Another potential cause of microbending would be a differential expansion of the fiber and the 

surrounding material [81], which can be accelerated due to thermal cycling. If the fiber gets cold, 

it will shrink and get shorter. If the core/cladding is not shrinking at the same rate, then there could 

be a possibility of microbending. Thermal expansion and contraction cycling could cause the ¼” 

capillary tube (control line) hosting the optical fibers to stretch the fiber effectively stealing excess 

fiber length from the upper portions of the well. Then, as the well cools, the surplus loose fiber in 
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the lower length will buckle (bunch) as the cooler ¼” tube shrinks as it recovers to the geothermal 

background temperature. However, the DFOS in the test well has a loose-tube construction which 

implies that the internal diameter of the outer capillary tube is much greater than the outside 

diameter of the single-mode and multimode fibers inside it. This arrangement allows the outer 

capillary tube or control line to respond to changes in temperature without stressing the fibers. 

Moreover, polyimide has very low thermal conductivity making the transfer of heat very slow. 

Based on this, the chance that temperature cyclicity could be the reason for the microbending is 

probably low. The multimode and single-mode fibers in the test well were pumped with 99.9% 

IPA and then purged over 48 hours with nitrogen. The source of the reduction in the already thin 

coating diameter could be due to the damage of the polyimide coating if it encountered IPA during 

installation. Polyimide is a polymer containing the imide group belonging to a class of high-

performance plastics. However, not all polyimides perform the same as the actual materials, and 

the manner of coating may be different [71]. Oulundsen et al. also mentioned that poorly optimized 

polyimide coating could develop blisters under even relatively low temperatures, such as (50 °C), 

which could potentially occur in this case.  

The impact of degradation in the single-mode fiber on the DAS data can be seen in Figure 48. 

Figure 48a shows the high frequency (2-5000 Hz) DAS Frequency Band Energy (FBE) plot during 

nitrogen gas injection into the 2-7/8-inch tubing. Figure 48b shows the corresponding low-

frequency DAS FBE (0-2 Hz). We can see from both figures that the line that tracks the gas 

movement (just above the red arrow) disappears below about 3000 ft. The degradation of the fiber 

has caused a low signal-to-noise ratio (SNR) at the bottom and the gas signature is buried in the 

noise. 
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5.3.2. Time-Lapse Raman Spectra Analysis 

The time-lapse NTS and TTS Raman backscatter profiles were analyzed to further understand the 

optical losses observed in the multimode fiber. Figure 49 shows the NTS profiles at four different 

periods between December 2020 and February 2022, while Figure 50 shows the corresponding 

TTS profiles for the same periods.  The NTS mainly contains the fiber loss information as captured 

from the Raman Stokes spectrum, while the TTS contains both the temperature and the loss 

information as captured from the Raman anti-Stokes spectrum. From the NTS and TTS profiles, 

we can see that, like the OTDR profiles, the top section of the fiber is not showing significant 

change (as the profiles mostly overlay). However, the rate of degradation increases progressively 

towards the bottom half of the fiber, which is consistent with the observations from the OTDR 

measurements.  

To evaluate the impact of the multimode fiber degradation on the measured temperature values, 

we compare the DTS temperature profiles with the temperatures obtained from the downhole 

gauges that were installed at four depths along the wellbore. Figure 51 shows the DTS values and 

gauge temperatures recorded from June 2020 to June 2022. The red profile shows the difference 

between the DTS and the gauge temperatures. The mean differential temperatures are 0.1 °F, 0.4 

°F, 5.4 °F, and 9.8 °F  at 487 ft, 2023 ft, 3502 ft, and 5024 ft, respectively. This further confirms 

what we have observed in the OTDR profiles in which the losses increase towards the bottom of 

the fiber. A careful look at the differential temperature profiles at the bottom two gauge depths 

also shows the difference in the temperature is increasing with time. The trend of the temperature 

differential can be employed to correct the DTS temperature at the gauge depths. 
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Figure 49. Time-lapse plot of NTS from the multimode fiber. 

