
Louisiana State University Louisiana State University

LSU Scholarly Repository LSU Scholarly Repository

LSU Doctoral Dissertations Graduate School

11-3-2022

Compilation Optimizations to Enhance Resilience of Big Data Compilation Optimizations to Enhance Resilience of Big Data

Programs and Quantum Processors Programs and Quantum Processors

Travis D. LeCompte
Louisiana State University and Agricultural and Mechanical College

Follow this and additional works at: https://repository.lsu.edu/gradschool_dissertations

 Part of the Computer and Systems Architecture Commons, Other Electrical and Computer Engineering

Commons, Programming Languages and Compilers Commons, and the Quantum Physics Commons

Recommended Citation Recommended Citation
LeCompte, Travis D., "Compilation Optimizations to Enhance Resilience of Big Data Programs and
Quantum Processors" (2022). LSU Doctoral Dissertations. 5996.
https://repository.lsu.edu/gradschool_dissertations/5996

This Dissertation is brought to you for free and open access by the Graduate School at LSU Scholarly Repository. It
has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU
Scholarly Repository. For more information, please contactgradetd@lsu.edu.

https://repository.lsu.edu/
https://repository.lsu.edu/gradschool_dissertations
https://repository.lsu.edu/gradschool
https://repository.lsu.edu/gradschool_dissertations?utm_source=repository.lsu.edu%2Fgradschool_dissertations%2F5996&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/259?utm_source=repository.lsu.edu%2Fgradschool_dissertations%2F5996&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/278?utm_source=repository.lsu.edu%2Fgradschool_dissertations%2F5996&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/278?utm_source=repository.lsu.edu%2Fgradschool_dissertations%2F5996&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/148?utm_source=repository.lsu.edu%2Fgradschool_dissertations%2F5996&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/206?utm_source=repository.lsu.edu%2Fgradschool_dissertations%2F5996&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.lsu.edu/gradschool_dissertations/5996?utm_source=repository.lsu.edu%2Fgradschool_dissertations%2F5996&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu

COMPILATION OPTIMIZATIONS TO ENHANCE

RESILIENCE OF BIG DATA PROGRAMS AND QUANTUM

PROCESSORS

A Dissertation

Submitted to the Graduate Faculty of the

Louisiana State University and

Agricultural and Mechanical College

in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

in

The Division of Electrical and Computer Engineering

by

Travis LeCompte

B.S., Louisiana State University, Baton Rouge, LA 2017

December 2022

ii

Acknowledgments

 Completing this dissertation would not have been possible without the help of many

friends and associates that I have made along the way. First, I would like to thank my advisor,

Dr. Lu Peng, for the guidance, assistance, and advice he has provided with all of my research and

development through these years. I also thank each of my committee members: Dr. Anas (Nash)

Mahmoud, for his guidance on my professional development and his advice on snacks; Dr.

Jianhua Chen, for acting as my honors college advisor in my undergraduate years and continuing

to provide feedback on the machine learning portions of my research; Dr. Ramachandran (Vaidy)

Vaidyanathan for his questions and feedback regarding all my work, and his willingness to help

in times of need; and Dr. Pramod Achar, from the Department of Mathematics, for his time while

acting on my committee and his feedback from an alternate point of view. I would also like to

thank Ms. Adrienne Steele with LSU’s Society of Peer Mentors for allowing me to participate as

a member and be involved in their community outreach activities. I would like to thank all of the

ECE faculty, namely Ms. Beth Cochran, Ms. Stacey Vessel, Ms. Stacie Oliver, and Ms. Stacia

Moses, for all of their assistance over the years. Lastly, I would like to thank Dr. Tzeng from

ULL for his consistent editing assistance.

I am thankful both to the Division of Electrical and Computer Engineering and the State of

Louisiana for funding my research throughout this journey.

 Additionally, I would like to thank my family for supporting me through the process.

First and foremost, I must thank Jesslyn for her support and patience. I would also like to thank

Adam, Christian, Dakota, Collin, and Edwardo for sticking with me through many late nights of

work. Finally, I would like to thank my fellow Ph.D. students, Tao Lu and Fang Qi, for many

discussions of our work.

iii

Table of Contents

Acknowledgments... ii

List of Figures ... v

Abstract .. viii

1. Introduction ... 1

2. Soft Error Resilience of Big Data Kernels through Algorithmic Approaches 4
2.1. Introduction .. 4

2.2. Background .. 6
2.3. Design... 8

2.4. Results .. 10
2.5. Related Works .. 14

2.6. Conclusion .. 15

3. Protecting Synchronization Mechanisms of Big Data Programs via Logging 17
3.1. Introduction .. 17

3.2. Background .. 20
3.3. Motivation .. 22

3.4. Design... 24

3.5. Evaluation... 31

3.6. Conclusion .. 39

4. Background on Quantum Computing .. 40
4.1. Introduction .. 40

4.2. Information Theory .. 40
4.3. Quantum Advantage ... 42

4.4. Physical Realizations.. 44
4.5. Compilation .. 44
4.6. Quantum Errors .. 47

5. Robust Cache-Aware Quantum Processor Layout .. 50

5.1. Introduction .. 50
5.2. Motivation .. 52
5.3. Design... 55

5.4. Results .. 64
5.5. Related Work.. 71
5.6. Conclusion .. 72

6. Gate-Based Partial Compilation of Quantum Neural Networks ... 73
6.1. Introduction .. 73
6.2. Design... 75

iv

6.3. Evaluation and Results ... 80
6.4. Related Works .. 89

6.5. Conclusion .. 89

7. Improving Qubit Mapping through GNN-Assisted Compilation .. 91
7.1. Introduction .. 91
7.2. Background .. 95
7.3. Motivation .. 99
7.4. Architecture and Data Representation.. 103

7.5. Reinforcement Learning Setup... 108
7.6. Data Collection and Experimentation .. 112
7.7. Results .. 114

7.8. Related Works .. 118
7.9. Conclusion .. 119

8. Conclusion ... 120

Appendix. Copyright Information .. 122

A.1. Publishing Agreement for Soft Error Resilience of Big Data Kernels through Algorithmic

Approaches .. 122

A.2. Publishing Agreement for Protecting Synchronization Mechanisms of Big Data

Applications .. 127
A.3. Publishing Agreement for Robust Cache-Aware Quantum Processor Layout 128

References ... 129

Vita ... 138

v

List of Figures

2.1. Results summary for all 8 benchmarks. ... 11

2.2. Detailed results summary for each benchmark by fault site. ... 12

2.3. Execution time overhead for each benchmark. .. 14

2.4. Expected runtime improvement for each benchmark when using fault tolerant additions. ... 14

3.1. Execution outcome breakdown under 2, 4, 8 threads. ... 23

3.2. Execution flowchart with and without conflict. ... 25

3.3. Execution flowchart showing correct and erroneous threads. ... 28

3.4. Design workflow with Intel Pin. .. 30

3.5. Execution outcome breakdown under 64 threads. ... 32

3.6. Execution time overhead.. 34

3.7. Memory consumption overhead. ... 35

3.8. Comparative time overhead of our protection mechanism (prot) and transactional memory

(TM) for the LU benchmark. .. 36

3.9. Comparative time overhead of our protection mechanism (prot) and transactional memory

(TM) for FFT. ... 37

3.10. Comparative absolute memory overhead for LU... 38

3.11. Comparative absolute memory overhead for FFT. .. 38

4.1. Bloch sphere representation of a qubit... 40

4.2. (A) An example quantum circuit. (B) A sample SQC qubit mesh. 41

4.3. Four qubit initial layout. .. 45

4.4. Routing example. ... 46

5.1. Scaling of available qubits with and without cache. .. 53

5.2. Cache-forced swaps. .. 55

vi

5.3. Four basic cache topologies. .. 56

5.4. n-qubit QFT circuit. (a) Separated by stage. (b) Table of gates with number of qubits

involved... 60

5.5. DJ gate count scaling. .. 62

5.6. Baseline Swap results, small algorithms. ... 64

5.7. Baseline Swap results, larger algorithms. .. 64

5.8. Best, mean and worst-case performance between topologies of each benchmark at all cache

sizes. .. 67

5.9. NoCache Swap results. .. 67

5.10. Percent reduction of cache-involved swaps. .. 69

5.11. Large-scale results for DJ. ... 70

6.1. Simple DAG representation and concatenation. .. 76

6.2. Partial compilation workflow. ... 77

6.3. Aggregating blocks to reduce overhead. .. 78

6.4. Classical neuron structure. ... 79

6.5. Example QNN architectures. ... 80

6.6. First and following iteration improvements. ... 81`

6.7. Total reduction of training time for 1000 iterations. .. 82

6.8. Ratio compile times to execution times. .. 83

6.9. Ratio of execution times for baseline and partially compiled circuits. 83

6.10. Fidelity between baseline and partially compiled circuits. .. 85

6.11. Static vs Dynamic Distribution for PassManager 0 ... 86

6.12. Static vs Dynamic Distribution for PassManager 1 ... 86

6.13. Static vs Dynamic Distribution for PassManager 2 ... 87

vii

6.14. Static vs Dynamic Distribution for PassManager 3 ... 87

7.1. (A) An example quantum circuit, three-qubit QFT algorithm (B) An example IBM backend.

Darker edge and node colors indicate higher error rates. ... 92

7.2. Compilation process overview, with layout mapping highlighted. 93

7.3. GNN update of node N1 as a function of neighboring node and edge values. 95

7.4. Fidelity of Qiskit's four qubit allocation methods on the (3-7)-qubit Quantum Phase

Estimation (QPE) algorithm after execution on ibm_nairobi. .. 101

7.5. Fidelity of 7-qubit QPE when compiling with Qiskit's four allocation methods across one

month of backend configurations for ibm_nairobi. .. 102

7.6. Fidelity of all possible layouts on ibm_nairobi's calibration from 01-07-2022. Results are for

4-qubit QPE. ... 103

7.7. Overall architecture of the QNAQC Q-Network ... 104

7.8. An example 3-qubit backend with five sample node features. (B) Converting the backend

into both edge and node matrices for input to the layout selector. 104

7.9. (A) an example 3-qubit QFT circuit. (B) Constructed circuit matrix for the example circuit.

... 108

7.10. Dataflow of reward for network training ... 108

7.11. Total results for all layout methods on all benchmarks. .. 114

7.12. Fidelity of layout methods for each circuit. ... 115

7.13. Fidelity of different layout methods grouped by number of qubits in circuit. 116

7.14. Fidelity of GNAQC with varying lookahead ... 117

viii

Abstract

Modern computers can experience a variety of transient errors due to the surrounding

environment, known as soft faults. Although the frequency of these faults is low enough to not

be noticeable on personal computers, they become a considerable concern during large-scale

distributed computations or systems in more vulnerable environments like satellites. These faults

occur as a bit flip of some value in a register, operation, or memory during execution. They

surface as either program crashes, hangs, or silent data corruption (SDC), each of which can

waste time, money, and resources. Hardware methods, such as shielding or error correcting

memory (ECM), exist, though they can be difficult to implement, expensive, and may be limited

to only protecting against errors in specific locations. Researchers have been exploring software

detection and correction methods as an alternative, commonly trading either overhead in

execution time or memory usage to protect against faults.

Quantum computers, a relatively recent advancement in computing technology,

experience similar errors on a much more severe scale. The errors are more frequent, costly, and

difficult to detect and correct. Error correction algorithms like Shor’s code promise to completely

remove errors, but they cannot be implemented on current noisy intermediate-scale quantum

(NISQ) systems due to the low number of available qubits. Until the physical systems become

large enough to support error correction, researchers instead have been studying other methods to

reduce and compensate for errors.

 In this work, we present two methods for improving the resilience of classical processes,

both single- and multi-threaded. We then introduce quantum computing and compare the nature

of errors and correction methods to previous classical methods. We further discuss two designs

for improving compilation of quantum circuits. One method, focused on quantum neural

ix

networks (QNNs), takes advantage of partial compilation to avoid recompiling the entire circuit

each time. The other method is a new approach to compiling quantum circuits using graph neural

networks (GNNs) to improve the resilience of quantum circuits and increase fidelity. By using

GNNs with reinforcement learning, we can train a compiler to provide improved qubit allocation

that improves the success rate of quantum circuits.

1

1. Introduction

With the ubiquity of the Internet and increasing accessibility to technology, more and

more individuals are interacting online for every reason imaginable. With each online action

comes data that is generated, stored, and analyzed in some way. This overwhelming and ever-

increasing volume of data, commonly referred to as Big Data, poses serious difficulties in

storage, transmission, and analysis. A frequently overlooked aspect is that of resilience to errors

that occur during execution. As the volume calculations increases, so too does the frequency of

errors. A recent study of the Tesla K20 GPU demonstrated that the mean time between failure

(MTBF) of double bit errors can be as low as 160 hours, or roughly one error per week [93].

These errors can cause a process to fail, or worse, provide incorrect results with no notification

of an error. This problem can be exacerbated by computations in extreme environments like

space or high temperatures. Additionally, the desire for lower power consumption in devices,

either for increased battery life or reduced heat generation, drives voltage levels lower, thus

increasing sensitivity to environmental interference. Some solutions like error correcting

memory (ECM) can help protect a system’s memory, but this cannot protect all components like

registers or gates and may not be feasible depending on the application. Many software resilience

methods have been studied as an alternative, commonly using some form of redundancy and

checkpointing to detect and correct errors.

 Quantum computers, a promising new computing technology, experience a similar error

problem as classical systems, though much more severe. Built using various physical

technologies like photons instead of electronics, quantum computers offer the potential to solve

certain problems that are intractable on classical systems, like factorization, in polynomial time.

The currently available systems are classified as noisy intermediate-scale quantum (NISQ)

2

devices. These NISQ devices experience a much higher error rate than classical systems, and the

severity of individual errors is typically more impactful on the output. Error correction

algorithms exist to completely remove most errors, but these algorithms cannot be implemented

on current NISQ systems due to their limited size. Instead, developers have chosen to deal with

the errors and minimize their impact through various means. The most common approach is

simply to run a circuit many times to help remove the effects of random errors. Other

approaches, however involve adjusting the compilation of a circuit to make it more resilient to

errors, similar in concept to classical methods.

 In this work, we discuss two methods to increase the resilience of classical Big Data

algorithms. Specifically, we introduce the following two approaches:

• Improving the reliability of single-threaded Big Data kernels using algorithm invariants.

• Protecting synchronization mechanisms of multi-threaded Big Data kernels algorithms

using fine-grained logging mechanisms.

Additionally, we will provide a short quantum computing overview and introduce three

quantum computing improvements. Specifically, we will discuss the following methods:

• Improving quantum execution reliability using prioritized cache qubits.

• Utilizing graph neural networks (GNNs) to aid in compiling quantum circuits to achieve

greater reliability.

• Accelerating compilation of quantum neural networks (QNNs) using partial compilation.

The remainder of this work will be structured as follows. First, we will discuss both classical

approaches for Big Data algorithms in Chapters 2 and 3. Additional background regarding

quantum computing is given in Chapter 4. The addition of prioritized cache qubits is discussed in

Chapter 5. Partial compilation improvements for QNNs are discussed in Chapter 6, while GNN

3

aided compilation of quantum circuits is presented in Chapter 7. Lastly, we conclude this work in

Chapter 8.

4

2. Soft Error Resilience of Big Data Kernels through Algorithmic

Approaches

2.1. Introduction

In today’s world, Big Data processing has become progressively more prevalent. A large

percentage of the world’s population spends hours every day connected to the Internet in some

way. This continuous usage by such a large population generates an immense volume of data to

process. Recent measurements by Cisco estimate that total annual network traffic has reached the

zettabyte threshold as of 2016 and continues to grow [8]. To handle this processing, most

companies utilize high-performance computers such as supercomputers or computing clusters.

As these high-performance computers become more and more advanced, one primary focus is to

minimize the amount of power required by a processor to perform operations. Traditionally,

error resilience is focused on natural events that can affect the contents within computer clusters

[6], such as charged alpha particles or cosmic rays. With new circuitry technologies and low-

power operations for energy savings, errors can arise form more varied usage conditions (such as

high temperature/altitude zones/vehicles), 3D interconnect and chip structures, etc. [56].

A recent study reveals the mean time between failure (MTBF) of double bit errors in the

Tesla K20 GPUs used in the Titan supercomputer [93] is as low as 160 hours (about one error

per week.) This is 3 magnitudes smaller than the manufacturer-rated MTBF of 219,282 h under a

controlled environment [73]. As such, Big Data practitioners who seek to build clusters using

commodity hardware (which may not have ECC like the K20 does) may not be able to consider

Reprinted by permission from Springer Nature Customer Service Centre GmbH: Springer Nature Journal of

Supercomputing. LeCompte, T. et al. “Soft Error Resilience of Big Data Kernels through Algorithmic Approaches.”

Springer Journal of Supercomputing. Vol 73, pp. 4739-4772. Nov 2017. © 2017.

5

soft faults to be an impossibility. The result is errors on less protected systems may go unnoticed.

Thus, it has become increasingly important for programs to detect and prevent these faults on

their own

There exists a large range of Big Data algorithms for many specific applications, ranging

over regression and classification to simple statistical reporting. One cannot hope to examine

each program individually to study its fault-tolerant potential. However, it is common for

programs to share features and reuse basic algorithms. Researchers have come up with proposals

with the goal of characterizing Big Data programs with simpler benchmarks, including HiBench

[47], BigBench [39], AMP Benchmarks [2], YCSB [22], LinkBench [3], CloudSuite [32], and

BigDataBench [38]. The latest one of the collections, BigDataBench, identifies eight Big Data

kernels or dwarves that are used by a significant number of these programs: linear algebra,

sampling, transform operations, graph operations, logic operations, set operations, sort, and

statistic operations. Thus, we believe that studying the fault tolerance of one representative from

each of these kernels will provide insight into potential fault-tolerant mechanisms for Big Data

overall. In this paper, we selected the following eight algorithms to represent each Big Data

kernel, respectively: matrix multiplication, Markov chain Monte Carlo, fast Fourier transform,

breadth-first search, MD5, union set operation, quicksort, and GREP. We observe the fault-

tolerant potential of each algorithm by identifying algorithm-specific invariants that, when

violated, indicate the occurrence of a soft fault. These invariant checkers are implemented into

each algorithm along with a recovery system. Faults are then injected during the execution of the

algorithm with fault injection tools such as KULFI, and the resulting behavior is observed. We

show that these fault-tolerant systems reduce the impact of these faults by lowering both

incorrect answers and execution failures. This provides information into the effectiveness of this

6

method of fault tolerance on Big Data applications in general, and the value of fault resilience in

Big Data algorithms. Our experiments demonstrate that the soft error resilience will be

significantly improved with the proposed methods.

2.2. Background

2.2.1. Soft Errors

 Soft errors are transient bit flip errors that can occur during program execution. Soft

errors can be caused by decay of electronic components or environmental conditions like

radiation or temperature changes. They can occur at any point during program execution and in

any physical location on the host machine, including RAM, registers, cache, or even ALUs. A

key feature of soft errors is their transient nature. Unlike hard errors that are caused by

permanently faulty hardware, soft errors occur randomly due to environmental conditions and

cannot be predicted or fixed by replacing hardware. The effects of soft errors can be broadly

classified into three types: crashes, where the program abnormally quits execution; hangs, where

the program enters an infinite loop; and incorrect output, where the program completes execution

but provides a wrong result as a result of silent data corruption (SDC).

 Soft errors are typically addressed using a two-stage solution. First, a solution must detect

the presence of a fault. This is easy for crashes as a program exiting early is rather obvious. Hang

detection is somewhat more difficult but can be achieved by tracking execution progress using

separate observation threads or processes. In most cases, SDC is the most difficult of the three

outcomes to identify and correct, as a user may not know the expected correct output to compare

their results against. Instead, SDC is commonly identified using redundancy – execute the same

program two or three times in parallel or sequence and identify if the results match.

7

 Once a fault is identified, it then needs to be addressed and corrected. Crashes and hangs

are both commonly addressed using some form of checkpointing that periodically saves

execution progress and can roll back to a correct state in the event of failure. SDC on the other

hand requires re-execution when comparing two separate executions. When using triple

redundancy instead, one can use a “majority rules” policy to select the result that occurs most

frequently.

2.2.2. Invariants

 Invariants are characteristics of an algorithm, or sections of an algorithm, that must hold

true if the algorithm is executing correctly. In other words, invariants are “rules” that must be

kept to ensure correctness of the algorithm. Some invariants are low-level and programmatic. For

example, incrementing a variable should only ever increase the value by one, or the else branch

of an if-else statement should only be taken if the condition is false. Other invariants are more

high-level and conceptual. A good example here are hashing algorithms – if you hash a value

twice with the same input and secret keys, then you should get the same hash as output.

Additionally, it is much easier to run the hashing algorithm twice than to reverse the hashing

process and recreate the input value from the hash.

 These invariants provide a simpler way to monitor the correctness of an algorithm during

execution. If the invariants of an algorithm are violated at any point during execution, it is likely

that a fault has occurred any may cause SDC. With this in mind, we can design a detection

method and associated correction methods to increase program resilience to faults by taking

advantage of algorithmic invariants.

8

2.3. Design

For each of the Big Data kernels included, we follow a general approach to analyze the

fault tolerance of the kernel. This process involves identifying a specific implementation of an

algorithm to test and represent the kernel, which must in turn be compatible with KULFI and

LLVM; identifying one or more invariants within the algorithm; implementing the said

invariant(s) to check for errors, along with recovery in the event any invariant is violated;

identifying an error criteria, to allow for detecting improper program output; and lastly, injecting

faults into program execution during tests to observe the effects of the invariant implementation

and recovery system.

