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Abstract

This work consists of results on three questions in the algebraic theory of
forms.

The first question deals with characterizing the Witt kernel (i.e. the
anisotropic non-singular quadratic forms over that become hyperbolic) over
a given field extension. For separable quadratic and bi-quadratic extension
this is well known (for example see [B1, 4.2 and 4.3}, [B2, p. 121}, [L, p. 200],
[ELW, 2.12]). In chapter 2, we provide answers to this question for insepara-
ble quadratic and bi-quadratic extensions. We provide theorem 2.1.5, which
in particular answers question 4.4 in [B2]. From this result we prove the ex-
cellence property for inseparable quadratic extension, which is in turn used to
find the Witt kernels of inseparable bi-quadratic extensions.

In the third chapter we study the relation between similarity of quadratic
forms and isomorphism and place equivalence of their function fields. In sec-
tions 3.1 and 3.2, we show that the function fields of special Pfister neighbors of
the same Pfister form are isomorphic. Also we show that any Pfister neighbor
of codimension < 4 is special; in particular this implies place equivalence im-
plies birational equivalence in this case. Together with the main result of [H3],
this gives an affirmative answer of the quadratic Zariski problem in dimension
3. (see §3.3). In §3.4 we provide few results on the problem of descent of sim-
ilarity over field extensions and some examples were similarity is determined
by their generic splitting tower.

In the last chapter we provide a positive answer for the following conjecture

of Pfister-Leep in the special case d = the characteristic of the field &

CONJECTURE. For a fixed d, if k is a C¢-field, then k is a p-field for some

prime p # d.
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Chapter 1
Introduction

1.1 Terminology, Notations and Basic Facts

Our standard references on quadratic forms are Lam’s book [L], Scharlau’s
book [Sch] and Baeza's lecture notes [B2].

Let k£ be a field. The set of non-zero elements of k& will be denoted by k.

A quadratic k-form q (or simply a form) is a map from a finite dimensional
k-vector space V' to k satisfying: (i) For every a € k and x € V, g(ax) =
a’q(x), and (ii) B,(x,y) := g(x+y) — g(x) — g(y) is a bilinear map. (V,q) is
called a quadratic space. For simplicity we write g for (V, q). The dimension
of q, dim¢q := dim V. After fixing a basis of V', we may consider the map ¢q as
a homogeneous polynomial of degree 2 in n coordinate indeterminates, where
n =dimV. We will sometimes work interchangeably with both the quadratic
map and the polynomial and make no distinction between them.

Two quadratic spaces (V, q), (V,g2) are isometric, denoted by g, = ¢, if
there exists a linear isomorphism L : ¥V — V such that for every x € V,
q1(x) = go(Lx) (This equivalent to saying that the polynomial ¢, can be
obtained from the polynomial ¢a by an invertible linear change of variables).
The forms ¢, and ¢, are called similar, denoted by q = g, if there exists
a € k* such that gy = age. A form q is called non-singular if the subspace
Vi:={x€V | B,xy)=0forally € V} =0, or equivalently, if the matrix
(By(e;,e;)) with respect to a basis {e,...,e,} of V is nonsingular.

Two vectors X and y are called orthogonal if B,(x,y) = 0. The form ¢ is

said to represent an element a € k, written g ~ a, if there exists a vector



x € V such that g(x) = a. The set of elements non-trivially represented by
g over k is denoted by Di(g); the subscript will sometimes be omitted. The
form q is called isotropic if it represents 0 non-trivially; otherwise it is called
anisotropic. A subspace W of V is said to be totally isotropic if glw = 0. If
(V1,41) and (V2, ¢2) are quadratic spaces, then their orthogonal sum (V,q) is
defined by: V = V) @ V; and g(x; @ x2) := q1(X1) + g2(x2). In this case we
write ¢ = ¢ L qa.

The non-singular isotropic two dimensional is called a hyperbolic plane,
and will be denoted by H. With a suitable choice of basis, the polynomial
corresponding to H is XY . A form is called hyperbaolic if it is isometric to
r % [0,0] :==[0,0] L ... L [0,0] (r summands). Any non-singular form ¢ can
be decomposed into ¢ = rH L q with ¢, anisotropic. The positive integer
r is uniquely determined by ¢ and so is ¢, up to isometry. The form ¢ is
called the anisotropic part or the the kernel of ¢, and r is called the Witt
index of q. Two nonsingular forms ¢, and ¢, are said to be Witt equivalent
if they have isometric kernel forms. This is an equivalence relation and the
equivalence classes form an abelian group called the Witt group of k and
denoted by W (k). (Actually W (k) is a ring with the multiplication being the
tensor product of forms, but it will not be needed in this work.)

Let ¢ be a k-form and L/k be a field extension. Then ¢ is also an L-form.
We write g, or ¢ ® L for the L-form 4.

1.1.1 Forms over fields of characteristic # 2. Over such fields, any
quadratic form is isometric to a diagonal form {a;,...,a,) = ;. X? +--- +
a,X2. (This corresponds to choosing a basis {e,,...,e,} of pairwise orthog-
onal vectors with g(e;) = a;.) The form ¢ is non-singular if the product

a1+ @y # 0. The class of the element det(q) := a, - - - a, in k*/(k*)? is called



the determinant of q. 'The determinant of a quadratic form g does not change
when g is replaced by another form isometric to g. The hyperbolic plane H is

isometric to (1, —1).

1.1.2 Forms over fields of characteristic 2. For nonsingular two dimen-
sional quadratic space (P, g) over afield of characteristic 2 there exists a basis
e,f of P such that By(e,f) = 1. With respect to such a basis, q is denoted
by [a,b], where g(e) = a, and g(f) = b. Arf showed in [1, Satz 2] that any
nonsingular quadratic space (P, q) is the orthogonal sum of such nonsingular

two dimensional subspaces:
(P,q) =P1 ... .LPn.

In particular, the dimension of a nonsingular quadratic space is even. For
i=1,...,n, let e, f; be a basis of P; such that B,(e;,f;) = 1, and let a; = q(e;)
and b; = ¢(f;). Then e),f),...,e,,f, is a basis of P with respect to which
g = [a1,b] L ... L [as,b,). The Arf invariant of a non-singular quadratic
form is the defined to be the class of the element @16, +- - - + a,,b, in k& modulo
the (additive) subgroup pP(k) := {¢® — ¢ |c € k}. The following known result
(see [Sch, p. 341, Lemma 4.4.(i)]) will be used frequently in chapter 2 without

reference.

PROPOSITION Let q aiid q; be non-singular forms of dimension 2. Then q
and gy are isometric if and only if ¢) and g, represent a common element and
have the same Arf invariant.

1.1.3 Pfister forms. Let k be a field of characteristic # 2. The 0-fold
Pfister form is (1), the 2-fold Pfister form is (1,a) L d(1,a}, and an n-fold
Pfister form is defined to be Q@ L d@ where d € k* and @ is an (n — 1)-fold
Ffister form. The following important properties of Pfister forms will be used

frequently in chapter 2.



For a Pfister form P we have :

(i) P is non-singular form of dimension 2%, and for n > 1, P has deter-
minant 1.

(ii) If P is isotropic, then P is hyperbolic.

(iii) If P represents a € k*, then P £ aP.

It is known that a four dimensional form is similar to a Pfister form if and
only if it has determinant 1.

For fields of characteristic 2, the 0-fold Pfister form is [1,a] where a € k*,
and an n-fold Pfister form is defined to be Q@ L d@ where d € k* and @Q is an
(n — 1)-fold. In characteristic 2, a four dimensional form is similar to a Pfister
form if and only if it has trivial Arf invariant. The properties (ii) and (iii)

above still hold for Pfister forms in characteristic 2.

1.2 Function Fields

Here we recall some of the basic definitions and results about function fields
of quadratic forms that will be used frequently in chapter 3.

Let k be a field of characteristic # 2. A function field is a finitely generated
field extension K/k. We use dim for the transcendence degree of a function
field. A pure transcendental function field is also said to be rational, and we
consider the case that J = k to be a rational extension of dim 0. A generic zero
of an irreducible polynomial f(X) in n indeterminates (over k) is an n-tuple
(z) of elements (from ) such that f(z) = 0 and dimk(z}/k = n — 1. Every
irreducible polynomial has a generic zero, which determines a field extension
k(z)/k up to k-isomorphism; and the function field of f(X) is defined to be this
extension k(x)/k (or, more precisely, any element of the isomorphism class of
this extension). irreducible quadratic form Q(Xy, X},...,X,) is the function

field of the dehomogenized polynomial Q%/ := Q(1, X\,...,X,) {which is also



irreducible) and is denoted k(). The adjective ‘affine’ will henceforth be
dropped, it being understood that by function field of a form we mean its
affine function field. (Note: The function field of a form is independent of
which indeterminate is used to dehomogenize the form.) A function field
of a nonsingular quadratic form is also called a quadratic function field for
short. Two irreducible forms @ and @' are said to be birationally equivalent
if K(Q) = k(Q').

Any quadratic form of dimension > 2 is irreducible, hence it has a function
field. A two dimensional form is irreducible if and only if it is anisotropic.
Also, any two non-singular isotropic form of the same dimension have the
same function field.

ProPOSITION 1.2.1 (cf. e.g. [KI, p. 72, Proposition 3.8])) An irreducible non-
singular form @ is isotropic iff k(Q?) [k is rational.

The next theorem is essentially an application of the Cassels-Pfister sub-

form theorem (cf. [L, p. 262, Theorem 2.8]).

THEOREM 1.2.2 If P is an anisotropic Pfister form and  an irreducible non-
singular form, then P becomes isotropic over k(Q) (if and) only if Q is similar

to a subform of P.

COROLLARY 1.2.3 If an irreducible nonsingular form () is birationally equiv-
alent to a subform of an anisotropic Pfister form P, then ) is similar to a
subform of P. In particular birationally equivalent irreducible Pfister forms
are isometric.

We will need the following recent and powerful result (see [H4, theorem 1],

also [HR2]).

THEOREM 1.2.4 Let P and ¢ be k-forms with P anisotropic and dim P <

2" < dim vy for some n > 0. Then P stays anisotropic over k().



Following [K1), a field K/k is called a generic zero field for a non-singular
k-form g if ¢ is isotropic over K and for any L/k with g, isotropic, there exists
a k-place v : K — LU {oo}. The function field of ¢ is a generic zero field for
q. A generic splitting tower ko, k1, . .., ks of a non-singular quadratic k-form ¢
(assumed irreducible if dim = 2) can be constructed (inductively) as follows:
set kg = k and ¢y = (¢)an, the anisotropic part of ¢. If dim ¢y < 0, stop with
ko = k. Otherwise choose k) a generic zero field of gop. We repeat this by
choosing k; a generic zero field of ¢;, the anisotropic part of ¢ over k;_,; and
letting ¢q; be the kernel of g ® k;. We stop at h (called the height of q) is the
smallest integer such that dimg, < 1. The form ¢,_, is a Pfister form, and is
called the leading form of q. The degree of ¢, written degg, is n where 2" is the
dimension of the leading form. One generic splitting tower can be constructed

by taking ki, ¢ > 0, to be the function field of ¢;_; over k;_;.



Chapter 2
Witt kernels of inseparable extensions

An important question in the algebraic theory of quadratic forms is to deter-
mine the behavior of quadratic forms over field extensions. More precisely, if
K/k is a field extension, then the inclusion ¢ : £ =& K induces a group homo-
morphism ¢* : W(k) - W(K) of the Witt groups given by ¢ — ¢ ® K for any
w € W (k). The question is to determine the kernel of i*, that is, to determine
the anisotropic k-forms that become hyperbolic over K. This kernel is called
the Witt kernel of the extension K/k. When K/k is an algebraic extension
of odd degree, Springer [Sp] showed that i* is a monomorphism. If & has

characteristic # 2 and K/k is a quadratic extension, it is a well known

Theorem. ([4, p. 200, Lemma 3.1 and Theorem 3.2]) If ¢ is an anisotropic
quadratic k-form that becomes isotropic over K = k(\/E), then there exists
¢ € k such that ¢(X? — dY?) is a subform of ¢; and if ¢ becomes hyperbolic

over K, then there is a k-form g such that ¢ = g L —dq.