 

Figure 50. Time-lapse plot of TTS from the multimode fiber. 
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5.4. Signal-to-Noise (SNR) Estimation 

A simple SNR estimation‡ approach was adopted to quantify the effect of the gas kick volume and 

migration on the SNR of DAS measurements. Since the objective was to estimate gas rise velocity, 

the “signal” of interest for the SNR calculation was selected as the FBE traces at different time 

steps during the gas rise in the annulus. This “signal” was compared against a reference DAS FBE 

trace (or the “noise”) which was selected about an hour after the gas had completely migrated out 

of the wellbore, while similar operating conditions (such as circulation rates, choke, and pump 

speed) were maintained. The reference “noise” FBE will naturally include the effect of all the noise 

sources discussed above, which are always present, in addition to the background noise caused by 

circulation, but not include the effect of gas which is our target “signal” for the SNR analysis. The 

background noise for each trial was selected about an hour after the gas had migrated out of the 

wellbore based on the observations from the DAS, DTS, and downhole gauges. We ensured that 

the selected timesteps for the background (reference “noise”) were at similar operating conditions 

such as circulating rates and choke position to the timesteps selected for the “signal” traces (gas 

presence). To estimate the SNR, the FBE values for the “signal” traces were divided by the FBE 

values for the background “noise” trace and then a moving window averaging filter was applied 

to reduce the spikiness of the curves. DAS results from six sets of well-scale tests are presented to 

highlight the effect of gas kick volumes (from 2 bbl. to 15 bbl.), circulation rates (from 0 to 100 

 

 

‡ Section 6.4 was previously published as some sections in J Sharma, OL Santos, O Ogunsanwo, 

GK Ekechukwu, T Cuny, M Almeida, Y. Chen "Fiber-Optic DAS and DTS for monitoring riser 

gas migration” in Journal of Petroleum Science and Engineering, 2023. Volume 220, Part B, 

111157, https://doi.org/10.1016/j.petrol.2022.111157. 
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GPM) and injection method (either through the chemical line or the tubing) on gas rise dynamics 

in a wellbore.  The experimental parameters are summarized in Table 10. 

 

 

(a) (b) 

(c) (d) 

Figure 51.  DTS and gauge temperature readings over time at four different depths at (a) 487 ft 

(b) 2023 ft (c) 3502 ft and (d) 5024 ft. 

The FBE Band 0 (2–5,000 Hz) plot of the six trials is shown in Figure 52 below. The signal-

to-noise ratios (SNR) of the DAS data for the six experiments are also compared to understand the 

effect of operational parameters, fiber degradation, and optical noise on DAS sensitivity. The SNR 

results are presented in Figure 53 for three representative timesteps, which demonstrate the rising 

gas in the wellbore over time evident from the spike in the SNR versus depth curves. In all trials, 

the SNR reduces over time as the gas gets closer to the surface (third timestep) and higher at the 
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deeper depth intervals (first and second timesteps) due to the dispersion of the gas phase because 

of lower pressure and gas expansion as it travels upwards in the annulus. 

Table 10. Flow parameters for experimental runs used in this section. 

Trial nomenclature A1 A2 A3 A4 A5 A6 

Circulation rate (GPM) 100 100 0 0 0 0 

Gas kick volume (bbl.) 10.1 2 10 2 15.1 5 

Injection method Line Line Line Line Tubing Tubing 

 

The SNR observed in the static water column is much higher (trials A3 and A4) as 

compared to the trials with water circulation (A1 and A2) which increases the background acoustic 

noise resulting from the flowing water. The results show that the SNR is not significantly affected 

by the injected gas volume. For instance, the SNR over time for trials A1 (10 bbl. kick) and A2 (2 

bbl. kick) are comparable. The SNR results provide another means to detect gas in the presence of 

another wellbore fluid and demonstrate that our ability to monitor gas kick is affected by the 

location of the gas influx along the wellbore as well as the wellbore circulation rates. 

SNR was also estimated for the trials injected through the tubing (A5 and A6) using a 

similar methodology as the first four trials (A1-A4). For trials, A5 and A6, the gas rise signature 

was evident in the SNR versus depth curves over time, which showed higher SNR at deeper 

intervals in the wellbore and lower SNR as the gas traveled upward and got increasingly dispersed. 