To identify implementations for testing, we searched for published implementations of

algorithms that we consider exemplified the kernel in question. This search typically began with

the BigDataBench benchmark suite itself, though some compatible implementations were

difficult to find and are taken from public GitHub repositories.

Next, we attempt to identify invariants within the algorithm for use in identifying errors

during program execution. Some implementations are relatively simple, such as grep, and do not

exhibit high-level invariants. For these implementations, we choose to use redundancy in critical

operations to eliminate errors. We refer to these as programmatic invariants. For those that do

contain invariants, we then implement the check for the invariant along with a recovery system.

Thus, if faults are injected into the program, the invariants potentially fail and the program

recovers from the fault, instead of allowing the fault to propagate to output error or program

failure.

However, we must be able to detect whether a program is creating proper output or not.

These criteria are algorithm specific, typically involving a comparison of outputs or of statistics

9

for the outputs. For some programs such as union, this is very straightforward, while others such

as breadth-first search or Markov chain Monte Carlo (MCMC), which relies on random

sampling, are more complex. In general, however, we collect this information by executing the

algorithm with no modifications or faults injected to collect the golden, error-free output. During

experiments, all results are compared to these golden outputs to identify success or failure.

Lastly, we need to test the effectiveness of the fault-tolerant additions. This testing

includes a minimum of 5000 trials for both fault-tolerant and non-fault-tolerant algorithms each,

along with varying-sized data sets for some algorithms. Faults are injected dynamically into

program execution using KULFI, and outputs for both the fault-tolerant and non-fault-tolerant

versions are compared with the “correct” program output, as determined by a non-fault-tolerant

execution with no injected faults. This comparison gives a metric to determine whether a trial is

incorrect, and how incorrect it is.

First, we will provide an overview of the types of invariants used for each kernel. The

invariants are shown in the following table, while implementation details can be found in the

associated paper [64].

Table 2.1. Table of kernels, selected benchmark, and implemented invariant.

Kernel Benchmark Invariant

Linear Algebra Matrix Multiplication Algorithmic (Matrix-Vector

Multiplication)

Sampling MCMC Programmatic

Transform Ops. FFT Algorithmic (Parseval’s Thm)

Graph Ops. BFS Programmatic

Logic Ops. MD5 Programmatic

Set Ops. Set Union Programmatic

Sorting Quicksort Programmatic

Statistics Ops. GREP Programmatic

As shown, the invariants can be classified into two classes: strict algorithmic invariants

and program invariants. Algorithmic invariants are highly specific and may not exist for every

10

benchmark. They take advantage of features of an algorithm that make the results easy to verify

with simple methods. By comparison, program invariants rely on redundancy mechanisms within

the code to protect important regions. Some examples include loops and control structures,

counters for incremental operations, or accumulating variables.

2.4. Results

Here we will present a summary of results from testing each of the eight Big Data

kernels. First, we show the execution breakdown for the baseline algorithms and their fault

tolerant versions. These results are shown in Figure 2.1. As shown, most of the benchmarks

experience a large increase in correct output when adding the fault tolerant methods. We observe

that we can group the algorithms together by their results. Specifically, we identify three classes

of algorithms.

The first class of algorithms, Type 1 algorithms, exhibit algorithmic invariants that allow for less

complex error detection mechanisms. Type 1 algorithms include both matrix multiplication and

FFT. These algorithms are the most vulnerable to errors without fault tolerance methods, likely

due to their heavy reliance on raw numerical data and the potential for error propagation.

However, these high-level algorithmic invariants show the greatest improvements in reducing

both incorrect outputs and abnormal termination.

The second class of algorithms, Type 2 algorithms, are those that rely on program

invariants and show reasonable improvements. These algorithms include grep, set union, MD5

and quicksort. These kernels show moderate vulnerability without fault tolerant methods and

moderate improvement with them.

The final class of algorithms, Type 3 algorithms, are those that do not show much

improvement with the added fault tolerant methods, but were hardly vulnerable to begin with.

11

These algorithms include BFS and MCMC. We believe this behavior to be a result of the

algorithms themselves. For BFS, there may be many fault sites that do not end up affecting the

behavior of the algorithm itself, as most of the algorithm is traversing pointers. MCMC on the

other hand is probabilistic in nature. If an error affects one of the randomly generated values, this

simply looks like more noise in the distribution, which is heavily averaged out by taking many

samples.

Figure 2.1. Results summary for all 8 benchmarks.

In order to provide more detail into the vulnerability of the Big Data programs, we inject

a variety of fault sites, which are variables used by the program, using KULFI during execution.

We then execute the program with faults injected many times and observe the frequency with

which the injected faults cause errors. Using these observations, we calculate the vulnerability of

a fault site as the likelihood that a fault injected into the site results in an error. This is equal to

the number of occurrences of an error when injecting faults at the given fault site divided by the

total number of injections performed on that fault site. These results of the fault site lifetimes are

shown in Figure 2.2.

12

Figure 2.2. Detailed results summary for each benchmark by fault site.

Here we can see a more detailed breakdown of the kernels’ execution behavior.

Execution outcomes are classified into five types. Correct outcomes are simply outcomes that

match the golden outcome. Fixed outcomes are outcomes where an error was detected and

corrected, resulting in a correct outcome. Failed outcomes are situations where an error was

detected, but correction failed, resulting in incorrect outcome. Missed outcomes are incorrect

outcomes where an error was not detected. Crashed outcomes are simply cases where the

program terminated due to the error.

As shown, the Type 1 algorithms, have an extremely large proportion of fixed outcomes,

a small proportion of missed outcomes, and a fairly consistent proportion of crashed outcomes.

This matches our expectations – the invariants do a good job of detecting and correcting most

errors, unless the error simply causes the program to crash before it can be corrected. The Type 3

algorithms also show behavior consistent with the previous results – most of the outcomes never

13

detected any error at all, and were still correct. This is particularly true for MCMC. The

remaining algorithms show a variety of behaviors, though they all indicate that the program

invariants can provide a substantial increase in reliability.

To close our discussion on the invariants, we also investigated the execution time

overhead for each of the kernels when introducing the fault tolerant additions. These results are

shown in Figure 2.3 and Figure 2.4. The first shows the actual overhead percentage. The Type 1

algorithms show the lowest overheads by far. By taking advantage of special features of the

algorithms to implement the algorithmic invariants, we can achieve the most fault tolerant

improvements with the least overhead. By comparison, the programs relying on program

invariants show considerably higher overhead. This is likely due to their nature as redundancy

methods, and they are implementation dependent.

Figure 2.4 instead shows the expected runtime of an algorithm given relative success rate.

This is calculated by assuming we would run an algorithm again after identifying a faulty run

after execution. Effectively, this demonstrates how much time we save when using the fault

tolerant methods compared to running the algorithm multiple times. As expected, the Type 1

algorithms again show the lowest relative execution time, indicating the highest speedup using

the fault tolerant additions, while the Type 3 algorithms show that the improvements gained are

not really worth the overhead costs, and in the case of MCMC, are actually worse than simply

running the algorithm without the fault tolerant additions.

14

Figure 2.3. Execution time overhead for each benchmark.

Figure 2.4. Expected runtime improvement for each benchmark when using fault tolerant

additions.

2.5. Related Works

The study of error resilience and related fields such as uncertainty quantification has been

mostly focused on scientific computing so far [14]. Error resilience is a must for highly

unreliable environments such as on an unmanned aerial vehicle [97], especially with the

increasing processing power of onboard computers.

Numerical errors are more complicated than their integer counterparts as floating-point

operations are not exact and dependent on order of operation. This can be seen in parallel

reduction [20] and the linear algebra routines in BLAS [48]. Arithmetic-heavy applications

15

including physics-based simulations are designed to cope with round-off errors [106]. With finite

bit precision, floating-point operations and their results can be seen as approximations. Recently,

NVIDIA began to provide half-precision (FP16) floating-point arithmetic [44] with the aim to

boost performance at negligible cost of accuracy, particularly in deep-learning applications

which are closely related to big data applications. From this point of view, approximation and

tolerance to soft faults are very similar in nature.

The fault resilience workflow encompassing fault injection and resilience can be done on

multiple levels of the hardware–software stack. Existing works have utilized actual proton

sources on the physical level [10], embedded hardware sensors on the circuit level [68], FPGAs

on the digital logic level [84], full-system simulators and virtual machines on the architectural

level [43], and debugging utilities on the high application level [97].

Fault resilience study can be costly on the experiments side as well as on the engineering

side. Several works have proposed remedies: to reduce the huge size of the fault injection

experiment space, Relyzer [62] exploits control flow and value equality to prune the fault

injection space; to save engineering cost on large codebases, a programming model called

containment domains [18] provides developers a hierarchical view of fault resilience. Modular

analysis [15] provides a first step toward lowering the cost in fault injection and the

understanding of numerical error propagation. We expect to see fault resilience get increased

support in the future in toolchain and modeling just like profiling and debugging do.

2.6. Conclusion

We have shown the effects of fault-tolerant code added into Big Data algorithms by

experimenting with eight Big Data Dwarves as defined by the Big Data Benchmark suite. For

each of the eight dwarves, we have implemented algorithm-specific invariants where applicable

16

to identify and correct errors in program execution. We have discussed the effects of the fault

tolerant additions to each algorithm individually by evaluating error magnitudes, error

probabilities, and program output behavior. Additionally, we have compared the eight algorithms

to each other, resulting in three classes of Big Data dwarves: those with high-level invariants that

are extremely vulnerable to faults, but show the most improvement with fault-tolerant code

additions; those without high-level invariants but with moderate natural resilience, which show

lower improvement rates than the first group; and those that are naturally extremely resilient,

which show minor execution improvement with the fault-tolerant code additions. We have also

analyzed the overhead introduced by the fault-tolerant mechanisms and quantified the expected

running times for the algorithms to evaluate the benefit of the mechanisms in light of their

overhead introduced, which supports the fault-tolerant performance of algorithms being grouped

by level of invariant.

Together, these analyses create a portfolio displaying the resilience that fault-tolerant

additions can lend to common Big Data algorithms, reducing the chances of program failure and

wrong output. This additionally reduces the time and energy wasted to rerun faulty algorithms

and helps avoid the danger of not detecting a wrong output which, if undetected, could cause

unprecedented damage.

17

3. Protecting Synchronization Mechanisms of Big Data Programs via

Logging

3.1. Introduction

Program reliability is a major concern throughout many fields of computing. Applications

that cannot reliably produce correct solutions are hardly useful. As chip designers drive to reduce

power consumption, the voltage levels separating logic 0 and logic 1 become closer and provide

less of an error margin. This increases the probability of bit flips during execution, where a 0

becomes a 1 or vice versa. Depending on the locations of these bit flips, they can directly

interfere with program behavior and produce unexpected results.

Errors during execution can reveal themselves in different ways, including hangs, crashes

and silent data corruptions (SDC). Crashes are the most obvious, where the process simply exits

suddenly. Hangs can be more deceptive as the application may still seem to be doing work while

actually making no progress. Most difficult to detect during execution are SDC, where a value

used by the program is modified without causing a crash or hang. For example, one of the

operands for an addition is corrupted, resulting in an incorrect output value. This can become

particularly dangerous when errors propagate from one variable to another as the program

continues to execute [100]. These errors waste time and resources as they go undetected.

While hardware solutions like error correcting memory (ECM) exist [37], they can be

expensive to apply and carry overhead. This has led to an interest in software methods for fault

tolerance. These methods typically achieve good error coverage with varying overhead costs

© 2022 IEEE. Reprinted, with permission, from LeCompte, T., Peng, L., Yuan, X, and Tzeng, N.-F., “Protecting

Synchronization Mechanisms of Parallel Big Data Kernels via Logging,” IEEE Transactions on Computers, Sep.

2022.

18

depending on their implementation details. Software fault tolerance methods [64] for computing

involve both a detection stage and a correction stage respectively for identifying and recovering

from errors. In order to trigger correction mechanisms, the detection mechanism must first

identify an error.

Most methods exploit features specific to the algorithms in question to identify these

irregularities during execution [67, 100], or require replication and comparison of the process

periodically during execution to ensure correct behavior [27]. Newer approaches relying on

machine learning to identify program deviation have also been introduced [92].

Correction mechanisms typically utilize a form of checkpointing for error recovery [53,

87]. Checkpointing involves taking snapshots of the process during execution and restoring to a

previous correct snapshot upon detecting an error [87]. This can be done at varying granularity

and frequency based on the application. Checkpointing is a relatively simple method that works

well for crashes and hangs, but can be insufficient for SDC as the error can go unnoticed and

result in erroneous checkpoints. In order to alleviate this, some systems require saving multiple

checkpoints and more frequent checkpointing, involving undesirably higher overhead.

These detection and correction methods are extremely important for large-scale

computing, where processes may run for many hours or even days on multiple nodes. If an SDC

occurs early during execution, the algorithm could run for a long duration before the error is

noticed, wasting substantial time, resources and energy. These programs are typically parallel in

nature, employing fundamentally different techniques to solve problems. They commonly rely in

part on synchronization mechanisms such as locks and barriers for sharing information among

threads and ensuring coherence. However, these mechanisms themselves can be vulnerable to

errors, leading to error behavior that occurs only within parallel programs. To our knowledge,

19

there is little previous work aimed at protecting these synchronization mechanisms from transient

faults. Application checkpointing systems can solve crashes and hangs resulting from errors in

synchronization mechanisms but require additional detection for SDC. Transactional memory

has been proposed as a method to protect code executions from concurrency bugs [94], though

its focus is on programmer errors not transient faults.

In this work we present a method for identifying and correcting violations of these

synchronization mechanisms caused by transient faults via local logging systems. Tracking

thread locations during execution reveals violations of the synchronization mechanisms. We

implement a local checkpointing and recovery mechanism for the threads through Intel Pin [51]

by exploiting the conceptual properties of these mechanisms. We include an investigation into

the results of faults within these synchronization components to demonstrate the effectiveness of

such methods, and a measurement of the overhead costs for implementation. Finally, we provide

a comparison with transactional memory, another form of local logging and rollback for parallel

systems that can act as an alternative for lock-based mechanisms. Our system implements similar

logging mechanisms to an eager transactional memory system, but it benefits from simplified

conflict detection when fewer conflicts can occur. Note that our mechanism also differs from

conventional checkpointing in that it conducts logging at each parallel control structure (locks

and barriers) in preparation for rolling back, if required, as opposed to collecting system

execution states periodically or adaptively [87] under conventional checkpointing.

The contributions of this work can be summarized as follows:

• We examine vulnerability of BigDataBench kernels [12] to soft faults within concurrency

control mechanisms during execution.

20

• We design and develop a logging mechanism based on transactional memory to detect

and correct the resulting concurrency bugs by enforcing the control mechanisms.

• We demonstrate a mean 93.6% error coverage from the resulting concurrency bugs

caused by these soft faults with a mean 6.55% overhead in the execution time at 64

threads.

• We compare the overhead of our developed logging mechanism against a full

transactional memory system and find up to a mean 57.5% reduction in execution time

overhead relative to transactional memory.

3.2. Background

3.2.1. Concurrency Control

As previously mentioned, many fault-tolerant methods exploit program features to

increase coverage and reduce overhead. We focus specifically on locks and barriers as our

synchronization structures. These fundamental mechanisms provide building blocks for more

complex parallel data structures. However, these locks and barriers perform different functions

and present different vulnerabilities. Locks protect critical sections of code, where only one

thread should enter at any given time. Violations can cause race conditions where multiple

threads access values at the same time. Failing to unlock locks, or poorly coordinating the order

with which a thread claims multiple locks, can also lead to deadlocks, halting execution progress.

Locks can be employed in either a fine-grained or coarse-grained manner. Coarse-grained

locking protects a large amount of code that may not all be needed by the thread. It is easier to

implement at the cost of performance, as more threads compete for the critical section. Fine-

grained locking by comparison enables more parallelism by locking small sections of code that

21

are specifically necessary for the thread, but it is difficult to implement and may be more prone

to deadlocking.

Barriers by comparison act as a trap, where no thread is allowed to pass until all involved

threads have reached the barrier. Barriers are commonly used with an alternating computation

and communication paradigm. When a thread finishes computation and needs to share

information, each thread waits until every thread has completed computation and is ready for

sharing. This prevents threads from overwriting values that are still needed by other threads, or

reading old values that are no longer valid. Violations of the barrier would cause threads to sneak

past, potentially causing these problems. Both locks and barriers are typically implemented using

atomic operations that allow a thread to perform a combination of reads and writes as one single

operation, ensuring coherence among multiple threads operating on a shared value. The most

common example is the compare-and-swap (CAS), which compares a value m in memory to a

given value v, and writes a third value to memory if m and v are equal.

3.2.2. Transactional Memory

There are other methods to ensure thread coherence besides directly using locks and

barriers. The most relevant to note here is transactional memory. By automatically fine-grained

locking individual memory locations, developers do not need to manually implement locking

mechanisms. Instead, a thread simply marks the beginning and the end of a transaction, wherein

all operations will be executed as if they were atomic. If there are conflicts due to multiple

threads modifying the same memory locations, one thread is chosen to commit its transaction

while others are forced to reattempt. These transactional memory-based systems provide an

alternative for developers, potentially allowing for greater parallelism in their fine-grained

nature. By being aware of how threads operate on a memory location (read vs write), such a

22

system can also allow multiple reads simultaneously as memory is then not modified.

Transactional memory has previously been adopted to address concurrency bugs which result

from developer errors but are not transient faults [94].

Transactional memory systems have been implemented both in hardware [58] and in

software [31]. Both implementation methods have their respective benefits, with hardware

systems typically having better performance in exchange for flexibility and simplicity.

Transactional memory systems have also been proposed for accelerators like GPUs [17, 34]. As

shown in the following sections, we utilize methods similar to eager transactional memory to

protect coarse-grained locks and barriers. While similar to transactional memory, it is

considerably simpler due to a limitation in the types of conflicts that may arise.

3.3. Motivation

It is important to note that transient errors in these parallel programs may differ

considerably from those found in sequential programs. In sequential programs, faults may cause

crashes, hangs or incorrect output by modifying pointers, loop control structures or variables

holding important data. In parallel programs, crashes, hangs and SDC can all result from faults

targeting parallel control structures like locks and barriers. For example, a fault that occurs in

data used within or leading up to “xchg" or CAS instructions may cause the synchronization

mechanism to fail. These failures can result in crashes, hangs, or SDC when threads violate

concurrency control, either through race conditions in critical sections or accessing improperly

synchronized data. SDC caused by these failures can further propagate into different errors,

which may be difficult to identify, locate and recover from. Due to the different nature of these

errors, we make the first attempt to detect and correct them in non-traditional manners, as

discussed in Chapter 3.2.

23

We aim demonstrate the importance of protecting concurrency control mechanisms in

parallel applications by examining the vulnerability of three representative benchmarks of the

BigDataBench kernels under 2, 4, and 8 threads. The full list representative benchmarks for the

BigDataBench kernels is shown in Table 2.1. We simulate transient faults using the Intel Pin

Fault Injector (PINFI) [52]. As the errors can occur in different locations in each trial, we

simulate transient faults rather than hardware faults. This automated fault injection tool targets

instructions within select functions and modifies the bits to simulate soft errors during execution.

For these experiments, we limit injection to the synchronization mechanisms contained within

the programs. We inject a single fault into every lock encountered during execution. Hence, the

number of faults injected for one trial equals the number of locks encountered over the course of

execution. The results from these trials are shown in Figure 3.1.

Figure 3.1. Execution outcome breakdown under 2, 4, 8 threads.

It is evident that as the number of threads increases, error frequency also increases.

Having more threads in contention for the control structures results in more CPU time spent

waiting at these structures during execution. As more instructions are executed involving these

wait loops, it becomes more likely for errors to break these loops and thus break the control

24

structures. It is worth noting the variety of error profiles among benchmarks. FFT is completely

vulnerable to SDC, while radix is only mildly vulnerable. In comparison, BFS contains

vulnerabilities not present in the other two, including a sizable number of crashes and some

hanging executions. These outcomes are caused by soft fault injection into the control structures

which can cause race conditions, deadlock, or direct crashes as shown.

The observed outcomes depend heavily on the algorithm itself. Programs like BFS that

rely heavily on pointers experience more crashes as errors due to failed synchronization may

corrupt these pointers and result in erroneous memory access. Conversely, programs that include

many logical or arithmetic instructions like FFT are more vulnerable to SDC as errors due to

failed synchronization are more likely to simply modify data and not cause crashes. This

observation supports other works in that the use of algorithm-specific methods for detection and

correction throughout the entire execution, may be more efficient than generic methods,

confirming the importance of protecting locks and barriers.

3.4. Design

3.4.1. Detection

In order to detect these violations, we implement a logging mechanism through Intel Pin

[51] similar to an eager transactional memory system. The tool identifies marked barriers and

locks in the binary and tracks their program locations during execution. This allows us to identify

at what points which threads reside in critical sections or beyond barriers. Whenever multiple

threads are detected within a critical section simultaneously, we know that its associated lock has

been broken by faults. Similarly, if a thread ever passes a barrier before other threads are able to

reach it, we know that the barrier had broken. Figure 3.2 provides an example of both successful

and recovered execution paths.

25

Algorithm 3.1. Lock Error Detection and Correction

Figure 3.2. Execution flowchart with and without conflict.