Similar results hold when k is of characteristic 2 and I is a separable quadratic
extension: If K = k[X]/(X?+ X +b) and ¢ is a nonsingular anisotropic
quadratic k-form which becomes isotropic over K, then there exists ¢ € k such

that ¢(X2+ XY + bY?) is a subform of ¢ (see [B2, p. 121, Theorem 4.2}).

In this chapter we determine the Witt kernel for purely inseparable quadratic
extensions (§2.1) and for bi-quadratic extensions over fields of characteristic 2
(§2.3). In particular, the first section answers in the affirmative a question of

Baeza [B1, 4.4].



2.1 Inseparable quadratic extensions
Throughout this section, let k¥ be a fixed field of characteristic two and K =
k(+/d) be an inseparable quadratic extension of k. Here we prove (see 2.1.8)
that if a non-singular anisotropic k-form ¢ becomes hyperbolic over K, then
is isometric to ¢ L dq for some k-form ¢. This answers a question of Baeza [B1,
4.4] who showed the corresponding weaker assertion with isometry replaced by
Witt equivalence. Actually we prove a sharper result (see 2.1.6). The results

in this section have been published as [A].

PROPOSITION 2.1.1 {cf. [A, 2.1)} Let (V,q) be a nonsingular quadratic space
and S be a totally isotropic subspace of V. If the Witt index of q is greater
than dim(S), then S is contained in a totally isotropic subspace of dimension

1 + dim(S).

PrOOF. The space V contains a totally isotropic subspace T" of dimension
equal to the Witt index of g; for if 7 x [0, 0] is a subform of ¢, we can pick an
isotropic vector e; in each [0,0] and ey, ..., e, span a totally isotropic subspace.
Let R=S5SNT. Then S = R&® Spand T = R & Ty, where Sp and T are
subspaces of S and T respectively. Since by hypothesis dim(T") > dim(S),
dim(Tp) — dim(Sy) = dim(T) — dim(S) > 0; and since (V, ¢) is nonsingular,
dim(Spt) = dim(V) ~ dim(Sp). Note that

dim(Tp N So'L) = dim(Tp) + le](SoJ') — dim(Tp + SOJ')

> dim(Tp) + dim(V) — dim(Sp) — dim(V) > 0

Thus, there exists a non-zero vector v € Ty N Sg. Since v € T(= R & Tp)
and T is totally isotropic, v € R*. Hence v € (R ® Sp)* = S*. Also v € S;
otherwise, v € SNT = R, hence v € RNT, = 0, a contradiction. Then

the subspace generated by S and v. is totally isotropic, because S is totally



isotropic, v is isotropic, and v € St. Since v ¢ R = S N T, this subspace
contains S properly. a

The following lemma is a slight variation of [B1, Lemma 3.1].

LEMMA 2.1.2 (cf. [A, 2.2]) Let (V,q) be a nonsingular quadratic space and
X1, +*,Xs € V be linearly independent vectors such that By(x;,x;) = 0 for
1<i,j<s. Letq(x;)=a; fori=1,...,s. Then there exist by,...,b;, € k
such that [a1,b1] L ... 1 [a,,b,] is a subform of q.

PrOOF. Let n = dim(V). Since ¢ is nonsingular and x,,...,X, are linearly
independent, dim({xi,...,%,}*) =n — 5 and dim({xs,...,%,}t)=n—s+1
(if s = 1, put {xg,...,%,}* = V) . Thus there exists y, € {Xa,...,%,}*
such that By(x;,y;) = 1. Let W be the subspace generated by x;,y,. Then
W = [a1,b], where b = g(y,). In particular W is nonsingular, and hence
V=W.1W!=]a,b] LW (by [B2, p. 10, Proposition 3.2 ]). If s = 1
then we are done. If s > 1, then the statement follows by induction on s since

X2,...,X, € Wi, O

We will need the following criterion for representing elements of k over
K = k(V4d).
PROPOSITION 2.1.3 (cf. [A, 2.3]) Let ¢ be a nonsingular k-form and leta € k
which is not represented by q over k. Then q represents a over K (if and) only
if either
. (i) there exist ¢ and e in k such that [a(c® + d), €] is a subform of q, or
(ii) there exist b,e, f € k such that [b,€] L [a + bd, f] is a subform of q.

PROOF. Suppose g represents a over K. Let v be a K-vector such that
g(v) = a. Since g does not represent a, v = v, + vdv, where v; and v, are

k-vectors and vy # 0. Since a € k and Vd € k, a = g(v) = ¢(v;) + dg(va) +
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V/dB,(v1, v2), which implies that
0 = Bq(Vl,Vg), and
a = q(vi)+dg(va).

If vi = cv, for some ¢ € k, then ¢ = (¢ + d)g(vs). In this case g represents
a(c® + d) over k; hence by Lemma 2.1.2 (with s = 1), there exists e € k such
that [a{c? + d),¢€] is a subform of q. On the other hand, if v; and v, are
independent, let b = g(v2) and apply 2.1.2 to v;, vy to conclude that there
exist e, f € k such that [b,e] L [a + bd, f] is a subform of g. a

Since the form [0, €] is isotropic, the case of 2.1.3 with a = 0 is

COROLLARY 2.1.4 (cf. [A, 2.4]) Let q be a nonsingular anisotropic k-form.
Then q becomes isotropic over K (if and) only if there exist b,e, f € k such
that [b,e] L [bd, f] is a subform of gq.

(This corollary also appears as a part of the proof of [B1, Lemma 4.3].)

THEOREM 2.1.5 (cf. [A,2.5]) Let(V,q) be a nonsingular anisotropic quadratic
k-form and let I = k(v/d). If the Witt index of q over K equals r > 1, then
either

(i) there exist a,b € k such that [a,b] L d[a,b] is a subform of q, or

(ii) there exist a;,bi,¢; € k (i = 1,---,r) such that ([a1,b1] L [day,¢q]) L
... L ([ar, b)) L [da,,c,]) is a subform of q.

PrROOF. The form g becomes isotropic over K because r > 1. Thus, by 2.1.4
there exist a;, by, ¢; € k such that [a),b,] L [da;, ] is a subform of ¢ . Let m

be the largest positive integer such that there exist a quadratic space (V,¢')

and a;,b;,¢c; € k, 1 <1< m, such that

(V,q) = ([a1,b1] L [day, 1)) L ... L ([am, bm] L [dam,cm)) L (V',q)

E LlJ_...LLnlJ-(V'iq’)
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where L; = [a;,b;] L [da;,¢;] for i = 1,...,m. If m = r, then we have case (ii)
and we are done. So assume that m < r. Let e;, f; be the basis associated to
[@:,b;] and g;, h; be the basis associated to [da;, ¢;].

The K -vectors
vi=Vde +g, vo=Vdes+g,, ..., Vm = Vden + g,

are linearly independent over K, and pairwise orthogonal because v; € K®;L;,
for i = 1,...,m. Moreover, they are isotropic since g(v;) = g(Vde; + g;) =
dq(e;) + q(g;) = da; + da; = 0. Thus they generate over K a totally isotropic
subspace of dimension m.

Since the Witt index of g over K is r > m, {vy,...,V,,} is contained in
a totally isotropic K-subspace S of dimension > m by 2.1.1. Now, choose

Vo € S to be linearly independent of vy,...,v,, over K and let
V=V — Bq(vl): h])V] _ = Bq(v(hhm)vm-
Since v h; € K ®; L; fori=1,...,m,

By(v,hi) = By(ve,hi) + By(vo, h;)By(v;, h;)
= By(vo,h;) + By(vo, ;) B,(Vde; + g;, h;)

= B,(vo,h:) + B,(vo, h;)(Vd0 + 1)

= 0.
Moreover, since vg,...,V,, € S, they are isotropic and pairwise orthogonal,
hence v is isotropic. Also, v is K-linearly independent of {v,,...,v,,} because
vy i8.
Write

V= (a'lel + ﬁlf] + 7131 + thl) +- 4+ (amem + ﬁmfm - 'ngm + 6mhm) +u
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where a;, 3;,%,6 € K (i = 1,...,m) and u € V. Since 0 = By(v,h;) = v
and 0 = B,(v,v;) = By(v, Ve, +g)= \/EB,,(v,e,-) + By(v,g;) = \/&ﬂ, + 4,

(i=1,...,m), we have
(*) V= [0181 +/81 (fl + \/&hl)] +o-+ [amem +ﬁm(fm + \/C_ihm)] +u; + \/Euz-

where u = u; + Vdu, and u;,u; € V',

Suppose first 8, = 1. Let x and y be the k-vectors such that v = x + /dy.
Since §) = 1, we can solve (x) for f; and h; to conclude that

k-span({e1,g,,fi,m})+ Lo+ -+ L, + V'
= k-span({e;, g, x,¥}) + Lo+ -+ Ly + V.
Thus e, g;,x,y are linearly independent over k. Since 1 = B,(e;, v} =
B,(e1,x + Vdy) = B,(e,,x) + VdB,(ei,y), we have
1 = By(e1,x) and 0 = By(ey,y).
Similarly, because v/d = B,(g;, V), we have
1 = B,(g,,y) and 0 = B,(g,,x).
Since by definition g{e;) = a1 and ¢(g,) = a1d,
q(g1) = dg(e1).

Also X,y are orthogonal and dgq(x) = g(dy) because 0 = g(v) = g(x + Vdy) =
¢(x) +dg(y) +VdB,(x,y). Let W be the space generated by e;,x,g;,y. Then
with respect to the basis {e|,x,g;,dy}, we can write ¢lw = [a,b] L d[a,}],
where a = g(e;) and b = ¢(x). In particular, W is a nonsingular subspace of
V, hence V=W L W+ (by [B2, p. 10, Proposition 3.2 ]), i.e. [a,b] L d[a,b]
is a subform of q.

If §y # 0, then replace v by (1/6,)v, and similarly if 8; # 0 for some
i=1,...,m. Hence we may assume that for i = 1,...,m, §; = 0. That is,

Vv=ae,+ - +agme,+u Let a; =t;+ \/c_is,- where ¢;,s; € kfori=1,---,m
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and let p = a1t} + a1ds? + - - - + apt?, + apds?,. Note that p = ¢’(u) since

0 = g(v)=gq(me;+ -+ amen) + 4 (u)
= @]+ +amal, +¢(u)

= p+4q(u)

Since the subform ([a;,b] L [daj,c1]) L ... L ([@m,bm] L [dam,cm]) rep-
resents every element the shape a;z? + ajdw? + -+ + am 22, + apdw?, (with
z;,w; € k for i = 1,...m), it represents p and p(c? + d) for any ¢ € k. Hence,
because q is anisotropic, ¢ cannot represent p over k and [p(c? + d), ] cannot
be a subform of ¢ for any ¢, € k. Also u cannot be 0, otherwise since v is a

non-zero isotropic vector, a; # 0 for some 7 < m, and

0 = q(v)=q(ae; +-+- + amen)
= aad+--- +ano’d

= aiti +ads? 4+ -+ + apt? + apdsd;
hence ([a1,b] L [day,e1]) L ... L ([am,bm] L [dam,cm]) is isotropic over k,
a contradiction. Thus, ¢ represents p over K. Therefore by proposition 2.1.3,

there exist @mt1,bm41,Cm+t € k such that [apt1,bme1] L [P + @mi1d, cnta] 18

a subform of ¢’. Hence,

g = ([a,b] L[dar,a]) L... L {[am,bm] L [dam,cn))

L ([GM+lsbm+1] 1 [P+ m414d, Cm+l]) 1q

for some k-form ¢”. Let e,f be the basis associated to [am41,bm+1] and g,h
be the basis associated to [p + @m41d,Cm41). Applying Lemma 2.1.2 to the

vectors €;,€;,.. ., em, 8, and g :=g+tie; + 518+ -+l + g, We
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get: ([a1, 4] L [da1,d})) L ... L ([ems1,b41] L [damsr, d,y,]) is & subform
of q, where b}, ¢c},...,b,,,,Cy1 € k. This contradicts the choice of m. This

concludes the proof of the theorem. a

COROLLARY 2.1.6 (cf. [A, 2.6]) Let g be a nonsingular anisotropic k-form.
If the Witt index of q over K is greater than (1/4)dim(q), then there exist
a,b € k such that [a,b] L d[a,b] is a subform of q.

