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Abstract

Let ( R, Mr ) be a regular local ring of dimension 3 of the form k [ x, y, z ] („,y,z), 

where k is an algebraically closed field and let I be an MR-primary ideal that admits 3 

generators. We prove that if I, is the proper transform of I to a quadratic transform 

( A, MA) of ( R, Mr ) such that the analytic spread of L is 3 and the generators of L 

induced by those of I satisfy certain divisibility conditions, then the inequality of 

multiplicities

e A( M ( I ,  ) ) < e R( I )

is valid, where M ( I , ) a  I, is an MA-primary ideal associated to I, ( the ideal I, may not 

be MA-primary if dim ( R ) = 3 ) through an operation M that we define for ideals in a 

regular local ring.



Chapter 1 

Introduction

The theory of ideals in regular local noetherian rings has connections with many 

geometric problems and has attracted the attention of many mathematicians. For instance, 

consider the two dimensional case. Let R be a two dimensional regular local ring, with 

maximal ideal MR and residue field k=R / MR ( e.g., take R = k [ x, y ](*.y) = { f  /  g : f, g 

are polynomials in k[ x, y ], g( 0, 0 )  & 0 }, where k is an algebraically closed field, for 

instance € ) .  In this case the MR-primary ideals of R, that is, those ideals I such that 

(Mr) n c  I for n large enough, are closely related to the singularities of the plane curves. 

Zariski systematically studied these ideals ( cf. [Z ], [Z S]), a study continued by other 

authors ( e.g., [Hu], [R] in the 2-dimensional case, [J], [L] in the d-dimensional one). 

In all these studies, it is essential not to restrict one’s attention to the basic ring R, but to 

consider also "quadratic transforms" of R. Recall that given a point P of an algebraic 

variety V ( for simplicity, assumed non-singular), there is a canonical process to construct 

a new variety V ’, and a morphism n : V’ -»  V, where U = V \ { P } is isomorphic to k - >(U) 

and %' *(P) = E is isomorphic to a projective space (P)d l, d = dim (V) ( the points of E 

correspond to lines that are tangent to V at P ).V’ is called the quadratic transform of V 

with center P. A local ring of a point Q e  E is called a quadratic transform of the local ring 

of V at P. ( This process can be formalized and applied to a local ring R, not necessarily 

the local ring of an algebraic variety, this is reviewed in chapter 2 ). If I is an ideal of R 

and A a quadratic transform of R, one may define the proper transform 11 of I to R ( the



ideal that I induces on A, when we disregard all "trivial factors"). In dimension 2, if  I is 

MR-primary, its proper transform I, is again primary to the maximal ideal MA of A, and 

we may speak of the multiplicities eR( I ) ( of I in R ) and e A( Ii) ( of Ii in A ) ( this is a 

non-negative integer associated to the ideal, which in a sense measures its complexity, it 

is defined if and only if I is MR -primary ( or the unit ideal, where the multiplicity will be 

0 ) ) .  It turns out that the inequality

( * ) e A( I i ) < e R( I )

holds.

If d = dim( R ) > 2, if  I, is an MA-primary ideal, then ( * ) is still valid ( cf. [J],

2.2 ). However, the condition "I, is MA -primary" is not always fulfilled if d > 2. This 

happens if the support of the proper transform is not finite. If 11 is not MA-primary, the 

inequality ( * ) does not make sense, since eA( I ,) is not defined. Very little is known 

about ideals I whose proper transform does not have finite support, i.e.such that for some 

quadratic transform ( A, MA), the proper transform 11 of I won’t be MA-primsry. But still 

one could expect that somehow the ideal I improves when we take a proper transform. 

More precisely, we try to assign to I a numerical invariant that drops when taking the 

proper transform I,. This invariant has to be such that it makes sense for a non primary 

ideal since the proper transform I, to a quadratic transform A of R of an M R-primary ideal 

I may not be MA-primary.

In order to define the aforementioned numerical invariant, we will introduce an 

operation M on ideals J of a local ring R satisfying the following two conditions :



( i ) M ( J ) a J i s a n  ideal, primary to the maximal ideal of R ( hence the multiplicity 

e ( M ( J ) ) o f M ( J ) i s  defined ).

( i i ) M ( J )  = J i fJ i s  primary to the maximal ideal of the ambient ring of J.

Once the operation M is defined, we define the invariant c ( J ) as:

c ( J ) : = e ( M ( J ) > .

We are, thus, concerned with the relationship between c ( I ) and c ( Ij). Namely, with the 

relationship between the multiplicities o f I ( M ( I )  = I since I is MR-primary ) and 

M ( I , ). Our object of sudy becomes, then, the possible inequality

( # )  eA( M ( Ij) )  < eR( I ).

In Chapter 2 we develop the background material that will be used later on. This 

chapter consists of three sections. In the first one we give the basic results from ring theory 

that constitute the basic "language" that will be used in the subsequent chapters ; in the 

second one we introduce the concepts of integral dependence ond of reduction of ideals ; 

in the third one we study the concept of blowing-up and related properties.

In Chapter 3 we define the operation M on ideals and present some properties and 

concepts concerning this operation. In particular we study some properties relating the 

operation M with the integral closure of an ideal and give some examples ( and counter 

examples).

In Chapter 4 we prove the main theorem of this work ( cf. 4.3.12 ). This theorem 

shows that the inequality ( # )  is valid for 3-dimensional regular local rings of the type 

R := k [ x, y, z ](x,y>2) ( namely, polynomial rings in three indeterminates x, y, z over a 

field k, say algebraically closed, localized at its maximal ideal ( x, y, z ) ) ,  provided 11



satisfies some additional conditions ( cf. 4.3.3 ). There is an introductory section in this 

chapter in which the main ideas of the proof of this result are presented. We believe that 

the proposed method of proof is interesting, in the sende that, suitably adjusted, it might 

give a more general theorem of the type of 4.3.12. In fact, most of the proof is valid under 

rather weak hypotheses, but to verify a crucial statement ( cf. 4.3.10) we are forced to 

introduce the rather restrictive conditions 4.3.3. We hope that this could be done in greater 

generality, with other techniques. This is further discussed in Chapter 5 (cf.5.3 )

In Chapter 5 we summarize what we did in chapters 3 and 4 and suggest directions 

for future work.



Chapter 2 

Preliminary Results

2.1. Basic Results from Ring Theory.

We will let ( R, MR, k ) denote a local ring with maximal ideal MR and residue field 

k. We remark that, for us, "local ring" will mean "commutative noetherian ring with 

exactly one maximal ideal". We will, however, refer to R as of a noetherian local ring 

whenever we want to emphasize the fact that R is noetherian.

2.1.1. Definition. Let I be an ideal of R. The height of I and the dimension of I are 

defined, respectively, as:

(a) h t ( I ) = inf { ht ( P ):  I c  P e  S p e c ( R ) }  

where ht ( P ) denotes the height of a prime ideal, that is, the supremum of lengths of 

chains of prime ideals P0 c  P, c  ... c  Pn = P, and

(b) dim ( I ) = Krull dim ( R / 1).

The dimension dim ( I ) of I is also called the coheight o f I, and denoted by 

cht ( I ) (cf. [M], pp.30, 31 or [Ku], 1.3, p. 40).

2.1.2. Proposition. The following inequality holds:

ht ( I ) + cht ( I ) < dim R.

For a proof of 2.1.2 see [M], p. 31.

We review the Hilbert- Samuel function and the multiplicity of an ideal.

5



2.1.3. Definition. Let ( R, MR, d ) be a d-dimensional noetherian local ring; I c  R an ideal 

such that V I = MR ( that is, an MR-primary ideal). Then the Hilbert- Samuel function is 

defined as:

H | ( n ) = X ( R / I n+1) , n a  natural number 

where X ( ) denotes the length of an R-module ( cf. [M], p. 97 ). When n »  0, 

Hi ( n ) agrees with the values of a polynomial P j ( n ) e  Q [ n ] of degree d ( cf. [M], 

p. 97), and

Pi ( n )  = (e /  d ! ) n d + ( terms of lower order) 

where e is a natural number ( cf. [M], p. 107).

2.1.4. Definition. The integer e appearing in 2.1.3 is called the multiplicity of I in R and 

is denoted by eR ( I ) or simply by e ( I ) if there is no possible confusion.

We now review the concept of regular sequence.

2.1.5. Definition. Let M be an R-module. An element a e  R is said to be M-regular if 

a x = 0 with x e  M implies that x ~ 0. A sequence a , ,...  ,a„ of elements o f R is an M- 

regular sequence if  the following conditions hold:

(i) M *  ( a , ,... ,an) M

(ii) a, is M-regular, a2 is ( M / a, M )-regular,..., an is ( M /  (a,,... ,a„.,) M )-regular. 

If we regard R as an R-module, the definition of an R-regular sequence follows from

2.1.5. We will call i t , then, a "regular sequence" if there is no possible confusion.

2.1.6 Definition. If xt, ..., Xj generate an MR-primary ideal, then { x , , ... ,x<j} is said to be 

a system of parameters.



2.1.7 Definition. A local ring ( R, MR, d ) is called regular if MR is generated by d 

elements.

2.1.8. Proposition. If ( R, MR, d ) is regular, then any minimal system of generators 

{xj, ... , xd } of Mr is a system of parameters and an R-regular sequence and any 

subsystem {xn, ..., xi8} of this system of parameters generates a prime ideal of R.

For a proof of 2.1.8 see [Ku], p. 168.

2.1.9. Definition. If ( R, MR ) is a regular local ring, then any minimal system of 

generators of MR is called a regular system of parameters.

2.1.10. Definition. Let M be a finitely generated module over a noetherian ring R. The 

number of elements of a maximal M-regular sequence in the ideal I s R  as called the 

I-depth of M, and denoted depth ( I, M ). If (R, Mr) is local then depth (MR, M) is simply 

called the depth of M and denoted depth (M). In particular this defines the depth of R 

( depth (R )).

2.1.11. Definition. A noetherian ring R is called Cohen Macaulay ( abbreviated to CM ) 

if depth ( R ) = dim ( R ).

The following result can be found in [M], 17.11.

2.1.12.Proposition. If R is a CM ring and I = (x, , ..., Xd), with ( xb ..., x,,) forming an R- 

regular sequence, then

eR( I )  = X ( R / 1).

We now introduce the concept of primary decomposition of an ideal.



2.1.13. Definition. Let I be a proper ideal of a ring R. A primary decomposition of I is an 

expression for I as an intersection of finitely many primary ideals of R. That is, an 

expression of the form

1 = Qi r>... n  Qn, with VQi = Pi prime, i = l , ..., n.

A primary decomposition of I is said to be minimal when

( i ) Pi , .... P„ are n different ideals, and

( i i )  Q * n {  Q, :i?tj, i= l, ...,n } for all j = 1,... ,n.

The ideal is said to be decomposable when it has a primary decomposition.

2.1.14. Remark. In general not every proper ideal of a commutative ring R is 

decomposable ( cf.[Sh], 4.30 ). However, there is a positive result in this direction which 

shows that every proper ideal in a noetherian ring possesses a primary decomposition. 

Moreover, any decomposable ideal has a minimal primary decomposition (cf. [Sh], 

4.35 ) ,  in which case the set { P , , ..., P„} is uniquely determined ( cf. [Sh], 4.18 ). We 

can conclude this remark saying that every proper ideal of a noetherian ring possesses a 

minimal primary decomposition.

2.1.15. Definition. The set { P i , .. . ,  P„} of 2.1.14 is called the set of associated prime 

ideals of I and denoted by ass I. The members of ass I are called the associated primes of 

I, and are said to belong to I.

2.1.16. Definition. The minimal primes of I, that is, the minimal elements of ass I, are 

called the minimal or isolated primes of I. The remaining associated primes of I are called 

the embedded primes of I. Similarly, the components corresponding to the minimal primes



will be called the isolated components o f I, and the ones corresponding to the embedded 

primes will be called the embedded components of I.

Now, in order to avoid confusion about terminology, we introduce the following 

definition.

2.1.17. Definition. Let M be a module over a noetherian ring R, P e  Spec ( R ). Then we 

say P is an associated prime of M if there exists m e  M with

ann ( m ) : = ( 0 : m )  = P.

The set of associated primes of M is denoted by Ass ( M ).

We have the following relationship between ass I and Ass ( R / 1).

2.1.18. Proposition. Let I be a proper ideal of a noetherian ring R. Then,

P e  ass I if  and only if P €  Ass ( R / 1 ).

Proof. First of all, I has a primary decomposition because R is noetherian. We can, thus, 

form the finite set of associated primes of I, ass I. The result follows now from [Sh], 

8.22.