The results demonstrate that the SNR and our ability to detect gas are also affected by the method 

of delivery in other words, whether the gas enters the annulus through a small opening (as 

simulated by the injection line) or a larger formation section (as simulated by the injection through 

the tubing). 
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Figure 52. DAS Band 0 (2–5000 Hz) FBE waterfall plots for trials A1 to A6. 

5.5. Summary  

This study presents a detailed analysis to understand the root cause of the fiber degradation 

observed in the single- and multi-mode fibers installed in a 5125-ft-deep test well. Optical losses 

and resulting degradation were measured using multi-wavelength, periodic OTDR analysis. 

Additionally, the time-lapsed Raman backscatter was evaluated to further understand the 

degradation in the multimode fiber. The analysis showed that the degradation was likely not caused 
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due to hydrogen darkening, fluid ingress, or macrobending.  The evidence pointed to microbending 

as the main cause of degradation.  

Based on the assessment of degradation observed in the single-mode and multimode fibers in the 

test well, the following protocols are recommended for any of our future installations: 

• Make use of gel-filled fiber cable of suitable coating diameter. The gels should be waterproof 

and thixotropic so that they can cover up even tiny spaces. 

• Tight-buffered fiber-optics cable should also be considered, and the use of IPA can be avoided.  

• The coated fiber cable needs to be tested for microbending and chemical resistance before 

deployment downhole. 

• Frequent OTDR after deployment. 

• Minimize end of fiber Fresnel reflection by proper termination. 

• Double-ended configuration can also be considered.  
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Figure 53. SNR plots for DAS FBE (Band 0) for trials A1 to A6. 
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Chapter 6. Conclusions and Recommendations for Future Work 

6.1. Summary  

In this research, a range of novel workflows are presented that include signal processing, time- and 

frequency-domain filtering, and machine learning methodologies that can be implemented on DAS 

and DTS datasets for a range of applications. In Chapter 2, a combination of machine learning and 

signal processing workflow was developed to measure distributed pressure across wellbore using 

DAS and DTS data. The workflow was successfully demonstrated for pressure estimation in two 

experimental datasets, corresponding to different gas injection volumes, backpressure, injection 

methods, and water circulation rates. The workflow utilizes the random forest algorithm and 

involves a two-step process for distributed pressure prediction. In the first step, single-depth 

predictive modeling is performed to explore the underlying relationship between the DAS (in 

seven different frequency bands), DTS, and the gauge pressures at the four downhole locations. 

The single-depth analysis showed that the low-frequency components (< 2 Hz) of the DAS data, 

when combined with DTS, consistently demonstrate a superior capability in predicting pressure as 

compared to the higher frequency bands for both the datasets achieving an average coefficient of 

determination (or R2) of 0.96. This can be explained by the unique characteristic of low-frequency 

DAS, which is sensitive to both strain and temperature perturbations. In the second step, the DTS 

and the low-frequency DAS data from two gauge locations were used to predict pressures at 

different depths. The distributed pressure modeling achieved an average R2 of 0.95, and an average 

root mean squared error (RMSE) of 24 psi for the two datasets across the depths analyzed, 

demonstrating the distributed pressure measurement capability using the proposed workflow. Most 

of the current DAS applications rely on higher frequency components. This study presents a novel 
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application of the low-frequency DAS combined with DTS for distributed pressure measurement 

on a well-scale.  

In Chapter 3, a unique workflow that utilizes signal processing techniques such as the 

Hough Transform and f-k transform is proposed to identify gas-kick and estimate gas influx 

velocity using real-time downhole data from an optical fiber-based DAS deployed in a wellbore. 

Popular gas-kick monitoring techniques such as pit gains, increases in flow rate from a well at 

constant pump speed, and pumps-off flow from the well are surface indicators that suffer from 

time delay in detecting conditions between the surface and the downhole. These surface-based 

approaches may also have inadequate accuracy when dealing with small overflows. The Hough 

transform, which is a feature extraction approach for grouping edge points into object candidates 

via a vote operation across a set of parameterized picture objects, is employed in the workflow. 