Before entering a critical section, a thread must pass through both the original lock and

the following protection functions, marked as 1 in Figure 3.2. The log tracks a thread's entrance

to the critical section and executes Algorithm 3.1 to detect if the thread violates the exclusivity of

26

the critical section. The green line shows a thread which executes without interruption. The

orange line (thread 1) shows a thread that is interrupted whereas the red thread (thread 2)

erroneously breaks the lock and enters the critical section. When thread 1 enters the critical

section first, it is marked as the owner of the lock within the log and can progress into the critical

section. When thread 2 enters the critical section before thread 1 has exited and released

ownership, the logging system is aware that the lock has broken for thread 2 or thread 1 and thus

correction is attempted.

Additional work is necessary to ensure locks are correctly unlocked when leaving a

critical section. This is different from atomicity violations where multiple threads enter the

critical section, possibly leading to deadlocks and program hangs instead since no threads are

then able to enter the critical section. To address this form of fault, we track which locks are

owned by which threads. Upon exiting a critical section, if a lock is still owned by any thread no

longer within the associated critical section, we can correctly identify the occurrence of an error,

resulting in failure to release the lock. This occurs in stage 3 of Figure 3.2.

A similar method is used for detecting errors within barriers as illustrated in Algorithm 2.

Note that all updates to counters are performed atomically to avoid race conditions. By inserting

functions directly before and after a barrier, we can identify when a thread enters and exits the

barrier. If any thread attempts to exit the barrier before all involved threads have reached the

barrier, it has violated the expected behavior of the barrier and is identified as an error. This

requires knowledge of the number of threads that are involved in the barrier, which can be given

as a parameter, collected from the initialization of the barrier object, or assumed by default to be

the number of threads in use by the process. If the barrier in question can be encountered

27

multiple times, additional checks are performed before Line 2 to ensure re-entering threads do

not interfere with exiting threads.

Algorithm 3.2. Barrier Error Detection and Correction

3.4.2. Correction

Having detected the presence of errors, a thread can attempt local recovery via a rollback.

This local recovery is similar to an aborted transaction in transactional memory systems. For

barriers, rolling back is simple as errors are detected before threads can modify shared memory.

When a thread is found to be exiting the barrier before all other threads have arrived, it is rolled

back and forced to wait. When all threads arrive, the offending thread can then exit correctly

together with all others. An example of both correct and erroneous executions is shown in Figure

3.3, where 1 and 2 mark the entry and the exit stages respectively. This reinforces the conceptual

behavior of the barrier to ensure proper synchronization.

The process is somewhat more complex for locks as threads may modify shared

variables. Additionally, we cannot be certain which thread within the critical section entered

erroneously. Thus, both are rolled back and the logged writes are cleared, marked as 2 in Figure

3.2. Only one thread has reached the point of modifying shared variables, so the rollback is

28

relatively simple. This means that the log does not have to store backup values for a memory

location for each thread. Since only one thread has been modifying shared variables, it can

simply restore previous values while other threads reattempt the lock.

Figure 3.3. Execution flowchart showing correct and erroneous threads.

Due to our method of conflict detection, we do not encounter situations where two

threads can both modify a shared variable before the conflict is detected, which simplifies the

logging and rollback processes. We recommend using re-entrant locks in conjunction with our

system, as the correct owner will then be able to re-enter the critical section after a rollback.

Upon successfully exiting the critical section, thread information is cleared from the log,

allowing other threads to enter. Ultimately, this mimics the conceptual function of the lock to

ensure the correctness of the critical section. In summary, each of these correcting methods

enforces the associated control structure behavior, thereby preventing the propagation of SDC.

29

3.4.3. Examples

For clarity, we provide two following examples to cover both thread and barrier

encounters. Both examples will utilize two threads, thread A and B, to showcase the protection

and correction mechanisms.

Locks: Suppose thread A encounters a lock at instruction p. The thread attempts to lock

the lock, and our system attempts to claim ownership of the lock for thread A in line 1 of

Algorithm 3.1. If thread A successfully claims ownership (line 2), we assume thread A has

appropriately locked the lock and can continue with the critical section (line 3) while logging the

usage of shared variables. Assume thread B encounters the lock while thread A is in the critical

section. It is possible that thread B passes the lock entrance due to a fault in its or thread A's

locking process. Either way, the fault is detected in line 2 when thread B fails to take ownership.

Both threads are then forced to reattempt acquisition of the lock in lines 5-7, rolling back any

changes made by thread A.

Barriers: Suppose thread A encounters a barrier expecting two threads at instruction p

before thread B. When thread A enters the barrier to wait, marked as 1 in Figure 3.3,

entrance_counter is decremented from n=2 to n=1 as shown in line 2 of Algorithm 3.2. Thread

A should not pass this barrier until thread B arrives to ensure proper synchronization. If an error

occurs to cause thread A to pass the barrier early, the check in line 3 succeeds and line 4 is

executed, forcing thread A back to waiting. When thread B arrives at the barrier, we again

execute line 2. Both threads attempt to exit the barrier, this time failing the check on line 3. Both

threads can thus exit the barrier, one executing line 5-6 to increment the exit_counter and the

other simply exiting and resetting the initial values.

30

Figure 3.4. Design workflow with Intel Pin.

3.4.4. Implementation

For testing, we implement this method via Intel Pin as a Pin tool, which makes it flexible

to work with any binary compiled for Intel processors. Intel Pin allows for both static and

dynamic analyses and modifications of a program. As such, not only can we implement the

transaction begin and end functions statically before execution, we are also able to track program

locations and the control structure status dynamically during execution. Figure 3.4 shows the

overall workflow of the tool. Upon loading the binary, Pin applies the tools to the binary in two

steps, called the instrumentation and the inspection passes. Instrumentation traverses the program

statically to identify any instructions of interest, namely those related to the locks and barriers we

aim to protect. It then inserts inspection functions into the binary that will be executed during

run-time. At run-time, these functions intervene in the program execution, carrying out the

logging methods as necessary to track the program status. Specifically, we locate every lock and

barrier used by the program and add protection functions to each of them. These protection

functions initialize the logging system with the program counter and thread information. This

allows the logging system to detect the violations of the associated synchronization mechanisms.

Although our implementation is purely software, it could be augmented with hardware

support. Our synchronization protection mechanisms need the additions of (1) an on-chip lock

ownership directory, whose entries, say S[p], record the ID of the thread entering Lock p; see

31

Algorithm 3.1, (2) an on-chip SRAM partitioned statically into zones, with Zone p for holding

the log associated with Thread S[p], and (3) control logic for generating appropriate control

signals and maintaining ownership directory entries. Both (1) and (2) are in the form of on-chip

SRAM to improve performance. Additional instructions, similar to previous atomic instructions,

could also be included to manage the lock ownership and logging operations involved with these

added on-chip SRAM zones.

3.5. Evaluation

3.5.1. Vulnerability and Resilience

In order to test the effectiveness of our system, we execute the benchmark programs both

with and without our protection mechanisms. All experiments have been run on a workstation

with two Intel Xeon Platinum 8260 processors which support up to 48 threads each when

enabling Hyperthreading, resulting in 96 total available threads. We test only up to 64 threads as

some benchmarks require the thread count to be a power of two. As we have displayed in Figure

3.1, higher thread counts result in greater vulnerability, so unless otherwise noted, our

experiments use the full 64 threads possible on our test machine. Once again, we use PINFI [52]

to simulate transient faults by injecting one fault into each lock encountered during execution.

For the following experiments, we restrict fault injection to both the synchronization code

regions and our added protection code regions where applicable. We must inject into our added

protection mechanisms to properly evaluate the vulnerability of the final system. This prevents

full error coverage as the added code itself is vulnerable, although to a lesser extent.

The BigDataBench benchmarks and their categories [12] are listed in Table 2.1.

Specifically, we test the Fast Fourier Transform (FFT), LU matrix decomposition (LU), radix

sorting (RADIX), graph operations (BFS), sampling operations (MH, Metropolis-Hastings

32

implementation of the Markov chain Monte Carlo method), WordCount (WC), and set union

(UNION). We have chosen not to test the Logical Operations category of the BigDataBench

suite as its many samples are intrinsically sequential. Therefore, we have covered 7 out of 8

categories of parallel BigDataBench kernels. Both the baseline and protected versions of each

benchmark are run through Intel Pin to provide a proper comparison between the two test cases

with the maximum number of threads. The protection mechanisms are simply disabled in the

baseline case. All benchmarks are executed with 64 threads. Our results are displayed in Figure

3.5 and Table 3.1.

Figure 3.5. Execution outcome breakdown under 64 threads.

33

Table 3.1. Execution outcomes for each benchmark with and without protection. A total of 1000

trials have been executed for each benchmark under 64 threads. ER % represents the percentage

of reduced error compared across both versions of the benchmark.

As shown previously in Figure 3.1, different benchmarks have different vulnerability

profiles. FFT, LU and radix sort show varying degrees of SDC vulnerability, while the remaining

four display considerable numbers of SDC and crashes. However, it is evident that the protection

system removes almost all occurrences of crashes, hangs and SDC during the execution of these

programs by correcting the soft faults within the control structures. It achieves a mean 93.6%

error coverage across all kernels, with RADIX having the lowest coverage of 84.6% and WC

having the highest coverage at 96.4%. We believe RADIX and LU show lower error coverage as

they are already more resilient to errors and therefore there are fewer to correct. Interestingly, the

protected benchmarks only contain crash and hang errors without any SDC occurrences. These

crash and hang errors are preferable over SDC as they are more easily detectable and correctable

during execution. Note that we do not claim that this method will address all possible errors that

can occur in the program in general. Rather, the method focuses only on errors within the

synchronization mechanisms, with errors beyond these synchronization structures deemed

34

outside the scope of this work. By reducing these errors, we prevent error propagation into other

forms that may be more difficult or costly to detect with other methods.

Figure 3.6. Execution time overhead.

3.5.2. Overhead

To properly compare the cost of our system, we also investigate execution time overhead

incurred by the implemented protection mechanisms on each benchmark under 4 to 64 threads.

Both the baseline and the protected version are again executed through Intel Pin to provide an

accurate comparison of the overhead caused by the system itself. We calculate the execution

time overhead as
(𝑇𝑝𝑟𝑜𝑡−𝑇𝑏𝑎𝑠𝑒)

𝑇𝑏𝑎𝑠𝑒
 where 𝑇𝑝𝑟𝑜𝑡 is the average execution time of 1000 trials of the

protected benchmarks, and 𝑇𝑏𝑎𝑠𝑒 is the average execution time of 1000 trials of the unprotected

benchmarks. These results are shown in Figure 3.6, where most benchmarks are found to have an

overhead of less than 10% at all thread counts, with a mean overhead of at most 6.55% under 64

threads. These overhead levels are acceptable considering the improvement in error occurrences

and the complete removal of SDC errors. It is clear that both BFS and LU have somewhat higher

35

overhead than the others at many thread counts. BFS is a larger application with greater memory

requirements, leading to relatively higher overhead when experiencing context switching. Both

BFS and LU also contain more complex and frequent concurrency control use, resulting in a

higher accumulated overhead. As a result, it may not be wise to apply the protection mechanisms

to every program; instead, they should be applied on an algorithm-to-algorithm basis.

Figure 3.7. Memory consumption overhead.

For further evaluation of the system, we measure the memory overhead of our system on

all benchmarks under 4 to 64 threads, as shown in Figure 3.7. To calculate this, we record the

memory high-water mark measured from within the program during execution. Note that the

memory overhead is very small relative to the total amount of memory used by the programs.

Most benchmarks use a maximum of 0.6-2.5GB memory during execution. As such, the

overhead of 300-700KB is relatively negligible. As expected, we see larger overheads at higher

thread counts.

36

3.5.3. Comparison with Transactional Memory

We additionally provide a comparison against complete software transactional memory

systems, since our protection mechanism relies on similar checkpointing and rollback operations.

Specifically, we test against the C++ atomic library and its included transactional memory

interface. We do not compare with hardware transactional memory systems, which are

incomparable to our software-based protection mechanism. Specifically, since we enforce the

high-level behavior of locks, our system handles entire critical sections in addition to logging

individual memory locations. As such, we can frequently detect conflicts when threads first enter

a critical section rather than at every individual memory access. Given that our logging

mechanisms are less intrusive than full transactional memory, they should therefore demonstrate

lower overhead. To test this, we modified kernels for evaluation, with the results for LU and FFT

shown in Figure 3.8 and Figure 3.9 respectively.

Figure 3.8. Comparative time overhead of our protection mechanism (prot) and transactional

memory (TM) for the LU benchmark.

37

Figure 3.9. Comparative time overhead of our protection mechanism (prot) and transactional

memory (TM) for FFT.

Our baseline protects the shared variables using standard pthread locks and barriers for

comparison against both our protection mechanism and the transactional memory

implementation. We test the programs under 4 to 64 threads to gain insights into how the

systems handle varying numbers of parallel agents. According to Figure 3.8 and Figure 3.9,the

largest gap in execution time overhead percentages occurs for FFT under 16 threads, with a

difference of ~10%. In total, we observe a geometric mean reduction of 47.3% and 57.5% in

overhead for LU and FFT respectively.

As we can see, the log-based protection mechanism consistently outperforms its

transactional memory system counterpart at each thread count. While not displayed here,

comparative overhead results for the remaining tested benchmarks exhibit similar performance

gaps. This supports our previous claim that the protection mechanism is more lightweight than

full transactional memory systems, resulting directly from simplifying many of the conflicts it

must handle.

38

Figure 3.10. Comparative absolute memory overhead for LU.

Figure 3.11. Comparative absolute memory overhead for FFT.

We also compare the memory usage for both our system and the transactional memory

implementation, shown in Figure 3.10 and Figure 3.11. At all thread counts, our system

consistently uses considerably less memory than the transactional memory implementation.

Since our system can resolve conflicts sooner due to detecting the higher-level concurrency

failures, it does not have to log as many values at one time for potential rollbacks, reducing the

39

total memory used. Again, note that these values are still small relative to the total memory

consumption of these benchmarks.

3.6. Conclusion

In this work we have presented a method for ensuring the correct and reliable operation of

synchronization structures within parallel programs, specifically focusing on locks and barriers.

By utilizing a logging system that tracks program locations, we can identify violations of these

structures and recover from them locally, rather than requiring system wide checkpointing and

recovery methods. Through our experiments, we demonstrate that this method can achieve a

reduction in error of up to 93.6% for the representative BigDataBench kernels while maintaining

acceptably low overhead, averaging 6.55% above the baseline. When compared with

transactional memory, we find up to a 57.5% reduction in execution time overhead.

40

4. Background on Quantum Computing

4.1. Introduction

 Quantum computing is a relatively new computing technology that aims to solve

problems that are traditionally intractable on classical computers, such as factoring large

numbers, in polynomial time. There are many misconceptions about the operations of quantum

computers and the problems to which they can be applied. Although quantum computers offer a

unique opportunity for performance improvements, they are not without their limitations. They

cannot simply solve every difficult problem for free. This chapter provides an overview of

quantum information theory and the quantum computers available today, including both the

benefits and weakness that ongoing research aims to address.

4.2. Information Theory

Figure 4.1. Bloch sphere representation of a qubit.

Quantum computers are composed of a number of qubits, or quantum bits. Similar to bits,

qubits contain both a 0 and 1 state, commonly written as |0⟩ and |1⟩ to represent the high and

low energy states, respectively. These states are known as the computational basis states. A qubit

that is limited to |0⟩ and |1⟩ states is very similar to a classical bit. However, unlike classical

bits, qubits can also take on any linear combination of these two states, represented as 𝛼|0⟩ +

41

𝛽|1⟩. Here, alpha and beta come from the set of complex numbers. In total, this gives four

parameters to define a quantum state. As only the difference between the phase components of

alpha and beta is relevant, we can visualize the state of a qubit as a three-dimensional sphere.

This representation, shown in Figure 4.1, is called the Bloch Sphere. It is commonly used to

visualize qubit states and operations on a qubit. The poles of the sphere represent the two basis

states, while any other vector on the surface of the sphere represents a superpositioned state.

Figure 4.2. (A) An example quantum circuit. (B) A sample SQC qubit mesh.

If the state of a qubit can be represented as any vector on the surface of the Bloch sphere,

then quantum gates are represented as angular rotations of said vector. Every quantum computer

requires a set of basis gates, commonly a selection of single- and two-qubit gates, from which all

other gates can be composed. The simplest gate, an X gate, analogous to the classical NOT gate,

simply switches the alpha and beta coefficients, effectively flipping the vector around the x-axis.

There are similar Z and Y gates for flipping around their respective axes. There are also

compound rotation gates, like U3, which rotates the state with an arbitrary rotation around all

three axes, similar to a rotation matrix in computer graphics. Another very important gate, the

Hadamard (H) gate, maps a qubit from a basis state to a perfect superposition |0⟩ →
1

√2
(|0⟩ +

|1⟩). There are also multi-qubit gates, most notably two-qubit gates like the controlled not

(CNOT) gate. The CNOT conditionally applies an X gate to the target qubit if the control qubit is

42

a |1⟩. This can be used for computation or for creating entanglement between qubits. Gates

involving more than two qubits do exist, but are commonly decomposed into combinations of

single- and two-qubit gates due to the complexity of implementation. Lastly, measurement gates

are used to read the value of a qubit out into classical registers. Sets of operations on qubits are

combined together to form the quantum analog of a program, commonly referred to as a quantum

circuit. An example quantum circuit is shown in Figure 4.2A with individual gates labeled. Each

horizontal line represents the lifetime of the associated qubit throughout execution.

4.3. Quantum Advantage

Quantum technology takes advantage of three important features that allow for

improvements over classical technology: superposition, uncertainty, and non-locality

(entanglement). Superposition of a single qubit has already been discussed above. However, the

true advantage of superposition comes from having multiple qubits that are each in

superposition. When considering a multi-qubit environment, the global state is represented as the

tensor of individual qubit states. When each of these qubits is in perfect superposition, the global

state captures all possible combinations of the basis states for all qubits. This lays the

groundwork for algorithms such as QFT that allows for processing on multiple states

simultaneously.

Hand-in-hand with superposition is uncertainty. A qubit that is in a superpositioned state

simultaneously represents multiple classical states. In order to extract information from a qubit,

one must measure the qubit into a classical bit. This measurement collapses the superposition

into one of the basis states. The probability of measuring a |0⟩ (|1⟩) given a state 𝛼|0⟩ + 𝛽|1⟩ =

𝛼2(𝛽2). This is important to note - we cannot use the extra power of a qubit for free, nor can we

know in advance the result of a measurement on a qubit. This creates an interesting situation

43

where, even without errors involved, it is possible to measure a set of qubits and receive

incorrect results due to probability. However, this is not purely a detriment. Due to the true

random nature of qubits, we can use quantum uncertainty to power random number generators.

The only limitation on the randomness of the resulting distributions is the precision with which

one can prepare the quantum states before measurement. Thus, quantum uncertainty should be

regarded as a tool that one must consider, compensate for, and leverage depending on the

application.

The last mechanism is quantum non-locality, also known as quantum entanglement.

Entanglement requires two or more qubits to be prepared into certain states (superpositions) and

then made to interact with each other. The result is that the pair of qubits enter a state where

measurements to one qubit can affect the other qubit instantaneously regardless of physical

distance, connections, or barriers. The simplest entanglement can be demonstrated using a

1

√2
(|0⟩ + |1⟩) qubit, 𝑞1, and a |0⟩ qubit, 𝑞2. The multi-qubit state can be represented as

1

√2
(|00⟩ + |01⟩). If we perform a CNOT operation with 𝑞1 as the control qubit and 𝑞2 as the

target qubit, our resulting state is
1

√2
(|00⟩ + |11⟩). We can see now that the uncertainty present

in 𝑞1 is shared with 𝑞2, and a correlation has formed between their states. If we were to measure

either qubit and receive a 0 (1), we are guaranteed with 100% probability to collapse the other

qubit into the same state. Entanglement forms the basis of most quantum encryption and

communication methods that have been proposed. Additionally, these correlations allow for a

completely new method of representing and processing data that is still being explored.

However, entanglement is still extremely new and not fully understood.

44

4.4. Physical Realizations

Quantum computers can be realized with many different physical quantum systems,

including superconducting circuits, photon polarization, electron spin, or trapped ions. Each

system requires different physical components to represent the qubits themselves, to operate on

the qubits, and to measure information back from the qubits into classical data. Currently, the

most popular quantum computing technology is superconducting quantum computers (SQC), as

these devices can take advantage of the mature semiconductor industry. Additionally, they

generally have shorter gate times, leading to lower overall execution times. As they are

superconducting circuits, they require being cooled down to near 0 Kelvin temperatures, making

them difficult to produce and access. However, due to their greater accessibility and popularity,

we will focus on SQC for this work. Unless otherwise noted, any following information pertains

directly to SQCs and may not apply to other implementations of quantum computers.

SQCs are built using Josephson junctions to represent the qubits. The qubits are operated

upon using microwave pulses of specific frequencies and durations to achieve desired rotations.

The most important impact of using SQCs is that current SQCs cannot support an any-to-any

connection between qubits when performing two-qubit operations. Instead, qubits can only

interact with other qubits that are adjacent to them in the physical mesh. A sample qubit mesh is

shown in Figure 4.2B. The edges in the graph denote which pairs of qubits can be used together

in two-qubit gates. This becomes one of the major steps of quantum circuit compilation,

discussed in section the following section.

4.5. Compilation

In order to execute a logical circuit on physical quantum hardware, the circuit must

undergo a compilation process similar to that of compiling a classical program into an

45

executable. This involves two major steps - qubit allocation and qubit routing - along with a

variety of other optimizations, such as merging or decomposing gates. Only qubit allocation and

routing are relevant to our discussion, and both will be discussed in detail below.

Figure 4.3. Four qubit initial layout.