We can, thus, indistinctively use the symbols ass I and Ass( R / 1).

There is a relationship between the concepts of depth and associated primes: the 

equation depth ( I, M ) = 0 holds if and only if the ideal consists only of zero divisors of 

M. In particular, if ( R, MR) is a noetherian ring, depth ( M ) = 0 is equivalent to MR e  

Ass (M). Therefore:

2.1.22. Proposition. If ( R, MR) is a local ring, I a proper ideal of R, then 

depth ( R / I )  = 0 i f  and only if MR e  ass I.
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2.2. Reductions and Integral Closure of an Ideal.

In this section we will introduce the concepts of a reduction of an ideal I £  R. and 

of integral dependence of an ideal I c R  over an ideal J c R ,  where R is a noetherian ring. 

These concepts are equivalent in some sense ( that of 2.2.9 ). We will study some 

properties related to these concepts. At the end of the section we show how to compute 

the "integral closure" of an ideal I generated by monomials in the ring R = 

k [ x ,  y, z ] (*,y,z).

2.2.1. Definition. Let I, J be ideals of R. Then J is called a reduction of I ( or a reduction 

ideal of I ) if

( i ) J £  I, and

(ii) I n+1 = J I" for some n e  N .

The following is an important property of reduction ideals. For a proof see [M],

14.13.

2.2.2. Proposition. If I is an MR-primary ideal and J a reduction ideal of I, then

( i ) J is also MR-primary, and

( i i )  eR( I )  = eR(J) .

The following proposition is a consequence of [M], 14.14.

2.2.3. Proposition. Let (R, MR) be a d-dimensional noetherian local ring, with infinite 

residue field k; let I be an MR-primary ideal. Then there is a reduction ideal J of I 

generated by a system of parameters { \ u ..., x^}.



2.2.4. Proposition. If R is a d-dimensional CM ring with infinite residue field k, I an MR- 

primary ideal, then there is an R- regular sequence Xi, ..., x*, such that

eR ( I ) = X ( R /  ( x„ ..., xd)).

Proof. The generators of the ideal J of 2.2.3, being the generators of a primary ideal (cf. 

2.2.2), form a regular sequence (cf [M],17.4) and by 2.2.2 and 2.1.12, 

eR( I ) = eR( J ) = eR(x„ ... , x d) =  X ( R / (  x„ ..., x „ ) ).

2.2.5. Definition. A reduction ideal J o f I is called a minimal reduction of I if  it does not 

have any proper reductions.

The following theorem shows the existence of minimal reductions. This result can 

be found in [S], 1.7, p. 31.

2.2.6. Theorem. Let J c  I be a reduction. Then J contains a minimal reduction H of I. 

Moreover, if  L is any ideal such that H £  L £  I, then any minimal set of generators of H 

can be extended to a minimal set of generators of L.

We now study the concept of integral dependence over an ideal I.

2.2.7. Definition. An element x e  R is said to be integral over I if  there are elements ai, 

... ,a n of R such that

xn+ a i x n-1 + ... + a„ = 0

and ^ € I*, i = 1, . . . ,  n.

An ideal J is said ro be integral over I if J £  I and every element o f J is integral 

over I. The integral closure of I is the ideal.

I'= { x e  R : x is integral over I }
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and an ideal I for which I"= I is called integrally closed or complete. Thus J is integral over 

I if J G I".

The following propositions establish a connection between the concepts of a 

reduction of an ideal and of integral dependence over an ideal. Their proofs can be found 

in [HIO], 4.11 and 4.13.

2.2.8. Proposition. Let I c  J be two ideals of R. Then I is a reduction of J if and only if 

J £  I"; i.e. if and only if J is integral over I.

2.2.9. Proposition. For any ideal I and any element x e  R, x is integral over I if  and only 

if  I is a reduction of I + xR.

2.2.10. The Analytic Spread of an Ideal. Given a local ring (R, MR) with residue field k, 

I an ideal of R, the analytic spread of I is defined to be the integer s ( I ) given by:

( i )  s ( I ) = dimG(I,R) ® Rk 

( see 2.3.1 for a definition of G ( I, R )) .  Or, more geometrically (cf. [HIO], 20.0), by:

( i i ) s ( I ) = 6 + 1

where 8 = dim n -1 ( MR) ; n : B1 ( I, R ) —> Spec R the natural blowing-up morphism 

(cf. 2.3.3).

2.2.11. Proposition. The analytic spread of I satisfies the following :

h t ( I ) < s ( I )  < dimR.

For a proof of 2.2.11 see [S], 2.3, p. 34.

If we let p ( J ) denote the minimal number of generators o f the ideal J, then the 

following proposition holds (cf. [HIO], 10.19).
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2.1.12 Proposition. If k is infinite then,

s ( I )  = p ( J )  

for any minimal reduction ideal J c  I.

Since, by 2.2.4, minimal reductions exist, 2.2.12 allows us to compute the analytic 

spread of an ideal using reductions of it.

There is actually a stronger result. The following proposition provides us with a 

criterion to decide whether a reduction ideal J o f I is minimal. A proof of it can be found 

in [S], 2.2, p. 33.

2.2.13. Proposition. Let R have infinite residue field k. Let H be a reduction of I with 

minimal set of generators at, ..., at. Then H is a minimal reduction of I if and only if

( i ) a,, ... , ar are analytically independent in I. That is, if  whenever F [ Xj, ... , x, ] e  

R [ x , , ..., xr ] is a homogeneous form of degree t such that F [ at>...,  a, ] = 0 mod I ' MR, 

then the coefficients of F are in MR, and

(ii) s ( I ) = r.

2.2.14. How to Compute the Integral Closure o f an Ideal Generated by Monomials. Let 

R denote the polynomial ring in three variables k[ x, y, z ] localized at the maximal ideal 

( x, y, z ), that is R:= k[ x, y, z ](x,y,z), and let k be infinite. Let I be an ideal of R generated 

by n monomials xa<‘> y**) zc<‘>, i =1, . . . ,  n.

In order to compute the integral closure I of I, consider the representative points 

of the monomials that generate I. That is, the points p ( i ) in N3 whose coordinates are the 

exponents of x, y, and z for each monomial:

P ( i ) : = ( a ( i ) , b ( i ) , c ( i ) ) e  N 3, i = 1 . . . . ,n.
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We define the set E ( I ) c  R 3 to be

E ( I ) : = ( p ( l )  + E ) u . . . u ( p ( n )  + E )  

where E:= { ( Xi, x2, x3 ) :  x( £  0 } c  R3. Then I"is also generated by monomials whose 

representative points in N 3 belong to the convex closure N ( I ) of E( I ).

We can, thus, visualize the difference between the integral closure I" and the ideal I 

as given by those monomials whose representative points in N 3 belong to N ( I ) but not 

to E ( I ).

This result can be found in [T], section 1.2, p. 336.

2.2.15.Example. Let 1 = ( x2, xy, z2) £  k[ x, y, z ](x,y,z). The representative points of I in 

N 3 are

p ( 1 )  = ( 2 , 0 , 0 ) ;  p ( 2  ) = ( 1 , 1 , 0 ) ;  p ( 3 )  = ( 0 , 0 , 2 ) .

A computation shows that ( 1 , 0 , 1 )  e  N ( I ) n N 3 and that this point is the only 

one in N ( I ) n  N 3 that is not a linear combination o f p ( l ) ,  p ( 2 ) ,  p (3  ).The associated 

monomial of this point is xz. Therefore

I"= (x2, xy, z2, x z )

2.3. Blowing-up.

2.3.1.,Definition. Let a be an ideal of a noetherian ring R. The symbols B (a, R) and G (a, 

R) wil denote the positively graded rings given by:

B ( a, R ) := a0 ® ... © an ©.. .  , and 

G (a, R) := a?/ a1 © ... © a n Iaa+l ©.. .  

where a0 := R.
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2.3.2. The Scheme B1 (a, R). Given a positively graded ring A =A0 ©.. .  © A„ ©... ,  

the set Proj A consists of all homogeneous prime ideals P which do not contain all of A+:= 

Ai © ... © A„ © .... It turns out that Proj A can be endowed with a topology and with a 

sheaf of rings. Moreover, if we let X := Proj A, and Ox its sheaf of rings, then ( X, Ox ) 

is a scheme with

( i ) O x,p= A ( P)

where P e  Proj A and A (P) is the subring of A s consisting of elements of degree 0 in A s, 

where S denotes the set of homogeneous elements of A \ P .  The ring A s is endowed with 

a natural grading: Let ( A s) n consist of all quotients a /s  e  A s, a e  A homogeneous with 

deg a - deg s = n. The ring A (P) consists of elements that are homogeneous and of degree 

0 with respect to this grading. This is a local ring and is called the "homogeneous 

localization" of A at P. Its maximal ideal consists of all quotients p / s , p e  P, s e  S with 

deg p = deg s.(Cf. [Ku], p. 77.)

The scheme Proj A ca n be covered by open affine schemes

( i i ) ( D + ( f ), Oxlr^f)) = Spec A (f) 

where f  e  A+ is homogeneous and,

A (f) = { a /  f n: a e  A homogeneous, deg a = n deg f }.

We will denote the scheme Proj ( B (a, R )) by the symbol B1 (a, R). Therefore, if 

a = (xo,..., x„) then the scheme B1 (a, R) is covered by D+(xo),..., D +(x„) where

D + ( x ) = Spec ( B (a, R )^ )

(cf. 2.3.2 ( i i ) ) ,  since B (a , R) is generated by Xi,..., x„ as an R-algebra.

The proofs of 2.3.2 ( i ), ( i i ) can be found in [H], 2.5, p. 76.
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2.3.3. The Blowing-up Morphism.The blowing-up morphism with center a ( or along the 

ideal a )  is defined to be the morphism

tc : B1 ( a , R ) —» Spec R

( cf. [HIO], 12.2 (c )) .

2.3.4. Universal Property o f the Blowing-up. Let f : Z -»  Sspec R be a morphism succh 

that a Oz be an invertible sheaf of ideals over a scheme Z. That is, a locally free sheaf of 

ideals of rank 1 ( cf. [H], p. 109 ). Then there exists a unique morphism 

g : Z - »  B1 ( a,  R ) such that f = g  0 %  ( cf. [H], 7.14, p. 164).

2.3.5. The Exceptional Divisor E. Let X := B1 ( a, R ). Then the sheaf o f ideals a Ox 

corresponds to a closed subscheme E of X via the surjection

B ( a ,  R ) —>G( a ,  R)

( since G ( a ,  R )  ~B( a ,  R ) / a B  (a,  R ) ) o f  graded rings. Taking Proj, this suijection 

induces a closed immersion

Proj ( G ( a ,  R ) ) —»X.

We let E := Proj ( G ( a, R )) ,  and call it the "exceptional divisor" of X.

The exceptional divisor E is actually an effective Cartier divisor. That is, one 

corresponding to an invertible sheaf of ideals.

In order to see that a Ox is invertible, one considers the ideals a Od + (x i > which 

correspond to a B ( a, R ) (Xi) ( cf. 2.3.2). There is an R-algebra isomorphism

R [ a / x ] ~  B ( a , R ) (x) 

where x e  a (cf. [HIO], 12.6). Therefore, one has to consider the ideals

f l R [ a / X i ]  = ( x 0, ... , x . ) R [ a / X i ]
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i = 0 , . . . ,  n. Now, since Xj = ( Xj /  xl ) Xi, we have that:

a R [ a / x 1] = x 1R [ a / x i ].

This is a principal ideal generated by a regular element ( x j is a unit i n R xl , an over-ring 

of R [ a /  x t ] ) . This shows that a Ox is an invertible sheaf of ideals.

2.3.6. Proposition. The blowing-up morphism k  induces an isomorphism of schemes :

7t lX\ e : X \ E —» Spec R \ V ( a )

where X := B1 ( a, R ).

For a proof of 2.3.6 see [H], 7.13 ( b ), p. 164.

2.3.7. The Normalized Blowing-up. If R is an integral domain, the normalized blowing - 

up of R along I, denoted B1 ( I, R ) ’, is the normalization of the integral scheme B1 ( I, R)

( cf. [H], p. 91) .  If J is a reduction of I, then the normalized blowing-ups of J and I are 

canonically isomorphic ( [T], p. 330). In particular,

B1 ( I, R ) ’ s  B1 ( I", R ) ’ 

where I~ denotes the integal closure of I.

2.3.8. The Proper Transform o f an Ideal. Let ( R, MR, d ) be a regular local ring of 

dimension d, with infinite residue field k. Let X := B1 ( MR, R ), I an MR-primary ideal. 