PROOF. Let r be the Witt index of g over K. Since » > (1/4) dim(g), g cannot
have a subform of the shape ([a;,b1] L [da;,¢i]) L ... L ([ar,b] L [dar,c])
because this form has dimension 4r > dim ¢. Thus theorem 2.1.5 implies that

there exist a,b € k such that [e,b] L d[a,b] is a subform of g. 0

Corollary 2.1.6 gives a lower bound on the Witt index of ¢ over K to
guarantee the splitting off of a subform of the shape [a,b] L d[a,b]. We failed
to decide whether the conclusion of 2.1.6 holds under a weaker hypothesis.
The best one can hope for is
QUESTION2.1.7 Ifg=y H 1L H L ¢, where HH is a hyperbolic plane, does
it follow that there exist a,b € k such that [a,b] L d[a,b] is a subform of ¢?

In view of Theorem 2.1.5, it is enough to answer the following:
QUESTION2.1.7' If g  ([a),b1] L [da1,¢4]) L ... L ([ar,b] L [da,,c.]) with
r > 2, does it follow that there exist a,b € k such that [e,b] L d[a,b] is a
subform of ¢?

COROLLARY 2.1.8 (cf. [A, 2.8]) Let q be a nonsingular anisotropic k-form.

If ¢ becomes hyperbolic over K, then there exists a k-form ¢ such that q =
g Ldqg.

PROOF. By 2.1.6, there exist a k-form ¢o and a,b € k such that ¢ =
[@,b] L d[a,b] L g5. Over K, ¢ and [a,b] L d[a,b] are hyperbolic. Hence
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by the cancellation theorem, ¢q is hyperbolic over K. By induction we have
qo = ¢j L dgj, for some k-form ¢j. Thus q 2 ({a,b] L qp) L d([e,b) L gp). O
REMARK 2.1.9 (cf. [A, 2.9]) A nonsingular anisotropic k-form g of dimension
6 cannot become hyperbolic over K. For if the Witt index of g over K is 3,
then by 2.1.6, ¢ 2 [a,b] L d[a,d] L [e, f], for some a,b,e, f € k. Over K, g
and [a,b] L d[a,b] are hyperbolic, and thus by the ca;lcella.tion theorem (cf.
[B2, p. 82, Corollary 4.3]), [e, f] would be isotropié over K. By 2.1.4 this
is impossible. In the same way one can prove: if the dimension of ¢ is not

divisible by 4, then ¢ cannot become hyperbolic over K.

If q is a nonsingular anisotropic k-form of dimension 6 and ¢ has Witt index
2 over K, then it is of the shape [e,b] L d[a,b] L [e, f] for some a,b,e, f € k.

More generally by using 2.1.6 inductively as in the proof of 2.1.8, we obtain :

COROLLARY 2.1.10 (cf. [A, 2.10]) Let q be a nonsingular anisotropic k-form
of dimension 4m + 2. If the Witt index of q over K is 2m then there exist

e, f € k and a k-form ¢ such that ¢ 2 ¢' L d¢' L [e, f].

2.2 Excellence of quadratic extensions

In this section we develop the tools needed to determine the Witt kernel of

bi-quadratic extensions. We start with

DEFINITION Let L/k be a field extension. An L-form ¢ is said to be defined
over k if there exists a k-form -y such that ¢ 2 ;. The extension L/k is called
excellent if the anisotropic part over L of any non-singular k-form is defined
over k.

Some examples of excellent extensions are the algebraic extensions of odd
degree and the purely transcendental extensions. It is also known that sep-

arable quadratic extension are excellent. This an immediate consequence of
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the following proposition which follows by repeatedly applying [B2, p. 121,
Theorem 4.2] (and the cancellation theorem).
PRroOPOSITION 2.2.1 ([B2, p. 121]) Let k be a field of characteristic 2 and let
K = k(B)/k where 3 € k and 3% — 3 = b € k. If a non-singular anisotropic
k-form ¢ has Witt index s over K, then the g 2 ¢1[1,b] L ... L ¢,[1,8] L g
for somecy,...,c, € k and a k-form qo. In particular, if ¢ becomes hyperbolic
over K, then ¢ = ¢1[1,b] L ... L ¢.[1,b] for some cy,...,c, € k

In 2.2.3 below we show that inseparable quadratic extensions are also ex-
cellent
REMARK 2.2.2 Let K = k(V4d).
(i) Since [ad,c] = d[a,] for some ¢ € k, theorem 2.1.5 implies that any

non-singular anisotropic k-form ¢ can be written as

g=q L (g Ldg) L ([a),b] Lday,a1]) L ... L ([en,b] L dar,c]),
where ¢g and ¢ are k-forms and a;,b;,¢; € k, (¢ = 1,...,r) such that the
Witt index of g over K = k(v/d) equals dim{go) + . In particular, ¢; remains
anisotropic over K, and [a;, b;] L d[a;, ¢;] is not hyperbolic over K.
(ii) Let a,b,c € k. Then, over K, we have

[e,b] L d[a,c] = [a,b] L [a,c] =[0,b] L[a,b+c]=H L [a,b+

The first isometry follows because d € K2. To see the second isometry, take
u, vy, ug,

vy to be a basis associated with the form g :2 [a, b] L {a, ¢] and note that
q(u; +wz) = g(wm)+g(u) =a+a=0,
By(u; +uy,vi) = By(uy,vi}+ By(uz,v) =1+0=1,

glva+vi) = qvi) +q(va) =b+¢,

Bq(ll2,V] + V2) = Bq(“?vvl) + Bq(u21V2) =0+1= lia‘nd
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0 = By(w +uz,uz) = By(u; + ug, vy + vz)

= Bq(thz) = Bq(Vth + va)

So, rewriting the form ¢ with respect to the new basis u; + ug, v, uy, vo + v
gives ¢ 2 [0,5] L [a,b+ ¢).

THEOREM 2.2.3 Let q be a non-singular anisotropic k-form. Then the
anisotropic part of ¢ over K = k(v/d) is defined over k; i.e. K[k is excel-

lent.

ProoOF. We may assume that ¢ is anisotropic over k (otherwise we take the
anisotropic part of q instead.}) Write

q = 01 1 (qo 1 qu) L ([al,bl] L d[al,cl]) L...1 ([a,.,b,.] L d[a,.,c,.]),
as in remark 2.2.2(i). Over K, ¢o L dgo is hyperbolic, ¢, is anisotropic, and

by 2.2.2(ii), [a:, b;] L d[a;,¢;] = H L [a;,b; + ¢;]. Therefore

g E (dim@+r)HLqg La,bh+a]lL...La,b +¢)
Since the Witt index of ¢ equals dim gp+ r (see 2.2.2(i)), the anisotropic part
of gover K isqy 1 [a1,b)+¢c] L ... L [a,, b, +c,], which is defined over k. O

COROLLARY 2.2.4 Let K = k(V/d) be a quadratic extension over k. Let o and
0 be non-singular k-forms and let vy be a non-singular K-form. If o 22 8 L 7,

then -y is defined over k.

ProoF. It is enough to show that the anisotropic part of -y is defined over k.
Since o = 8 L -y, we have [y] = [ox L —dk] in the Witt ring of K. So the
anisotropic part of «y is isometric to that of (¢ L —d) which, by the previous
theorem, is defined over k. |

To determine the Witt kernel for bi-quadratic extensions, one needs a
”characteristic 2” analogue of [ELW, Proposition 2.11.(a) ]. For separable

quadratic extensions we have
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THEOREM 2.2.5' Let k be a field of characteristic 2. Let K/k be an excellent
extension of k. Letq = ey[1,b] L ... L e.[1,b] whereb € k* and ¢y, ... ,e, € K.
If q is defined over k, then there exist cy,...,c. € k such that q = ¢[1,5] L
oo doel,b).

The proof is identical to that of [ELW, Proposition 2.11.(a)]; hence omitted.

For the case of inseparable quadratic extensions we have
THEOREM 2.2.5 Let K/k be an excellent extension of k, and let d € k*. Let
~ be a non-singular K -form such that the form ~ L dv is defined over k. Then
there exists a k-form & such that y L dy = (6 L db)g.

The proof will be broken into two lemmas.
LEMMA 2.2.6 Leta,b,c,d € k such that the form § = [a,b] L d[a, b] represents
c. Then 6 = [¢, V] L d[c, V'] for some V' € k.

PROOF. Let a 22 [1,ab] L d[1,ab]. Since [a,b] = a[l,ab], we have § = aa.

Since é represents ¢, we have « represents ac. But « is a Pfister form; therefore

a = aca. Thus we have

2ca = ca

Jd 2 aaZ=a

= ¢1,ab] L del,ab]
Since ¢[1, ab] represents ¢ we have c[1, ab) = [c, §'] for some V' € k. O
LEMMA 2.2.7 Let K be a field extension of k, and let d € k*. Let v be a

non-singular K-form such that the form « L dvy represents an element of k.

Then there exist a € k, b € K, and a K-form +, such that

v L dy = ([a,8] L dla,b]) L (11 Ldm)

PRrROOF. Let (V,~) be a non-singular K-quadratic space. If d is a square in

K, then v L1 dv is a hyperbolic form of dimension 2(dim ) which is divisible
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by 4. Hence in this case we take @ = b = 0 and 7, to be the hyperbolic form
of dimension (dim~y — 1).

If 7 is isotropic, then y 22 {0,0] L +; and we then let a = b = 0. So, we may
assume that - is anisotropic. Suppose v L dvy represents an element ¢ € k*.

So, there exist v, vz € V not both zero such that

¢ = y(v1) + dy(va)

If v; (respectively, vs) is the zero vector, then ~y{v;) (respectively, v(v2))
equals ¢ (respectively, ). So, v represents an element a of k* where a = ¢
or a = £. Therefore ¥ = [a,b] L v, for some b € K and a K-form 7, and
the conclusion follows. Therefore we may assume that v, and v are both
non-zero.

Assume first that v; and v, are not orthogonal or v; and vy are linearly de-
pendent. Since - is non-singular, in either case the vectors v, v, are contained

in a non-singular two dimensional subspace Vj of V. Then

(A) (V, 7) = (‘/01 'ero) 1 "

for some K-form ;. Let f = (v{) and g = y(v2}. Then by 2.1.2, we have

(Vo,7lw) £ [f, ], and
B { o) =[]

for some f’,¢' € K. Since f + dag = ¥(v1) + dv(vs2) = ¢, the form [f, f] L
d[g, ¢'] represents ¢ € k . Thus by 2.2.6, there exists b € K such that

(C) [f,f1Ldlg.g]2[c,b] Ld[c,b]
From the equations (A), (B) and (C) we have

yldy = (If, F1 L m) Ld([g,4] L )
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{4

([f, f] L dlg,g]) L (11 L dm)
(le,8] L d[c,d]) L (1 L dm)

1%

as desired.

Now assume that v; and vs are orthogonal and linearly independent. Then
by 2.1.2,
(D) y=er, fi) Llea, fo] Lo
where ¢; = y(v;), i = 1,2, f1,f2 € K and v is a I{-form. Since e; + des =
¥(vi) + dy(v2) = ¢, the form [ey, fi] L dles, fo] represents ¢ € k¥ . Thus by
2.1.2, there exists b,r, s € K such that

(E) [es, fi] Ldlea, fo] = [c,b] L [r,9]
From the equations (D) and (E) we have
yLdy = (e, i} Lle2, fo] L %) L d([er, i] L [e2, f2] L Y0)
= (ler, /i] Ldlez, fo] L 70) L d{[es, fi] L dlea, fo] L 7o)
= (e8] L[ 5] L v} L d([c,8] L [r,5] L )
= ([e,] L dfe, b)) L (([r, 5] L %) L d(([r,s] L 7))

(e, 0] L d[e,d]) L (m L dm),

R

where v, := ([r, s] L 7). This completes the proof of the lemma. |

REMARK 2.2.8 (i) The forms [a, 8], a[l, ab] and a[l, a%b?] are isometric because
they are two dimensional forms representing a common clement a and have
the same Arf invariant (see the introduction or [Sch, Lemma 4.4.(i), p. 341]).
(ii) Let K = k(Vd), a € k and b € K. By (i), the form [a, b] is isometric to
a[1, a?b?); hence is defined over k& because a2b? € k. So in the conclusion of the

previous lemma we may assume that both a and b to be in £.
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PROOF (of Theorem 2.2.5). Since v L dv is defined over k, it represents an

element of k. So, by the previous lemma and remark
v Ldy=([e,b] Ldla,b]) L (7 Ldm)

where a,b € k and v, is a K-form. If dim(y) = 2, then we are done. If
dim(y) > 2, then 2.2.4 implies that ; L dy7y, is defined over k. We may
then use induction to find a k-form 4; such that v, L dvy; = (61 L dé)k; and

therefore

Y 1 d’y o™ ([a,b] 4 d[a,b]) 1 (61 L d(sl)]\'

=~ (([a,b] L 61)) L d(fa,b] L 1))«

and we set § = [a,b] L §. 0

2.3 Bi-quadratic extensions
We are now ready to describe the Witt kernel of bi-quadratic extensions (i.e.,
degree 4 extensions which are the composite of two quadratic extension). We
start with the inseparable case first. One distinguishes between two types of
inseparable bi-quadratic extensions: the purely inseparable case where L =
k(v/dy, v/d;) with non-square elements d;,d; € k; and the case L/k contains
an intermediate separable extension. In the latter case L = k(3, v/d) for some

non-square element d € k and 8 & k such that 32— 3 =be k.