Qubit allocation is the process of assigning each logical qubit used within a logical circuit

to a physical qubit within the quantum computer, as seen in Figure 4.3. This is similar to register

mapping or memory allocation in classical computers, where each variable must eventually map

back to some physical storage. It is obvious that the physical machine must have at least as many

physical qubits available as are used by the logical circuit. In cases where the logical circuit uses

fewer qubits than what are available, the additional qubits are considered ancilla qubits that are

largely unused.

Because of the importance of topology and positioning within the SQC qubit mesh, there

are a variety of methods used for qubit allocation. The most trivial is simply to map logical

qubits to physical qubits one-to-one in order. A more advanced method is to identify dense

layouts with the greatest connections to reduce the number of SWAPS necessary during routing.

Another alternative is to focus on physical qubits that have lower error rates to increase the

success rate of the circuit. There are also compound methods that incorporate both of these

aspects to identify the most promising layout.

Once we have an initial layout provided by the qubit allocation stage, we then need to

satisfy the adjacency requirements dictated by the qubit mesh of the SQC. Since qubits cannot

46

interact in an any-to-any fashion, they must be moved to be adjacent to one another within the

mesh to perform two-qubit operations as shown in Figure 4.4. The SWAP gate, a combination of

three CNOT gates, performs a pairwise swap between the two involved qubits. This leads us to

qubit routing, process of inserting SWAP gates during compilation to satisfy adjacency

requirements. Generally, qubit routing involves not only satisfying the requirements but also

minimizing the number of SWAPs to do so. Since SWAPs are CNOT gates, which generally

have the longest gate times and highest error rates, excessive SWAPs can severely reduce the

success rate of a circuit.

Figure 4.4. Routing example.

Qubit routing is generally more difficult to perform and more impactful on the final

success rate of the circuit than qubit allocation. Similarly, there are many qubit routing methods

that have been studied. The trivial method is simply to route qubits to one another in a greedy

fashion to insert as few SWAPs as possible. This may have the direct result of minimizing the

number of SWAPs for a particular two-qubit operation, but this can also move other uninvolved

qubits further apart, potentially increasing the total number of SWAPs later in compilation. Some

methods incorporate lookahead mechanisms to base SWAP decisions on the next N two-qubit

operations in an attempt to avoid this addition of unnecessary SWAPs. Other methods are based

on stochastic decisions, where the choice of a SWAP target is probabilistic.

47

Recent work [82] has demonstrated that, due to the variance of error rates throughout a

SQC mesh, even routes with the same number of SWAPs could have different success rates as

the individual CNOT connections have different success rates. This has led to an increase in

noise-aware compilation methods that make decisions based on the current error environment.

This can be as simple as simply weighing the error rates when faced with a choice of SWAP

targets. Other methods, however, have combined the reversibility property of quantum circuits to

optimize a circuit forwards and backwards. This effectively allows the method to view where the

circuit should end then work its way backwards to the initial state. Multiple iterations of this

process can be used to improve the final success rate.

4.6. Quantum Errors

Current quantum computers are still in a very early stage of development, with only a

small number of vulnerable qubits. These noisy intermediate-scale quantum (NISQ) devices are

primarily intended to be a research tool, though they have already been claimed to have achieved

quantum supremacy, the ability to solve problems that would take so long as to be impossible on

classical machines. However, NISQ devices still bear two major weakness that make them

difficult to apply to many problems. First, NISQ devices commonly have on the order of ~10-

100 qubits, while many interesting problems like Shor's algorithm may require many thousands.

Second, NISQ devices are extremely vulnerable to errors. While quantum error correction

methods exist, these methods require many redundant qubits to protect a single qubit, similar to

classical redundancy methods. The limitation on the number of qubits available in a system

directly impacts the availability of error correction methods that can be used for the computer.

Qubits experience a variety of errors that can generally be classified into two major

categories - operational (or gate-based) errors and decoherence errors. Operational errors occur

48

when a qubit is involved with some single- or multi-qubit gate. Recent studies have also shown

the existence of quantum crosstalk errors, where qubits adjacent to - but not directly involved in -

operations can also be affected with errors. Decoherence errors by comparison are simply a

result of the decay of the state of a qubit. This decay can either involve the decay of a qubit from

a high-energy state (|0⟩) into a ground state (|1⟩) or a superpositioned state
1

√2
(|0⟩ + |1⟩) back to

a basis state (|0⟩ or |1⟩). These errors occur over time following exponential distributions with

time coefficients 𝑇1 and 𝑇2 . As such, these errors are commonly referred to as T1 and T2 errors.

The form of quantum errors can be considerably more complex than classical errors. In

classical systems, errors are fundamentally bitflips, where a 1 becomes a 0 or vice versa. Qubits

contain both phase and magnitude components within their state, and both can be affected by an

error independently or simultaneously. Additionally, as there are infinitely many states a qubit

can be in, there are also infinitely many states a qubit can change to as a result of an error.

Similar to operations on a qubit, we can represent an error as a combination of rotations around

each axis. This allows us to restrict this range of possible errors down to linear combinations of

X, Y, and Z rotations. Error correction methods rely on this representation of errors to handle

each type of error that may occur and correct them in turn.

It is important to note that the error rates of a given quantum computer are not static. In

fact, these error rates are constantly changing due to changes in the environment. Qubits are

extremely sensitive to external interaction, and by nature the superconducting systems are

sensitive to the environmental temperature. These conditions may change by the minute, though

many systems are only calibrated a few times per day to capture the current error information.

These calibrations can provide important information for compilers, but the temporal difference

between the calibration time and the compilation time can reduce the compiled circuit's accuracy.

49

50

5. Robust Cache-Aware Quantum Processor Layout

5.1. Introduction

Interest in quantum computing and information technology has grown considerably in

recent decades. Various companies including IBM, Google, and Microsoft, along with

governments around the world, have been working to advance quantum technology. Currently,

these quantum chips largely act as specialized hardware for efficiently executing quantum

algorithms and physical simulations, while a general quantum computer is far in the distance.

However, this does not diminish the importance of quantum technologies which already see use

in quantum random number generators and magnetic imaging devices. Google and NASA

recently claimed highly anticipated quantum supremacy [4], the realization of a chip that can do

in minutes what would take classical computers thousands of years.

The state-of-the-art quantum processors are classified as noisy intermediate-scale

quantum (NISQ) machines due to their relatively small number of error-prone qubits. While

these NISQ devices are beneficial research tools, their practical applications are severely limited

by their scale and unreliability. Traditional error correction methods used in classical computers

via replication cannot apply to qubits due to the quantum no-cloning theorem, which does not

allow for copying unknown qubit states. Quantum error correction schemes do exist, but carry an

overhead that is not practical on NISQ machines. This directly connects both the scale and

reliability problems – at an arbitrarily large scale, we can protect qubits to ensure reliable

© 2022 IEEE. Reprinted, with permission, from LeCompte, T., Qi, F., and Peng, L. “Robust Cache-Aware Quantum

Processor Layout,” In Proceedings of the 39th IEEE International Symposium on Reliable Distributed Systems

(SRDS), Shanghai, China, Sep. 2020.

51

computation. However, just as Moore’s Law is reaching its end, one can assume that an infinitely

large quantum computer as predicted by the Dowling-Neven Law [26] is equally unrealistic. As

such, there will always be a restriction on the number of high-fidelity qubits we can achieve in a

quantum computer, and we would like to waste as few as possible on error correction.

We investigate the application of quantum caches to modern superconducting quantum

computers in order to achieve functional error correction for robust quantum computing at

increasingly smaller scales. Unlike classical caches that reduce execution time by reducing

memory latency, these caches reduce the error correction overhead for protecting cache qubits by

acting as a dedicated memory. By reducing the number of operations that take use these cache

qubits, error probabilities are decreased and performance requirements are lowered, thus

allowing for lighter error correction schemes. This results in more usable qubits as fewer are

allocated for error correction, which in turn allows smaller scale devices to be robust to error

while continuing to meet qubit and performance requirements. However, by restricting

operational regions, we incur a cost as operations must avoid these cache regions. Through our

experimentation we aim to minimize this overhead while maintaining the benefits of the caches.

To simulate these caches, we modify multiple parts of IBM’s Qiskit quantum simulator

[24]. Specifically, we target the virtual to physical qubit layout, the physical qubit coupling map,

and the swap passes during compilation. This allows us to generate different cache layouts

within the physical qubit map and ensure that the simulator can work with these caches to

complete execution. For testing, we examine four cache layouts and two swap algorithms on five

quantum algorithms and measure the overhead incurred. From our observations we provide a

policy that performs well for all algorithms.

52

To ensure the validity of our results on large-scale systems that will implement error

correction methods, we extend our simulations to larger mesh networks. Qiskit is unable to

simulate large meshes due to memory constraints during the computation of the quantum

algorithm. As we are focused on minimizing the movement of qubits during an arbitrary

program, we can simulate large scale algorithms by removing the computation component. This

enables us to bypass memory limitations at the cost of algorithm execution. Therefore, combined

with our small-scale observations, we can display both correct execution and scalability.

The contributions of this work can be listed as follows:

• Our design is the first work, to the best of our knowledge, to apply memory architecture

to superconducting quantum technology.

• Our design explores the design space of possible quantum computer cache layout using

five advanced quantum algorithms.

• Our design achieves a possible maximum performance increase at 2.15 times compare to

the worst cases while keeping a robust system.

• Our design is the first work to explore cache architecture design space at large-scale

quantum chip level using mixed scale-out algorithm.

5.2. Motivation

In the previously mentioned quantum caches, the authors implement 8:1 and 1:2

encodings in their compute and cache regions, providing a large improvement in the number of

qubits necessary for error correction. The main source of this improvement is taking advantage

of ion trap quantum computers' long coherence times, which can be on the order of multiple

seconds and possibly even minutes in certain configurations [99]. As the previous proposed

cache is designed for ion trap systems, they do not face the mesh connectivity problems that

53

superconducting systems experience. This becomes the major design question we must address

when porting this concept to superconducting technology.

Figure 5.1. Scaling of available qubits with and without cache.

Superconducting technology cannot take advantage of coherence times when considering

multiple error correction codes. Current superconducting coherence times are typically on the

order of milliseconds. However, we can still take advantage of varying levels of encoding to save

qubits where possible. Although we do not have the large coherence times, superconducting gate

times, the time necessary to perform a gate operation on a qubit, are substantially shorter (order

of nanoseconds) than ion trap machines (order of microseconds). This difference in gate time

makes up for the difference in coherence times and results in comparable number of gate

operations per coherence time. This allows us to follow a similar multi-level encoding structure.

By having both "compute" and "cache" regions, we can also deploy faster but more costly error

correction in compute regions, and a more qubit-efficient encoding in the cache region. Two

simple codes to choose to employ are the Shor code for compute regions (1:8) and the Steane

code for cache regions (1:6). In total this is a reduction of 2 qubits per data qubit, or a
9−7

9
=

22% reduction for the cache regions.

54

Figure 5.1 shows the concept of saving qubits as we increase cache size. Here, usable

qubits are defined as the sum of both computation and cache qubits (basically all non-ancilla

qubits reserved for error correction). Naturally, the line y=x acts as our absolute boundary. If we

did not need to implement error correction at all, our device would lie along this line, though

such a perfect machine does not currently exist. All other lines can be drawn following 𝑁 =
𝑝𝑛

𝑐1
−

(1−𝑝)𝑛

𝑐2
 where N is the number of usable qubits, n is the number of physical qubits in the machine,

p is the cache percentage, and 𝑐1 and 𝑐2 are the number of qubits necessary for the error

correction codes for the cache and compute regions respectively. The dashed line represents

marking every qubit as a cache qubit -- this is impractical as we do not have any qubits for

computation, but it provides an upper bound on our design as it would apply the less costly error

correction code to the entire system. Similarly, the red line denotes having no memory, and thus

having the costliest error correction code apply to all qubits. This results in the most qubits

allocated for error correction. Therefore, when choosing a cache size, we fall somewhere

between these two lines -- shown here is an even split between cache and computation qubits.

We can guide our choice of cache size by the number of qubits required for an algorithm. By

maximizing the cache percentage p while maintaining enough usable qubits to execute the

desired algorithms, we waste fewer qubits on error correction while meeting functional

requirements.

An alternative perspective is to consider that we are enabling error correction on a system

that cannot otherwise support error correction codes while meeting the performance and qubit

requirements for a given algorithm. For example, if we wish to use Shor's code for an algorithm

that requires n logical qubits, we would effectively need 9n physical qubits when adding the

ancilla qubits for error correction. By comparison, using a 50% cache size with the Shor and

55

Steane codes as discussed above, we can implement error correction with only
9−7

9
= 8𝑛 qubits.

While we could simply apply the Steane code to every qubit, there may be limitations that

prevent this, such as performance requirements or differences in the reliability of individual

qubits.

Figure 5.2. Cache-forced swaps.

5.3. Design

In order to simulate quantum caches on superconducting chips, we modify each of the

three main parts of the Qiskit library – the coupling mesh, the initial layout, and the swap

algorithms. We add a list to the mesh to keep track of the included cache nodes. This provides a

base from which to enforce gate restrictions and make the execution cache-aware. The initial

layout is modified to prioritize non-cache qubits to avoid unnecessary swaps. The swap

algorithms must be aware of the cache qubits to enforce swaps in and out of the cache in addition

to its traditional job of ensuring that qubits are adjacent for entanglement.

Beyond simulating on small scale superconducting chips around 20 qubits, we also

extend Qiskit to perform large-scale quantum circuits on large-scale superconducting chips,

around 100 qubits level. To perform this task, we modify the Qiskit library to allow large-scale

circuit compilation and propose a scale-out algorithm to generate these circuits. We modify the

simulation process to only perform swap mapping while discarding data operations such as

single-qubit gates. This allows us to circumvent the library restrictions and makes simulation

56

feasible. For the scale-out algorithm, we extract circuit characteristics directly from real quantum

applications and feed them into the mixed scale-out algorithm, which aims to run on classical

computers with high fidelity relative to the real large-scale circuit.

Figure 5.3. Four basic cache topologies.

5.3.1. Coupling Mesh and Cache Topology

The first necessary step is to add the concept of a cache to the simulator. We add a list to

hold all nodes that are in the cache. This is used by the layout and swap algorithms to identify

which nodes should be prioritized for mapping and swapping. We additionally construct a

separate mesh with cache nodes removed to allow for easy swap path identification. The swap

algorithms rely heavily on shortest path algorithms, so it is beneficial to have a pre-made

separate graph limited to only data qubits to prioritize non-cache swapping where beneficial.

Lastly, we add functions to generate the various cache topologies used in our experiments.

In the previous work examining the quantum memory hierarchy, the system is

implemented using ion trap technology [90]. Due to its arbitrary qubit entanglement capabilities,

there is little distinction between data and cache qubits. However, there is a major difference

when using superconducting qubits because the connectivity between qubits is limited, and we

cannot simply operate on any two qubits at will. Choosing which qubits to place in the cache

thus has an impact on the swaps the algorithm must perform to complete the algorithm. As

shown in Figure 5.2, the two marked qubits are adjacent and therefore should be available for

57

operation. However, with the highlighted cache placement, one of the qubits falls within the

cache and thus is not valid for use. To complete the operation and continue with algorithm

execution, the qubit must be moved out of the cache, creating more swaps.

Given n physical qubits there are 2𝑛 potential cache layouts to consider. In order to avoid

searching this whole space, we instead focus on four different topologies, two contiguous and

two distributed, as shown in Figure 5.3. The two contiguous methods, a straight split and a

central cache, allow for larger contiguous cache and computation areas. The two distributed

methods are the four corners of the mesh and a tiled version that spreads the cache equally

throughout the mesh. The corner topology also allows for a large contiguous region of

computation but divides the cache into parts, while the tile method instead opts to intersperse

both cache and compute qubits. These four methods together provide a variety of options to

consider for cache design based on algorithm characteristics.

5.3.2. Layout

The initial layout of the algorithm maps the required virtual qubits to the physical qubits

in the mesh, as shown in Figure 4.3. Similar to the previous discussion about cache topology, a

number of compiler passes directly involving the physical qubits need to be modified to account

for the cache, including this initial layout. Poor initial qubit placement can result in additional

swaps. It is not as critical as the swap algorithm since it is only the initial state of the system, but

it can have considerable impact on shorter algorithms.

Typical layout passes examine both the mesh and the algorithm to decide on qubit

placement. First, identify the most and least heavily connected qubits in the mesh. Second, look

ahead through the gates that must be executed to identify the order in which qubits must be

operated on. Using this information one can map the qubits that are used together to be nearby in

58

the mesh. However, adding the concept of a cache changes this process, as an unaware layout

may map virtual qubits to cache qubits and add unnecessary swaps. We modify this process to

also reference the list of cache qubits in the mesh and prioritize non-cache qubits before cache

qubits. This allows us to retain the benefits of the pre-existing layouts while avoiding as many

unnecessary swaps due to the cache as possible.

5.3.3. Swap Algorithms

The last major part of the compilation process that we must modify are the swap

algorithms. These algorithms are responsible for ensuring that qubits are adjacent to each other

whenever two qubits are operated on together. As discussed previously, it is critical for the swap

algorithm to be cache-aware for the algorithm to complete execution. Otherwise, the simulation

would attempt to operate on qubits when it cannot due to the cache, leading to failures. In this

sense it is also the responsibility of the swap algorithm to enforce these additional restrictions on

the qubits’ positioning within the mesh. While there are many different swap algorithms that

have been studied to minimize swaps or maximize reliability, we present two different cache-

aware swap algorithms and compare their properties and behaviors.

In general, the swap algorithms examine the list of operations that must be executed and

insert swap operations that move the qubits to their necessary positions in the mesh. With no

cache, single qubit operations do not require any swaps as they can be executed locally at any

qubit position. The only operations that force qubit movement are two qubit operations such as

the CNOT. Three or more qubit operations do exist, but can be unrolled into a combination of

one and two qubit operations in the basis set. Upon locating a two-qubit operation, the swap

algorithm checks whether they are adjacent. If not, it finds a shortest path from one qubit to the

other and inserts swaps along that path. It is possible for the movement of one qubit to possibly

59

move other qubits further from their goal locations. Some algorithms implement look-ahead

mechanisms to address this problem and increase system-wide efficiency, while others

implement probabilistic methods to avoid interference.

Algorithm 5.1. Baseline Swap Algorithm

When incorporating a cache, the first modification involves single-qubit gates as they can

no longer be executed on any qubit in the mesh. Instead, they are now capable of forcing

movement if a single-qubit operation is set to take place on a cache qubit. By definition of the

cache, operations should not act on cache qubits wherever possible to increase system reliability.

As such, even single-qubit gates may require moving out of the cache to a non-cache region. For

two qubit operations, as previously discussed, both qubits must be out of the cache and adjacent

with each other for the operations to be successful. Both algorithms presented follow Algorithm

3.1, but act differently when selecting the paths to take to move qubits together. The first

algorithm acts as a baseline, here referred to as the BaselineSwap (BSwap). It finds the direct

shortest path between two qubits and routes them together, ensuring their final positions are not

within cache qubits. This ensures correct execution of the algorithm, but allows for swaps

through the cache. The second swap algorithm aims to minimize the number of swaps occurring

60

within a cache, here referred to as the NoCache Swap (NCSwap). By utilizing the previously

mentioned reduced mesh that does not contain cache qubits, the algorithm can easily find the

direct shortest path using only non-cache qubits. In the case that either qubit is in the cache

itself, it first moves them out to a non-cache region, then routes them together avoiding cache

qubits. The only modification necessary is to use this modified mesh that does not contain the

cache qubits when finding the shortest paths in lines 3, 8, 10 and 12. This algorithm does not

work if the compute region is not contiguous, as the mesh then becomes disconnected, though it

can be modified to simply fall back to BSwap in these circumstances.

Figure 5.4. n-qubit QFT circuit. (a) Separated by stage. (b) Table of gates with number of qubits

involved.

Implementing the cache adds data movement as we must swap qubits in and out of the

cache and avoid transferring through cache regions where possible. The cache shape, size and

swap algorithms can affect this performance overhead. Our design aims to minimize the number

of swaps at various cache shapes and sizes, which we treat as our main performance metric in the

following evaluations. Reducing the number of added swaps reduces execution time and

increases reliability by reducing the number of total gate operations on the qubits, in addition to

enabling the error correction codes at smaller scales.

5.3.4. Large-Scale Implementation

Due to the inherent exponential growth of quantum algorithms, using classical computers

to simulate complete quantum circuit generation and computation at large scale is infeasible and

61

would otherwise contradict quantum supremacy. However, observing the behavior of a real

application on a large-scale circuit is one of the critical components for assisting large-scale

quantum computer design. Therefore, it is necessary to find a feasible solution which generates a

large-scale quantum circuit based on the small-scale algorithm using a classical computer with

high fidelity compared to the real large-scale circuit.

By inspecting the growth rates of gate counts within real applications on the small-scale

Deutsch-Jozsa algorithm, shown as Figure 5.5, we observe the number of total gates, CX gates,

and CX gates per qubit are growing at consistent exponential rates. After studying this trend, we

have found an inherent growth behavior of a quantum algorithm that within one quantum

algorithm, different stages follow a strict sequence order, and some stages grow at an exponential

rate while others only grow linearly. A simple Quantum Fourier Transform (QFT) circuit, shown

as Figure 5.4, will be used to illustrate this behavior, with circuit implementation from [79]. As

Figure 5.4(a) shows, the QFT algorithm can be separated into sequences of stages based on its

functionality, which is true for many algorithms. Stage 1 boxed in blue performs a sequence of

one Hadamard gate followed by a series of UROT gates applied to all higher indexed qubits on

every qubit. Similar to the CX gate, the UROT gate is a two-qubit controlled rotation gate that

requires target and control qubits to be adjacent in the mesh. Stage two and three are swap and

measurement stages, which request three CX gates and one measurement gate for each operation

respectively. Based on the behavior of each stage shown as the table of Figure 5.4(b), it is clear

that stage 1 has an exponential scaling 𝑛2, but stage 2 and stage 3 will have a linear scaling with

𝑛

2
 and n respectively.