Let v = ord ( MR, I ), that is, I <= ( MR ) v , but, I <t ( MR ) v+‘. Then the global proper 

transform of I ( relative to the blowing-up n : X —> Spec R centered at MR) is defined to 

be the sheaf of ideals / ’ of Ox such that

( i )  IG X = e vP 

where e is the sheaf of ideals defining the exceptional divisor of X.
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If U = Spec ( R [ M R/ x ] ) i s a n  affine piece of X, then / ’ lw corresponds to the ideal 

I’, where

( i i )  I* =  I (  R [ M r /  x ] ) / ( x ) v.

If x ’ e  X, then the proper transform of I at x’ is defined to be the ideal

( i i i )  c  Ox, ,  .

We remark that, for simplicity, we use the term "proper transform" understanding 

that the center of the blowing-up is MR, although the proper transform can be defined 

relative to a blowing-up whose center might not necessarily be MR.

2.3.9. A Quadratic Transform o f R. Let ( R, MR, d ) be as in 2.3.8. A regular local ring 

( A, Ma, d ) is said to be a quadratic transform of R if

( i )  A = R [ Mr / x ]„ 

where m denotes a maximal ideal of R [ MR /  x ] of height d and x e  MR \  ( MR) 2 is an 

element of a minimal set of generators of MR.

Given an MR-primary ideal I c  R, the proper transform of I to the quadratic transform 

A is defined to be the ideal

( i )  I* :=I’ A

where I’ is the ideal of 2.3.8 ( i i ).

2.3.10. Remark. The ideal I A corresponds to an ideal of the form /', • as in 2.3.8 ( iii), via 

an identification Ox,, • = R [ MR / x ] p , where x is a regular parameter, p is  a maximal 

ideal, x e  p  ( [J], p. 5 ).
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2.3.11. Definition. ( The support o f an R-module ) .  The support o f an R-module M, 

denoted by Supp ( M ) ,  is defined to be the set

Supp ( M ) := { P e  Spec R : MP *  0 }.

The proof of the following proposition can be found in [Ku], p. 79.

2.3.12. Proposition. If M is finitely generated, then

Supp ( M ) = V ( Aim ( M ) )  = { P e  Spec R : P => Ann ( M ) } .

2.3 13. Definition. ( The Support o f an Ideal) .  The support of an ideal I is defined as the 

support of the R-module R / 1. That is,

Supp ( I ) := Supp ( R / I ) = { P g  Spec R : RP *  IP }

where IP = IR  P.

2.3.14. Proposition. If I is an ideal of R, then

Supp ( I )  = V ( I ) .

Proof. By 2.3.12,

( i ) Supp ( I ) = Supp ( R / 1 ) = V ( Ann ( R / 1 ) ) .

Claim. Ann ( R / 1) = 1.

Proof of claim. Let r e  Ann ( R / 1 ) .  Then r ( 1 + I ) e  I. Hence, r e  I. Therefore, 

Ann ( R / 1) c l ,  and, since the other inclusion also holds, the claim is proved. 

Substituting in ( i ), 2.3.14 follows.

2.3.15. Definition. ( The Support o f a Sheaf ) . Given a sheaf ST over a scheme X, its 

support Supp &  is defined as

Supp := { P e  X : ^ P^ 0 } .



20

2.3.16. Definition. ( The Support o f a Sheaf o f Ideals) .  The support of a sheaf of ideals 

J cz O x, denoted by Supp J, is defined to be the support of the sheaf Ox/ J ,  that is,

Supp J := Supp ( Ox /  J ) ,  

and /  is said to be finitely supported if

Ox.x / / x = 0 (or,equivalently,if Ox, X= J X) 

for all but finitely many x e  X.

If I is an MR-primary ideal of height d, then Supp ( I ) = { MR } due to2.3.14. As for 

the support of a proper transform / ’ , we have the following results.

2.3.17. Proposition. Let ( R, Mr , d ) be a regular local ring of dimension d, I an MR- 

primary ideal, / ’ the global proper transform of I. Then Supp / ’ £  E, where E is the 

exceptional divisor ( 2.3.5 ) . That is, Supp / ’ is a proper algebraic subset of the 

exceptional divisor E of X = B1 ( MR, R ) .

Proof. The exceptional divisor E corresponds to the invertible sheaf of ideals MR Ox £  

O x. If Mr = ( x 1, . . . ,  x d) ,  then, locally, this sheaf of ideals is a principal ideal generated 

by a regular element x f, and

Mr R [ Mr/ X i] = ( X i ) R [ M r/ xj]

for some i=  1,... ,d.

Let li be the ideal corresponding to / ’ ui»where Uj = Spec ( R [ MR /  x t ] ) .  Then,

I1 = I ( R [ M R/ x 1] ) / ( x i )''.

So, in order to show that Supp / ’ s  E , it suffices to show that if P e  Supp ( I , ) ,  then P *  

( x ( ) ,  and x (e  P.
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To show that P *  ( x t) ,  suppose that, on the contrary, P = ( x t) .  Then, ( x , ) 2 1,, 

and, thus, x i I I( which is not the case.

To show that X| e  P, suppose that x( €  P. Since

( x1) vI1 = I R [ M r/x1] c:I1,

we have that

I c  IR  [ Mr /  x i ] o  R c  P n  R =: Po.

But, since we are assuming x ( <£ P, P e  Ui c  X, and Ut c  X \ E = Spec R \ { MR } ( cf. 

2.3.6 ) . This means that P0 *  MR, P0 a prime ideal of R. But I c  P0 and, hence,

m r= V i c  V p0 = p ,

which is a contradiction. Therefore, x i e  P. This finishes the proof of 2.3.17.

2.3.18. Corollary. If d = 2, then Supp / ’ is finite.

Proof. In this case E = P '. So, by 2.3.17, Supp / ’ is a closed set in P 1 ( in the Zariski 

topology) .  Hence, Supp / ’ must be finite.

The following example shows that if dim R > 3, then / ’ may not be finitely 

supported.

2.3.19. Example. Let R = k [ x, y, z ] (x,ytJ!), with k an infinite field, and consider the Mu- 

primary ideal I = ( x 3, y 2, z ) .  Then R [ M R/ x ]  = R [ y / x , z / x ] ,  and if we let

x , := x , y , := y /  x , z , := z /  x , 

then R [ MR / x ]  = R [ y i , Z ! ] ,  and

I R [ M R/ x ]  = ( x 13, x 12y 12, x 1z , )  = ( x I ) ( x 12 , x 1y 12, z 1) .

Therefore,

r = ( x , 2. X i y i * , Z | ) .



Then I’ c (  X j, Zi ) c  ( X i , y , - a ,  z t ) ,  a  e  k. Since k is infinite, 

Supp ( I ’ ) = V ( I ’ ) = { P e  SpecR [y , , z ,  ]:  P



Chapter 3 

The Operation M

3.1.. Basic Definitions and Properties Related to the Operation M .

Let A be a regular local noetherian ring with maximal ideal MA, and J an ideal of A. 

Since A is noetherian, J has a minimal primary decomposition (2 .1 .14). That is, there is 

an expression of the form

J = Q, n ... n  Q ,, Vq , = P ,, i = 1 n

with P i , . . . , P„ n different primes and Q j * n , . jQi (2.1.13).

3.1.1. Proposition. For any proper ideal I o f A

ht ( I ) = min { ht ( P , ) : Pi e  ass I } = min { ht ( P ) :  P a minimal prime ideal o f I}. 

Proof. By definition, ht ( I ) = inf {ht ( P ):  I £  P e  Spec A } (2.1.1) .  But the minimal 

elements are, precisely, the minimal members of ass I ( cf. [Sh],4.24 ). Therefore, the 

conclusion of 3.1.1 follows.

We will assume, for simplicity, throughout the rest of this section that the ring A is 

3-dimensional and consider ideals J of A having height 2 or 3.

3.1.2. Corollary. If J is an ideal such that ht ( J ) > 2, then J has at most one embedded 

component, that is , ass J consists of isolated primes except for at most one embedded 

prime (cf. 2.1.15).

Proof. It follows from 3.1.1 that, since ht ( J ) 2:2,

ht ( Pi) = 2 or 3, i = 1, . . . ,  n.

23
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But, Pi £  Ma for all i = 1, . . . ,  n. Therefore, Pi = MA or ht ( Pf) = 2, in which case P( is a 

minimal or isolated prime of J. Since all the primes Pi are different, the announced 

conclusion follows.

3.1.3. Proposition. An ideal J o f A is MA-primary if and only if ht ( J ) = 3.

Proof. Suppose ht ( J ) = 2. Then there is a P e  ass J, ht (P) = 2 such that Vj c  P. 

Therefore V J *  MA, that is, J is not MA-primary.

Now, suppose ht ( J ) = 3. Then 3.1.1 implies ht ( P i) = 3 for all i = 1, . . . ,  n. So, 

since, by 3.1.2 there can be only one embedded component of J, i = 1 and, thus, J = Qi with 

V Qi = Pi = Ma . That is, J is MA-primary. Proposition 3.1.3 i s , thus , proved.

We remark here that in the present context, that is, when the ring A is 3-dimensional 

and ht ( J ) > 2, then :

( a )  h t ( J )  = 2 o J i s n o t M A-primary,and

( b )  ht ( J ) = 3 <=> J is MA-primary.

3.1.4. Proposition. Let J be an ideal of A of height 2 and such that J has no embedded 

component. Then depth ( A /  J ) = 1.

Proof. By 2.1.22, depth ( A /  J ) *  0, and by [Ku], 3.9, p. 185, the inequality

depth( A / J )  £ dim( A / J ) 

holds. On the other hand, 2.1.2 implies that

d i m ( A / J )  < 3 - 2 = 1 .

Therefore 0 *  depth ( A /  J ) < 1. That is, depth ( A /  J ) = 1.

We can conclude that there are two possibilities for an ideal J c A  having height 2.
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3.1.5. Proposition. If ht ( J ) = 2, there are two possibilities for the primary decomposition 

of J :

( i ) If J has no embedded components ( depth ( A / J )  = l ) :

J = Q, n  ... n  Q„, Vq , = P, , i = 1, . . . ,  n ;

Pi an isolated prime, ht ( Q i ) = 2 for all i = 1, . . . ,  n.

( i i ) If J has an embedded component ( depth ( A / J )  = 0 ) :

J = Q, n ... n  Q„.i r \ N ,  VQi = P,, i =1, . . . ,  n ; VA/r = MA ;

Pi an isolated prime, ht ( Q t) = 2, i =1, . . . ,  n - 1 ,  and ht ( N  ) = 3.

3.1.6. Definition. Let J be a proper ideal of A with ht ( J ) = 2 and minimal primary 

decomposition J = Q, n  ... n  Qn. Then, the ideal J0 is defined as :

Jo 0hi(Qj) = 2 Q J •

That i s :

( i ) In case depth ( A /  J ) = 1 (3.1.5 ( i )) ,

Jo = J

( i i ) In case depth ( A /  J ) = 0 (3.1.5 ( i i ),

J0 = Qi n . . . n Q „ . i  

where Q„ = N , the embedded component.

3.1.7. Remark. ( i ) In any of these two cases J0 is defined in terms of the isolated

( non-embedded) components of the minimal primary decomposition of J. Since these are 

uniquely determined ( [Sh], 4.29), J0 is well defined.

( i i ) We define J0, in general, that is, for rings A of any dimension as :

Jo := n  { Qj : Qj is an isolated component}.
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3.1.8. Definition. If J is MA-primary, we will let J0 := A .

We remark here that Definition 3.1.8 holds in general for any dimension. In our 

present context it says that J0 := A when ht ( J ) = 3 ( cf. 3.1 ( b )) .

3.1.9. Example. Let A := k [ x, y, z](x,y,z ) , where k [ x, y, z ] is a polynomial ring in 3 

indeterminates over an infinite field k, and let J = (xy, y2, z) A. Then

J = (y, z) n  (x, y2, z) .So, J0 = ( y, z ) ,  N =  ( x, y2, z ) .

The following proposition provides us with a characterization of the ideal J0.

3.1.10. Proposition. Consider the scheme X := Spec A, and let U := X \ {MA}.

Let Y := Spec ( A / J ) c X a s a  subscheme, where J denotes an ideal of A of height 2, 

having an embedded component. If Y0’ := Y n  U, then the scheme-theoretic closure Y0 

of Y0’ corresponds to the ideal J0 . We can thus write Y0 = Spec ( A /  J0 ).