THEOREM 2.3.1 Let L/k be an inseparable bi-quadratic extension over k.
Let g be an anisotropic non-singular k-form such that q is hyperbolic over L.
(i) If L = k(+/d,,/d3) with dy,d; € k, then g is Witt equivalent to a form of
the shape

(1 L diqr) L (g2 L dogo)

for some k-forms q, and gs.
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(ii) If L = k(3,Vd) wherede k—k? fgkand 3*—(3 =b €k, then q is
Witt equivalent to a form of the shape

(a[1,b) L ... Lc[1,b]) L (go L dgo)

for somec; €k (i =1,---,r) and a k-form gq.

PrOOF. For (i), let K = k(v/d,). If ¢ is hyperbolic over K, the theorem
follows immediately from 2.1.8. So, assume qg is not hyperbolic. Let ¢ denote
the anisotropic part of ¢ over K. By 2.2.3, ¢ is defined over k. Since q is
hyperbolic over L = K(y/d;), y;, is hyperbolic; hence there exists a K-form
g2 such that ¢ = ¢ L dogo. By 2.2.5, we may assume that ¢, is a k-form.
Consider the k-form a := g L —(q2 1 dag). Over K, the form « is hyperbolic
because (in W(K)) [ax] =[¢ L —(g2 L d2g2)k] = [¢ L —¢] = 0. So, by 2.1.8,
a is Witt equivalent (over k) to q; L d,q, for some k-form gq;. Therefore in

the Witt ring of £ we have

l[¢ L —(gq2 L dagn)] = [q1 L dvan);

or equivalently,

[q] = [(g2 L dag2) L (@ L d1n)]

as desired.

For (ii), we let K = k(8). If qx is hyperbolic, then we are done by
2.2.1. So, assume that g is not hyperbolic and let ¢ be its anisotropic part.
As in part (i), it follows that & g9 L dogo for some k-form ¢ and the k-form
a:=q 1 go L dago is hyperbolic over K. Now, by 2.2.1, a is Witt equivalent
(over k) to ¢i[1,b] L ... L ¢.[1,b] for some ¢; € k (i = 1,--+,7). Therefore ¢
is Witt equivalent to (ci[1,8] L ... L c:[1,b]) L (g0 L dgo) 0
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For separable bi-quadratic extensions one can use an argument similar to
that in the proof of 2.3.1 (or similar to [ELW, Proposition 2.12 ], using 2.2.5)
to get
THEOREM 2.3.2 Let L = k(a, 3) be a (separable) bi-quadratic extension over
k witha®—~a =a € k and 32— = b € k. Let q be an anisotropic non-singular
k-form. If q is hyperbolic over L, then q is Witt equivalent to a form of the
shape

(e1[l,a] L ... Lefla]) L (fi[1,0] L ... L f,[1,b])

for somee;, fek(i=1,---,r;j=1,---,s).

We conclude the chapter by an example which shows that the Witt equiva-
lence in the conclusions of theorems 2.3.1 and 2.3.2 above cannot be improved
to isometry.

EXAMPLE . Let kg be a fixed field of characteristic two. Let r,s,t,u be

algebraically independent elements over k¢ and set
g=[1,7] Le[1,s] Lu[l,r+s]

Let o, B (in the algebraic closure of k) be such that o> —a = r and 32—8 = r+-s.
Then

(i) The form ¢ is anisotropic over k because r,s,f,u are algebraically
independent elements over kg (see [L, ex. 1,p. 273]).

(ii) Over the fields K| = k(v?), Ky = k(/u), K3 = k() and K; = k(5),
the form ¢ is isotropic and have Witt index 1. We see this as follows: First
over K1,t € K and [1,7] L #[1,s] = [1,r] L[1,s] = H L [1,7 + s] (cf. see
remark 2.2.2(ii)). Therefore

(1) gx, =2H L[1,r+s} Lu[l,r+s].
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Since r+s and u are algebraically independent over ko(v/2), the form [1,r+s] L
u[l, 7+ 5] is anisotropic over K}, and therefore gg, has Witt index 1. Similarly,
we can show that gg, also has Witt index 1.

Now over K3 = k(a), the form [1,r] is isotropic and [1,7 + s] =g, [1, 5]
(because they represent 1 and have the same Arf invariant over K3). Therefore,
over K3,

(2) gqr, = HLt1,r+s]Lufl,r+s]
and #[1,s] L u[l,s] is anisotropic over K3 because s,t and u are algebraically
independent over ko{r). Therefore, gx, has Witt index 1. Likewise, gk, has
Witt index 1 too.

(iii) The form g is hyperbolic over the fields L, = k(v/, /u), L2 = k(v%,B)
and Ly = k(a, 8):

Note that u € L} and therefore the form [1,7+s] L u[l,r+s] = [1,7+3s] L

, T+ s = . Since K; C Ly, we have from equation (1} above that
1 2H. Si K cL h fi quati b h
qr, 2 H L [1,7+s] L u[l,r+ s] = 3H;

that is, gz, is hyperbolic.

Since g belongs to Ly and Lg, [1,r + 8] & H over Ly and L3 because
5%+ B+ (r + s8) = 0. Therefore the form [1,r + s] .L u[l,r + s] (respectively,
t[1,7 + s] L u[l,r + s]) is hyperbolic over L, (respectively, L3). Therefore
equation (1) (respectively, equation (2)) implies that g, (respectively, q1,) is
hyperbolic.

(iv) Theorems 2.3.1 and 2.3.2 imply that over & the form g is Witt equiv-
alent to forms of the shape
(8) (@1 Ltq) L (g2 L ug).
(b) (@1 Ltq) L (al,r+s]L...Ley[L,r+s])
(c) (By[l,r] L ... Lbu[l,7]) L(ar[l,r+s]L... Lecy[l,r+5]).
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where b;,¢; € k and ¢, and g; are non-singular k-forms. This Witt equivalence
cannot be improved to isometry. For if ¢ is isometric to (a), (b} or {c), then
by comparing dimensions we have either dim¢; > 2, dimg; > 2, m > 2 or
n 2 2. This respectively imply that the Witt index over K;, K3, K3 or K4 is

2 2; contradicting part (ii). O



Chapter3
Function fields of quadratic forms and
similarity

Throughout this chapter ¥ will denote a field of characteristic £ 2. The term
form will mean a non-singular quadratic form. For an irreducible form ¢, k(g)
will denote the function field of g. (see the introduction chapter for definitions.)

Let @ and Q2 be two non-singular A-forms of the same dimension. In this
chapter we will study the relation between the following equivalences of @
and Qa:

(1) The forms @; and @Q; are similar over k.

(2) The forms Q; and @, are birationally equivalent over k; i.e. the fields

k(Q,) and k{Q») are k-isomorphic.

(3) @) becomes isotropic over k(Q2) and Q2 becomes isotropic over k(Q,).

(Since the function field is a generic zero field, the condition (3) is equivalent
to the existence of a k-place of k(Q2) in k(@) and a k-place of k(Q) in k(Q-).)
Clearly (1) = (2) = (3). The question is to decide when the converse of these
implications holds. The question when birational equivalence of quadratic
forms implies similarity was first investigated by A. Wadsworth (see (W]). He
proved that (3) = (1) for forms (of the same dimension) of dimension < 4.
Also Wadsworth ([W}) and Knebusch ([K1, theorem 5.8]) independently noted
that the same holds if @, is a Pfister neighbor of codimension < 1. Knebusch
(cf. [K1, p. 72-73]) also pointed out that in general (2) => (1) does not
hold. He gave an example of two non-similar six dimensional Pfister neighbors
which define the same function field. we will dive an example of two non-

similar birationally equivalent 5-dimensional forms. In view of [W], this is an

26
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example of minimal dimension. We also show that (see 3.2.2) (3) = (1) in the
class of special Pfister neighbors. In particular, we show (3) = (1) if @, is a
Pfister neighbor of codimension < 4. In §3.3 we point out the relation of (3)
= (2) to the Zariski cancellation problem. The contents of §3.1-3.3 are a joint
work with Prof. Jack Ohm and will appear as [AQO] in the Journal of Algebra.

In section 3.4 we discuss the question of descent of similarity over field
extensions; and we give some classes of forms for which the similarity class is

determined by the generic splitting tower.

3.1 Pfister neighbors and special Pfister neighbors

DEFINITION The k-forms @ and P are called neighbors if Q is isotropic over

k(P) and P is isotropic over k(Q).

REMARK 3.1.1 Let P and @ be neighbors.

(i) Since @ is isotropic over k(P), the function field £(P)(Q) is a pure
transcendental extension of k(P) (recall 1.2.1 in the introduction). Likewise,
k(P)(Q) is a pure transcendental extension of £((Q) too.

(ii) Let L/k be a field extension. If P is isotropic over L, then L(P) is a pure
transcendental over L. Since k(p) C L(P) and @ is isotropic over k(P), Q is
isotropic over L({P), which implies that @ is also isotropic over L. Therefore
P and (@) are neighbors (if and) only if they have the same isotropy fields.
(iii) (see [K1, p. 73]) Suppose further that dimP > dim@. Then k(Q)
embeds into £(FP){Q) which, by part(i), is a pure transcendental extension of

k(P). Therefore by [O1), there exists a k-embedding of k(Q) into k(P).

Recall that the 0-fold Pfister form is the form (1); and an n-fold Pfister
form is a form Q A dQ, where @Q is an (n — 1)-fold Pfister form. A neighbor

of an n-fold Pfister form with n > 1 is called a Pfister neighbor.
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Let P be an n-fold Pfister form and @ a Pfister neighbor of P. By definition,
P is isotropic, hence hyperbolic, over the function field of ). Therefore by
the Cassels-Pfister subform theorem it follows that @ is similar to a subform
of P. Also since @ becomes isotropic over k(P), it follows from the main
theorem in [H4] (see theorem 1.2.4 in the introduction) that 2dim @ > dim P.
Conversely, let @' be a form similar to a subform of of the Pfister form P and
2dim @’ > dim P, i.e. P = a@)’ L Rforsomea € k* and a form R of dimension
< dim Q. Clearly P is isotropic over k(Q). Now over K(P), P is isotropic
and therefore hyperbolic. Hence in the Witt ring of k(P), [Q'] = [ R]. Since
dim Q' > dim R, we have @' is isotropic over k(P).

So, we conclude that a form @ is a neighbors of a Pfister form P in
the sense defined above) if and only if @ is similar to a subform of P and
2dim @ > dim P; i.e. our definition of a Pfister neighbor coincides with that
given originally by Knebusch in [K2, p.2, Definition 7.4].

By [K1 p. 73 and K2 pp. 2-3], a Pfister neighbor @ is the neighbor
of a unique (upto isometry) Pfister form @*. Also the form Q™ such that
a@Qt = Q L Q, for some a € k*, is also uniquely determined (up to isometry)
by Q. We will continue to use the notation Q% for the Pfister form associated
to @, and @~ for the complement of Q in Q*. The dimension of @™, is called

the codimension of the Pfister neighbor Q.