Therefore, as shown in Figure 5.4, a large-scale implementation of QFT would follow the

same sequence of execution stages as small-scale while using more qubits. The number of gates

62

necessary for some stages may scale linearly with the number of qubits, such as stage 2, while

others may scale exponentially. This general trend is proved in Figure 5.5. This exponential

growth quickly becomes impossible to compile and simulate on a classical computer, preventing

direct scaling. However, it is still possible to approach similar qubit movement behavior using

the Mixed Scale-out Algorithm presented next.

Figure 5.5. DJ gate count scaling.

A mixed scale-out algorithm will enlarge each stage of a real small-scale algorithm with a

constant rate of n copies of gates from the target stage using a random mixed fashion. Following

this rule, the circuit produced by a mixed scale-out algorithm will have the same stage sequence

as the real large-scale quantum algorithm. For the gate number difference, the resulting circuit

will only be different at stages that require exponential scaling, which are projected to a constant

rate n. Since this paper focuses only on the swap mapping and swap count difference between

different cache layouts, only 2-qubit gates will be extracted and used, as single-qubit gates do not

affect the swap counts. Using the QFT circuit as an example, assume that the small-scale circuit

has 6 qubits and that the target large-scale circuit has 120 qubits. A mixed scale-out algorithm

will make a copy of the small-scale algorithm 20 times, and aggregate all the gates into

63

corresponding stages. For stage 2 and 3, this enlarging process will be very close to the real large

application. Stage 1 will have 62 ∗ 20 = 1,240 swap paths generated by the mixed scale-out

algorithm, while the real large-scale circuit will have 1202 = 14,400 swap paths. The mixed

scale-out algorithm successfully reduces the complexity of the swap path generation from 𝑂(𝑛2)

to 𝑂(𝑛) with all the created swap paths belonging to the real large-scale circuit. Therefore, the

mixed scale-out algorithm perfectly suits the purpose of exploring the path behavior in the large-

scale quantum chip with a balance between feasibility and fidelity.

Algorithm 5.2. Mixed Scale-out Algorithm

The large-scale additions for the Qiskit library inherits features of the three

implementations in the preceding sections. Compared with the original Qiskit library, the large-

scale Qiskit library only performs the circuit construction and compiling processes while

discarding the simulation part for computation. Meanwhile, the limitation on the number of

physical qubits for simulation (in place due to memory constraints) has been removed to allow

mapping of the virtual qubits to physical qubits with any given size. Since we remove the

computation, there are no memory concerns. This isolated process releases the potential of the

library to be able to measure the swap count with any given input size.

The proposed mixed scale-out algorithm, shown in Algorithm 5.2, aims to generate

circuits on a large scale and keep the balance between feasibility and fidelity. The algorithm

64

extracts the circuit from a small algorithm and feeds it into the filters that filter out the barriers

and measurement operations that influence combination with another circuit. The duplication

procedure will rename the quantum registers to avoid mismatching. For executing each gate

within the target stage from different small circuits, the algorithm adopts the round-robin policy

to execute each gate of the circuits. After the generation of the circuit, the algorithm will enable

the random qubits allocation procedure to avoid the qubits from the same copy to aggregate.

Figure 5.6. Baseline Swap results, small algorithms.

Figure 5.7. Baseline Swap results, larger algorithms.

5.4. Results

For our experimentation, we test five quantum algorithms: Shor’s factorization algorithm

[86], Grover’s search algorithm [42], Simon’s algorithm [88], the Deutsch-Josza (DJ) algorithm

[25], and the Bernstein-Vazirani (BV) algorithm [11]. These algorithms cover a variety of

quantum computation tasks. BV, DJ and Simon's algorithm are three of the first quantum

65

algorithms used to demonstrate the benefit of quantum computers over classical computers.

Grover's search algorithm searches a set of quantum data to identify matching queries. Shor's

algorithm, likely the most well-known of the set, is a polynomial time factoring algorithm whose

security concerns interest governments worldwide. Each of these algorithms are tested on all four

cache topologies at various cache sizes. The number of swaps is recorded to show the swaps

incurred by each cache topology. The overhead in the number of swaps can be used to

approximate the overhead in computation time following the function 𝑓(𝑛𝑠) = 3 × 𝑛𝑠 × 𝑡𝑐𝑛𝑜𝑡,

where 𝑛𝑠 is the swap overhead and 𝑡𝑐𝑛𝑜𝑡 is the average time necessary to execute a single CNOT

gate. Results for both the BSwap and NCSwap algorithms are shown to provide comparisons

under all settings.

5.4.1. Small Scale

For these small-scale simulations, we implement the cache and swap algorithms on sizes

that can be executed with current technology without error correction enabled. We cannot

actually implement error correction for testing purposes, as it would require more qubits than can

be feasibly simulated. Instead, we are working directly with the qubits and assuming that error

correction would be implemented at a larger scale.

The results for the BSwap algorithm are split into two figures, Figure 5.6 and Figure 5.7.

The larger algorithms (Shor and Grover) are separated from the smaller algorithms (BV, DJ,

Simon) because we use two separate methods for manipulating the cache size. For the larger

algorithms, taking a percentage of the total mesh size as cache works with no problem, as there

are enough qubits to select from. However, the smaller algorithms use a smaller mesh, resulting

in rounding issues when using cache percentages. To provide more clear results about the effects

66

of increasing cache size, we instead directly increase the number of cache qubits rather than

relying on a percentage.

The smaller algorithms exhibit relatively similar behavior for all of the cache topologies.

At most cache sizes, either the corner or center topology performs best depending on the

algorithm, though the tile and split topologies do not perform much worse. As expected, the

number of swaps trends upwards as cache size increases, as more qubits must be moved out of

the cache.

The larger algorithms also show a general trend upwards in swaps as cache size

increases, though Shor's algorithm shows somewhat more complex behavior. Grover's algorithm

stands out as the only one that benefits mostly from the tile topology, and the split topology at

higher cache sizes. By comparison, Shor's algorithm has consistently low number of swaps with

the central topology at all cache sizes except for the largest cache size. We will discuss why we

believe the algorithms display these behaviors in the following discussion section.

In order to underscore the importance of choosing the correct cache topology, we identify

the best and worst cache topology at each cache size for each benchmark and calculate the

overhead difference between the best and worst topologies. Based on the previous observations

in Figure 5.6 and Figure 5.7, we choose to treat the central cache as our default choice as it

consistently performs best on the smaller algorithms, and the larger cache sizes for Shor's

algorithm. Figure 5.8 displays the minimum, maximum, and mean overhead figures for each

benchmark. As shown, the difference between minimum and maximum ratios can be very large,

with the greatest difference being roughly 147% for Grover's algorithm. When examining only

the default central topology, we similarly find the greatest difference of 115%, or a 2.15x

improvement. There is also typically a sizable difference between the average and minimum

67

overhead, ranging from roughly 9-30% overhead over the best choice of topology. The large

differences between the maximum and mean topologies indicate the impact of cache topology on

performance. If one were to blindly choose a cache topology for a given algorithm and cache

size, they could suffer these large increases in the number of swaps and therefore execution time.

As such, our recommendation is to profile a given test program to identify which cache topology

is optimal, but the central cache is a consistent choice for all of our tested algorithms.

Figure 5.8. Best, mean and worst-case performance between topologies of each benchmark at all

cache sizes.

Figure 5.9. NoCache Swap results.

In addition to the previous results for the baseline swap algorithm, we also include results

for the second NCSswap algorithm. This algorithm was created to minimize the number of

cache-influenced swaps (a swap where one or both of the qubits were in the cache) during

execution. The swap results are shown in Figure 5.9. For brevity, only DJ is shown from the

68

smaller class of algorithms, along with Shor's and Grover's algorithm. We chose these three

algorithms as our sample because DJ, BV and Simon's algorithm show fairly similar behavior

and can be represented by one representative.

As seen with BSwap, for DJ the center and corner topologies typically perform better.

However, Shor and Grover show very different behavior. The most prevalent observation is that

not all cache topologies can be run at higher cache sizes, namely center and corner, which had

performed best with the baseline swap algorithm. The cause of this is the requirement that the

algorithm must not swap through the cache, except when one or both qubits originate in the

cache. If distinct compute regions are isolated from one another by a cache region, qubits cannot

move across the boundary and the computation cannot finish. This explains why the center

topology is the first to fail, as it grows to divide the mesh in half. It is possible in this case to fall

back on the baseline swap algorithm, but it is interesting to observe at which point the topologies

begin to fail. Only the split topology is capable of completing both algorithms, which is sensible

as it results in a large contiguous compute region. The tile configuration also performs well, and

for the Grover algorithm also has the minimum number of swaps.

To provide more insight into the impact of the no-cache swap algorithm, we measure

how many swaps occur where at least one of the two qubits are present in the cache. We then

calculate the difference between the percentage of these swaps for the baseline and no-cache

swap algorithms. We expect that no-cache swap will display a substantial reduction in the

frequency of these cache involved swaps as we actively avoid swapping through the cache where

possible. We again calculate the geometric mean over the various cache sizes and topologies to

present the total effect of the no-cache swap algorithm regardless of chosen topology or cache

69

size, though it is worth noting that both algorithms have similar performance at the largest cache

sizes as it becomes impossible to avoid swapping through the cache.

Figure 5.10. Percent reduction of cache-involved swaps.

The results of these measurements for each benchmark are shown in Figure 5.10. As

expected, the no-cache swap algorithm reduces the number of cache-involved swaps in every

benchmark regardless of cache size or topology. Shor's algorithm shows the greatest

improvement at nearly 21%, with a minimal improvement of roughly 2% on DJ. Across all five

benchmarks, the no-cache swap algorithm provides a mean 9.85% reduction in the number of

cache-involved swaps. Note that this reduction does come at an overhead in total number of

swaps, as can be seen by comparing Figure 5.6, Figure 5.7 and Figure 5.9. However, reducing

the number of swap operations involving the cache further reduces the number of error

correction operations that would be necessary in the cache.

5.4.2. Large Scale

As Figure 5.11 showed, the results come from feeding DJ benchmark into the large-scale

Qiskit with baseline swap using 96 physical qubits. After comparing with its smaller version, the

overall behavior of the different topologies is similar. The rankings of the layouts at large-scale

70

are stable that centers perform best, and split as the worst. One of the reasons that split takes the

most swaps to execute might be that split has the longest path of the max possible distance

between one pair of cache and non-cache qubits, which becomes even more pronounced as the

mesh increases in size. This demonstrates that the policy will be applicable for scale-out large

quantum algorithm. As shown in the figures, for different layouts at a different size, a wise

policy can reduce the number of swap operations by one order of magnitude for switching

between the optimal layout in different cases. The large-scale results also support the assumption

that with a very aggressive memory-dense design as 80%, the policy can keep the extra swap

overhead within 2 times range and achieve a 3 times reduction on quantum chip size.

Figure 5.11. Large-scale results for DJ.

5.4.3. Discussion

In order to provide insight into the behavior of the algorithms we tested, we present here

a small discussion on their properties and how they influence our observations. First, each of the

smaller algorithms are relatively similar. They begin with a set of Hadamard gates to create

superpositions of the qubits, perform a sequence of operations that depend on the given oracle

the circuit is made to execute, then end with another set of Hadamard gates and measurements to

71

extract the results. The cache mostly impacts multi-qubit gates as qubits must be moved to

adjacent positions. These three algorithms benefit from larger contiguous compute regions,

though not extremely as they do not implement many multi-qubit gates depending on the oracle.

By comparison, both Shor's and Grover's algorithm are more complex and rely on a

larger number of multi-qubit gates. Shor's algorithm in particular shows a considerable

difference between cache topologies at large cache sizes likely due to the large number of multi-

qubit gates. Center and corner cache topologies provide contiguous compute regions without

having to move as across the entire graph as often to meet adjacency requirements. Grover's

algorithm stands apart from all of the others, actually benefiting most commonly from the tile

topology. This is likely due to the implementation of the input oracle, which happens to execute

in a way that benefits from the tile topology.

5.5. Related Work

In a previous work, Thaker et al. discuss the possibility of multiple levels of encoding at

various overheads for computation, cache and memory regions in ion-trap-based quantum

computers [90]. While traditional cache designs provide performance increases by holding

frequently used data in high-speed memory regions, the quantum cache design focuses on

decreasing chip area when deploying error correction codes. By utilizing two error codes, they

avoid wasting a large number of qubits for error correction on qubits that are less frequently used

or less prone to error (the cache qubits). This allows for slower or less precise error correction

methods in memory regions that are used less frequently, while deploying faster error correction

in computation regions that must be applied after each operation. They also include code

conversion circuits for transferring qubits in one encoding to another, allowing for fast transfer

between cache and computation encodings.

72

5.6. Conclusion

In order to execute important quantum algorithms, it is necessary to increase the number

of available qubits in a quantum computer. Quantum caches are one such method by reducing the

number of ancilla qubits necessary for implementing quantum error correction codes. We have

extended this concept from ion trap computers to superconducting meshes and modified the

Qiskit quantum simulator to accommodate quantum caches. With these modifications, we have

examined various cache sizes and topologies on five different quantum algorithms. Our

observations show that central caches typically minimize the number of swaps added by the

cache during algorithm execution, but it is optimal to profile each individual algorithm. We

proposed an alternative cache-aware swap algorithm that reduces the cache disturbance caused

by swapping qubits, further reducing cache operations and increasing reliability. In combination,

these methods will increase the number of usable qubits on systems that implement error

correction.

73

6. Gate-Based Partial Compilation of Quantum Neural Networks

6.1. Introduction

Interest in quantum technology has grown massively in the last two decades. Many

technology companies and national governments are investing to develop quantum hardware and

software for security and computation purposes. Quantum technology is not limited to these

fields, and has also been deployed both in random number generators and medical imaging

devices to improve upon pre-existing machines. However, most interest lies in quantum

computation and information theory. Quantum algorithms have been shown to greatly improve

execution times for certain problems, such as Shor's algorithm [86], which can nearly

exponentially accelerate the factoring of large numbers. Communication systems built using

quantum encryption are provably secure to outside tampering, including quantum interference.

Although quantum hardware is still under heavy development, quantum computers have recently

reached a state of quantum supremacy for specific problems, meaning that it takes minutes to

complete tasks that would take classical computers thousands of years [4].

Current cutting-edge quantum computers are considered noisy intermediate-scale

quantum (NISQ) processors, as they are made of a small number of vulnerable qubits [33, 50].

These NISQ devices serve as powerful research tools to study both quantum hardware and

software. Currently, most NISQ machines use superconducting technology to implement qubits,

though other methods involving charged ions or photons also exist. Most quantum algorithms

make use superposition or entanglement to aid computation. They are not without limitations,

however, as care must be taken to extract desired information without collapsing the vulnerable

states. Additionally, current NISQ computers are inherently vulnerable to environmental and

gate errors. Although quantum error correction methods exist, they cannot be applied on NISQ

74

machines due to their limited size. Quantum computers are also commonly not standalone

machines but instead act as accelerators, where one can prepare and submit jobs from a host

machine. These jobs contain circuits to execute, which are compiled on the host machine for the

target physical quantum computer before submission.

A problem arises when a circuit must be recompiled frequently, as the overhead for

compiling and submitting the job becomes costly. This can occur in algorithms with changing

gates or those that adjust values of parameterized operations after receiving feedback from their

results. Well-known examples of this form of algorithm are neural networks, which during

training are adjusted every iteration to learn parameters. Quantum neural networks (QNNs)

follow similar patterns to learn from input data. This can cause compilation to become a

considerable portion of training time. However, not every stage of the algorithm changes every

iteration, as we typically only adjust weights and not, for example, the application of threshold

functions.

Drawing from these observations, we investigate a form of partial compilation to prepare

circuits for NISQ machines that aims to reduce this repetitive compilation overhead by avoiding

unnecessary compilation for constant regions of the circuit. By storing the compiled static

sections of the circuit and compiling only the variable parts of the circuit every iteration, we aim

to reduce the overall time spent on compilation to improve iterative QNN training. We modify

IBM's Qiskit quantum toolkit [24] to include partial compilation for quantum circuits. We utilize

their directed acyclic graph (DAG) model of circuits to enable partial compilation of circuit

blocks. These blocks can then be combined to reconstruct the original circuit without

recompiling the entire circuit. We then test the approach on a collection of popular neural

75

network architectures and measure the time saved with partial compilation. Lastly, we provide

insight into more generic circuits that may not follow strictly to the neural network pattern.

The major contributions of this work can be listed as follows:

• Our approach is one of the first to apply partial compilation to quantum neural networks

specifically with the Qiskit toolkit and its compiler.

• Our approach reduces compilation time by up to 77% per iteration for well-known QNN

architectures.

• Our approach reduces total training time by up to 66% over 1000 iterations.

• Our work explores the impact of optimization passes on partial compilation, providing

insight for future work.

6.2. Design

In order to implement partial compilation for Qiskit programs, we rely on their directed

acyclic graph (DAG) model for circuits. This allows us to compile individual parts of a circuit

then combine them together to create the finished circuit. We refer to regions that do not need to

be recompiled as static blocks and those that must be recompiled as dynamic blocks. The

following sections cover this DAG model, identifying static and dynamic blocks, and the neural

network circuits we use to evaluate the approach.

76

Figure 6.1. Simple DAG representation and concatenation.

6.2.1. DAG Representation

Qiskit uses both a circuit representation and DAG representation for quantum programs.

Circuits contain a list of gates to execute and registers to execute them on. The DAG instead

presents a data flow view of the circuit where nodes represent gates and edges represent qubits

that pass from gate to gate. An example DAG is shown in Figure 6.1. The top-most nodes are our

quantum registers that the circuit uses, while the bottom-most nodes are the classical registers

that the quantum registers get measured into to extract data back into a classical space. Without

partial compilation we would recompile the entire full circuit every time, but with partial

compilation we only recompile the portions coming from dynamic blocks.

The DAG offers useful features for compilation in general. First, we can convert back

and forth between circuit and DAG, allowing us to operate on the DAG when beneficial and

return to an executable circuit. Second, we can perform existing compilation passes on the DAG

representation, allowing us to compile DAGs individually. Third, we can concatenate DAGs

together or replace individual nodes within the DAG by mapping their input and output registers

together. Together this provides a toolkit that we use to implement partial compilation by

allowing us to individually compile blocks, assemble them into a complete DAG, run additional

77

global passes if necessary, then convert the DAG back to a circuit for execution. These steps are

shown in Figure 6.2.

For step 1, we must first convert a given circuit to its DAG form. This enables us to

manipulate the circuit more freely. Then 2, we must divide the circuit into static and dynamic

blocks. This step is discussed in the next subsection. Steps 3 and 4 come as a pair - if a block is

static and we have a stored version, we use it. Otherwise, we recompile the block. Step 5 then

requires appending the blocks together as shown previously, and 6 converts back to a circuit for

execution. There is overhead involved with these steps compared to compiling the circuit

together as a whole, but our results will show that the time saved exceeds this overhead

substantially.

Figure 6.2. Partial compilation workflow.

78

Figure 6.3. Aggregating blocks to reduce overhead.

6.2.2. Blocks

Classical neurons typically involve three phases - applying weights to inputs, summing

up the results, and potentially applying a threshold function. Quantum neural networks (QNNs)

typically follow a similar structure as they attempt to mimic behavior. When we consider these

stages in the context of partial compilation, both the summation and threshold functions are

constant across iterations while the weights change from iteration to iteration. We break up the

QNNs into static and dynamic blocks similarly. To identify blocks in a circuit, we examine each

gate to determine if it is constant or parameterized. We then combine consecutive gates of the

same type into blocks to reduce the total number of blocks and the overhead for appending them

together during compilation, as shown in Figure 6.3. For the neural networks, this typically

coincides with each layer.

A second benefit for partial compilation comes from the structure of the networks

themselves. The connections between neurons are normally static throughout the training of a

network. In the quantum case, this means that we have a consistent order the qubits will be used.

79

The layout of physical qubits, and thus the order we must swap qubits during execution to ensure

two-qubit operations execute correctly, does not need to change from iteration to iteration.

Therefore, we do not need to rerun these sorts of compilation passes each iteration.

6.2.3. Compilation Passes

Qiskit provides a number of compilation passes along with the ability to write custom

passes when necessary. These passes are grouped into pass managers that can be applied to

DAGs. During our following experimentation we test with four provided pass managers that act

as optimization levels during compilation. However, some discussion of individual passes and

how they affect compilation is necessary to understand partial compilation with these passes.

Some passes, such as unrolling or decomposing gates, can be applied locally to blocks as they

have little to no impact to surrounding blocks. Others must be applied globally as they influence

the entire circuit. Lastly, some have consistent effects, such as the previously discussed swap

passes, that always create the same results. For our experimentation, we default to running passes

locally except where it is necessary to run them globally for correct functionality. Further

investigation into the effects of specific passes and partial compilation may be a useful direction

for future work.

Figure 6.4. Classical neuron structure.

80

Figure 6.5. Example QNN architectures.

6.3. Evaluation and Results

We evaluate our approach on the previously discussed networks by measuring the

compilation time overhead per iteration for each network. We compare the execution and

compile times for each network to quantitatively demonstrate the importance of reducing

compile time. This includes measuring the impact on training time. We also evaluate any impact

on the accuracy of the circuit by computing the fidelity between normal and partial compilation.