Proof. Consider the closure Y0 of Y0’ in X. By definition,Y0 is a closed subscheme of X 

( say, defined by an ideal H of A ) containing Y0’ and such that if Y, is another closed 

subscheme of X containing Y0\  then Y0 £  Yi. Let W be the closed subscheme of X 

defined by J 0 . First, we claim that Y0 c  W. In order to see this let N  = ( y„ ... ,  yJA, 

where N  is the embedded component o f J ; D ( y i ) = X \  V ( y I) (cf. [H], p. 70). To see 

that Y0’ c= W, it suffices to show that Y0’ Id(yi) £  W L(yd for

i = 1,. . . ,  m. In order to see this, consider the ( restricted) associated sheaves of the ideals 

J0 and J. Namely

(t) Jo L , ; J  L(Yi) i = 1, . . . ,  m.

These sheaves correspond to the ideals

( i ) ( Jo )v I = ( Ql )vi ... O ( Qn-1 )y1
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and

(  i i  )  Jyi =  (  Qi ) y i  O  . . .  O  (  Q n .  i ) y i  O A T y ,

respectively ( cf. [H], 5.1 (c), p. 110) for i = 1, . . . ,  m. But, since yi e  N, N vi= An  

and, hence, JYi = ( J 0 Xi • We have, thus that the sheaves (f), both correspond to the same 

ideal. Therefore, they determine the same closed subscheme of X ( cf. [H], 5.9, p. 116).  

That is,

Yo’ L(yi) = WL(yi) i = 1, . . . ,  m.

Since W is closed in X, Y0 £  W.

We can conclude that H □  J 0 . Next, we show that, indeed, H = J 0. First, we note 

that, since W lu = Y0lu , it follows that H and J 0 have the same primary components of 

height 2: to see this, let P e  ass H, P an isolated prime, then the corresponding component 

( of height 2 )  is HAP n  A (cf. [AM] ,4.8 and 4 .9). Now, P e  ass J 0 also. Therefore, the 

corresponding component is given by JoApO A. It turns out that these components are 

actually the same one, since there is a bijective correspondence between the prime ideals 

of A P and the prime ideals P’ of A such that P’ £  P (cf. [AM], 3.11 ( i v ) )  under the natural 

mapping A —» AP and, so, since they correspond to the same ideal P e  A, they must be 

equal. Now, the fact that Wlu = Y0 lu, implies that if P is an isolated prime of J 0 , then it 

is also an isolated prime of H. So H and J 0 have the same primary components of height 

2. There are two possibilities for H: either ( i ) H = Qi n ... n Q , . ,  = J 0 or ( i i ) H =

Qi n  ... n  Q, . , n  N ’ , N ’ being an embedded component. But ( i i ) is not possible 

because J 0 £  H. This means that H = J 0, as desired.

We can now prove the following result.
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3.1.11 .Proposition. Let I c  J be two ideals of A such that I = I0 n N , J  = J 0n M ,

where V/V = Vm  = MA . Then, I0 £  J o •

Proof. Let X := Spec A and U := X \ {MA} as in 3.1.10. If we let Y := Spec ( A / 1 ),

Z := Spec ( A /  J ), then Y lu 2  Z L , and

c l ( Y L  ) 2 d ( z U

where cl ( )  denotes scheme-theoretic closure. These closed subschemes correspond to I0 

and J o by 3.1.10. Therefore,

Spec ( A / I 0) 2  Spec ( A / J 0 ).

That is, I0 c  J0 as claimed.

We will now define the ideal M ( J ) ,  where J is an ideal of height 2 or 3. The next 

one is the main definition of this chapter. This definition holds in general for a ring of any 

dimension.

3.1.12. Definition o f the Ideal M ( J ). Let J be an ideal of A. Then

M ( J )  = ( J : J 0).

3.1.13. Basic Properties o f the Ideal M ( J ).

( i ) Since J0 /  J is an A-module, M ( J ) = Ann ( J0/  J ).

( i i ) If J is MA-primary, M ( J ) = J.

Proof. In this case J0 = A (3.1.8) and M ( J )  = ( J : A )  = J.

( i i i ) If dim A = 3 and ht ( J ) = 2 and J has no embedded component, then M ( J ) = A. 

Proof. In this case, J = J 0 ( 3.1.6 ( i ) )  and M ( J )  = ( J : J )  = A.

( i v ) If dim A = 3 and ht ( J ) = 2 and J has an embedded component N, then M ( J ) = 

(N :  Jo).
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Proof. In this case, we can write J = J 0 o  N  (3.1.6 ( i i )) .  From this it follows that

M ( J )  = ( J 0n i V :  Jo)  =  ( i V : J o ) .

The interesting case is that of 3.1.13 ( i v ).

3.1.14. Proposition. If J has an embedded component and ht ( J ) = 2, then M (J ) is an 

MA-primary ideal.

Proof. Let N  be the embedded component of J. Therefore, if r e  MA, there is an n e N  

such that r° e  N . Hence, r>J 0 G  JVJ0 G  N . This says that r°e ( N : J 0) = M ( J )  (3.1.13

( i v )) .  That is, V M ( J ) = MA, and the announced conclusion follows.

3.2. The Operation M and the Integral Closure of an Ideal.

In this section we let ( A , MA, d ) be a regular local ring of dimensin d and J an 

ideal of A.

We will show that if J = J‘, i.e. if J is integrally closed, then M ( J )  = M (J)'. First, 

we have the following proposition.

3.2.1. Proposition. Let I, J be any two ideals of A such that IG J , and I is integrally closed 

( I = I'). Then ( I : J ) = ( I : J )".

Proof. We will show that ( I : J ) " c ( I : J ) .  Let a e  ( I : J )*, then a satisfies a relation

( i ) a0 + ... + b( an-‘ +. . .  + b„ = 0

where bte  ( I :  J ) ‘.

Claim. Let f  e  J. Then af e  I".

Proof of the claim. Multiply ( i ) by f n:

( i i )  (af)" + ... + (b |f* )(af)n i + ... +b„ f n = 0.
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Since b, e  ( I : J ) *, bi is a linear combination of elements CiC2 ... Q , with Ci, c2, ..., cte  

( I : J ). Therefore, b( f 1 e  I1 and ( i i ) can be expressed as:

( i i i )  ( a f g  ( a f )n l + ... + g, = 0  

where gi e  I*. This shows that af 6 I" and proves the claim.

Now, since I = I”, if f  e  J, then af e  I. Hence aJ g  I. That is, a e  ( I : J ). Therefore, 

( I : J ) ’c ( I : J )  and the proof is complete.

3.2.2. Corollary. If J is an ideal of A such that J is complete ( integrally closed) ,  then M 

( J ) = M ( J )'.

Proof. Let us assume that J is not MA-primary. Then, ifJ  = J0, M ( J )  = A and there is 

nothing to prove. Otherwise, J c  Jo and, by 3.2.1, ( J : J 0) = ( J : Jo)" .  That is, M ( J ) = 

M ( J )". If J is MA-primary, M ( J ) = J and, since J = J“ , M ( J )  = M ( J ) _. Corollary

3.2.2 is , thus, proved.

We now show that there may be two ideals J c  I such that M ( J ) < z M ( I ) .

3.2.3. Example. Let A be as in 3.1.9 . Then J = (xy, y2, z ) c l  = (x, y2, z). However,

M ( J ) = ( ( xy, y2, z ) : ( y, z ) ) = ( x, y, z )

and

M ( I ) = ( ( x, y2, z ): A ) = ( x, y2, z ).

Therefore, M ( J ) q r M ( I ) .

Next we show that if we impose some conditions on the ideals J c: I, the inclusion 

M ( J ) c M ( I )  holds.

3.2.4. Proposition. Let I c  J be two ideals of A satisfying the following conditions:

( i ) J is integral over I ( I‘= J");
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( i i ) J is complete ( J = J");

( i i i ) J o is integral over I0 ( I0"= Jo).

Then M ( I ) c M ( J ) .

Proof. Let a e  M ( I ) and b e  J0 .

Claim, ab is integral over J.

Proof of the claim. Since b e  J0 and I0" = J0", there is a relation

( i )  b"+.. .+tibn'* + ... + 1„= 0 

where t, e  ( I0 )*. So, multiplying by an:

( i i ) (ab)n +... + (t(a 1 )(ab)n i +. . .  +tnan = 0.

As in the proof of 3.2.1, tia‘ e  I* for i = 1, . . . ,  n. So,

( i i i ) (ab)n +.. .  +g{ (ab)n l +.. .  + g„ = 0 

where g f e  I1. Since I* c  J*, ( i i i ) shows that ab is integral over J, proving the claim.

Now, since J is complete, ab e  J. This shows that a e ( J : J 0) = M ( J )  and, hence, 

that M ( I ) c : M ( J ) .

Next, we will see that M ( J ) is not necessarily integral over M ( I ), even if the ideals 

I c J  fulfill the conditions of 3.2.4.

3.2.5. Example. Let A = k[x, y, z](I,y,z) and let I c  J be the ideals of A given by 

I = ( x2, xy, z2) and J = ( x2,xy, z2, x z ). Then :

( i ) J is integral over I.

Proof. It suffices to show that xz is integral over I. But xz satisfies the relation

(xz)2 - x2z2 = 0.

Since x2z2 e  I2, xz is integral over I (2 .2 .7 ).
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( i i ) J is complete.

Proof. In 2.2.15 we saw thar I'=J.

( i i i ) J o is integral over 10 .

Proof. We have that

I = ( x, z2) n  ( x2, y, z2) ,  J = ( x, z2) n  ( x2, y, z ).

Therefore, 1 0 = Jo = ( x, z2).

One can now compute M ( I ) and M ( J ):

M ( I ) = ( ( x2, y, z2) : ( x, z2)) = ( x, y, z2)

M ( J ) = (( x2, y, z ) : ( x, z2)) = ( x, y, z) .

So, M ( I ) c  M ( J ), as expected. We will see, however, that M ( J ) is not integral over 

M ( I ).

( i v ) M ( J ) is not integral over M ( I ).

Proof. We compare the multiplicities e ( M ( I ) )  and e ( M ( J )).

To compute e ( M ( I )) ,  note that A /  M ( I ) has {1, z } as basis. So, 

e ( M ( I ) )  = X ( A / M ( I ) )  = 2

(2.1.12).

Similarly one finds that,

e ( M (  J ) )  = 1

and, comparing multiplicities, e ( M ( J ) ) * e ( M ( I ) ) .  This shows that M ( I ) is not a 

reduction of M ( J ) because the multiplicity o f an ideal is preserved under reduction 

(2 .2 .2 ). This says that M ( J ) is not integral over M ( I ) (2 .2 .8).



Chapter 4 

The Main Inequality

4.1. Introduction.

Let (R, M r)  be a 3-dimensional regular local ring having infinite residue field k, I an 

MR-primary ideal and let (A, MA) be a quadratic transform of (R, M r) ,  I, the proper 

transform of I with respect t o A. We define the ideal I“:

I~:= M (I,).

Assuming I, has height 2 and an embedded component, I~ is MA-primary (3.1.14). 

Otherwise, I~ = A (3.1.13 ( i i i)). In any case, it makes sense to consider the multiplicities 

eA ( I~) and eR ( I ). It is our hope that the inequality

( # )  eA(I~) < eR ( I ) 

is valid. In this chapter we propose a strategy to show this inequality, which leads to an 

actual proof if  certain additional assumptions on the generators of I, are made (cf. 4.3.3).

We will assume that I is an MR-primary ideal generated by a system o f parameters 

ti, t2, t3 forming a regular sequence. It follows that the proper transform I, o f I with respect 

to A is also generated by 3 elements. We will assume that, actually, the minimal number 

of generators of any minimal reduction of I, is 3, that is, that s ( I , ) = 3.

Let Z := Bi (A, I , ), Zo := Spec A and consider the blowing -up morphism

7 1 Z —> Z)

33
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In 4.2 we shall see that the condition s ( I , ) = 3 implies that if o e  Zo is the closed 

point, then n -1 (0) c  Z is irreducible, so it has a generic point. So let Q be the generic 

point of 7t ■1 (o) and let B := Qz,q . ( Note that B is a 1-dimensional local ring.)

The idea to prove ( # )  is to verify the following two inequalities:

( i )  eB(I~B) < e R( I )

( i i )  e A( r ) ^ e B( r B ) .

Clearly, ( i ) and ( i i ) together imply ( # ) .

We now state a theorem of D. Katz that reduces the study of the multiplicity of an 

ideal in a d-dimensional ring to that of the multiplicity of an ideal in a 1-dimensional ring. 

For a proof see [K], 1.1.