DEFINITION 3.1.2 (cf. [AO, 1.1]) Let P is a Pfister form of dimension > 2,
¢ € k* and P, is a non-zero subform of P. We shall call the such a triple
(P,c, P,), a Pfister triple; the form P L cP,, the form defined by the triple;
the form P L (c}, the base form of the triple; and the form P L ¢P, the
associated Pfister form of the triple. A form ) which is similar to a form

defined by a Pfister triple will be called a special Pfister neighbor.
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We emphasize that the special Pfister neighbors are Pfister neighbors with
the associated Pfister being Q* = P L cP, the Pfister form defined by the
triple.

If @ is any Pfister neighbor, then by 3.1.1 (iii), the function field of @
embeds into the function field of Q*. For special Pfister neighbors, one can
give the following refinement which is essentially due to Knebusch (cf. [K1,
pp. 72-73], also see cf. [AO, 1.2 and 1.3]).

THEOREM 3.1.3 Let P be a Pfister form of dimension > 2, c € k* and P, a
non-zero subform of P. Then

(i) The function field of P L cP, is (k-isomorphic to) a pure transcendental
extension of the function field of the base form P L {c).

(ii) The function field of the Pfister form P L cP is a pure transcendental

extension of the function field of P 1 cP,.

PROOF. Let X be a set of coordinate indeterminates for P and x be generic
zero for the polynomial P(X) + ¢, and let Y be a set of coordinate indetermi-
nates for (the dehomogenized polynomial) P/ and y be a corresponding set of
elements algebraically independent over k(z). (We take Y = 0 if dim P, = 1.)

Since P is a Pfister form and P ~y) P (y), we have P =, P (y)P.
This means there exists a nonsingular k(y)-matrix M such that if X' := XM,
then P(X') = PM(y) P(X). Therefore, if 2’ = zM, then

P() +cPi!(y) = P @)P(a) +d =0.

Then k(z,y) = k(z/, y); and since dimk(r,y)/k = dim(P L cP,)—2, it follows
that k(2', y) is the function field of P L cP;. But k(z) is the function field of
P 1 {c), so we proved (i).

Now by part (i), P L ¢cP and P L ¢P, have function fields which are pure

transcendental over the function field of P L {c). So, (ii) follows. O
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In particular, by taking P = (1,a) in 1.3, in which case P L ¢(1) = (1, q,c)
and P 1 ¢P = (1,a,c,ac), we have the very special case:

COROLLARY 3.1.4 (cf. [AO, 1.4]|) A simple transcendental extension of a
function field of a nonsingular conic is a quadratic function field.

Recall (cf. e.g. [02, p. 27]) that a field extension K/k is called ruled if there
exists an interfnediate field L (k € L C K) such that K is simple transcenden-
tal over L. The function fields K/k defined by Pfister triples (P,c, P;) with
dim P; > 1 are ‘quadratically ruled’, in the sense that L/k may additionally be
chosen to be a quadratic function field. While the Pfister triple construction
produces examples of ruled quadratic function fields, the problem of giving a
complete characterization of such extensions remains open. For example, the
following generalization of 3.1.3 gives further examples of quadratically ruled

quadratic function fields:

PROPOSITION Let P be a Pfister form, P, a non-zero subform of P and
¢,by,...,by € k*, then the function field of P L ... L b,,P 1 cP, is pure
transcendental over the function field of byP L ... L b, P 1 {c).

NOTATION. If P and @ are forms, we shall write @ < P if Q is similar to
a subform of P, and Q@ < P if Q is similar to a proper subform of P, i.e. if

@ = P and @ is not similar to P.

The next theorem gives a necessary and sufficient condition for an anisotropic
Pfister neighbor to be special.
THEOREM 3.1.5 (cf. [AO, 2.2]) If Q is an anisotropic Pfister neighbor with
complement @~ and associated Pfister form Q%, then Q is special iff there
exists a Pfister form Py such that Q— <X P < Q*. (In particular, anisotropic

Pfister neighbors of codimension < 3 are special.)
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PrRooOF. If Q- =0, then Q = Q; hence in this case @ is special (Pfister)
and @~ < (1) < Q*. Therefore we may assume Q~ # 0, or equivalently, that
there exists ¢ € k* such that Q= ~ ¢, If aQ* = Q L @, then Q% ~ ac
and Q = acQt = ¢Q L cQ~, and ¢Q~ ~ 1. Thus, by replacing Q with the
similar Pfister neighbor ¢Q, we may assume Q* = Q L Q™ and Q™ ~ 1.

If: By 1.2.2 the hypothesis implies that @~ is a subform of P, and F is a
subform of Q*. Since P, is a proper subform of Q*, by [L, p. 293, Exercise 8]
there exists a Pfister form R of dimension > 2 such that Q* & P, ® R. But

then, writing R = (1,d) ® R; with R, Pfister, we have
Qt=Pe((l,d) ® Ri) =S LdS,

where S := Py ® R, is Pfister. But )~ is a subform of Fy and F, is a subform
of S, so there exists a form @' such that S & Q~ L @Q'. By cancellation of @~

in the expression

Qt=QLQ =2Q" LQ 1dS,
we have Q = @' L dS. Therefore @ is similar to d@Q = d@Q’' L S, hence dQ
is defined by the Pfister triple (S,d,@Q’). {Note that Q' # 0 since dimS =
(1/2)dim P > dimQ~.)

Only if: We are given a Pfister triple (P, d,T) and an element b € k* such
that bQ = Py L dT. Since () is a neighbor of Py 1L dFy, and by the uniqueness
of the Pfister form associated to a Pfister neighbor, we have Q* = Py L dF,.
By definition of Q%, there exists a € k* such that aQ* = Q L Q™ = b(F, L
dT) L Q~,or Q* = ab(Py, L dT) L aQ~. Since Q* ~ab, Q* 2 abQ+* 2 Py L
dT 1 bQ~. Cancelling P from

Py LdPy = Q* = Py L dT 1 bQ",

we get dPy = dT L bQ~. Therefore Pp =T 1 (db)Q~,s0 Q- <P <Q*. O
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Before stating the next theorem, we shall give a lemma needed for its proof.

LEMMA 3.1.6 (cf. [AO, 2.3]) Let R <X Py %X P be forms such that Py and P
are Pfister and R represents 1. If there exists ¢ € k* such that R L {c) X P
and R 1 (c) 2 Py, then there exists b € k* such that

RL(c)=<PyL(b)<Py LbPy<P.

PrROOF. Since R and Py represent 1, by 1.2.2 we can write Pp 2 R L R’ and
P= Py, 1 Pj. Then

Ri{)L(.)=P = P L P

2 (RLR)LP,

By Witt cancellation of R, this implies R’ . Pj ~ c¢. Hence there exist a,b € k
such that ¢ = a + b, where ' ~ a and Py ~ b. Moreover, b # 0 since
R1{()AP.Thus, RL{(c) 2 RLR L {)= Py L{b) 2Py LbFy, and by
the following lemma, Fy L bPy < P. Finally, by (L, p. 280, Theorem 1.9] the
three conditions Py and P are Pfister, P = Py L Py, and Py ~ b € k™ imply
Py L bF, is a subform of P. 0O

THEOREM 3.1.7 (cf. [AO, 2.4]) Let Q' be a form of dimension < n, and let
P be a Pfister form of dimension 2 2" (n 2 1). If Q' X P, then there exists a

Pfister form P, such that Q' < Py < P.

Proor. I @' =0, we take Py = (1); so we may assume @’ # 0. By replacing
@’ with a similar form, we may further assume Q' ~ 1. Choose a form R which
is maximal with respect to the properties: R ~ 1, R < @, and there exists a
Pfister form Pg of dimension < 29im#~1 gych that R < Pr < P. (Note that

R = (1) = Pp is one such form.)
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Claim: R is similar to @’. If not, then there exists ¢ € k* such that
R 1 (c) X Q'. Moreover, R L {c) Z Pr by the maximality of R. Therefore by

2.1.6, there exists b € k* such that
RL{c)=XPprLbPr=P,

and

dim(Pg L bPg) = 2dim Py < 29 R < 24mQ’ < dim P.

Let R" = R 1 (c¢) and Pgp = Pp L bPg. Then
dim Pp < 24imR = gdimR'~1 o qim p,

so R < @, dimPp < 24mR-1 and R’ < Pp < P, which contradicts the
maximality of R. a
COROLLARY 3.1.8 (cf. [AO, 2.5]) If Q is a Pfister neighbor of codimension
< n of an anisotropic Pfister form P of dimension > 2" (n > 2), then Q is
special. (In particular, if dim P = 4 or 8, then all neighbors of P are special;

and if dim P > 8, then every subform of P of codimension < 4 is special.)

PRrROOF. By 3.1.7 there exists a Pfister form Fp such that Q— < Py < P, and

then 3.1.5 applies. (]
Knebusch [KII, p. 3, (7.8)] calls a Pfister neighbor Q excellent if either

codim @ £ 2 or its successive complements Q~, (Q~)™,... of dimension > 2

are again Pfister neighbors. These forms have been studied in [KII] and, in a

generalized setting, in [HR1].

COROLLARY 3.1.9 (cf. [AO, 2.7]) IfQ is an anisotropic Pfister neighbor whose

complement Q- is also a Pfister neighbor, then @ is special. In particular,

anisotropic excellent Pfister neighbors are special.
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ProOOF. It suffices by 3.1.5 to see that (Q~)* < Q¥, hence by 1.2.2 to
see that Q% is isotropic over k({Q~)*). Since Q- is a Pfister neighbor, there
exists an embedding of £(Q™) in &((Q~)*) by 3.1.1(iii). But Q* is isotropic
over k(Q~) since @~ is a subform of @7, and therefore a fortiori Q* is isotropic
over k((Q™)%).

For the second assertion, if Q is an anisotropic excellent Pfister neighbor
and codim @ < 2, then @ is special by 3.1.8, while if codim@ > 2, then its
complement Q™ is a Pfister neighbor. 0

We note below in a final remark for this section that the collection of
special Pfister neighbors is strictly larger than the collection of excellent Pfister
neighbors.

ExAaMPLE (cf. [AO, 2.8]) of a non-special Pfister neighbor.

We have seen that every anisotropic Pfister neighbor of codimension < 4
is special. We now give an example of an 11-dimensional Pfister neighbor of
codimension 5 which is not special. Let a,b, ¢,d be algebraically independent
elements over a field kg (of characteristic # 2); let k = kg(a, b, ¢, d); and let ¢’
be the k-form (1, a, b, ¢, d}.

CrLAIM: The 5-dimensional ‘generic’ form Q' = (1, a, b, ¢, d} is not a Pfister
neighbor.

Suppose we have established the Claim. Then Q' is a subform of the 16-
dimensional Pfister form P = (1,a)®(1,5)®(1,c)®(1, d), and P is anisotropic
by [L, p. 273, Exercise 1]. Let P = @ 1 @Q'. Then @Q is a Pfister neighbor
of P. By the Claim @' is not similar to a subform of an 8-dimensional Pfister

form, so @ cannot be special by 3.1.5.

PROOF OF THE CLAIM. If Q' is a Pfister neighbor, then by the lemma below @’

represents its determinant abed, or equivalently, Q' L {(—abed) = (1,a,b,c) L
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d (1, —abc) is isotropic. But this is not the case by [L, p. 273, Exercise 1. O

LEMMA (cf. [KIL, p. 10]) An anisotropic 5-dimensional form Q) is a Pfister

neighbor iff () represents its determinant.

PROOF. =: A 5-dimensional anisotropic Pfister neighbor @ is special by
3.1.8. This means there exist a,d € &* and a 4-dimensional Pfister form P

such that Q 2 a(P L {d)), which implies Q ~ ad = det Q.

< IfQ ~ d:= det@, then @ = P 1 (d) for some 4-dimensional
anisotropic form P of determinant 1. If P ~ a, then aP is Pfister; so
aQ = aP 1 (ad) implies Q is a (special) Pfister neighbor . O
REMARK The above example also yields an example of a special Pfister neigh-
bor which is not excellent: Take Q* = @ 1L @', with @, Q' as above. Then
Q* L @Q is a special Pfister neighbor of Q* L Q* = Qt L Q@ L @', but
the complement Q' of Q+ L @ is not a Pfister neighbor; so Q* L @ is not

excellent.