Lastly, we provide insight into the limitations of our approach by investigating the impact of

PassManager optimization levels and the proportion of static and dynamic blocks within a

circuit.

6.3.1. Benchmarks

For experimentation we test on quantum versions of well-known classical neural

networks. Specifically, we test implementations of individual neurons, basic artificial neural

networks (ANNs), including sparse and fully-connected versions, convolutional neural networks

(CNNs) and recurrent neural networks (RNNs). Motivations for these circuits stem from pre-

existing QNNs [23, 49]. A sample of our test networks can be seen in Figure 6.5. As in classical

networks, many of the larger networks are built out of the simple single neurons. Except for the

neuron, which is a small two-qubit circuit, all larger networks operate with 16 qubits by default.

81

Figure 6.6. First and following iteration improvements.

6.3.2. Partial Compilation Improvements

Measurements for each network are shown in Figure 6.6. We measure the compilation

time of the first iteration separate from the following iterations. Similar to the warm-up period of

a cache, the first iteration experiences a penalty (1-7%) to compilation as it must compile every

block and append them. Every following iteration shows improvements in compilation time (25-

60%) by avoiding compiling the static blocks. By paying an upfront performance cost, we can

reduce each following iteration by a substantial percentage. Following results demonstrate how

this affects total execution time. It is interesting to note that the more complex networks like

CNN show less improvement than circuits. This is due to the inclusion of more layers in the

network and thus more blocks to append. As the number of blocks increases, the overhead for

appending them comes to rival the compilation time.

82

Figure 6.7. Total reduction of training time for 1000 iterations.

6.3.3. Effect on Training Time

We now demonstrate the reduction in total training time for each network. We run each

circuit through 1000 training iterations with the level 3 PassManager and compare the full

compilation and partial compilation training times. The reductions are shown in Figure 6.7. As

expected, it resembles the per-iteration savings in Figure 6.6 at high iteration counts, as the initial

iteration cost becomes less impactful. Although we have not tested in here, it is reasonable to

assume that lower iteration counts will have reduced savings, while higher iteration counts will

approach the per-iteration savings as a theoretical maximum. Therefore, our approach should

continue to scale well as the volume of data and number of training cycles increases.

83

Figure 6.8. Ratio of compile times to execution times.

Figure 6.9. Ratio of execution times for baseline and partially compiled circuits.

6.3.4. Compilation vs Execution Time

In order to provide more clarity into the cause of previous results, we compare the

previously measured compilation times to the execution times for one iteration of the networks.

84

To further provide insight into the impact of optimization and compiler passes, we measure both

with the level zero and level three PassManager implementations. The ratio of compilation to

execution time for a single iteration (not the first iteration) is shown in Figure 6.8. Compilation

time exceeds execution time by multiple factors for the networks, ranging from 2x to 23x for the

level 3 PassManager and 0.3x to 1.7x for the level 0 PassManager. These results enforce our

previous claim that the results are dependent on the number of layers (and therefore blocks to

append) contained in a network, otherwise we would expect to see greater performance gains for

CNN due to its large compilation time factor. Due to the increased complexity of higher

optimization levels and the improved performance when optimized, we see that compilation

accounts for a substantially larger portion of time for all networks when using level3

optimization instead of level0. This also explains why our method performs better at higher

optimization levels - when compilation takes substantially longer, we receive larger benefits by

avoiding unnecessary compilation. If we were to execute the circuit over many iterations for

training, we expect a large impact on the total training time of the network.

We also provide the ratio of execution times between the baseline (complete compilation)

and partially compiled circuits to evaluate any impact on the performance of the circuit when

utilizing partial compilation. These results are shown in Figure 6.9. As shown, the execution time

of the partially compiled circuits are within 2.5% the execution time of the baseline circuits. This

indicates that our method does not negatively impact the execution time of a circuit when

accelerating the compilation time of the circuit.

85

Figure 6.10. Fidelity between baseline and partially compiled circuits.

6.3.5. Fidelity

Fidelity is a commonly used metric to compute the similarity between two quantum

states. The metric ranges from 0 to 1, with a value closer to 1 indicating that the two quantum

states are more similar to one another. In order to identify any impact in the accuracy of the

circuit, we compute the average fidelity between the baseline and partially compiled circuits after

running each circuit 1000 times. These results are shown in Figure 6.10. As shown, the fidelity

for each circuit is very close to 1, indicating little to no impact on the behavior of the circuit.

86

Figure 6.11. Static vs Dynamic Distribution for PassManager 0

Figure 6.12. Static vs Dynamic Distribution for PassManager 1

87

Figure 6.13. Static vs Dynamic Distribution for PassManager 2

Figure 6.14. Static vs Dynamic Distribution for PassManager 3

88

6.3.6. Static vs Dynamic Distribution

A major factor that can influence the performance of partial compilation is the percentage

of the circuit that can or cannot be recompiled. Considering extremes, if a circuit is completely

static, we should have near zero compilation time. Similarly with a fully dynamic circuit, we

should never expect performance above that of standard compilation. Depending on the compiler

passes we are using, we expect different static/dynamic thresholds to obtain performance

increases. To investigate this, we test a simple circuit of 100 gates and gradually increase the

number of dynamic gates from 0 to 100. We measure both the first iteration cost and the

following iteration improvements when compiling with all four PassManager optimization

levels, shown in Figure 6.11 to Figure 6.14. In each figure, the threshold can be found at the

point where the blue line (following iteration savings) exceeds the red line (first iteration cost).

Note that this is only comparing single iterations and not the total time saved when running

multiple iterations. When considering many iterations, we expect that a lower threshold may be

necessary to achieve improvements.

As shown, the lower optimization levels never show a performance improvement, as the

compilation times are simply too low to surpass the costs of appending the DAGs. However, at

higher optimization levels, we begin to see consistent performance benefits at lower thresholds

due to the increasing compilation time. As the level of optimization increases, compilation time

increases, and it becomes more important to avoid recompiling the circuit when we do not need

to. This is a useful observation that extends beyond our testing to neural networks, but to

applications of partial compilation with Qiskit in general. Depending on the distribution of a

given circuit and the optimization desired, we can assume whether or not partial compilation will

be beneficial or detrimental.

89

6.4. Related Works

Interest in quantum machine learning has grown alongside the interest in quantum

technology due to the prevalence of classical machine learning. Most methods for machine

learning have analogous methods in the quantum realm, including generic supervised and

unsupervised learning for classification [30, 69], artificial neural networks [9, 60, 71], deep

learning networks [9, 13], and convolutional neural networks [21]. These structures are all

variational in nature, exposing them to potential recompilation issues during training. Due to the

great interest in these circuits, we use QNNs as our test circuits for partial compilation.

These variational algorithms are a popular subject of research beyond machine learning

as well. This includes discussing their resilience to noise [9, 85, 98] and various optimizations

during compilation and execution [40, 61, 72]. However, the most directly related work to our

approach is that of [41], which also applies partial compilation to quantum programs. However,

they use a different form of compilation known as GRAPE. Quantum gates can be thought of as

rotation matrices and can be concatenated similar to multiplying rotation matrices in computer

graphics. A quantum circuit can therefore be reinterpreted as a single multi-qubit gate that

performs the same function as multiple smaller gates. GRAPE makes use of this method to

combine multiple gates and reduce total time spent on applying gate pulses. The focus of their

work is on the application of GRAPE while mitigating increased compilation latency. By

comparison, our work focuses on including gate decomposition when partially compiling using

the Qiskit framework.

6.5. Conclusion

In this work, we have shown the performance benefits of partial compilation on a set of

quantum neural network algorithms. By combining pre-compiled static blocks with compiled-

90

per-iteration dynamic blocks, we can greatly reduce the compilation time, up to 77% for simple

neuron circuits. This improvement allows for faster compilation and training of quantum neural

networks, which will enable more widespread usage and experimentation of QNNs.

Additionally, we have observed that compilation can be a substantially large portion of this

training time. Reducing compilation time can achieve up to a 66% reduction in total training time

alone. Future work in this area may wish to explore the impact of specific compilation passes

within the four PassManager optimization levels, or to broaden the range of benchmarks we test

here.

91

7. Improving Qubit Mapping through GNN-Assisted Compilation

7.1. Introduction

Quantum computing has quickly become a popular field of research with great potential

for future technology. Taking advantage of quantum mechanics allows for several possible

operations and interactions that are not possible with classical systems. Quantum systems have

the potential to improve communication, encryption, physical simulation, and some algorithms

such as factorization. Many companies and governments around the world are working to

develop and improve quantum systems to create quantum networks and tools. There are several

potential physical implementations of quantum information systems, though the two most

popular systems today are utilizing superconducting technology [19] and trapped ions [59]. Our

work is done exclusively with superconducting quantum computers, as they are currently well-

developed and accessible. However, the technologies, in general, are still immature and face

limitations, mainly in size and reliability.

Modern quantum computers are classified as noisy intermediate-scale quantum (NISQ)

devices. These NISQ devices are named as such due to their limitations on both the number of

qubits (or quantum bits) available and the reliability of these qubits and their operations. Most

NISQ devices contain from ten to one hundred noisy qubits, though many systems are smaller on

the smaller end of this range, containing only 5-32 qubits. A common metric to evaluate these

systems is quantum volume [23], which incorporates both the number of qubits and their degree

of vulnerability to error. Due to the relatively high error rates in quantum computers, many

executions of algorithms are unlikely to complete without some error. As such, much effort has

92

been put forth to both make the algorithms resilient and reduce the vulnerability of the physical

qubits.

Quantum error correction (QEC) methods do exist, but they are not applicable to NISQ

systems. Many QEC methods implement mechanics similar to classical replication or

redundancy systems, where the data in one or more bits are encoded into a larger number of bits

to reduce the effect of incident errors. However, due to the quantum no-cloning theorem, rather

than copying bits, one must rely on entanglement instead. Again, one or more qubits can be

entangled with additional qubits to provide redundancy and mitigate the effect of errors. Shor's

code, the first to demonstrate the existence of QEC methods, encoded one qubit into 9,

effectively triplicating twice to account for both phase and magnitude errors. However, when

qubits are a valuable resource, it is not possible to both implement these QEC methods and retain

enough qubits for computation. Many systems may not be large enough to allow for even one

secure qubit depending on the error codes used.

Figure 7.1. (A) An example quantum circuit, three-qubit QFT algorithm (B) An example IBM

backend. Darker edge and node colors indicate higher error rates.

93

Figure 7.2. Compilation process overview, with layout mapping highlighted.

Many other approaches are used to increase the reliability of quantum circuits during

execution rather than completely remove errors. Most of them modify the circuit during

compilation to choose more reliable configurations when applying the circuit to a physical

backend. Using different qubits, connections, and operations can have a large impact on the

outcome of the circuit as the qubits may exhibit very different error profiles, as demonstrated in

Figure 7.1, where the color of qubits and their connections indicate their error rates. These error

rates can vary day to day with the environmental conditions. The problem is generally broken up

into two parts: choosing the initial layout to map virtual qubits of the circuit to physical qubits of

the backend (qubit allocation, qubit mapping, layout selection), and moving qubits through the

mesh using swap operations to satisfy adjacency requirements for two-qubit operations (qubit

routing, SWAP mapping). Due to a large number of possibilities when applying a circuit to a

backend, it is difficult to identify the best possible configuration, though many pursuits have

found success with a variety of methods [35, 75, 82, 95].

Our work aims to improve upon existing qubit allocation approaches, as our investigation

shows that there are considerable performance improvements to be made. To solve the qubit

allocation problem, we incorporate graph neural networks (GNNs) to aid in processing the

94

inherent graph representation of the superconducting quantum backend, creating a Graph Neural

Network Assisted Compilation strategy (GNAQC). We combine this GNN processing of the

backend with feedforward networks for processing input circuits to create a total system for

providing suggested layouts as solutions to the qubit allocation problem. We implement GNAQC

using Qiskit and TensorFlow and evaluate its performance on two different IBM backend

configurations and six different quantum circuits. We find that GNAQC generally outperforms

the other layout methods with some variation across the backends and circuits, increasing

relative fidelity by approximately 12.7%. We also find that GNAQC is more consistent at

choosing more effective layouts, providing a more reliable allocation method.

Our contributions can be summarized as follows:

• We demonstrate the limitations of pre-existing layout methods.

• We provide GNAQC, a new solution to the qubit allocation problem built on GCNs with

feedforward networks.

• We test GNAQC on two physical backends of 7 and 27 qubits using 6 different

benchmarks, finding that GNAQC can consistently provide better or comparable initial

layouts to pre-existing methods.

• We demonstrate that GNAQC reduces the error of quantum circuits by providing more

reliable layouts, yielding a 12.7% relative increase in fidelity.

95

7.2. Background

Figure 7.3. GNN update of node N1 as a function of neighboring node and edge values.

7.2.1. Graph Neural Networks (GNNs)

Graph neural networks (GNNs) are a relatively new network architecture in the neural

network toolkit [28]. They are specialized in handling and interpreting graph-based data that may

normally be difficult for standard feedforward networks or convolutional networks. GNNs are

useful for the selection and prediction of edges and nodes, learning condensed representations of

a graph as a whole, locating particular sub-graphs, specialized graph traversals, and other

applications. They are particularly powerful when the data naturally has a graph representation

where features of both nodes and edges are important for making decisions.

GNNs operate by sharing and diffusing information from node to node across the edges.

Given an input graph, a GNN layer will compute a new representation for each node (and

possibly edge) based on the values of nodes and edges within the immediate neighborhood of the

node, as shown in Figure 7.3. The function is typically a weighted linear combination of the node

and edge features, where the weights are learned throughout the training process. This can be

96

followed by an activation function similar to standard dense layers. Normally the neighborhood

is the set of those nodes within one distance from the node in question, though this can be

defined and restricted as necessary for a given problem. Multiple stacked GNN layers thus

expand the neighborhood of a node, where the maximum distance of the neighborhood is equal

to the number of stacked GNN layers. More layers effectively create a stronger diffusion of

information across the graph. While this can be beneficial to share information, it has been

observed that too many layers may decrease the performance of models containing GNNs as

every node then tends to approach the same representation, an average of the graph as a whole.

This state destroys the individual identity of each node and negatively impacts the performance

of further processing. The number of recommended GNN layers varies on the problem but is

generally from one to three layers depending on the size of the graph.

GNNs can be simplified by representing the layer operations as a series of matrix

multiplications. One can make assumptions on the input graph to loosen the restrictions for

convergence present in the original design of GNNs. The forward diffusion operation simply

becomes a multiplication of the graph's normalized adjacency matrix, the node feature matrix,

and the learned weight matrix, as shown in Equation 7.1 below [89].

Equation 7.1. GNN forward diffusion operation.

Here, X(k) is the node representation matrix, A is the renormalized adjacency matrix, W is

the learned weight matrix, and σ is an activation function, commonly ReLU.

97

From here the process is further simplified by the observation that multiple layers are

simply a repeated multiplication of the node matrix with an adjacency matrix, as the multiple

weight matrices can be consolidated into one during the learning process. Ultimately, one can

perform the work of multiple GNN layers by simply applying an activation function to the

product of a power of the adjacency matrix, the node matrix, and the learned weight matrix, as

shown in Equation 7.2 [29].

Equation 7.2. Simplified GNN equation.

Other work has been done to further enhance the applicability of GNNs to more complex

types of graphs. The most relevant for our work is the addition of edge features [63]. By

replacing the adjacency matrix with an edge matrix E where Ei,j equals the weight from node i to

node j, the GNN can incorporate edge features while maintaining a simple design. This can be

extended if the edge has multi-dimensional features by extending the dimensions of E. It is

recommended to normalize the matrix using double-stochastic normalization to accelerate

training. There are additional modifications that can be made to account for directed graphs by

utilizing two concatenated edge matrices.

GNNs can also be combined with other neural network architectures depending on the

problem at hand. We can think of the GNN operation shown in Equation 7.2 as being in two

steps: an initial propagation stage 𝑆 = 𝐴𝑋(𝑘−1), followed by a linear inference stage 𝑋𝑘 =

𝜎(𝑆𝑊). This linear stage can be replaced with other structures to solve a greater range of

problems. Work has been done to demonstrate recurrent graph neural networks with gated units

(GGCNs) [16, 104] and even attention-based graph neural networks [91]. While these

98

architectures are not used in this work, the recurrent nature of these structures may be beneficial

for future investigations into the qubit routing problem.

7.2.2. Reinforcement Learning

Reinforcement learning is a form of unsupervised learning that solves problems by

exploring and receiving feedback from the problem environment. An agent is allowed to observe

the current state of the environment and choose an action to take, changing the state of the

environment and receiving some reward. Through the learning process, the agent aims to

maximize the total reward earned before reaching some terminal state of the environment.

Defining a reinforcement learning problem involves describing a set of components: the set of

actions an agent can take, the description of the environment (including its state and state

transitions), the reward function for taking actions, the method for choosing actions, and the

method for learning to maximize rewards.

The actions, environment, and rewards are directly dependent on the problem at hand.

For example, if the goal is to find the shortest path in a grid-tiled environment, the actions would

be the set of movements the agent can take (moving up, down, left, right), while the state of the

environment would be the current position on the grid represented in (x,y) coordinates. The

rewards may vary based on whether the state is a terminal or non-terminal state. Following the

same example, for non-terminal states, the reward could be dependent on the distance from the

current position to the end tile, while the terminal state could provide a large constant reward.

By comparison, the decision and learning methods are more general. The most commonly

used decision and learning method is based on Q-learning and the Bellman optimality equation.

The goal is to provide an estimation of the reward for each potential action given the current

state. From these estimations, it is common to simply select the action with the greatest estimated

99

reward, observe the actual reward, and adjust the estimation for the (state, action) pair. These

values are commonly tracked using a Q-table, containing values for every possible (state, action)

pair. The simulation of the problem should then be run many times to converge to accurate

reward estimations and thus accurate solutions to the problem.

As the number of states and actions grows larger, the Q-table becomes too large and

unreasonable. Modern approaches instead use a neural network to learn the reward function,

known as a Q-network. These Q-networks can be designed depending on the environment and

the problem at hand, though they generally follow a certain structure - receiving the current state

of the environment as input and providing a score for each possible action as output. These

networks are then trained via standard back propagation using the error between the estimated

and observed rewards.

7.3. Motivation

We utilize IBM's Qiskit API [24, 50] to investigate the current performance of qubit

allocation methods. Qiskit natively contains four different allocation methods: trivial, dense,

noise-adaptive [75], and sabre [35]. The four methods address the mapping problem using very

different approaches. Specifically, the trivial layout simply maps the virtual qubits (q1, q2 … qn),

in order, to the physical qubits (0, 1 … N). The dense layout identifies highly connected sub-

graphs of the mesh and places qubits in these areas. The noise-adaptive layout is the first to rely

on the most recent backend configuration data, aiming to utilize the most reliable two-qubit

connections available. The sabre method utilizes an iterative process to fully route the circuit to

find the final layout, then reversing the circuit using the previous final layout as a proposed

initial layout. This process is repeated several times to minimize the number of necessary SWAP

operations.

100

We tested these four layout methods on IBM's 7-qubit ibm_nairobi backend using 3-

qubit to 7-qubit quantum phase estimation (QPE) circuits. We limit to a maximum of seven

qubits as access to larger machines is limited. To evaluate their effects, we first run a trial of each

circuit using Qiskit's simulator with no error involved to attain a theoretical flawless outcome

that we use as the ground truth for every circuit. While the measurements of the qubits are

probabilistic in nature, we execute all trials with 10000 shots to minimize the random influence.

We then execute the six test circuits on the ibm_nairobi backend using each layout method

during compilation, again using 10000 shots. All other compilation settings were kept default,

including the routing methods. We then compared the resulting output distribution with the

ground truth distribution by computing the fidelity between them. The fidelity acts as a similarity

metric between the perfect ground-truth state and the real output state provided by the physical

backend. A higher fidelity (bound [0,1]) indicates a higher similarity between states.

For ease of computing fidelity F, we rely on the Hellinger distance formula described

below:

Equation 7.3. Hellinger Fidelity

Here, N is the total number of observed outputs, pi
GT is the probability of output i for the

ground truth distribution, and pi
T is the probability of output i for the test distribution. The results

of these trials are shown in Figure 7.4. In order to provide a metric for comparison, we decided

to execute and evaluate the error of every possible layout and examine the effects. Note that this

is only feasible as we are working with a relatively small number of qubits, as the total number

101

of layouts grows extremely quickly with an increase in qubits. We display the exact maximum

fidelity achieved as best in Figure 7.4. As shown, we find that the layout method closest to the

best is inconsistent. When looking at all 5 circuit sizes, we see situations where the trivial, noise-

adaptive, and sabre methods are the closest of the four options.

Figure 7.4. Fidelity of Qiskit's four qubit allocation methods on the (3-7)-qubit Quantum Phase

Estimation (QPE) algorithm after execution on ibm_nairobi.

To provide more insight into the differences between layout methods, we evaluated every

layout on one month of daily calibration data for ibm_nairobi, as shown in Figure 7.5. This

allows us to see how frequently each allocation method performs best or worst. As expected, the

best allocation method is frequently either the noise-adaptive or sabre layout methods. However,

the accuracy improvements are inconsistent, and we frequently see changes between which is

best over time. Occasionally, they are even outperformed by the dense or trivial layouts.

102

Figure 7.5. Fidelity of 7-qubit QPE when compiling with Qiskit's four allocation methods across

one month of backend configurations for ibm_nairobi.