4.1.1. Theorem. Let (R, MR, d ) be a d-dimensional CM local ring; I = (a, , ..., ad) an MR- 

primary ideal generated by a system of parameters. Let

i t : B1 (R, I ) —» Spec R 

be the blowing-up morphism of R along I. Then 7t *1 (0) is irreducible, where 0 is the 

closed point of Spec R and if P is the generic point of 7t -1 (0), then

6r ( I ) = Cox.p (I Ox.p )

where X := B1 (R, I ).

In section 4.2 we will prove that the inequality ( i ) holds. As for ( i i ), if  I, is M A - 

primary, then I~ = Ii (3.1.13 ( i i )), thus eA ( I") = eA ( h ). On the other hand, 

eB (Ii B) = eA (h ) (4.1.1). Therefore ( i i ) holds in this case.

If h is not MA-primary, we do not know what happens in general.However in case 

R is of the form k[x, y, z](*,y,z), where x, y, z are indeterminates and k is an algebraically
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closed field (and, so, A is of this form too) and if It satisfies some additional conditions 

( those of 4.3.3 ), we can show that eA( I~) = eB (I~ B). That is, that ( i i ) holds. This is 

done in 4.3.

The strategy we propose is based on the proof of a theorem of B. Johnston ( cf. [J], 

2.2). This theorem states that in a regular local ring of dimension d having infinite residue 

field, the inequality eA ( I , ) < e R( I )  holds whenever the ideal h is an MA-primary ideal. 

Our proof contains Johnston’s case, and our presentation in this case is, however, more 

geometric.

After we have proved the main theorem of this chapter (4.3.12 ), we discuss the 

special case where the generators of I are monomials. This is done in section 4.3.

4.2. The inequality eB( I” B ) < eR( I ) .

In order to show that the inequality eB ( I" B ) < eR ( I ) is valid, let us recall that if 

7 i: Z —> Zq is the blowing-up morphism, where Z := B1 (A, ft), Zo := Spec A, then we 

defined B := Oz,Q, Q being the generic point of 7C-1 (0),  where 0 is the closed point of 

Z0. In order to show that B is well defined, we need to show that 7t ■1 (0) is irreducible.

4.2.1. Proposition. If 0 is the closed point o f Z0, then % -1 (0) is irreducible.

Proof. We have that

re -1 (0) = Proj (Gr (A, I,) <8>Ak 

where A := A /  I, , and k is the residue field of A. There is a suijective morphism of 

(A / 1, )-algebras

V : A [ x „ x 2, x 3] - > G r ( A , I , ) = © in2o(ii  m/ i , m+1 )

given by
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\|/(x ,) = Ui+(I,)2, i =  1 ,2,3  

where u,, u2, u3 are the generators of Ii. Tensoring with k over A, we obtain a suijective 

morphism

k [x„ x2, x3 ] - » Gr (A, I,) ®A k .

Taking Proj, we get a closed embedding

j : 7t -1 (0) (Pk )2.

Since s ( I2 )=3,

dim Proj (Gr (A, I,) ® Ak) = dim n - » (0) = 3 -1  = 2 

(2.2.10 ( i i )). Therefore, the map j is the identity map and it -1 (0) = (Pk )2. This shows that 

it -1 (0) is irreducible. Proposition 4.2.1 is, thus, proved.

Next, we want to show that the inequality eB (I“ B ) < eR ( I ) holds. This inequality 

can be expressed as

( i )  eB(I~) < eB (IB*), 

where B’ := Ox,p , since eR( I ) = eB-(IB’ ) ( cf. 4 .1 .1 ).

Note that since h e  I~ and, hence, I,B c  I~B, the inequality

eB (I“B) ^ eB (I,B)

holds provided the ideal IjB is MB-primary ([M], 14.4). So, in order to prove that the 

inequality ( i ) holds, it suffices to prove that the inequality

eB(I ,B )< eB. (IB’ )

holds.

First, we will show that the ideal I,B is Ms-primary and, second, that the latter 

inequality is valid.
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4.2.2. Proposition. The ideal IjB is MB-primary.

Proof. First we note that B = Oz>Q = B (A, I,)(Q) ( cf. [H],2.5 (a), p. 76). On the other 

hand,B (A, I,)(Q) s  A [I, /  x ]P , for some prime ideal P of A [II /  x ], x <2 P (cf. [HIO], 

12.7 ). Also, we know that I, A [h /  x ]= (x)A [h /  x ], where x is a regular element (cf. 

[HIO], 12.8 or 2.3.5). Therefore,

I,B = I, A [ I , / x ] P = (x)A [ I , / x ] P.

Since x is a non-zero divisor of B, we have that the set {x} is independent in the sense of 

( [Ku], 4.13, p. 144) and, hence ht (IiB) =1 ( cf. [Ku], 4.14, p. 145). Since dim( B ) =1, 

Mb is the only prime belonging to I, B. So, I, B is MB-primary.

4.2.3. Proposition. The inequality

eB( I.B) <  eB ( IB’ )

holds.

Proof. Consider the following solid diagram of schemes.

q>’ : Z ’ —- X ’

q 4  4q’

q>: Z —  X

n 4 4tc ’

\ | / : Z0 -> X0

where Z0 := Spec A, Xo := Spec R, Z := B1 (A, I i ), X := B1 (R, I ), Z ’, X ’ the respective 

normalizations; 7t, it’ blowing-up morphisms. Since the given morphisms are birational, 

all the function fields can be identified with K (R), the fraction field o f R.
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The universal property of the blowing-up ( 2.3.4 ) implies the existence of the 

birational map tp :Z —» X , since (\jfo7t)-* I* Oz = ( x r) Ir Oz is invertible in Z . The 

morphism tp induces the morphism <p’ : Z ’ X’ and the diagram commutes.

Let W:= tt * (0) c  Z , W’:= %’ - 1 (O’ ) £  X . We write down the irreducible 

components of T| (W) £  Z ’ andrf -l (W’ ) c  X’ as :

rj -1 (W) = E! u ... u E s ; y\ ' -> (W’ ) = D, u ... u D r

and let

Wj := Oz'.qj , j =1, . . . ,  s ; Wj’ := Ox-,pi , i =1, . . . ,  r 

where Q  e  Ej, P, e  DI are the generic points.

In order to show that the inequality eB (Ii B) < eB- (IB’) holds, we apply the 

formulae:

( i ) eB (I, B) = I ,  s js , [k (Q,):  k (Q )] eWJ (Ii Wj)

( i i ) eB.(IB’ ) = I , sisr [ k ( P , ) : k ( P ) ] ew t( IWf)

( cf. [ZS], Corollary 1, p. 299 ).

After these introductory remarks, now we prove 4.2.3 as follows :

( a ) To show that there exists a surjective morphism W -> W’ .

( b ) To show that s < r and that

W3 = W,’ , j = l , . . . , s .

( c ) To compare the terms of ( i ) with those of ( i i ) and to show that the inequality 

eB( I, B) < eB- ( IB’ ) holds.
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Proof o f ( a ). We will show that the morphism \ | / : Zo —» Xo induces a finite suijective 

morphism W-» W’. To check this, we look at the standard affine pieces that cover X 

and Z.

The scheme X ( resp. Z ) is covered by affine open sets isomorphic to:

Spec R[I /  tj ] ,  j  =1,2,3  (resp. Spec A[I, /  Uj], j =1 , 2 , 3 ) .

Let us consider the affine sets corresponding to j =1, in order to simplify the notation. 

The other cases can be treated in a similar way.

Consider the affine piece U of X (resp. V of Z ) given by

U= Spec R[t2 / t„ t3/tj ] (resp. V= Spec A[u2 /  ul5 u3 /  ut ]).

Then the morphism vjr induces a morphism V —» U, corresponding to the canonical 

homomorphism R[I / 1, ] -»  A[L /  u, ], given by ti /  tj *-*• u ( /  Ui , i = 2, 3 ,  since 

11 / 1! = u i /  Ui in K (R), the fraction field of R.

The induced map of fibers can be identified with the map 

k [x2\  x3’ ] -»  k [y2\  y3’ ] ; Xi -»y, 

wherexi’ = x ! / x i  , y f’ = y t/ y i  , i = 2, 3. This map induces a suijective map

Spec k [y2\  y3’ ] - >  Spec k [x2’, x3’ ].

Therefore, a finite suijective morphism

( Pk)2 - > ( P i ) 2

We saw that W = ( Pk )2 (4.2.1). One can also prove in a similar way that 

W’ = ( Pk ) 2, provided s ( I ) =3. But, indeed, this is the case since

h t ( I ) < s ( I ) £  dim (R)
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( cf. 2.2.11 ) and, since I is MR-primary, ht ( I )=3 (3.1.3 ). Therefore, s ( I ) =3 and 

W’ = ( Pk)2 and,thus, there is a finite suijective morphismW —> W’. This completes the 

proof of ( a ).

Proof of ( b ). The local rings W j, j =1, . . . ,  s ; W/  , i =1, . . . ,  r are integrally closed, 

noetherian domains of dimension 1. Therefore, they are DVR’s ( cf. [M], 11.2).

The morphism <p’ : Z ’ —> X’ is finite. Therefore, given an irreducible component 

Ej- o ft | 1 (W) c Z ’, there is an irreducible component Dr of r\’ 1 (W’ ) such that 

(p* (Ej ) = D r. This means that Wr dominates W Y ( via the finite dominant morphism 

W —> W’ of ( a )) . Therefore Wr = WY due to the maximality of valuation rings ordered 

by domination ( cf. [H], 6.1 A, p. 40 ). Therefore s < r and, after reordering, Wj = W’j , 

j =1, . . . ,  s. This proves ( b ).

Proof of ( c ). Finally, we compare the terms of ( i ) and ( i i ). Since s < r, we only need to 

compare s terms. Also, since Wi= W \ , i =1, . . . ,  s , it suffices to show that

( i i i )  [k(Qi):  k ( Q )] < [k(P,):  k ( P )] i = l , . . . , s

and

( i v ) ewl (IiWi) < eWi (IW,) i =1, . . . ,  s

hold.

Proof of ( i i i ). k (Q,) = Ws /  max (W,) = W’./max (W’,)  = k (P.), and since k (P) c k  (Q),

k (Pt ) = k (Q ) □  k (Q) 2  k (P) 

and the inequality ( i i i ) holds.

Proof of ( i v ). Let v ( )  denote the valuation ( order) of the DVR Wj = W’j. Then

v ( J ) = eWJ ( JWj) = ord ( J )
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where J is any ideal, and if ord ( J ) = £, then JWj = ( t «). Since I = x r I, as sets, 

e WJ(IWJ) = v ( I )  = v ( x ' I 1) = r v ( x )  + eWJ(IWJ) 

and rv ( x ) > 0 because each of these ideals has center in R [ MR / x ] at an ideal a e

R [ M r /  x ] containing x. Therefore, ( i v ) holds.

This shows that the terms of ( i ) are smaller than those of ( i i ). Therefore the

inequality eB( h B ) < eB( I B ’ ) holds. This proves 4.2.3.

4.2.4. Corollary. The inequality eB(1“ B ) < eR( I ) holds.

Proof. The inequality eB ( I~ B ) < eB ( h B ) holds ( cf. [M], 14.4 and 4.2.2). So, combining 

this inequality with that of 4.2.3, we get that the inequality e B ( T B ) < eB- ( I B ’ ) is valid. 

The desired conclusion follows since eB ( I B ’ ) = eR( I ) by 4.1.1.

4.3. The Inequality eA( r ) < e R ( I ) .

We will assume throughout this section that the ring R is of the type 

k [ x, y, z ] (x,y, z), a polynomial ring in three indeterminates x, y, z over an algebraically 

closed field k, localized at the maximal ideal ( x, y, z ) c  k [ x, y, z ]. If A is the quadratic 

transform of R, then A will be of the same type. So, let us write A = k [ a , p, y ] (a.p,Y), 

where oc, p, y are three independent variables.

We will prove that the inequality

( #  ) eA( r  ) < eR( I )

holds, where I~ := M ( I , ) and It satisfies certain additional conditions ( those of 4.3.3 ). 

The precise statement is given in Theorem 4.3.12.

The proof of ( # )  depends heavily on the equality

( * )  X ( A / r )  = X ( B / I " B )
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where X ( )  denotes the length o f a module; and most of this section is devoted to proving 

this equality.

The proof of ( * ) is very technical and rather long, and it consists of everal parts. 

Here is an outline of several steps that will lead us to prove it and, hopefully, help the 

reader to follow it better.

( i ) First, we start by giving a description of the ring B. We do this in 4.3.1.