3.2 Function fields of special Pfister neighbors
We have seen in the previous section (cf. 3.1.3(ii)) that if @; and Q; are two
special Pfister neighbors of the (same) Pfister form P, then k(P) is a pure
transcendental extesion of £(Q);) and k(Q2). The main result of this section is
to show tha if also dim @, = dim @, then k(Q,) and k(Q2) are k-isomorphic.

We start with the following special case.

LEMMA 3.2.1 (cf. [AO, 1.5.1]) (Transposition Lemma) Let P be a Pfister
form; let b,c € k*; and let Q = (P L bP) L {c) and Q' = (P L cP) L (b).
Then

(1) @ and Q' define the same function field; and

(2) if dim P 2 2, then ) and ' are similar (if and) only if bP = cP.
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PROOF. (1) If P is isotropic, then the function fields of Q and @' are rational
(1.2.1) and of the same dimension, hence isomorphic; so we may assume P is
anisotropic. Let (z,y) be a generic zero for the polynomial P(X) +cP(Y) +b.
Since P ~y) P(y), the Pfister property of P yields P 2, P(y)P. Therefore
there exists a tuple (2’) of elements such that P(z) = P(y)P(z’) and k(y,z) =
k(y,z'). Then
P(y)(P(z')+c)+b = 0, hence
P(z"Y+c+ (1/P(y))b = 0.

Let ¥} = v:/P(y). Since P(y') = 1/P(y), it follows that k(y) = k(y'}) and
P(2'}+c+P(y')b = 0. But k(z,y) = k(z',y) = k(z',¢/'), so then (z', ¥') must be
a generic zero for P(X')+bP(Y")+c. Thus, k(Q) = k(z,y) = k(z', ) = k(Q').

(2) Suppose @ is similar to '. Then bQ is similar to ¢Q’; and since bQ
and ¢@’ are of odd dimension and have the same determinant bc, this implies
bQ = c)'. Therefore bP L P L {(bc) = cP L P L (bc), and hence by Witt
cancellation bP = cP. O
THEOREM 3.2.2 (cf. [AO, 1.6]) Let (Py,a,,P]) and (Ps,az, Py) be Pfister
triples which define forms P, L a;P| and P, 1 asP} of the same dimension.
Then the following are equivalent:
(1) k(Py L (a1}) = k(P2 L (a2)),
(2) k(P L a1 P)) 2 k(P2 L asPy),
(3) k(P La)P) 2k(P L aP),
(4) P LaP, =Pl aPs.
PROOF. (1)=(2)=(3)=>(4): By 3.1.3 k&(P; L a;P!) is a pure transcendental
extension of k(P; L (a;)) and k(P; L a;P,) is a pure transcendental extension
of k(P; L a;F}), so (1) implies (2) implies (3); and (3) implies (4) by 1.2.3.

(4)=(1): The proof of this will proceed through a sequence of lemmas.
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The first lemma is due Arason (cf. [Ars, p. 454, Lemma 1.7]). The proof
provided here is simpler. - - ,
LEMMA 3.2.3 (cf. [AO, 1.6.1]) (Exchange Lemma) Let P; be a Pfister form
anda; € k* (i=1,2), If P, L a\ P, 2 P, L as P, then there exists ¢ € k* such

that fori = 1,2, P; 1 {a;} is similar to P; L (c).
PROOF. Since P; L a;P; ~a;,j # ¢, and F; L q;F, is Pfister,
P L a;P; 2 a;(F; L a;P) & a;P; L aja; P

Putting these isomorphisms together with the isomorphism P, L a; P, =2 P, L

aa P> given by the hypothesis, we have
a Py L a1 Py =2 a1 P L ajas P,
or, in the Witt ring,
a162([P1] — [Po]) = [@1P] — [a2 1]

But [P] — [P} = [(1,-1) L1 (...)]), which, since the left and right sides of
the above equality involve forms of the same dimension, implies that a; P, L
(—aP)) is isotropic. Thus, there exist bj,b; € k* such that P, ~ b; and
ashy = a1bg, or {a1b)) = (azhs). We assert that ¢ = a;b has the desired
properties. Since P; is Pfister and P; ~ b;, b;P; & P,. Therefore P; 1L {a;) &
b:P; L {(a;) = b;(P; L {a:by)). O
LEMMA 3.24 (cf. [AO, 1.6.2)) Let P; be Pfister and a;,b; € k" (i = 1,2). If
(P L aiP) L (b)) and (P2 L aaP) L {bs) have the same associated Pfister
form, then there exist ¢,d € k* such that for i = 1,2, (P; L a;P;) L (b;) is
birationally equivalent to (P; L cP;) L {d).

ProoF. Note first that two forms which are defined by Pfister triples and

which are birationally equivalent have the same associated Pfister form, by
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3.1.3 and 1.2.3. Therefore we can successively apply the Exchange Lemma,
the Transposition Lemma, and the Exchange Lemma again to conclude that
there exist ¢,d € k* such that for : = 1,2, (P; L a;P) L {(b;) is birationally
equivalent to (FP; 1 a;FP;) L (c) is birationally equivalent to (P; L cP;) 1 {a;)
is birationally equivalent to (P; L cP;) 1 (d). m|
LEMMA 3.2.5 {(cf. [AO, 1.6.3]) Let Q; be a Pfister form of dimension 2"
(n >1) and b; € k* (i = 1,2), and suppose Q is a common Pfister subform
of Q1 and Q. of dimension < 2", If Q, L (b)) and Q2 L (bs) have the same
associated Pfister form, then there exist Pfister forms Py, P, of dimension 2"~}
and elements c¢,d € k* such that Q is a common subform of P, and P, and
fori =1,2, (P 1 cP,) L (d) is birationally equivalent to Q; L {b;). (Hence
Q 1 cQ is a common Pfister subform of P, 1 c¢Py and Py 1 cP,.)

PROOF. Since @Q is a proper Pfister subform of the Pfister form Q;, there
exists a Pfister subform P; of @}; and an element @; € k* such that Q is a
subform of P; and Q; P, L a;P; (cf. [L, p. 293, Exercise 8)]). The assertion
now follows from the preceding lemma. a

We are now ready to finish the proof of 3.2.2. Let &; (i = 1,2) be the set
of all forms birationally equivalent to P; L {(a;) and of the shape @ L (b) with
@ Pfister and b € k*; and suppose we have chosen elements ; L {b;) from &)
and @z L (b) from S, such that @; and Q2 have a common Pfister subform
() of maximal possible dimension among such choices. By 3.2.4 @) cannot be
a proper subform of, say, @; so Q & Q; = Q,.

In view of the fact that the associated Pfister form is preserved under
birational equivalence (3.1.3 and 1.2.3), it suffices to note that @ L () and

Q L {by) are similar, hence birational, by the Exchange Lemma. |




39

3.3 The Zariski cancellation problem

We noticed in 3.1.2(i) that if @, and Q5 are neighbors, the field k(@ )(Q2) is
pure transcendental over both £(Q;) and k(@2). If dim @, = dim @3, should
k(Q1) and k(Q2) be k-isomerphic? Note that by 3.1.2(iii), £(Q1) and k(Q2)
can be embedded in one another. The situation is identical to that of the
problem of birational cancellation which can be stated as follow: (See [02]

and {O3] for a detailed exposition.)

THE ZARISKI CANCELLATION PROBLEM (ZCP) Suppose K/k and K'/k are
quadratic function fields and there exists a finite set of elements (f) alge-
braically independent over K and a finite set of elements (') algebraically
independent over K’ such that K(t) & K'(t'). Does it follow that K & K'?

ZCP has an affirmative answer if dim K/k < 1; but the answer is no in
general by a (difficult) counter-example (see [BCSS]) which is a function field
of a cubic surface.

In our set-up, the fields K and K’ are function fields of quadratic forms.
One may aske ZCP has an affirmative answer with this extra hypothesis. This
will be refered to as the QUADRATIC ZARISKI CANCELLATION problem, or

simply the quadratic ZCP.

COROLLARY 3.3.1 (cf. [AO, 2.6]) If Q is an anisotropic Pfister neighbor
of codimension < 4, then the quadratic function fields which are overfields
of k(Q) are exactly the pure transcendental extensions K of k(Q)) such that
k(Q) C K C k(QY).

PrOOF. By 3.1.8 ) is special, and therefore the pure transcendental exten-
sions between k(Q) and k(Q™*) are all function fields of special Pfister neigh-
bors of @*, by 3.1.3. Suppose then that R is a nonsingular form such that
k(@) C k(R). Since Q* becomes isotropic over k(@) and a fortiori over k(R),
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R is similar to a subform of @* by 1.2.2. But then R is a Pfister neighbor of
@ of codimension < 4, hence special by 3.1.8, and by 3.1.3 k(R) is isomorphic

to a pure transcendental extension of k(Q). m

COROLLARY 3.3.2 (cf. [AO, 2.6.1]) The quadratic Zariski problem has an
affirmative answer if I is the function field of a Pfister neighbor of codimension

<4.

PROOF.  The hypothesis of the ZCP implies K embeds in K’ (cf. [O1],
or 3.1.2 (iii)) and dimK = dimK’, so K’ is an algebraic extension of K.
Corollary 3.3.1 implies that K’ has to equal KX in this case. 0O

The quadratic ZCP is known to have an affirmative answer if dim K/k < 3
or if K is a function field of (cf. [O4] for details). The case that dim K/k = 3,
i.e. that K = k(P) for P a form of dimension 5, was pointed out to us by
Detlev Hoffmann: If P is not a Pfister neighbor, then this case follows from
the Main Theorem of [H3], while if P is a Pfister neighbor, it follows from two

of our main results, 3.2.2 and 3.1.8.

3.4 Similarity and function fields

As a consequence of theorem 3.2.2, one can construct examples of birationally
equivalent forms that are non-similar. We explicitly produce two five dimen-
sional non-similar form that are birationally equivalent. In view of Wadsworth’s
results in [W], our example has minimal possible dimension. Also, from the
last paragraph of the previous section, Pfister neighbors are the only source of

such examples in dimension 5.
ExXaMPLE 3.4.1 (cf. [AO, 1.5]) Fix a field kp and let a,b, ¢ be algebraically
independent over kp, and let k = ky(a, b, c). Let

Q = (1,a,b,ab,c) and Q' = (1,a,c,ac,b)
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By [L, p. 273, Exercise 1] P = (1, a) is anisotropic over ko(a), and then also Q
and @' are anisotropic over k. Clearly @ and @' are special Pfister neighbors of
the Pfister form (1,a,b,ab) L c(1,a,b, ab), hence they are birationally equiv-
alent by 3.2.2. Moreover, by (2) of the transposition lemma 3.2.1, @ cannot
be similar to @Q'; for otherwise bP represents ¢ (over k), which is easily seen
to contradict to the assumption that a, b, ¢ are algebraically independent over

ko.

Now we turn our attention to the problem of descent of similarity over field

extensions:

QUESTION. Let L/k be a field extension and let P and @ be anisotropic k-
forms. Under what conditions (imposed on either the extension or the forms)
the similarity (isometry) of P and @ over L implies the similarity of P and Q
over k.

The question is widely open, and our results are rather elementary and
limited. Of course one is particularly interested in the case where the field L
is a function field of a quadratic form.

Note the the descent of isometry is known if L/k is either a pure transcen-
dental or an algebraic extension of odd degree; for in these cases P L —Q is
hyperbolic over L if and only if it is hyperbolic over k. (cf. [L, p. 255 lemma
1.1] for rational extensions, and Springer's theorem [L, p. 198] for the odd
degree extension.) In the next two results we show one actually gets similarity

descent over rational extensions and odd degree extensions.

PROPOSITION 3.4.2 Let L/k be a purely transcendental extension and P and
Q@ be anisotropic k-forms. Then P is similar to Q over L (if and) only if P is

similar to () over k.
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PROOF. We only need to show this for simple transcendental extensions.
Let L = k(X) were X is transcendental over k. Assume first that % is infinite.
By hypothesis, there exist f € k(X) and an invertible matrix M = (f;;) over
k(X) such that

PY)=f-QMY) (%)
Let d(X) = det(M) € L*. Since k is infinite, we can choose z € k such
that d(z), f(z) and f;;(z) are defined, and f(z),d(z) are non-zero. Let M’ =
(fij(z)) and b = f(z). Then b € k* and M’ is an invertible k-matrix. Equation
(%) gives

P(Y) =b-Q(M'Y),

hence P and @ are similar over k.