It is not expected for the choice of layout to completely remove all errors and achieve a

fidelity of near 1. However, we did expect more improvements in their behavior. To investigate

the full impact of the initial layout on the outcome error and provide a metric for comparison, we

provide the full distribution of different layouts in Figure 7.6 for 4-qubit QPE. It is clear that no

layout is perfect, though there is a large difference between the best (above 0.7 fidelity) and

worst (below 0.55 fidelity) layouts, demonstrating the importance of choosing an initial layout.

Additionally, the four allocation algorithms commonly fail to identify the best layout and

frequently do not even choose one of the better-than-average layouts. In total, these experiments

demonstrate two main points: 1) the choice of initial layout can have a considerable impact on

circuit fidelity, and 2) pre-existing methods are inconsistent at choosing effective layouts. There

is room for improvement when selecting layouts to reduce vulnerability to error.

103

Figure 7.6. Fidelity of all possible layouts on ibm_nairobi's calibration from 01-07-2022. Results

are for 4-qubit QPE.

7.4. Architecture and Data Representation

To improve the performance of current layout methods, we look to use graph neural

networks as the quantum backends are naturally represented in a graph form. We combine GCNs

with additional feedforward layers to predict optimal layouts given the backend error properties

and an input circuit. The following subsections discuss our network architecture in detail,

including three main areas: the backend graph input representation and processing, the circuit

input representation and processing, and the output layout format and processing. The overall

architecture is shown in Figure 7.7. Dense layers are marked with their output sizes.

104

Figure 7.7. Overall architecture of the QNAQC Q-Network

Figure 7.8. An example 3-qubit backend with five sample node features. (B) Converting the

backend into both edge and node matrices for input to the layout selector.

7.4.1. Backend Representation and Processing

The superconducting backends are commonly represented as a graph, as shown in Figure

7.8B, where each node is a physical qubit with a set of properties, such as the single-qubit gate

105

error rates, frequencies, and measurement errors. The edges, representing available CNOT

connections, are weighted by the associated CNOT error rates. This configuration naturally lends

itself to the edge-aware GCN variants. A sample backend with example properties is shown in

Figure 7.8A.

Table 7.1. Backend Features

To prepare the backend for the GCN layers, we must construct both a node and edge

matrix (replacing the adjacency matrix in standard GNN/GCNs). For the node matrix X, we

collect several properties from each node and arrange the matrix where each row holds the

properties of an individual node, as shown in Figure 7.8B. The total set of properties that we

collect is found in Table 7.1, totaling 14 different error rates and gate lengths. The final size of

the node matrix is thus 𝑁 × 14, where N is the total number of physical qubits in the backend.

We access these properties using Qiskit's IBMQ provider API. The set of single-qubit gate data

we collect varies depending on the basis set of gates, though all of the backends we test contain

the same basis set. We choose to scale the qubit frequency as it is many orders of magnitude

larger than the other values. We then normalize the matrix by row to accelerate convergence.

The edge matrix E takes the same form as a weighted adjacency matrix, where 𝐸𝑖,𝑗

equals the CNOT error between qubit i and qubit j, as shown in Figure 7.8C. Although it is not

106

required that the CNOT error be symmetrical on all systems, we found that, for the backends we

tested, the error rates were always symmetrical. We then normalize the edge matrix in a doubly-

stochastic manner, following the design of [63] to ensure that both the rows and columns of E

sum to 1 to again aid in convergence. Given that the edge matrix is a variation of the adjacency

matrix, its final dimensions are 𝑁 × 𝑁.

These two matrices are then fed into our system, specifically into two stacked GCN

layers. Together these layers generate a new representation of the graph, which is then passed

through a set of dense layers to condense the representation in preparation for concatenation with

the processed circuit matrix. The GCN layers perform an edge-aware version of the forward

computation described in Equation 7.4:

Equation 7.4. Modified forward computation equation for GNNs.

Here, E is our previously described edge matrix, while σ is the ReLU activation function.

7.4.2. Circuit Representation and Processing

To provide the circuit information to the prediction network, we first prepare a matrix

containing hand-picked features to capture the behavior of the circuit. After testing a variety of

different combinations, our final decision of circuit features is shown in Table 7.2. We believe

that capturing the single-qubit operations each qubit, the measurement status of each qubit, the

count of CNOT operations and a set of CNOT partners for each qubit is sufficient for most basic

circuits. This representation would likely fail to represent more complex circuits involving mid-

execution measurement and reset, though these operations do not occur in any of our test

circuits. An example circuit and associated circuit matrix is shown in Figure 7.9. We simplify the

107

example by counting all single-qubit operations as one feature rather than individual single-qubit

operation counts.

Table 7.2. Circuit Features

It is important to note that we do not use the original logical circuit to prepare these

representations, as they may change through the steps of the compilation process before

preparing a layout. The most important changes that can occur are decomposing multi-qubit

operations and sub-circuits and mapping to basis gates, as these can greatly change the view of

which operations the circuit performs. Instead, we acquire the intermediate circuit during the

compilation process at the point where qubit mapping normally occurs, after these other

operations. This allows us to represent the circuit as accurately as possible for choosing a layout.

Once this feature matrix is created for the circuits, we can feed them to a set of dense

layers that condenses the representation similar to that of the graph matrix after the GNN layers,

as shown in Figure 7.7. The two representation vectors are then concatenated and transposed

before being passed to another set of dense layers that now operate on the complete data of both

learned representations of the backend and the circuit. These layers provide an encoded output

layout that is then fed to a decoder network, described in the following subsection.

108

Figure 7.9. (A) an example 3-qubit QFT circuit. (B) Constructed circuit matrix for the example

circuit.

7.5. Reinforcement Learning Setup

In this section, we describe the components of the reinforcement learning process,

namely the actions, environment, rewards, and training process. The overall training process can

be found in Figure 7.10.

Figure 7.10. Dataflow of reward for network training

109

7.5.1. Actions

When mapping the qubits, the available actions are simply one placement action for each

(logical, physical) qubit pair. This placement action represents assigning the logical qubit to the

associated physical qubit for the initial layout. To account for circuits with fewer logical qubits

than the available physical qubits, we extend the logical qubits with ancilla qubits to equal the

number of physical qubits. In total, this results in Nphys
2 actions. This also characterizes the total

number of outcomes resulting from the final dense layer in Figure 7.7. Following an Epsilon-

Greedy policy, with 𝜀 = 0.05, we select the action associated with the maximum predicted value

with probability 1- ε and a random action with probability ε to drive our training decisions.

7.5.2. Environment

To define the environment, we first represent the state of the physical hardware and the

circuit as described in Chapter 7.4. This requires both an edge and node matrix from the physical

backend that describes the error characteristics from the latest calibration, and a circuit matrix

that represents the operations that must take place for a given circuit.

These inputs are then complemented with a vector containing the current mapping of

qubits, specifically mapping from physical to logical qubits. This captures the current state of the

layout, specifically a snapshot of the current layout at a given time during compilation. The

vector is initialized to all zero values, indicating no qubits have been placed, and gradually fills

with non-zero values as placement actions are taken each iteration. Together, the matrices and

state vector capture the problem itself as well as the current intermediate solution.

110

7.5.3. Rewards

When providing rewards, we first consider the placement of ancilla qubits. As these

qubits are not important to the execution of the circuit, placing the qubits provides no reward.

Similarly, when attempting to place a qubit that has already been assigned to a physical qubit, no

reward is given. In contrast, placing a previously unplaced logical qubit provides a constant

reward to encourage prioritization.

The most interesting case is the reward given when completing the mapping of all logical

qubits. In this case, we first execute the circuit the circuit on the simulator using the error profile

of the backend. We choose to use the simulator as we do not have dedicated access to a physical

backend for training. We then compare the output distribution to an error free output distribution

that acts as our ground truth. This error-free distribution is obtained by executing the circuit on a

simulator with no error simulation. This is effectively a theoretically perfect outcome for the

circuit, providing a target for comparison.

To provide a tangible value, we compute the Hellinger fidelity between the two

distributions, as shown in Equation 7.3. The more similar the output distributions are, the closer

this value approaches 1. This is then scaled by 100 and provided as the final reward. The fidelity

guides GNAQC target configurations that are most similar to the error-free distribution. Other

methods for measuring the success of quantum circuits, such as success rate, estimated success

probability, and CQV [78], can also be used as metrics for learning, though we only explore the

Hellinger fidelity here.

7.5.4. Training

To train the network, we rely on the Qiskit Aer simulator to simulate the execution of the

circuit using the proposed mapping. We then compute the fidelity between the results of the

111

simulation and the ground truth output of the circuit as previously discussed. Once again, we rely

on the Hellinger fidelity, as described in Equation 7.3, as our reward metric as opposed to

success rate as we do not necessarily know the correct output of the given circuit with which to

compute a success rate. To make the approach more general, we instead target the entire ground

truth distribution using the fidelity. This error is then used for back-propagation for training the

network as a whole.

The full training process is shown in Figure 7.10. First, the processed edge, node, and

circuit matrices are fed to the prediction network in step (1). The network outputs a suggested

action to take, namely a qubit placement, in step (2). The reward for this action is calculated in

step (3), where the value for the reward depends on the result of the action. If the action results in

a fully-mapped circuit, we finish compilation (routing and final optimization) and simulate the

final circuit in step (3B) using Qiskit's Aer simulator. The simulator is prepared with a noise

model built on the error properties of the collected backend under test. In step (3B), we collect

the output counts from the simulator and compute the fidelity with the ground truth distribution.

If the action did not result in a fully-mapped circuit, we instead give either a reward of 0 if the

qubit was already placed or 10 if the qubit is newly placed. Finally, we use this reward for the

update process following the typical Q-learning update rule in step (4).

It is worth noting here that we do not need to rely on the simulator, which will not be

feasible for increasingly large circuits and backing, during this training process. We could rely

on other success metrics, like estimated success probability (ESP), which may be more scalable.

However, we chose to use the simulator to be more accurate to the physical hardware. Ideally,

one would have dedicated access to a physical machine for the training process, which would

address both the accuracy and scalability concerns.

112

7.6. Data Collection and Experimentation

Throughout our experimentation, we rely on a set of various test circuits at different sizes

executed on several different physical backends. We focus on a set of six different circuits as

mentioned previously in Chapter 7.3: the Deutsch-Jozsa (DJ) algorithm, the Bernstein-Vazirani

(BV) algorithm, Simon's algorithm, the quantum Fourier transform (QFT), the quantum phase

estimation (QPE) algorithm, and Grover's search algorithm. We prepare these circuits using 3, 4,

5, 6, 7, 15, and 27 qubits. We believe that two qubits are simply too trivial, and we are limited to

evaluating on backends with 7 or 27 maximum qubits. The characteristics of these circuits,

specifically the count of the final gates used for each algorithm, at each circuit size are detailed

in Table 7.3.

113

Table 7.3. Benchmark Details

For the backends, we collected calibrations for ibm_nairobi, a 7-qubit backend, and

ibm_algiers, a 27-qubit backend. We selected these two as a sample of the available 7-qubit and

27-qubit machines we can access. We specifically collected the archived daily calibrations from

January 1st, 2022 through the end of May 2022. The backends vary in topology, with

ibm_nairobi having an I shape and ibm_algiers having an adjusted square shape. Both backends

share the same set of basis gates. These details are summarized in Table 7.4.

114

Table 7.4. Backend Details

7.7. Results

To evaluate the general performance of GNAQC, we predict layouts for the circuits using

the most recent calibrations at their time of execution. The historical backend calibrations are

used for training. We compare these results to the previously measured errors for the four layout

methods contained within Qiskit. These results are shown in Figure 7.11.

Figure 7.11. Total results for all layout methods on all benchmarks.

It can be observed that the GNAQC layout generally outperforms the pre-existing layouts

for each benchmark at different algorithm sizes. The GNAQC layouts consistently perform better

on simpler algorithms like DJ, BV, and Simon. There is reduced, though fairly consistent,

improvement on the larger algorithms. On average, however, we see a relative improvement in

fidelity of approximately 12.7%.

We group the data by each circuit regardless of backend or qubit size to inspect the mean

performance on the individual algorithms. These results are shown in Figure 7.12.

115

Figure 7.12. Fidelity of layout methods for each circuit.

Here, GNAQC layouts show improvement or consistent behavior on most circuits. In the

worse cases, GNAQC performs comparably to the best alternative layout method. The magnitude

of the improvement varies from circuit to circuit and is also dependent on the next-best choice.

In general, we believe this variation is due to the effect different layouts have depending on the

length of the algorithm, where shorter circuits are simply more influenced by the initial position

of qubits, while longer algorithms are likely more influenced by the routing methods.

116

Figure 7.13. Fidelity of different layout methods grouped by number of qubits in circuit.

Next, we group the results by the number of qubits involved in the algorithm to observe

performance based on the size of the circuits, as shown in Figure 7.13. As we can see, the largest

improvement is found in smaller circuit sizes. We see the most variation in behavior among the

layouts at 3-5 qubits, with more consistent performance among all five methods at larger sizes.

We identify two main reasons for this variation in behavior. First, as the depth of the circuit

increases due to the increased number of qubits, the fidelity decreases drastically. This results in

less room for the layouts to vary as the fidelity is simply so low. Second, we believe that this has

to do with the percentage of qubits used on the backend and the topology of the machine itself.

When using all of the qubits on the machine, more SWAPs will likely need to be added to allow

the circuit to function regardless of the initial position of qubits. At smaller sizes, particularly

three qubits, the number of added SWAPs may vary greatly based on the initial position of

117

qubits. It may be possible to place them in a configuration where no SWAPs are necessary, such

as a triangle section in the mesh, or to place them at opposite sides of the mesh where many

SWAPs are necessary.

Figure 7.14. Fidelity of GNAQC with varying lookahead

In all of the previous results shown, we have utilized a CNOT look-ahead window of

length 1, as described in Chapter 7.4.2. However, we also examined a variable look-ahead

window from length 1 to 5. For a chosen look-ahead value LA, our circuit matrix will hold the

first LA CNOT targets for each qubit. We evaluated our method for all 1 ≤ 𝐿𝐴 ≤ 5 for 7-qubit

circuits using a simulator based on the properties of ibm_nairobi. We chose to use the simulator

here due to time restrictions and the number of executions necessary. The results are shown in

Figure 7.14. As shown, the value of LA does not have a large impact on performance. This could

be due to insufficient training data when increasing the number of parameters.

118

7.8. Related Works

Increasing circuit resilience to errors is a major field in quantum computing research. A

common approach involves modifying compilation, either the allocation or routing passes. [75]

and [82] were the first to identify that routing should focus not only on the number of inserted

SWAP operations but also the reliability of the qubit connections. This included a modified

routing method to be aware of the CNOT error rates. [74, 101] observed that performing CNOT

operations in parallel with other nearby operations would increase error rates, suggesting that

routing methods should plan for this cross-talk error and attempt to avoid parallel operations on

adjacent qubits where possible. [83] has suggested that we can improve reliability by executing a

circuit in multiple parts then reconstructing the overall distribution. This allows for focus on only

a few qubits and using only the most reliable physical qubits and avoiding unnecessary cross-

talk.

Meanwhile, the research on debugging, protecting, and reusing resources is also trying to

find solutions to mitigate the constraints of error in the field. The quantum assertion technique

was proposed and evolved in [54, 55, 103] to locate the errors and bugs while running quantum

algorithms. Applying quantum error correction to superconducting quantum chips is also being

actively studied in [44, 46, 57, 80]. Reusing the valuable quantum resources, the physical qubits,

is being studied in [102].

The two most relevant allocation methods are the two already contained within Qiskit,

the noise-adaptive [75] and sabre [35] methods. Other methods utilize locating the optimal layout

at small sizes to produce heuristics that are then tested on larger-scale systems [5, 70, 76]. [95]

similarly searches the set of possible layouts while guided by fidelity. All of these approaches

aim to minimize the vulnerability of the circuit through the choice of an initial layout.

119

The base GNN [28] design has many modifications for a variety of different applications.

[16] and [104] both build on the original GNN design to include recurrent units. Graph

convolutional networks (GCNs) simplify the process and improve upon the original design for

node classification tasks [29, 89]. [96] and [77] are frequently used to learn graph

representations. [81] similarly takes an adversarial approach to learn graph embeddings. The idea

of using GNNs to improve compilation has similarly been used in hardware placement for

classical circuits [1, 36, 105].

7.9. Conclusion

We have proposed GNAQC, a new GNN-based neural network architecture for

improving the reliability of superconducting quantum circuits by identifying more resilient

layouts. We compare the learned layouts with the results of pre-existing layout methods

contained within Qiskit and find a mean 12.7% relative increase in fidelity across both backends

configurations with six different circuits. In the future, we believe we could achieve even greater

results by expanding the work to include a routing method using recurrent GNNs or

experimenting with different feature representations.

120

8. Conclusion

In this work, we have presented a variety of methods to improve classical and quantum

program reliability. For classical programs, we first improve the reliability of single-threaded Big

Data kernels using algorithm specific error checking or redundancy mechanisms. Our

observations demonstrated that algorithmic invariants can provide low-cost error detection

methods that, when combined with recovery mechanisms, can greatly increase the success of the

Big Data kernels. We also investigated the error vulnerability of synchronization mechanisms in

multi-threaded implementations of the kernels and aimed to protect them using fine-grained

logging. We found that this approach can nearly eliminate errors within the synchronization

mechanisms while maintaining program correctness. Additionally, the overhead for the logging

mechanisms is smaller than what is normally experienced with transactional memory

implementations, a system commonly used to replace locks in parallel programs that also relies

on fine-grained logging of thread behavior.

 For quantum circuits, we've attempted to bring QEC methods to NISQ hardware using

prioritized cache qubits and varying error correction codes while minimizing swap overhead.

The cache hierarchy allows for the usage of different error correction codes to help save qubits if

the extended reliability is not needed. However, to apply this cache hierarchy to SQCs, we need

to adjust the qubit routing methods during compilation to account for cache qubits. We have

introduced two cache-aware routing methods built on previous routing methods that minimize

the number of cache-involved SWAPs during compilation.

 In addition, we have discussed two additional methods to improve quantum circuit

performance and reliability using partial compilation and GNN-assisted compilation. The first

method takes advantage of the fact that some portions of variational circuits, namely quantum

121

neural networks, do not change and thus do not need to be recompiled when adjusting weights.

By separating the circuit into static and dynamic blocks, we recompile only the dynamic blocks

then append them with the pre-compiled static blocks to recreate the final circuit. The goal is to

reduce the training time for these networks by avoiding recompiling the entire circuit every time

we adjust the weights.

The other quantum compilation improvement we have implemented is GNN-assisted

compilation, namely for qubit allocation. By using GNNs to process the graph-structured

information inherent in the SQC qubit meshes, we can create a noise-aware compiler that can

more effectively make decisions about qubit allocation and routing during compilation. The

GNN is combined with a standard feed-forward network for processing the quantum circuit

information to complete the compilation process. The network can be trained using feedback

from the real physical machines, a simulator, or success rate estimations based on the provided

error information of the backend through reinforcement learning. Results show promising

improvements over pre-existing methods, though experiments at larger scales show less

improvement due to the relatively small success rates.

Overall, error vulnerability in classical and particularly quantum computers is a pressing

problem that must be addressed to guarantee safe, accurate, and consistent computing. The works

presented within this work investigate different methods to solve these problems. In particular,

the quantum solutions can help make quantum computing a more reliable and accessible

technology.

122

Appendix. Copyright Information

A.1. Publishing Agreement for Soft Error Resilience of Big Data Kernels through

Algorithmic Approaches

123

124

125

126

127

A.2. Publishing Agreement for Protecting Synchronization Mechanisms of Big Data

Applications

128

A.3. Publishing Agreement for Robust Cache-Aware Quantum Processor Layout

129

References

1. Agnesina, K. Chang, and S. K. Lim, “Vlsi placement parameter optimization using deep

reinforcement learning,” in Proceedings of the 39th International Conference on Computer-

Aided Design, 2020, pp. 1–9.

2. AMPLab at University of California, Berkeley (2014) AMPLab big data benchmark.

https://amplab.cs.berkeley.edu/benchmark/

3. Armstrong TG, Ponnekanti V, Borthakur D, Callaghan M (2013) Linkbench: a database

benchmark based on the Facebook social graph. In: Proceedings of the 2013 ACM SIGMOD

International Conference on Management of Data, ACM, New York, NY, USA,

SIGMOD ’13, pp 1185–1196. doi:10.1145/2463676.2465296

4. Arute, Frank, et al. "Quantum supremacy using a programmable superconducting processor."

Nature 574.7779 (2019): 505-510.

5. Ash-Saki, M. Alam, and S. Ghosh, “Qure: Qubit re-allocation in noisy intermediate-scale

quantum computers,” in Proceedings of the 56th Annual Design Automation Conference

2019, 2019, pp. 1–6

6. Austin, T. Diva: a reliable substrate for deep submicron microarchitecture design. In:

Proceedings of the 32nd Annual International Symposium on Microarchitecture (MICRO

1999).

7. Bausch, Johannes. "Recurrent Quantum Neural Networks." Advances in Neural Information

Processing Systems 33 (2020).

8. Barnett, Thomas. “The Zettabyte Era Officially Begins (How Much Is That?)” SP360:

Service Provider, Cisco Blogs. (2016) https://blogs.cisco.com/sp/the-zettabyte-era-officially-

begins-how-much-is-that

9. Beer, Kerstin, et al. "Training deep quantum neural networks." Nature communications 11.1

(2020): 1-6.

10. Bender C, Sanda PN, Kudva P, Mata R, Pokala V, Haraden R, Schallhorn M (2008) Soft-

error resilience of the ibm power6 processor input/output subsystem. IBM J Res Dev

52(3):285–292. doi:10.1147/rd.523.0285

11. Bernstein, Ethan, and Umesh Vazirani. "Quantum complexity theory." SIAM Journal on

computing 26.5 (1997): 1411-1473.