( ii) Second, we show that A , ( A / J )  = A, (B/JB) ,  where J is an MA-primaiy ideal 

satisfying certain condition ( cf. 4.3.2).

( i i i ) Finally, we show that if the generators of L satisfy some conditions ( cf. 

4.3.3), then the ideal I” := M ( L ) will satisfy that condition of 4.3.2 and, hence, satisfy the 

equality ( * ). This constitutes the longest step and consists of several propositions.

Once ( * ) has been proven, we proceed to prove the main theorem of this chapter

(4.3.12).

Let us now get started with the aforementioned steps.

First of all we will give a description of the ring B := Oz,Q. This ring is well defined 

since we are assuming that s ( I , ) = 3 ( cf. 4.2.1). We recall that Z := B1 ( A, I , ), I, 

the proper transform of the MR-primary ideal I to the quadratic transform A, and Q the 

generic point of n- 1 ( 0 )  (4.2.1),  where n;: B1 ( A, I ,) —» Spec A and 0 is the closed point 

of Spec A.

We are assuming throughout this chapter that I is generated by 3 elements. So, it 

follows that h is generated by 3 elements..
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4.3.1. Proposition. Let L be the proper transform of the MR-primary ideal I to the 

quadratic transform A of R. Then if A = k [a , P, y  ] (a, ftY), and if I, = ( a, b, c ) ,  we have 

that the ring B := Oz,Q satisfies

B »  k (  8, e  )  [oc, p, y ] <„,&Y> /  Af k ( 8, e  )  [oc, P , y W Y) 

where a , p, y, 8, £ are independent variables and K  := ker 4*, 4* the suijective ring 

homomorphism given by

4#: k [ ot, p, y , 8, e ] -> k [ot, p, y ] [ a /  c , b / c ] 

a*-»a,p»-*p,y >-*y ,S>-»a/c,E>-»b/c.

Proof. It is a consequence of 2.3.2 ( i ) and [HIO], 12.7 that the ring B := OztQ satisfies 

the following isomorphism

( i ) Oz,Q — A [ a / c ,  b / c ] (a,p,Y) = k [ oc, P>y](a,p,Y) [ u / c , b / c ] ^ ^ )

= k [ o c , p , y , a / c , b / c ] (a,p.Y).

On the other hand, 4* induces a ring isomorphism

4" : k [ oc, p , y ] [ a / c , b / c  ] k [ cc, p , y ,  8, e ]  IK.

Let ( a,  p, y )  ’ := 4/’ ( oc, P, y ) . This is a prime ideal since

k [ a , p , y ] [ a / c , b / c ] / ( a ,  p , y ) « k [ a / c , b / c ]  

is an integral domain. Now, 4/’ induces an isomorphism of local rings

( i i )  k[cx,p,  y ] [ a / c , b / c ]  (a,p,Y) « ( k [ oc, p, y , 8, e ] /  K  ) („,p.Y)-.

Let S := k [a, p, y , 8, e ] \ ( a , P, y ) and S’ := { s + AT: s e  S }. Then, a direct 

calculation shows that

S’ = ( k [ oc, p , y ,  5, e ] /  Af) \ (  oc, P , y ) ’.
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Therefore, ( i i ) can be expressed as

k [ o ,  P , Y ] [ a / c , b / c W T)- ( k [ a , f t Y , 8 , e ] / J O s . .

But,

( k [ a ,  p , y , 6 , e ] / i i : ) s . « k [ a , p , Y , 8 , E ] s / ^ k [ a , p , Y , 8 , e ] s  

( cf. [Sh], p. 99). That is,

( i i i )  ( k  [ a ,  p , y ,  8 ,  e ]  / AT)S- » k [ a ,  p , y ,  $ £  ] (B>R.T)/ l ^ k  [ a ,  P , y ] (a>Ry). 

S in c e  8 , e  are in v e r tib le  e le m e n ts  in  k  [ a ,  P, y ,  8 , £  ] (a,PtY>

( i v ) k  [ a ,  p,  y , 8,  e  ] (aPlY)= k  ( 8 , e ) [ a ,  p , y W Y)

Finally, putting together ( i ), ( i i ), ( i i i ) and ( iv ), one obtains the desired result. Namely, 

that

B «  k  ( 8 ,  e ) [ a , p , y ] (a,p.Y)I K k  ( 8 ,  e  )  [ cc, p ,  y ] (a, p,Y).

This completes the proof of 4.3 .1.

Now that we have given a description of the ring B ( step ( i ) ) ,  we proceed to 

complete step ( i i ).

4.3.2. Proposition. Let J be an MA-primary ideal of A such that 

t f k ( 8 , e ) [ a , p , y ] (a,&Y) G  J k  ( 8 ,  e )  [ a ,  p ,  y ] (O.P.Y)

where K  is as in 4.3.1, and the right member of the inclusion denotes the extension of the 

ideal J under the inclusion morphism

i : k  [ a ,  p , y ] ( a lR„  - k  ( 8 ,  £ )  [ a ,  p,  y ] (a,p.Y) .

Then, the equality A , ( A / J )  = A , ( B/ J B)  is valid.

Proof. Consider the exact sequence

0 - > J - » A - » A / J - » 0 .
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Tensoring with L := k ( 8, e ) over k, one obtains the exact sequence 

0 —> J®  kL —> A ® k L —¥ A /  J ®k L —>0.

Since J c  A = k [ a, p, y  ] (a,„iY), J = J k [ oc, p, y ] (a, Rt) . Therefore,

J ® k L = J k [ oc, p, y ] (a,PlY) ® k k (8,  e ) ,

and one can show that

J k [ oc, p, Y](a.M) ® k k (8,  e ) »  Jk [ a,  p, y ] („,fcY)k (8,  e ) 

where the right hand side of the isomorphism denotes the set of finite sums £  fi m 4, 

fie  J, mi e  L. It turns out that this set is, simply, the ideal generated by the inclusion 

i( J) of Jin the ring k (8 , e ) [ a, P, Y] (a,p,T) . That is, J k ( 8, £ )  [ o c , p , y ] (aif!lY), the 

extension of the ideal J. So,

J ® k L « Jk ( 8, e ) [ a,  p, y ](o,p>7) •

One can also check that:

A ® k L = k ( 8 , e ) [ a ,  P , y W t » -  

On the other hand, letting d := X ( A / J ), one has that

k ( A / J )  = d<=» dimk ( A / J )  = d<=>A/ J =kd.

Therefore,

A / J <8>k L «  k d ® k L = Ld.

One has, thus, the following exact sequence

0 -> J k ( 8, e ) [ a, p, y]<«,m ) - » k (8,  e ) [ a,  p, y ] (a.p,Y) -> Ld -> 0

and, so

Ld « L [ oc, p, y ] / J L [ a , p, y ] ( Y ) .



Therefore,

dimL (L[a,p,Y3(o, ftr)/JL[(X,p,Y](a,p,T)) = d.

Claim. L [ a,  p ,  Y](„.p,Y) / J L  [ a ,  p ,  y ]  <0, 0,y)“ B /  J B.

Proof of the claim. Let us recall that

B « L [ a, p ,  y  ] (a.p.Y) / K L [ a ,  p ,  y ]  (aM) 

where L := k (8 , e ) ( cf. 4.3.1 ). Hence,

B / J B  =  ( L [ a , p , y ] (a,RY)/ ^ L [ a , p , y ] ( f t M ) ) / J B

~  L  [oc, p , y](a,p,Y) /  a ,  p , y3(a,p,Y)"*"’̂ ^ - ' [ ® ’ P > Y ] ( “.P.Y) )

« L [ a, p ,  y ]  („,ft Y) /  JL  [ a ,  p ,  y ]  (a,p,T) 

since, by assumption, KL, [ a , P , y ] ( a.RY) C JL [ a ,  p ,  y ] (a>Pr). This proves the claim.

We conclude that dimL ( B / J B )  = d. Hence, X ( B / J B )  = d. But d := % ( A /  J ). 

Therefore, X ( A / J )  = X ( B / J B ) .  The proposition is, thus, proved.

Next, we will restrict the discussion to those ideals I whose proper transform L 

satisfy certain conditions and show that, for those ideals, our inequality ( # )  of 4.1 does 

hold.

4.3.3. Conditions on h. We will study the special case where the generators a, b, c of L 

satisfy the following conditions.

( i ) Two of the generators, say a and b, have a common factor d. So,

a = a t d , b  = b i d ;

( i i ) d and c do not have a common factor;

( i i i ) a i , b i , c form an A-regular sequence ; and
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( i v ) one of the following is true:

a , , d, c is an A-regular sequence or bi, d, c is an A-regular sequence.

4.3.4. Example. Let R := k [ x, y, z ] („,y,z) , and let I = ( x 3, y 2, z ) <z R. This ideal is an 

MR-primary ideal. So, let I, be the proper transform of I at U = Spec ( R [ MR /  x ] ), an

openaffine piece of X := Bl ( MR, R ). Then,

IR  [ Mr /  x  ] =  x  v Ii

where v = ord ( I , MR), i.e. I c: ( Mr )v, but I <2 ( MR) v+1 ( cf. 2.3.8 ( i i )).  Therefore, if  

we let a  = x, P = y /  x, y = z /  x, then L = ( a 2, a  p 2, y ), an ideal of the ring 

A :=k [ oc, p, y] (a, p,y) • If we let a = a 2, b = a  p 2, c = y , then the generators a, b, c of It 

satisfy conditions 4.3.3. Here, the common factor of a and b is d = a. As for condition 

4.3.3 ( iv ), it is the sequence b ,, d, c ( namely, P2, a , y ) the one that turns out to be a 

regular one, whereas the sequence a j, d, c ( namely, ex, a , y )  is not.

4.3.5. Remarks. ( i ) Conditions 4.3.3 ( i i ) and ( i i i ) imply that d is the greatest common 

divisor of a and b.

( i i ) Condition 4.3.3 ( i v ) imposes a restriction on d. This condition implies that d cannot 

have a common factor with both a and b.

4.3.6. Proposition. Let I, be such that can be generated by elements a , b , c, satisfying 

conditions 4.3.3. Then the ideal ( d, c ) does not have an embedded component.

Proof. We first note that d, c form a regular sequence. In order to see this, we recall that, 

since A is an UFD, both d and c are regular elements. So, in order to show that d, c is a 

regular sequence, we will show that c i s A / ( d )  - regular: let c’ t’ = 0 in A’: = A / ( d ).
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Then, c t = f  d ( in A ). But, since d and c do not have a common factor, d must divide t. 

That is, t’ = 0 in A’. Now, since d, c form a regular sequence,

d e p t h ( A / ( d , c ) )  = 3 -  2 =  l * 0  

( cf. [Ku], 3.4, p. 184 ). Therefore, the ideal ( d, c ) has no embedded component 

(2.1.  22 ) as claimed.

The ideal Ii can, thus, be expressed as

Ii = (d , c ) n ( a „  b i , c )  

where ( a ,, b i, c ) is the embedded component of L.

4.3.7. Proposition. A necessary and sufficient condition for the sequence a u b, c to be 

A- regular is that the sequence a i, d, c is A- regular.

Proof. Necessity. Let b’ = b,’ d’ e  A /  ( a,, c ) and let b’ x’ = 0, x’ € A / ( a,,  c ). Then 

b i’ d’ x’ = 0. Since a „ bi, c is regular, d’ x’ = 0 and since, by assumption, a d, c is 

regular, d x’ = 0 implies that x ’ = 0 . Therefore, a ls b, c is A- regular.

Sufficiency. We prove the counterpositive argument. So, let us suppose that a ,, d, c is not 

regular. Then if d’ e  A /  ( a ,, c ) ,  there exists x’ e  A / ( a i, c ), x >  0 such that d’ x’ = 0 

and, hence, such that b’ x’ = b f  d’ x’ = 0. Therefore a i, b, c is not A- regular.

4.3.8. Remark. A  statement similar to 4.3.7 holds for the sequences b i, a, c and 

b i, d, c respectively. We can, thus, replace 4.3.3 ( i v ) by the following condition.

( i v )’ one of the following is true :

a ,, b, c is an A- regular sequence or b i, a, c is an A- regular sequence.

In carrying out step ( i i i ), namely, showing that the ideal I~ := M ( L ) satisfy the 

condition of 4.3.2 so that ( * )  holds ( cf. 4.3.10), we will assume that the generators a,
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b, c of the ideal Ii satisfy conditions 4.3.3. A first result in this direction is the following 

one.