Now assume that %k is finite. In this case the anisotropic k-forms have
dimension < 2. (Actually, over finite fields any homogeneous polynomial in
more than 2 variables has a zero. cf. [G].) If dim P = 1, then there nothing
to prove. If 2 = dim P = dim @, then P = a(l,d;) and @ = b(1,d;). Since
P = Q over L, P and  must have the same determinant, i.e. {(d;) = (da)
over L. Since k is algebraically closed in L, we have (d;} = (dz) over k and we
are done O

The descent of similarity over algebraic extension of odd degree follow from
the following theorem which is a generalization of [L, p. 208, Scharlau’s Norm

principle] (for odd degree extensions).

PROPOSITION 3.4.3 Let L/k be an algebraic extension of odd degree, and P
and @ be anisotropic k-forms. If P = aQ) for a € L*, then P = Np;(a)Q over
k.

PROOF. Let Ly = k(a), m:=[L: Lg) and n := [Ly : k], m and n are odd. By

Springer’s theorem P =2 a() over L implies a@) = P over Lgj. By applying to
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last isometry the transfer s* map induced by the linear functional s : Ly — k
defined by s(1) = 1, ands(a) = --- = s(a""!) = 0, we get (cf. [L, p. 195-196
theorems 1.6 and 1.7)):

P = Ny (a)Q over k.

Note that NL/k(a) = NLo/k(NL/Lo(a)) = NLo/k(a’") = (NL,,/k(a))". Since n is

odd, we have, over k,

Npji(@)Q = (Nio/(a))"Q = (Nioyi(a))@Q = P
as desired. o

THEOREM 3.4.4 Let vy be a k-form. Let QQ and P be anisotropic forms such
that ¢} and P represent a common element over k and dim P < 2" < dimv
for some n 2> 0. Then Q is a subform of P over k(y)} (if and) only if Q is a

subform of P over k.

Proor. We induct on dim@Q. If dim@ = 1, then the hypothesis @ and P
represent a common element over k implies that @ is a subform of P.

So assume that dim Q > 1 and let @ € Dr(Q)NDy(P). Write Q@ = (a) L @y
and P = (a) L P,. By hypothesis dimQ < dim P < 2" < dim%. So theorem
1.2.4, implies that () and P stay anisotropic over k(1). Since Qx(y,) is a subform

of Pyy), we can write
P gk('l’) (a) J. Pl Ekw,) (a) _|. Ql _|. R

for some k()-form R. By cancelling (a}, we have that @ is a subform of P,
over k(). This implies, since @, is a k-form, that there exists an element a, €
k* represented over k by @, that is also represented over k(1) by P,. Therefore
the k-form P, L (—a,} is isotropic over k(). But dim(P; L {(—a,)) =dim P <
2" < dim. By 1.2.4 implies that P, L (—a,) is isotropic over k. Since P
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is anisotropic, this implies that P, represents a, over k. In other words we
concluded that ¢, and P, represent a common element over k. Thus by the
inductive hypothesis applied to ¢; and P,, we have @), is a subform of P, and
therefore @ = (a) L @, is a subform of P = {a) 1L P,. a

REMARK 3.4.5 In the previous proposition, the hypothesis @ and P represent
a common element over k& can be relaxed if the dim P < 2" (< dimy). For
then the inductive step can be modified as follows: Let Q@ = (a). Since Q is
a subform of P over k(3), the k-form P L (—a)} is isotropic over k(¢)) and
has dimension = dim P + 1 < 2" < dim. Therefore by 1.2.4, P L {—a) is

isotropic over k; i.e. Q = {a) is a subform of P.

When dim () = dim P, 3.4.4 and this remark give

COROLLARY 3.4.6 Let v be a k-form. Let Q and P be anisotropic forms
such that dim P < 2" < dimv for some n > 0. Then Q = P are isometric
over k(t) (if and) only if Q@ = P over k.

That is we have isometry descent in this case. If further we assume that dim P

is odd, one can get a similarity descent result :

COROLLARY 3.4.7 Let % be a k-form. Let Q and P be anisotropic forms
such that dim P is odd and < 2" < dim 1) for some n > 0. Then Q =~ P are

isometric over k(1) (if and) only if Q =~ P over k.

PROOF. Since dim P is odd we can find a k-form P’ which is similar to P
such that det P! = det Q. Over k(v), @ = P'. By comparing determinants
(remember dim P is odd), we conclude that P' and @ are actually isometric

over k(v); hence isometric over k by 3.4.6. 0

COROLLARY 3.4.8 Let @ and ¢ be k-forms. Let P be an anisotropic n-fold
Pfister k-form and 2" < dimv. If Q is similar to a subform of P over k(y),
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then @ is similar to a subform of P over k. In particular, if P’ is another

Pfister k-form and P = P’ over k(i), then P = P’ over k.

PROOF. Let a € Di(Q). Then the form @, := a@ represents 1. Over k(v),
@, is similar to a subform of the Pfister form P, hence by 1.2.2 @), is a subform
of P over k(). Since both P and @}y represent 1, theorem 3.4.4 implies that
(¢ is a subform of P over k. 0

Recall that @ is called a Pfister neighbor if it is similar to a subform
of a Pfister form P such that 2dim@ > dim P. If @} is a Pfister neighbor of
dimension 2" +m < 2(*+1) then the Witt index Q over (its function field) k(Q)
is known to be m (see for example [H4, cor. 2]). In the following proposition

we record a (partial) converse of this.

PROPOSITION 3.4.9 Let P be an n-fold Pfister form. Let Qg be a non-zero
k-form of dimension < dim P such that the form Q := P 1. Qg is anisotropic.

Then Q is a Pfister neighbor Iff the Witt index @ over k(@) = dim Qg

REMARK Note that the Witt index @ over k(Q) is always < dim @y, for

otherwise P will become isotropic over k{(Q) contradicting 1.2.4.

PROOF.  Assume that the Witt index @ over k(Q) equals dimy. Since
dimP = 2" and dim @ > dim P > dim @y, theorem 1.2.4 implies that Qg
and P stay anisotropié over k(Q). Therefore tw (Qyq)) = dim Q¢ implies that
—)o is a subform of P over k(Q)). By 3.4.8, @ is similar to a subform of P
over k, i.e., there exists @ € k such that a@Qq is a subform of P over k. Hence

Q = P L @Qp is 2 neighbor of the Pfister form P L aP o

REMARK Note that in the proof of 3.4.9 we only needed that Witt index @
over a field L equals dim @y where L/k is a function field of a quadratic form

of dimension greater that dim P.
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We now return to the relation between birational equivalence and function
fields. In our example 3.4.1 (and also in Kneblfsch’s\éxample [K1, p. 73)) of
birational but non-similar forms, we notice that the anisotropic parts of these
forms over their (common) function fields are not similar. This leads to the
following (open) question which is a special case of the similarity descent
question:

Q1. Let P and ¢ be nonsingular birationally equivalent quadratic k-forms
such that P is similar to @ over k(P) (= k(Q)). Should P and Q be similar
over k7

This question is equivalent to the following question proposed by professor
Ulf Rehmann.

Q2. Let P and @ be nonsingular anisotropic quadratic k-forms of the same
dimension which define the same generic splitting tower over k. Should P and

(2 be similar over k?

REMARK Let P and (} be anisotropic forms that define the same generic
splitting tower. Let kg = k,ky,...,k;, be a common splitting tower and
Py =P, P,..., Py (respectively, Qo = Q,Q1,...,Qn-1) be the correspond-
ing anisotropic kernels of P (respectively, ). Then F, is isotropic over k;(Q;)
and conversely. This fact will be used frequently in what follows.

Our next theorem will answer in the affirmative Q1 for forms of odd di-
mension. We will need the following lemma which is a special case of a result
of Fitzgerald [F, theorem 1.6].

LEMMA 3.4.10 Let P and @ be anisotropic k-forms. If Q = P over k(P),
then either

(1) @ and P are similar over k, or

(2) P 4 Q is similar to a Pfister form.
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PROOF. Let ¢ = P 1 —Q. Then 2dim P = dimp > dim ¢ — 298(#), Also
 is hyperbolic over k(P) because @ = P over k(P). Fitzgerald’s theorem [F,
theorem 1.6], ¢ is either hyperbolic or an anisotropic Pfister form; hence (1)
and (2) follow respectively. 0

Notice that case (2) can happen only if dim P is a 2-power. So the lemma

provides an isometry descent result in the case dim P not a 2-power and L =

k(p).
THEOREM 3.4.11 Let P and Q be non-singular quadratic k-forms such that
dim Pis odd. If P is similar to Q over k(P), then P and Q are similar over k.

Notice we do not need the hypothesis P and @ are birationally equivalent.

PROOF. Since P has odd dimension, we can replace P by a similar form such
that we may assume that @ and P have the same determinant. Over k(P),
P and @ are similar forms with the same determinant and odd dimension,
they must be isometric over k(P). Since dim P is not a 2-power, the previous
lemma implies that P and Q must be similar over k, as desired. a

We now provide few classes of forms where the question Q2 above has a

positive answer.

PROPOSITION 3.4.12 Let P and @ be anisotropic k-forms and P =2 Py 1L (a)
for some Pfister form P’ and a € k. Then P and Q are similar if and only if

P and Q define the same generic splitting tower.

PROOF. Suppose that P and Q define the same generic splitting tower, P is
clearly a Pfister neighbor of the Pfister form Py L aFy, hence (Q is also a Pfister
neighbor of this Pfister form too. In particular, the anisotropic kernels P, and
@1 of P and @ over k(P), respectively, are defined over k. Clearly, Py 2 —aP,

over k{P) which is a codimension 1 Pfister neighbor. But P, and @, have the



48

same generic zero fields, hence they must be similar (over k(P)). By 3.4.8,
Py and Qs are both codimension 1 neighbors of Py over k, hence are similar.
Therefore P and Q are neighbors of Fy L aFy with similar complements, hence
are similar. o

We have seen that the 5-dimensional Pfister neighbors are special, hence are
similar to a form of shape P L (a), where P is a Pfister form. The proceeding
proposition implies the similarity class of such a form is determined by it
generic splitting tower. The results in [W] and the main theorem in [H4],
imply that the same hold for forms of dimension < 4 and the 5-dimensional

none Pfister neighbor forms. So we have

COROLLARY 3.4.13 The similarity class of any form of dimension < 5 is

determined by its generic splitting tower.

COROLLARY 3.4.14 Let P be an anisotropic Pfister neighbor of codimension
< 5. Let @ be an anisotropic form such that P and @ define the same generic

splitting tower over k. Then P and Q are similar.

PROOF. Let 7 be the Pfister form associated to P. The hypothesis imply
that @ is also a neighbor of 7. Let Py and Qg be the complements of P and @,
respectively, in Fy. By the previous corollary we have Py ~ ¢ over £(P). Note
that P is isotropic over k(Fp) , because m is. Therefore, k(P)(Pp) is rational
over k(Fp). Likewise k(P)(Qo) is rational over and k{Qg). By the ZCP (which
holds here since dim Py < 5), Py and @ are birationally equivalent over k. In
the case P, is not a 5-dimensional neighbor, this implies that Py and @}y are
similar. This in turn shows that their complements P and @ in 7 are similar.
Now let Py and Qg be 5-dimensional neighbors. Then we can repeat the same
argument above with Py and g replaced by their complements to conclude

that Py and Qg are similar; this implies that P ~ @ are similar. O



Chapter 4
The Pfister-Leep Conjecture

In analogy to algebraically closed fields, a field k is called a C§-field if every
system of r forms of degree d over k in n variables where n > r has a common
non-trivial zero over k. For a prime p, the field k is called a p-field if [L : k] is
a power of p for every finite extension L/k.

In [P1], Pfister proof the following
THEOREM ([P1, Theorem 2]}: Ifk is a p-field, then for any d not divisible by

p, k is a C§-field.

See also [P2, Theorem 2]. A special case is

CoroLLARY ([P1, Corollary 1]): If k is a p-field for some prime p # 2, then
k is a C2-field

Pfister conjectured that the converse of this corollary is true.

PFISTER'S CONJECTURE ([P1, Conjecture 3]): If k is a CZ-field, then k is a
p—ﬁéld for some prime p #£ 2.