12. BigDataBench Benchmark Suite. Available at

https://www.benchcouncil.org/BigDataBench/index.html.

13. Cai, Ruizhe, et al. "A stochastic-computing based deep learning framework using adiabatic

quantum-flux-parametron superconducting technology." 2019 ACM/IEEE 46th Annual

International Symposium on Computer Architecture (ISCA). IEEE, 2019.

130

14. Cappello, Franck, et al. "Toward exascale resilience: 2014 update." Supercomputing

Frontiers and Innovations: an International Journal 1.1 (2014): 5-28.

15. Chen, Sui, et al. "Soft error resilience in Big Data kernels through modular analysis." The

Journal of Supercomputing 72.4 (2016): 1570-1596.

16. Chen, K. Li, S. G. Teo, X. Zou, K. Wang, J. Wang, and Z. Zeng, “Gated residual recurrent

graph neural networks for traffic prediction,” in Proceedings of the AAAI conference on

artificial intelligence, vol. 33, no. 01, 2019, pp. 485–492.

17. Chen, S., and Peng, L. “Efficient GPU hardware transactional memory through early conflict

resolution." Proceedings of the IEEE International Symposium on High Performance

Computer Architecture (HPCA). IEEE, 2016.

18. Chung J, Lee I, Sullivan M, Ryoo JH, Kim DW, Yoon DH, Kaplan L, Erez M (2012)

“Containment domains: a scalable, efficient, and flexible resilience scheme for exascale

systems”. In: Proceedings of the International Conference for High Performance Computing,

Networking, Storage and Analysis (SC12)

19. Clarke, John, and Frank K. Wilhelm. "Superconducting quantum bits." Nature 453.7198

(2008): 1031-1042.

20. Collange, Caroline, et al. "Numerical reproducibility for the parallel reduction on multi-and

many-core architectures." Parallel Computing 49 (2015): 83-97.

http://www.sciencedirect.com/science/article/pii/S0167819115001155

21. Cong, Iris, Soonwon Choi, and Mikhail D. Lukin. "Quantum convolutional neural networks."

Nature Physics 15.12 (2019): 1273-1278.

22. Cooper BF, Silberstein A, Tam E, Ramakrishnan R, Sears R (2010) Benchmarking cloud

serving systems with ycsb. In: Proceedings of the 1st ACM Symposium on Cloud

Computing, ACM, New York, NY, USA, SoCC ’10, pp 143–154,

doi:10.1145/1807128.1807152

23. Cross, Andrew W., et al. "Validating quantum computers using randomized model circuits."

Physical Review A 100.3 (2019): 032328.

24. Cross, Andrew. “The IBM Q experience and QISKit open-source quantum computing

software", APS Meeting Abstracts, 2018.

25. Deutsch, David, and Richard Jozsa. "Rapid solution of problems by quantum computation."

Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences

439.1907 (1992): 553-558.

26. Dowling, Jonathan P. "On The Dowling-'Neven' Law." Quantum Pundit. 11 July 2019.

http://quantumpundit.blogspot.com/2019/07/on-dowling-neven-law.html

131

27. Elliott, J., Kharbas, K., Fiala, D., Mueller, F., Ferreira, K., and Engelmann, C. ``Combining

partial redundancy and checkpointing for HPC." Proceedings of the 2012 IEEE 32nd

International Conference on Distributed Computing Systems. IEEE, 2012.

28. F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini, “The graph neural

network model,” IEEE transactions on neural networks, vol. 20, no. 1, pp. 61–80, 2008.

29. F. Wu, A. Souza, T. Zhang, C. Fifty, T. Yu, and K. Weinberger, “Simplifying graph

convolutional networks,” in International conference on machine learning. PMLR, 2019, pp.

6861–6871.

30. Farhi, Edward, and Hartmut Neven. "Classification with quantum neural networks on near

term processors." arXiv preprint arXiv:1802.06002 (2018).

31. Felber, P., Fetzer, C., Marlier, P., and Riegel, T. “Time-based software transactional

memory." IEEE Transactions on Parallel and Distributed Systems 21.12 (2010): 1793-1807.

32. Ferdman M, Adileh A, Koçberber YO, Volos S, Alisafaee M, Jevdjic D, Kaynak C, Popescu

AD,Ailamaki A, Falsafi B (2012) Clearing the clouds: a study of emerging scale-out

workloads on modern hardware. In: Proceedings of the 17th International Conference on

Architectural Support for Programming Languages and Operating Systems, ASPLOS 2012,

London, UK, March 3–7, 2012, pp 37–48. doi:10.1145/2150976.2150982

33. Fu, Xiang, et al. "An experimental microarchitecture for a superconducting quantum

processor." Proceedings of the 50th Annual IEEE/ACM International Symposium on

Microarchitecture. ACM, 2017.

34. Fung, W. W., Singh, I., Brownsword, A., and Aamodt, T. M. “Hardware transactional

memory for GPU architectures." Proceedings of the 2011 44th Annual IEEE/ACM

International Symposium on Microarchitecture (MICRO). IEEE, 2011.

35. G. Li, Y. Ding, and Y. Xie, “Tackling the qubit mapping problem for nisq-era quantum

devices,” in Proceedings of the Twenty-Fourth International Conference on Architectural

Support for Programming Languages and Operating Systems, 2019, pp. 1001–1014.

36. G. Zhang, H. He, and D. Katabi, “Circuit-gnn: Graph neural networks for distributed circuit

design,” in International Conference on Machine Learning. PMLR, 2019, pp. 7364–7373.

37. Gabrys, Ryan, Eitan Yaakobi, and Lara Dolecek. “Graded bit-error-correcting codes with

applications to flash memory." IEEE Transactions on Information Theory 59.4 (2012): 2315-

2327.

38. Gao W, Luo C, Zhan J, Ye H, He X, Wang L, Zhu Y, Tian X (2015) Identifying dwarfs

workloads in big data analytics. http://arxiv.org/abs/1505.06872

39. Ghazal A, Rabl T, Hu M, Raab F, Poess M, Crolotte A, Jacobsen HA (2013) Bigbench:

towards an industry standard benchmark for big data analytics. In: Proceedings of the 2013

ACM SIGMOD International Conference on Management of Data, ACM, New York, NY,

USA, SIGMOD ’13, pp 1197–1208. doi:10.1145/2463676.2463712

132

40. Gokhale, Pranav, et al. "Minimizing state preparations in variational quantum eigensolver by

partitioning into commuting families." arXiv preprint arXiv:1907.13623 (2019).

41. Gokhale, Pranav, et al. "Partial compilation of variational algorithms for noisy intermediate-

scale quantum machines." Proceedings of the 52nd Annual IEEE/ACM International

Symposium on Microarchitecture. 2019.

42. Grover, Lov K. "A fast quantum mechanical algorithm for database search." Proceedings of

the twenty-eighth annual ACM symposium on theory of computing. 1996.

43. Guan Q, Debardeleben N, Blanchard S, Wu P, Monrow L, Chen Z (2016) P-FSEFI: a parallel

soft error fault injection framework for parallel applications. In: Proceedings of the 12th

Workshop on Silicon Error in Logic-System Effect (SELSE)

44. Harris M, NVidia (2015) https://devblogs.nvidia.com/parallelforall/new-features-cuda-7-5/

45. Holmes, M. R. Jokar, G. Pasandi, Y. Ding, M. Pedram, and F. T. Chong, “Nisq+: Boosting

quantum computing power by approximating quantum error correction,” in 2020 ACM/IEEE

47th Annual International Symposium on Computer Architecture (ISCA). IEEE, 2020, pp.

556–569.

46. Holmes, Y. Ding, A. Javadi-Abhari, D. Franklin, M. Martonosi, and F. T. Chong, “Resource

optimized quantum architectures for surface code implementations of magic-state

distillation,” Microprocessors and Microsystems, vol. 67, pp. 56–70, 2019.

47. Huang S, Huang J, Dai J, Xie T, Huang B (2010) The HiBench benchmark suite:

characterization of the MapReduce-based data analysis. In: 2010 IEEE 26th International

Conference on Data Engineering Workshops (ICDEW), pp 41–51.

doi:10.1109/ICDEW.2010.5452747

48. Iakymchuk R, Collagne S, Defour D, Graillat S (2015) Exblas: reproducible and accurate

BLAS library. In the Proceedings of the Numerical Reproducibility at Exascale (NRE2015)

workshop held as part of the Supercomputing Conference (SC15). Austin, TX, USA,

November 15-20, 2015. HAL ID: hal-01202396

49. IBM Qiskit GAN Implementation. https://github.com/Qiskit/qiskit-

aqua/blob/master/qiskit/aqua/algorithms/distribution_learners/qgan.py

50. IBM, “Open-source quantum development,” https://qiskit.org/, retrieved on 04-16-2021.

51. Intel Corporation, “Pin 3.2 User Guide." Available at

https://software.intel.com/sites/landingpage/pintool/docs/81205/Pin/html/.

52. Intel Pin Fault Injector (PINFI). Available at

https://github.com/DependableSystemsLab/PINFI.

53. ITRS International technology roadmap for semiconductors. ITRS Technical Report. (2013)

133

54. J. Liu and H. Zhou, “Systematic approaches for precise and approximate quantum state

runtime assertion,” in 27th IEEE International Symposium on High-Performance Computer

Architecture, ser. HPCA, vol. 21, 2021.

55. J. Liu, G. T. Byrd, and H. Zhou, “Quantum circuits for dynamic runtime assertions in

quantum computation,” in Proceedings of the Twenty-Fifth International Conference on

Architectural Support for Programming Languages and Operating Systems, 2020, pp. 1017–

1030.

56. Jangjaimon, I. and Tzeng, N.-F. “Effective Cost Reduction for Elastic Clouds under Spot

Instance Pricing through Adaptive Checkpointing," IEEE Transactions on Computers, vol.

64, no. 2, pp. 396-409, February 2015.

57. Javadi-Abhari, P. Gokhale, A. Holmes, D. Franklin, K. R. Brown, M. Martonosi, and F. T.

Chong, “Optimized surface code communi- cation in superconducting quantum computers,”

in Proceedings of the 50th Annual IEEE/ACM International Symposium on

Microarchitecture, 2017, pp. 692–705.

58. Joshi, A., Nagarajan, V., Cintra, M., and Viglas, S. “DHTM: Durable hardware transactional

memory." Proceedings of the 2018 ACM/IEEE 45th Annual International Symposium on

Computer Architecture (ISCA). IEEE, 2018.

59. Kielpinski, David, Chris Monroe, and David J. Wineland. "Architecture for a large-scale ion-

trap quantum computer." Nature 417.6890 (2002): 709-711.

60. Killoran, Nathan, et al. "Continuous-variable quantum neural networks." Physical Review

Research 1.3 (2019): 033063.

61. Kübler, Jonas M., et al. "An adaptive optimizer for measurement-frugal variational

algorithms." Quantum 4 (2020): 263.

62. Kumar S, Hari S, Adve SV, Naeimi H, Ramachandran P (2012) Relyzer: exploiting

application-level fault equivalence to analyze application resiliency to transient faults. In:

Proceedings of the 17th ACM International Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS 2012)

63. L. Gong and Q. Cheng, “Exploiting edge features for graph neural networks,” in Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 9211–

9219

64. LeCompte, T. et al. “Soft Error Resilience of Big Data Kernels through Algorithmic

Approaches.” Springer Journal of Supercomputing. Vol 73, pp. 4739-4772. Nov 2017.

65. T. LeCompte, L. Peng, X. Yuan and N. -F. Tzeng, "Protecting Synchronization Mechanisms

of Parallel Big Data Kernels via Logging," in IEEE Transactions on Computers, vol. 71, no.

9, pp. 2156-2162, 1 Sept. 2022, doi: 10.1109/TC.2021.3122993.

134

66. LeCompte, T., Qi, F., and Peng, L. “Robust Cache-Aware Quantum Processor Layout,” In

Proceedings of the 39th IEEE International Symposium on Reliable Distributed Systems

(SRDS), Shanghai, China, Sep. 2020.

67. Li, H., Chen, Z.m and Gupta, R. “Parastack: Efficient hang detection for MPI programs at

large scale." Proceedings of the International Conference for High Performance Computing,

Networking, Storage and Analysis. 2017.

68. Liu W, Zhang W, Wang X, Xu J (2016) Distributed sensor network-on-chip for performance

optimization of soft-error-tolerant multiprocessor system-on-chip. IEEE Trans Very Large

Scale Integr (VLSI) Syst 24(4):1546–1559. doi:10.1109/TVLSI.2015.2452910

69. Lloyd, Seth, Masoud Mohseni, and Patrick Rebentrost. "Quantum algorithms for supervised

and unsupervised machine learning." arXiv preprint arXiv:1307.0411 (2013).

70. M. Y. Siraichi, V. F. d. Santos, S. Collange, and F. M. Q. Pereira, “Qubit allocation,” in

Proceedings of the 2018 International Symposium on Code Generation and Optimization,

2018, pp. 113–125

71. Mari, Andrea, et al. "Transfer learning in hybrid classical-quantum neural networks."

Quantum 4 (2020): 340.

72. Meitei, Oinam Romesh, et al. "Gate-free state preparation for fast variational quantum

eigensolver simulations: ctrl-VQE." arXiv preprint arXiv:2008.04302 (2020).

73. NVIDIA Tesla k20 gpu accelerator. (2013)

http://www.nvidia.com/content/PDF/kepler/Tesla-K20-Passive-BD-06455-001-v07.pdf

74. P. Murali, D. C. McKay, M. Martonosi, and A. Javadi-Abhari, “Software mitigation of

crosstalk on noisy intermediate-scale quantum computers,” in Proceedings of the Twenty-

Fifth International Conference on Architectural Support for Programming Languages and

Operating Systems, 2020, pp. 1001–1016

75. P. Murali, J. M. Baker, A. Javadi-Abhari, F. T. Chong, and M. Martonosi,“Noise-adaptive

compiler mappings for noisy intermediate-scale quantum computers,” in Proceedings of the

Twenty-Fourth International Conference on Architectural Support for Programming

Languages and Operating Systems, 2019, pp. 1015–1029.

76. P. Zhu, X. Cheng, and Z. Guan, “An exact qubit allocation approach for nisq architectures,”

Quantum Information Processing, vol. 19, no. 11, pp. 1–21, 2020

77. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning of social representations,” in

Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery

and data mining, 2014, pp. 701–710.

78. Qi, Fang, et al. "Quantum Vulnerability Analysis to Accurate Estimate the Quantum

Algorithm Success Rate." arXiv preprint arXiv:2207.14446 (2022).

135

79. Quantum Fourier Transform. 27 July 2020, qiskit.org/textbook/ch-algorithms/quantum-

fourier-transform.html

80. R. Barends, J. Kelly, A. Megrant, A. Veitia, D. Sank, E. Jeffrey, T. C. White, J. Mutus, A. G.

Fowler, B. Campbell et al., “Superconducting quantum circuits at the surface code threshold

for fault tolerance,” Nature, vol. 508, no. 7497, pp. 500–503, 2014.

81. S. Pan, R. Hu, G. Long, J. Jiang, L. Yao, and C. Zhang, “Adversarially regularized graph

autoencoder for graph embedding,” arXiv preprint arXiv:1802.04407, 2018.

82. S. S. Tannu and M. K. Qureshi, “Not all qubits are created equal: a case for variability-aware

policies for nisq-era quantum computers,” in Proceedings of the Twenty-Fourth International

Conference on Architectural Support for Programming Languages and Operating Systems,

2019, pp. 987–999

83. S. S. Tannu and M. Qureshi, “Ensemble of diverse mappings: Improving reliability of

quantum computers by orchestrating dissimilar mistakes,” in Proceedings of the 52nd Annual

IEEE/ACM International Symposium on Microarchitecture, 2019, pp. 253–265.

84. Serrano F, Clemente JA, Mecha H (2015) A methodology to emulate single event upsets in

flip-flops using FPGAs through partial reconfiguration and instrumentation. IEEE Trans

Nucl Sci 62(4):1617–1624. doi:10.1109/TNS.2015.2447391

85. Sharma, Kunal, et al. "Noise resilience of variational quantum compiling." New Journal of

Physics 22.4 (2020): 043006.

86. Shor, Peter W. "Polynomial-time algorithms for prime factorization and discrete logarithms

on a quantum computer." SIAM review 41.2 (1999): 303-332.

87. Sigdel, P. and Tzeng, N.-F. “Coalescing and Deduplicating Incremental Checkpoint Files for

Restore-Express Multi-Level Checkpointing," IEEE Transactions on Parallel and Distributed

Systems, vol. 29, no. 12, pp. 2713-2727, December 2018.

88. Simon, Daniel R. "On the power of quantum computation." SIAM journal on computing 26.5

(1997): 1474-1483.

89. T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional

networks,” arXiv preprint arXiv:1609.02907, 2016.

90. Thaker, Darshan D., et al. "Quantum memory hierarchies: Efficient designs to match

available parallelism in quantum computing." ACM SIGARCH Computer Architecture News

34.2 (2006): 378-390.

91. Thekumparampil, Kiran K., et al. "Attention-based graph neural network for semi-supervised

learning." arXiv preprint arXiv:1803.03735 (2018).

92. Thomas, T. E., Bhattad, A. J., Mitra, S., and Bagchi, S. “Sirius: Neural network based

probabilistic assertions for detecting silent data corruption in parallel programs." Proceedings

of the 2016 IEEE 35th Symposium on Reliable Distributed Systems (SRDS). IEEE, 2016.

136

93. Tiwari D, Gupta S, Gallarno G, Rogers J, Maxwell D (2015) Reliability lessons learned from

GPU experience with the titan supercomputer at oak ridge leadership computing facility. In:

SC15: International Conference for High Performance Computing, Networking, Storage and

Analysis, pp 1–12. doi:10.1145/2807591.2807666).

94. Volos, H., Tack, A. J., Swift, M. M., and Lu, S. “Applying transactional memory to

concurrency bugs." ACM SIGPLAN Notices 47.4 (2012): 211-222.

95. W. Finigan, M. Cubeddu, T. Lively, J. Flick, and P. Narang, “Qubit allocation for noisy

intermediate-scale quantum computers,” arXiv preprint arXiv:1810.08291, 2018.

96. W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive representation learning on large

graphs,” in Proceedings of the 31st International Conference on Neural Information

Processing Systems, 2017, pp. 1025–1035.

97. Wang L, Bertran R, Buyuktosunoglu A, Bose P, Skadron K (2014) Characterization of

transient error tolerance for a class of mobile embedded applications. In: 2014 IEEE

International Symposium on Workload Characterization (IISWC), pp 74–75.

doi:10.1109/IISWC.2014.6983042

98. Wang, Samson, et al. "Noise-induced barren plateaus in variational quantum algorithms."

arXiv preprint arXiv:2007.14384 (2020).

99. Wang, Y., Um, M., Zhang, J. et al. Single-qubit quantum memory exceeding ten-minute

coherence time. Nature Photon 11, 646–650 (2017). https://doi.org/10.1038/s41566-017-

0007-1

100. Xiaoguang, R., Xinhai, X., Qian, W., Juan, C., Miao, W., and Xuejun, Y. “GS-DMR:

Low-overhead soft error detection scheme for stencil-based computation." Parallel

Computing 41 (2015): 50-65.

101. Y. Ding, P. Gokhale, S. F. Lin, R. Rines, T. Propson, and F. T. Chong, “Systematic

crosstalk mitigation for superconducting qubits via frequency-aware compilation,” in 2020

53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). IEEE,

2020, pp. 201–214.

102. Y. Ding, X.-C. Wu, A. Holmes, A. Wiseth, D. Franklin, M. Martonosi, and F. T. Chong,

“Square: strategic quantum ancilla reuse for modular quantum programs via cost-effective

uncomputation,” in 2020 ACM/IEEE 47th Annual International Symposium on Computer

Architecture (ISCA). IEEE, 2020, pp. 570–583.

103. Y. Huang and M. Martonosi, “Statistical assertions for validating patterns and finding

bugs in quantum programs,” in Proceedings of the 46th International Symposium on

Computer Architecture, 2019, pp. 541–553.

104. Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel, “Gated graph sequence neural

networks,” arXiv preprint arXiv:1511.05493, 2015.

137

105. Y.-C. Lu, S. Pentapati, and S. K. Lim, “Vlsi placement optimization using graph neural

networks,” in 34th Conference on Neural Information Processing Systems (NeurIPS 2020),

ML for Systems Workshop, 2020.

106. Yeh TY, Reinman G, Patel SJ, Faloutsos P (2009) Fool me twice: exploring and

exploiting error tolerance in physics-based animation. ACM Trans Graph 29(1):5:1–5:11.

doi:10.1145/1640443.1640448

138

Vita

Travis LeCompte was born in 1995 in Thibodaux, Louisiana. He received his Bachelor of

Science degree in Computer Science and his Bachelor of Science degree in Electrical

Engineering from Louisiana State University in Baton Rouge, Louisiana, in May 2017. Since

then, he has been enrolled in the Division of Electrical & Computer Engineering at Louisiana

State University to purse his Ph.D. degree. During this time, he has passed his qualifying exam in

Spring 2019 and his general exam in Spring 2022.

Travis’s research interests include software resilience, quantum computing, and machine

learning. He has published several papers on these topics in various conferences and journals.

	Compilation Optimizations to Enhance Resilience of Big Data Programs and Quantum Processors
	Recommended Citation

	tmp.1667888254.pdf.EIZo3