4.3.9. Proposition. Let HP be the ring homomorphism of 4.3.1 and let I, satisfy conditions

4.3.3. Then if  K  = ker'F,

j Rf =( c 5 - a , c e - b ,  a i e - b i 8 ) k [ a , p , Y , 8 ,  e ]  

where I, = ( a, b, c ) = ( a, d, b , d, c ) c k  [ oc, p, y ] ( Y ) .

Proof. Let us recall that the ring homomorphism HP is given by :

HP: k [oc, p , y ,  8 , e ]  k [ a,  p, y]  [ a / c , b / c ]  

a>->a,p*-»p,y >-*y,8 >-*a/c, e ^ b / c  .

Let

'Fj: k [oc, p ,y  ,S, e]  - >k  [oc, p, y]  [ e ]  [ a / c ] ; 8 - a / c

and

'F2: k [ o c , p , Y ] [ e ] [ a / c ] - » k [ c c ,  P , y ] [ a / c ] [ b / c ] ; e ' - * b / c .

Then HP = VP2 o 'F1.In order to compute K, we will compute := ker HPi and K 2 := ker %.

The elements a and c do not have a common factor because d and c do not have a 

common factor and a i , c form an A- regular sequence ( cf. 4.3.3 ( i i ) and ( i i i ) ). 

Therefore,

K1 = ( c 8 - a ) k [ c t , p , y , 8 , e ]

(cf.  [Ku], 5.10b, p. 152 ).

As for K 2 , we have the following lemma.

4.3.9.I. Lemma. AT2 = ( c e - b ,  a i £ - b t ( a / c ) ) k [ a ,  P, y , e ] [ a / c ] .
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Proof of 4.3.9.1. The proof goes by induction on deg f, f  e  K 2. Let T := £ throughout the 

proof.

Let deg f  = 1. Write f  = r T + s. Then r ( b / c ) - s  = 0. Therefore, r b - c s = 0 in 

k [ a , p,y]  [ a / c  ].

Claim. r = fi a i + g , c  for suitable fj .g! ink[oc, (3, y ] [ a / c ] .

Proof of the claim. By 4.3.3 ( i v ), one of the following conditions holds :

( i ) a , ,  b, c is regular; ( i i ) a, b i , c is regular 

( cf. 4.3.8). So let us suppose that ( i ) holds. So, a i , b, c is a regular sequence. Then if 

b’ e  k [ a, P, y ] [ a /  c ] /  ( c, a , ) ,  b’ is not a zero divisor and, since

k[oc,  P , y ] [ a / c ] / ( c , a 1) « ( k [ a , p , y ] [ T ] / ( c T - a ) ) / ( c , a 1)

* ( k [ o , p , y ] / ( c , a 1) ) [ T ] ,  

b’ is not a zero divisor in ( k [ oc, p, y ] /  ( c, a! ) )  [ T ] . Now, r’ b’ = c’ s’ = 0 in 

k[oc,  p , y ]  [ a / c ] / ( c ,  a i ) .  Therefore, r’ = 0. That is, r e  ( c, a i ) and the claim is 

proved.

Continuing with the proof of the lemma, we note that

c ( r T - s )  = r ( c T - b )  

since c ( r T - s ) - r ( c T - b )  = - c s  + rb = O i n k [ a , P , y ] [ a / c ] .  Therefore, 

c ( r T - s )  = r ( c T - b )  = ( f i a l + g i C ) ( c T - b )

= f i a , ( c T - b )  + g i C ( c T - b )

= f i a 1c T - f 1a , b  + g i c ( c T - b )

= f , ( c ( a , T - b i ( a / c ) ) )  + g , c ( c T - b ) .
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Therefore,

f  = r T - s  = f , ( a , T - b ,  ( a / c ) )  + g,  ( c T - b ).

Since T := e, f  satisfies the conclusion of 4.3.9.1. This proves the case deg f  = 1.

Let d = deg f. Let us suppose the lemma true for deg f  < d. Let f  e  K 2, write 

f  = rT d + g ( T ) ,  deg g < d -1 .

Then,

f ( b / c )  = r ( b d/ c d) + g ( b / c )  = 0

and

c d f ( b / c ) = r b d + c g ’ = 0 

where g’ e k  [a, p, y  ]. Therefore, if we regard r’, (bd)’ as elements of K [a , P, y ] /  (c), 

then, since b, c is a regular sequence in k [a, p, y ], (b1)’ is not a zero divisor and, hence, 

r’ (bd)’ = 0 implies that r’ = 0. that is, r = q c , where q e  k [a, p, y ]. So, r - q c = 0.

Let h = f - q T d-‘ ( c T - b ) .  Then

h ( T )  = r T d + q c T d + lower degree terms.

That is,

h ( T )  = ( r - q c ) T d + lower degree terms 

= lower degree terms 

since r - q c = 0. So, h e  K 2 and deg h < d. By the induction hypothesis on h : 

h ( T )  = f1( c T - b )  + f2( a , T - b , ( a / c ) ) .

Thus,

f ( T )  = ( q T d > + fl ) ( c T - b )  + f2( a , T - b 1( a / c ) ) .
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Both q T d-' + fi and f2 belong to k [oc, P, y ] [ a /  c ]. Therefore, f  is of the requred form 

and the lemma is proved.

We conclude that, ^  = ( c 5 - a , c £ - b ,  a i e - b i S ) k [ o t ,  (5, y , 8 ,  e ]. Proposition 

4.3.9 is, thus, proved.

We want to show that X ( A / 1~ ) =& ( B / 1~ B ). To do that, we will use 4.3.2. So, 

we need to show that the ideal I~ satisfies the condition of 4.3.2.

4.3.10. Proposition. K  k (5 , e ) [ a , p, y ] ( c  I" k (8 , e ) [ oc, p, y ] („,P.Y).

Proof. Let H := k (8, e ) [ a , p, y] ( a ,p , Y ) . We start by giving a description of the ring l~ H. 

I~ H denotes the extension of the ideal I~ of A = k [ a, p, Y] (a,p,y) under the inclusion 

homomorphism t : A ^H . Therefore, it is the ideal of H generated by i  ( F ). So, it consists 

of finite sums of the form X x ( f | , where x , e  H , f  e  F.

On the other hand, since H is the localization of the ring k [ a , 3, y , 8, e ] at the ideal 

( a , P, y ), the ideal K  consists o f finite sums of the form X y i (gi /  1 ) ,  where yi e  H , g ( 

/ l e f ( A T ) ( g i e A T ) ,  where f  denotes the localization morphism

f : k [ a, p, y , 8, e ]  H ; f  ( g l ) = gi /  1 

( recall that 1 is an element of the multiplicative set S := k [ cx, p, y, 8, e ] \  ( a , P, y ), and 

that H = S -1 k [ a , p, y , 8, e ] ) .

Now, since g je  £  = ( c S - a ,  c e - b ,  a i e - b i 5 )  ( cf, 4.3.8 ), y( ( g, /  1 )  can be 

expressed as a linear combination of a i, b u c with coefficients in H. Therefore, the finite 

sum X yi g i can also be expressed as a linear combination of these elements and with 

coefficients in H. On the other hand, the ideal ( a i, b u c ) of A is the embedded 

component of the ideal I, ( recall that ( I, ) Q = ( d, c ) ( cf. 4.3.5 ) and that
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Ii = (d , c )  n  ( a b bi, c ) ) .  Therefore, (a  i . b i . c )  c: ( (a i, b , , c ): ( d, c ) )  = I~. We have, 

thus, shown that any element o f /STH is of the form X x ( ft , Xj e  H, f ( e  ( a u bi, c ) £  F. 

This means that K  H £  I~ H, which is what we wanted to prove.

The following proposition follows now from 4.3.2 and 4.3.10.

4.3.11. Proposition. X ( A / 1~ ) = X (B  /  T B ).

Once we have proved 4.3 ( * ), we proceed to prove that our main inequality 4.3 

( # )  is valid. The next one is the main theorem of this chapter.

4.3.12. Theorem. Let I be an MR-primary ideal, where R = k  [ x, y, z ] („, y, z > , k  an 

algebraically closed, such that I is generated by 3 elements and let I, be the proper 

transform of I to the quadratic transform A = k [ a ,  (3, Y ]<<*,& Y) • Let L be such that 

s ( L ) = 3, that is, such that the minimal number of generators of any minimal reduction 

of I, is 3, and such that it admits generators a, b, c of I, satisfying conditions 4.3.3. Then, 

the inequality

e A( F )  < e R( I)

holds, where I~ := M ( I , ).

Proof. Consider the ideal I~ B. Since B is 1-dimensional, s ( I" B ) = 1 ( cf. 2.2.11). B is 

a CM ring because B is a 1-dimensional integral domain ( B is a quotient of a ring with a 

prime ideal (4.3.1) ) .  So, depth ( B ) = dim ( B ).

The ideal F  B has a reduction that is generated by one element f  (2.2.6) .  So, let 

( f ) B c F B b e a  minimal reduction. Then

( i )  X ( B / F B )  £ X ( B / ( f ) B ) .
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On the other hand,

( i i )  e A( I ~ ) Z X ( A / l ~ )

( cf. [M], 14.10). But, X ( A /  r  ) = X ( B / 1~ B ) (4.3.11) .  Therefore, it follows from 

( i ) and ( i i ) that

e A( I~) < A , ( B / ( f ) B ) .

But, since B is CM, X ( B / ( f ) B ) = e B ( ( f ) B ) (2.1.12) .  Hence, the inequality

e A( I~) < e B( ( f ) B ) 

is valid. But e B( ( f ) B )  = e B( I ~ B ) (  2.2.2 ). So, the inequality

e A( I~) < e B ( I~ B )

holds. This shows that the inequality ( i i ) of 4.1 holds. Also, in 4.2 we showed that the 

inequality ( i ) holds. That is, that the inequality

e B( 1“B ) < e R( I )

holds. Combining the last two inequalities, we arrive at the announced conclusion. 

Namely, that the inequality

e A( I ~) < e R( I )

is valid.

4.4. The Case of Certain Monomial Ideals.

In this section we let R := k [ x, y, z ] (x,y, z), k an infinite field; X :=B1 ( R, MR), and 

will consider monomial ideals I that are MR-primary and generated by 3 elements. These 

ideals must be of the form I = ( x N, y M, zL ), where N, M, L e  N .

We will show directly that the inequality (# )  of 4.1 holds for this type of ideals. We 

will also show that these ideals satify conditions 4.3.3.
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Take the affine piece U = Spec ( R [ MR /  x ] )  o f X, and consider the ideal I’ given

by

F := I ( R [ Mr /  x ] ) / ( x ) v 

where v = ord ( I, MR), that is, I £  ( MR ) v, but, 1st ( MR) V+1. This ideal correspomds to 

/'  lu, where / ’ is the global proper transform of I with respect to X ( cf. 2.3.8 ( i i )).

In order to study the ideal I ( R [ MR /  x ] ) ,  let

( i ) a  := x, P := y /  x, y := z /  x .

Therefore, I ( R [ M r / x ] )  = ( a N, a M pM, a Ly L).

The ring A := k [ a, p, y] (x,y,z) is a quadratic transform of the ring R ( cf. 2.3.9), and 

the proper transform Ii of I to A is given by I, = F A ( cf. 2.3.9 ( i i )).

We want to show in this section that the inequality

( # )  e A( I~) < e R( I ) 

is valid. It is not difficult to show that the only significant case is that where the exponents 

N, M, L satisfy the double inequality N > M > L. In any other case we get either ( 1 ) 1 , =  

A, in which case the multiplicity drops when we take the proper transform of I; or ( 2 ) 

Ii = ( Ii ) o , in which case T := M ( I , ) = A , in which case ( # )  holds; or ( 3 ) I, is an 

Ma- primary ideal, in which case I, = I~ and ( # )  holds ( cf. [J], 2.2 ). We will, thus, 

assume that N > M > L.

4.4.1. Theorem. Let I = ( x N, y M, z L) c  R be an ideal, where N > M > L. Then the proper 

transform I, of I to the quadratic transform A = k [ a , P, y ] (a,PiY), where a, p, y are as in

( i ) above, is given by

I, = ( otNL, a M L p M, y L) A
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and the inequality

e A(I” ) < e R( I )

is valid, where I~ := M ( h ).

Proof. We have that

I ( R [ M r / x ] ) =  ( ocN, ocM p M, <xL y L ) = ( a L) ( a N L , a M L p M, y L )  =  ( a L) I ’ 

where a  =x, P = y / x, y = z /  x. Therefore, since It = I’ A, our first conclusion follows. 