The Hough transform is applied to frequency-wavenumber (f-k) graphs to estimate the gas influx 

velocity in real time, as discussed in the next section. In this study, an automatic technique to detect 

the real-time influx of gas into a well-bore is presented. This method is an improvement over the 

current techniques in which the gas velocity is detected mostly by surface-based techniques that 

suffer from time delay in the monitoring between the surface and the wellbore or by manual 

calculations from the F-K plot. 

In Chapter 4, a combination of time- and frequency-domain filtering techniques are 

presented that comprise the VBE workflow to identify the gas-fluid interface and the SOS in DAS 

vibration data to estimate gas void fraction are presented. The workflow involves a sequential 

application of several signal processing techniques (including gradient computation, f-k filtering, 

automatic gain control, phase velocity filtering, autocorrelation, stacking, and RMS computation) 

on DAS vibration data. The outputs from the VBE workflow are used as inputs into two 
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independent techniques to estimate the gas-water mixture length and gas void fraction or liquid 

holdup.  The first method is the use of combined pressure-difference and DFOS data to estimate 

gas fraction. The second method uses the speed of sound (SOS) method for determining the gas 

fraction in the wellbore. The findings of our research will be beneficial to improve and validate 

fiber-optics-based production logging algorithms, detection, and quantification of gas leak 

volumes in the wellbore, as well as pipeline flow monitoring.  

In Chapter 5, a root-cause analysis was performed to understand the main cause of observed 

degradation in both the single mode and multimode fibers installed in our test well as well as to 

study the impact of the degradation on the DAS and DTS data quality over time, both qualitatively 

and quantitatively. A concise summary of the potential cause of fiber degradation was first 

presented. Multi-wavelength OTDR measurements were employed to identify the most likely 

culprit causing the fiber degradation in both single-mode and multi-mode fibers in our well. In 

addition, Raman Spectral analysis was conducted to further analyze the degradation in the 

multimode fiber. The analysis showed that the degradation was likely not caused due to hydrogen 

darkening, fluid ingress, or macrobending.  All evidence pointed to microbending as the main 

cause of degradation. The last section of this chapter highlights a simple signal-to-noise (SNR) 

estimation technique used to quantify the effect of the gas kick volume and migration on the SNR 

of DAS measurements. 

6.2. Recommendations for Future Work 

Some suggestions for future research work are highlighted below: 

• One limitation of the current study is that the VBE workflow for gas tracking does not 

perform well with high noise. This could be due to the fiber degradation observed at the 

bottom of the well. The true capability of the workflow needs to be reevaluated once the 
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DFOS cables are replaced with probably a tight-buffered fiber, which could reduce the 

non-uniform coupling of the pumped fiber. 

• Machine learning can also be explored for gas-liquid interface tracking. The model can be 

trained on the previously labeled DAS data with the presence of gas. The trained model 

can then be used to predict the gas-liquid interface in a test dataset. 

• The results of the gas fractions obtained in this study can also be compared with results 

obtained using other techniques, such as numerical simulation. 

• Additional datasets can be utilized for further validation of the proposed gas detection 

workflow presented in Chapter 2 as we were only able to demonstrate it on a single data 

set.  

• An investigation of the impact of mud properties on the DAS measurements can also be 

performed. Actual drilling is done with drilling muds that can be either water-based or oil-

based. These muds have solid particles that may cause more vibration that could affect the 

DAS response and the SNR in a different way.  

• The methodologies proposed in this research can be tested in producing or injecting well 

scenarios since the workflows in this study were primarily tested on dataset from a cased 

wellbore (that is not producing from a formation).   

• Nitrogen gas was used in this work for the multiphase flow datasets. The solubility of 

nitrogen in water is quite low. It will be important to check how the proposed 

methodologies would perform when a highly soluble gas such as CO2 is used in the 

experiments. This will become extremely important for projects that involve CO2 plume 

monitoring.  
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