In order to show that our inequality holds, note that we can express Ii as:

I, = ( a ML, y L) n  ( a NM, PM, y L) =  ( I i ) 0 n W  

where ( I, ) 0 = ( a M L, y L) is the non-embedded part of the primary decomposition of Il5 

and N  = ( a  N -M, p M, y L ) is the embedded component of h. Therefore, we have that 

i V c I "  and, hence,

( i )  e A( I~) < ga( N)

( cf. [M ], 14.4). On the other hand,

( i i )  e A(AO = X ( A / A O  = ( N - M ) M L

and

( i i i )  e R( I )  = A, ( R/ I )  = N ML .

Combining ( i ), ( i i ) and ( i i i ), we get that the inequality

e A(I~) < e R( I )

does hold, proving 4.4.1.

We will now show that the generators of Ii satisfy conditions 4.3.3, assuming the 

condition N > M > L is fulfilled.
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4.4.2. Proposition. Let I and L be as in 4.4.1, then the generators of I, satisfy conditions

4.3.3.

Proof. In order to see that the generators of L satisfy the conditions of 4.3.3, let 

a :=aN- L, b := a M-L j3 M, c := y L and note that d := a M L is a common factor of a and b. 

Since a  and y are independent variables in A, c and d do not have a common factor. So, 

conditions ( i ) and ( i i ) of 4.3.3 hold.

To see that ( i i i ) does hold, we note that a i := ocNM, b, := (3M, c 1 :=y L form an 

A- regular sequence.

Finally, to see that ( i v ) holds, we note that the sequence b i , d , c is A- regular and

4.4.2 is, thus, proved.

Note that we could have given an alternative proof that the inequality ( # )  holds 

using Theorem 4.3.12 and 4.4.2, provided we could show that s ( L ) = 3. We will show 

that this happens if I, is integrally closed.

4.4.3. Proposition. If L = I f , then s ( L ) = 3.

Proof. Since I, = I f  has an embedded component, depth ( A /  I f  ) = 0 ( 2.1.22 ). It 

follows that s ( I , ) = s ( I f ) = 3 ( cf. [N], 1.3).

4.4.4. Remark. According to 4.4.3, one could show that s ( I , ) = 3 by showing that I, is 

complete. In our present case I] is a monomial ideal, that is, an ideal generated by 

monomials, and there is a method to obtain the completion ( integral closure) of ideals of 

this type ( cf. 2.2.14). It may not be true in general that 11 is complete, say if N, M, L are 

large so that the convex closure N ( I, ) of E ( Ii ) admits more integral points than



58

E ( 11 ) does. In example 4.3.4 one can easily see, using this method, that 

I, = ( a 2, a  P2, y )  is complete and, hence, that s ( I , ) = 3.



Chapter 5 

Summary and Conclusions

In this dissertation we study the problem of associating a numerical invariant to an 

ideal in a regular noetherian local ring, which will get strictly smaller when we take the 

proper transform of such an ideal to a quadratic transform of the ring. The importance of 

such result in proofs involving mathematical induction should be clear. Here, we provide 

a partial solution. Our approach is to attach to an ideal I of a regular local ring ( R, M R) 

the multiplicity e R( M ( I ) ) ,  where M ( I ) is a certain MR-primary ideal that we associate 

to I. In Chapter 3 we introduce the operation M ( I ) and investigate some of its basic 

properties. In Chapter 4 we study the behavior of the multiplicity of M ( I ) under 

quadratic transformations. ( In Chapter 2 we collected some preliminary results that are 

necessary in the following chapters . ) Next we present a more detailed summary of 

Chapter 3 ( cf. 5.1)  and Chapter 4 ( cf. 5.2). We conclude with a section ( 5.3)  where 

open problems, and possible future work are discussed.

5.1. Summary of Chapter 3.

In this chapter we introduced an operation M on ideals J of R, where R is a regular 

local ring. This operation assigns to J an ideal M ( J ) such that J c M ( J )  and M ( J ) is 

MR-prrimary or M ( J ) = R and, if J is MR-primary, then M ( J ) = J. In any case, the 

multiplicity of M ( J ) is well defined.

In section 3.2, we study the behavior of the operation M under reductions of ideals. 

One result in this direction is that if I is integrally closed, then M ( I ) is also integrally

59
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closed ( 3.2.2 ). In 3.2.4, we give sufficient conditions ontwo ideals I c  J, where I is a 

reduction of J, to insure the inclusion M ( I ) c M ( J  ).We do not necessarily get an 

integral extension as is shown inexample 3.2.5, where we give two ideals I e  J satisfying 

the conditions of 3.2.4 and, hence, the inclusion M ( I ) £  M ( J ), but M ( J ) not being 

integral over M ( I ).

5.2. Summary of Chapter 4.

In this chapter we are concerned with the inequality

( # )  e A( r ) < e R( I )

where 1“ := M ( I, ), I, as usual, the proper transform of the MR-primary ideal I to a 

quadratic transform A of R, R being a 3-dimensional regular local ( noetherian) ring.

In order to study the possible inequality ( # ) ,  we first impose some conditions on 

both I and f .  We first assume that I is generated by 3 elements forming a regular sequence. 

We also assume that Ii does not have any minimal reduction that is generated by less than 

3 elements. That is to say, that the analytic spread of Ii is s ( Ix) = 3 (2.2.12).

The strategy we propose is to consider the following two inequalities :

( i )  eB(I~B ) < e R( I )

( i i )  e A(I~) ^ e B( I ~ B ) 

where B := Oz>Q, Q being the generic point of i t-1 ( 0 ) ,  where

i t Z —̂ Zo

is the blowing-up morpphism for Z := B1 ( A, I , ) ,  Z0 := Spec A, and 0 is the closed point 

of Z 0 . To show that B is well defined we proved that tc-'( 0 ) is irreducible under the 

assumption that s ( I i ) = 3 ( cf. 4.2.1).
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Obviously, the two inequalities ( i ) and ( i i ) would imply the inequality ( # ) .  In 

section 4.3 we achieved to show that ( i ) holds in a general setting ( cf. 4.2.4). To prove 

that ( i i ) holds, it suffices to verify that the inequality

A ( A/ I ~ )  < A, ( B / 1“ B ) 

holds, where A ( )  denotes the length of a module, since e A( r ) ^ A ( A / I ~ ) ( c f .  [M], 

14.10). We have not succeded to verify this in general. But if R = k [ x, y, z ] ( „ , y j Z ) ,  with 

k an algebraically closed field, one can give an explicit description of the ring B. Indeed, 

any quadratic transform A of R will be of the form A = k [ a ,p ,  y ] < a,p,Y) and B will be a 

quotient of a ring of the form H = k ( 8, e )  [a, P, y ] (a,p,Y) ( where a ,  p ,  y , 8, e denote 

indeterminates) by an ideal J . If one could verify that J £  1“ H, one would obtain, indeed, 

an equality A ( A / r )  = A( B/ I ~B) .  We can verify that this inclusion of ideals does hold, 

provided we impose some additional hypotheses on h ; these are rather technical and 

appear in 4.3.3 . That is, if R [ x, y, z ] (I,y>2) and the additional hypotheses (4.3.3 ) do 

hold, then the inequality ( # )  is valid.

In the last section of the chapter we discuss the case of MR-primary ideals that are 

generated by 3 monomials and show that for this type of ideals the inequality ( # )  holds. 

We also show that that these ideals satisfy the hypotheses of 4.3.3. In some special cases 

we can show that the analytic spread of the proper transform I, of an ideal of this type is 

3. That is, whenever we can show that l! is a complete ideal ( cf. [N], 1.3) following the 

procedure given in 2.2.14.
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5.3. Suggestions for Future Work.

It would be natural to try to eliminate the ( probably superfluous) hypotheses that 

we use in chapter 4. One could try, for instance, the following .

(1  ) To eliminate the condition s ( Ii ) = 3. The other possibility is that s ( Ii ) = 2. 

Probably a special argument could show that ( # )  is valid under the latter condition.

( 2 )  To prove directly that X ( A / r ) ^ X , ( B / I ~ B ) .  Probably even the equality 

holds. If R = k [ x, y, z ] (x>y,z), our proof reduces to showing an inclusion of certain ideals. 

This inclusion could be true in general. In our work we verify it with some direct 

calculations that obligue us to make some additional hypotheses ( cf. 4.3.3 ), but maybe 

this can be verified, in general, in a different way.

The condition s ( I , ) = 3 deserves some attention. It is known that if  s ( h ) < 3, then 

I f  does not have an embedded component ( cf. [N], 1.3). One can ask whether 11 has an 

embedded component. In general, it is not true that if s ( J ) < 3, then J does not have an 

embedded component. The following example, that was communicated by W. Heinzer, 

shows the latter claim.

5.3.1. Example. Consider the ideal

J = ( x 4, x 3 y, x 2 y 2 z, x y 3, y 4) R 

of the ring R = k [ x, y, z ] (z,y,z) . One can check that ( J : x 2 y 2 ) = ( x, y, z ) R = MR, 

showing that MR e ass J, that is, that J has an embedded component. Now let

P = ( x , y ) R .

Then s ( P ) = 2 . In fact, it is easy to check that J2 = P 8. Now, using the fact that for an
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ideal I, s ( I ) = s ( I n) ,  for n ;> 1, we have that

s ( J )  = s ( J 2) = s ( P 8 ) = s ( P )  = 2.

Still one can ask whether s ( It ) = 3 whenever L has an embedded prime. The 

previous example illustrates the fact that, were this the case, it would not be the 

consequence of a general fact.

The search of examples ( or counterexamples ) using computers ( say, using the 

system MACAULAY or the European CoCoA) is another possibility for future work. In 

particular, one could use examples to test the inequality ( # )  or the inclusion J  £  I~ H 

mentioned in 5.2.

Another invariant that could give a variant of the formula ( # )  is the following one. 

If I is an Mu-primary ideal in aregular local ring ( R, MR ) having infinite residue field k 

and ( A, MA) is a quadratic transform of R, let

I* := M ( I f )

where L is the proper transform of I to A. One may conjecture that

( * )  e A( I * ) < e R( I ).

Indeed, if ( # )  were valid, we could verify ( * ) ( assuming dim ( R ) = 3 ), provided we 

could show the following:

5.3.2. Conjecture. There is a minimal reduction J of I such that J = ( a, b, c ) and such that 

if Ji = ( a i , b i, c !) is the proper transform of J to A, then M ( I f  ) 2  M ( J i ) .

Note that since I is an MR-primary ideal its height is 3 ( cf. 3.1.3 ), then s ( I ) =3 

( cf. 2.2.11 ), and if J is a minimal reduction of I, then p, ( J ) = s ( I ) = 3 ( cf. 2.1.12 ) 

where p ( J ) denotes the number of a minimal set o f generators of J.



64

Also note that, since Ir  is complete and integral over J, ( since I is integral over J),the 

inclusion M ( I,") a  M ( J i ) of 5.3.2 will hold if ( I," )0is integral over ( J, ) 0 , according 

to3.2.4.

Indeed, if  5.3.2 is true, we take a reduction J= ( a, b, c ) of I as in 5.3.2. Then 

e R( I )  = e R( J ) > e A( M ( J 1) ) ^ e A( M ( i r ) )  = e A( I * )  

where the first equality holds by 2.2.2; the first inequality holds because we are assuming 

that ( #  ) is valid ; and the second inequality holds by 5.3.2 and [M], 14.4

If one can prove 5.3.2, one could try to prove ( * ) directly using the technique of 

Chapter 4. As we explain next, there are certain advantages.

First, we replace I by J = ( a, b, c ). If we let Ji denote the proper transform of J with 

respect to A, then the inequality ( * ) easily follows if s ( J i ) < 3. In fact, then s ( J f  ) = 

s ( Ji ) ( the analytic spread depends on the normalized blowing-up ( cf. 2.3.7 ) ) . Now, 

since ( as is well known ) from the fact that J is a reduction of I it follows that Ji is a 

reduction of Ib we conclude that

s ( J f )  = s ( I f )  = 2.

But, since s ( I f ) < 3, it follows that I f  has no embedded component ( cf. [N], 1.3), hence 

M ( I f ) = A and hence e A( I* ) = e A( A ) = 0 ; so clearly ( * ) holds here. So, the non 

trivial case is s ( J, ) = 3, i. e. in this case we do not need this assertion. The strategy of 

Chapter 4 applies with little change. If in adition J, satisfies the conditions of 4.3.3, then, 

as in Chapter 4, we get the inequality ( since we have some freedom to choose the 

reduction J = ( a, b, c ) of I, it is enough to show that the hypotheses of 4.3.3 hold for one 

suitable choice). It is, thus, interesting to try to prove 5.3.2.
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