In [L2, Theorems 5.4, 5.5], Leep proved this conjecture for fields of charac-
teristic 0 or 2 and gave the following generalized version of Pfister’s conjecture

to higher degree forms (see [L2, 1.4]):

THE CONJECTURE OF PFISTER-LEEP. For a fixed d, if k is a C¢-field, then
k is a p-field for some prime p # d.

In this chapter we show that the Pfister-Leep conjecture is true if d is a
power of the chararcteristic of the field k. Note that if k is a Cg‘-ﬁeld, then

k is also a C§-field (because if {F),...,F,} is a system of forms of degree g,
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then {F},...,F!} is an equivalent system of forms of degree ¢'). Therefore we

need only to consider the case when d is equal to the characteristic of k.

4.1 A system of forms
Let k be a fixed field and let d > 1 be a fixed integer. In this section, we define
a system of forms of degree d that will be used in the proof of the the special
case of the conjecture. We take our variables to be Z, X}, Xs,....
Define f : {2,3,...} = {1,2,...} and ¢ : {2,8,...} = {1,d,d?%...} as
follows:
For n > 0, let

n=ay+ad+---+ ad’

be the d-adic expansion of n, where a, € {0,1,...,d —1},0 <t < r, and
a, # 0. Set g(n) = d™+!; and

{ dr-! ifn=d;
fn)=4¢d" if n = a,d” and a, > 1;
apd +a,d? + - +a,_1d" ifn#a.d.
Now, define the form ¢, of degree d as follows:
XoZ% '~ XG0 if n=dr,
Bn = X = X35, 2%, if n = a,d" and a, > 1;
Xt~ XpmXgiyZ9o~!, otherwise.

REMARK 4.1.1

(i) Note that n < d"+! = g(n), hence f(n) < d"+!. In particular, The
form ¢, does not involve the variables X, ¢t > drt!

(i) Also n < d™, implies r < m, with equality only if n = d™. Hence
n < d™ implies f(n) < d™ and g(n) < d™.

(ili) If n = a.d", then dn = a,g(n). If n # a,d", then g(rn) > n and
dn = f(n) + a,g(n).

(iv) Ifn#a,d" and a, =d—1, then n— f(n) = (d — 1){g(n) — n) > 0.
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To give the reader a feeling of how the forms ¢, look, we list these forms

for thecased=3and 1 <n <9.

¢ =X§—X§Z, @3 =X322—Xf,
P4 = X3 — X3XoZ, ¢5 = X3 — X6XoZ, # = X3 — X37Z,
¢r = X7 - Xa3X5,  ¢s=X3— XeX3, ¢o = Xo2Z® — X3.

LEMMA 4.1.2 Let m be an integer > 1, and let z,x,x9,... be elements from a
field. If 2 = 0 and the forms ¢, ..., ¢ defined above vanish on (2, xy,zs,...),

then x, = 0 for n < d™.

PROOF. Suppose that 1 < n < d™, and let n = qpd® + a1d + -+ + a,d" be
the d-adic expansion of n, ¢, # 0. We use induction on n to show that under
the given hypotheses, z, = 0.

If n=1, then d < d™. Hence ¢y := X429 = X§ 5y = XyZ%' = X{ vanishes
on (0,z;,xs,...), which implies that x; = 0.

Now assume n > 1. There will be three cases according to how ¢, is

defined.

Case I. n = d". Since n < d™, dn < d™; hence by hypothesis ¢y, :=
XinZ9! — X4 4, vanishes on (0,zy,...). This implies z7(4n) = 0. But n = d"

implies f(dn) = f(d"™*') =d" =n, so z, = 0.

Case II. n = a,d", a, # 1. Then our hypothesis that ¢, = X¢ —

Xoin) Z4-¢r vanishes on (0,z,...) again implies ,, = 0.

Case III. n # a,d". Suppose first that a, < d — 1. Then our hypothesis
that ¢, = X¢ — Xf(n)X;‘("n)Zd““"l vanishes on (0,x;,...) implies z,, = 0,
because d — a, —1 > 0. Now assume a, = d — 1. By remark 4.1.1.(iv),
f(n) < n < d™; hence zs») = 0 by induction hypothesis. Therefore, ¢, =

Xi-X f(,,)X;(jlg vanishes on (0, 2,...) again implies x, = 0 as desired. 0O
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LEMMA 4.1.3 Let m be an integer > 1, and let z,x;, zq, ... be elements from a
field. If z = 1 and the forms ¢s, . .., ®4m defined above vanish on (z,x;,%s,...),
then

T, = €uxy, forn <d™

where €, is a d-power root of unity.

REMARK 4.1.4 From the proof of this lemma we shall see that

(i) € =1if n = d". In particular, for any n, €;n) = 1 since g(n) is a
d-power.

(ii) €, is a d-th root of unity if n = ad", 1 < a < d.

(iii) €, = eep(n) where € is a d-th root of unity, if n # ad",1 £ a < d.

PROOF OF 4.1.3 Again, let n = aqod® + a;d + -+ + a,d” be the d-adic
expansion of n, a, # 0, and n < d™. If n = 1, then z, = 1. z!, so we may

assume n > 1.

Case I. n = d". We induct on r. If r = 1, then ¢y := X, 29! — X¢
vanishes on (1, 2y, Z,...) implies 4 = 9. If r > 1, then similarly, z4r = z9_,.

But by induction hypothesis, z4r—1 = x‘f'-' ,80 2 = 2% .

Case II. n = a,d", 1 <a, <d. Sincen < d™, ¢, = X3 — ;'('n)Zd“"
vanishes on (1,z;,s,...), which implies that z¢ = Tgin)- Since d" < n < d™,

r+1 < m. Therefore, g(n) = d™! < d™, hence by case I we have xy(,) = 3™,

Hence z¢ = Toiny = :1:‘1"9("). Therefore, z,, = €,z7, Where ¢, is a d-th root of

unity.
Case IIl. n # a,.d". Again, since g(n) = d"*! < d™, by case I, z4(,) =

:z:"{’("). Thus, ¢, := X4 — X;(,,)X;’(n)Z"‘“"‘ vanishes on (1, z;,Ts,...) implies

.’Bg = wf(n)mclz.-g(n).




53

So, it is enough to show that z,,,) = ¢ f(,,)x{ ("), where €g(,) is a d-power root

of unity; for then we have

zh = epma] et

= €/mzi", by remark 4.1.1.(ii),

and therefore,

1/d
Iy = ee!{n):c;'.

where € is a d-th root of unity, and we may take ¢, = ee}f:), a d-power root of

unity.

Claim : If n is an integer > 1 and there exists m such that n < d™ and
$2,%3,...,¢4m vanish on (1,zy,2s,...), then Ty = ef(,,,a:{("), where €7(n) is

a d-power root of unity.

Proof of the claim. We may assume f(n) > 1, for otherwise f(n) =1
implies n = d and we are done by case I. Note that since n < d™, f(n) < d™
by remark 4.1.1.(ii). To show that z () = €/(n)z]"™, we induct on the “length”

of n; i.e. on the quantity r — ¢, where

n=ad+---+ad with aa, #0.

If r—t =0, then f(n) =d ! or d", hence by case I applied to f(n) we have
Tfm) =€ szl ™, where €f(n) i8 a d-th root of unity.
So assume that » —¢ > 0. Then

f(n) =a,d* + ... + a,d**! where a, #0, and s < 7.

The length of f(n) equals s — ¢t < r — . Therefore, by induction hypothesis

applied to f(n),

. _ S n))
Ty(r)) = E€fLFRNTL

Also, since g(f(n)) is a d-power, Ty(fn)) = 29V by case J.
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If f(n) = a,d'*!, then again by cases I and I1, we get £y, = ef(,,,:r{("),

where €(n) is a d-th root of unity. So, assume f(n) # a,d**'. Then ¢y, =

X}j(") - X,(;(n))X;‘(',(n))Z“‘“"l vanishes on (1, Z1,%2... ) implies that

d "
Thm) = TIEONZgifin)

- L)

= Em(n))xf”"), by remark 4.1.1.(iii).

Hence,
— ¢el/d f(n)
Ty(n) = €€ (pm)T1 s
where ¢ is a d-th root of unity. We set €y, = ce}{f(n)), a d-power root of unity.

a

4.2 The main result
In this section we will prove

THEOREM 4.2.1 Let k be a field of characteristic d. Given a polynomial h over
k of degree d™, (m > 1) in one variable, there exists a system S of r(= d™ —1)
forms of degree d in r + 1 variables such that h has a zero in k if and only if
the system S has a common non-trivial k-zero.

As a corollary we have

COROLLARY 4.2.2 Let k be a field of characteristic d. If k is a C¢-field, then
(i) every polynomial of d-power degree has a zero in k.

(ii} k is a p-field for some prime p not dividing d.

PROOF. Since k is a a C¢-field, the system S in the theorem has a non-trivial
k-zero. Therefore, the polynomial » has a zero in k; hence (i) follow. Now (ii)
follows from (i) and the following proposition which was proved by Leep for

the case d = 2; the proof of the general case is identical.
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PROPOSITION ([L1, prop. 4.4])A field k is a p-field for some prime number p
not dividing d if and only if every polynomial of d-power degree has a zero in
k.

Before starting the proof of 4.2.1, we need the following: Define the func-

tions

i{d,d+1,d+2,...} = {1,2,...},

j:{d,d+1,d+2,...} = {l,d,dz,...}
as follows:

For any integer n > d, write the d-adic expansion of n:
n=ayd®+ad+---+a.d,

where a, # 0. Set j(n) = d"; and

i(n) = a.d™ !, ifn=a.d;
ap+ad+---+a,d,  ifn#ad.
Now, for n > 0, define the monomials ¥,, (of degree d) as follows:
Xpzd—m if0<n<d
Y, = X{{n) ifd<n=a.d;
X,'(,,)X;(';;)Zd_a'—l, ifd<n ?’-‘ a.dr.

Suppose we are given a polynomial
h=X" +em XU Vi X + o,
with coefficients ¢; from k. Define ¢ (a form of degree d) to be

¢n = Ygo +cgm_1Ygm_y + -+« + 1Y) + Y.

REMARK 4.2.3
(i) Note that i{n) < d" = j(n). Also, if d < n < d™, then r < m, hence
i(n) < d™ ! and j(n) < d™1. In particular, for h of degree d™, the form ¢

involves only the variables Z, Xj,..., Xym-1.
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(ii) Let n > d. If n = a.d", then di(n) = n; and if n # a.d", then
n = i(n) + a,j(n).
(iii) If h has degree d, then ¢ is nothing but the homogenization of A.
PRrROOF OF 4.2.1

Let k be a field of characteristic d. Throughout the proof, for n > 0, let

n=a+...+a,d", a. # 0, be the d-adic expansion of n. For any elements

Z,T1,%2,...,2L4m-1 Of k, and for n =0,...,d™ let
e if0<n<d;

Yn = m‘.E’(n) fd<n=ad;

:L',-(n)z.‘f‘(rn)zd—a.-—l, ifd<n __'é a.d",

Take S to be the system consisting of of the d™~! forms ¢4, ¢2,. .., Pam-1.
These forms have degree d, and by 4.1.1.(i),(ii) and 4.2.3.(i), the system in-
volves the d™~1 + 1 variables Z, X;,..., Xgm-1.

Claim: The system S has a non-trivial k-zero if and only if the polynomial

h has ak zero.

If m = 1, then, as noted in 4.2.3(iii), S = {¢x} is just the homogenization
of h, and therefore the claim is proved in this case. So we may assume m > 1.
First, assume that the syétem &n, b2, ..., P4m-1 has a non-trivial common
zero (z,x1,%a,...,Tgm-1) over k. Then z cannot be zero. Otherwise, if 2 = 0,

~ then by Lemma 4.1.2,
z,=0forl<n<d™ "\

By 4.2.3.(i), d € n < d™ implies i(n) < d™!. Hence zim = 0 for d <
n < d™, which implies that y, = 0 for 0 < n < d™. Therefore ¢, vanishes
on (z,%;,%3,...,T4m-1) implies 0 = yym = a::-*(d...). But i(d™) = d™!, so

Tgm-1 = 0. Therefore, z = 0 leads to the trivial solution, a contradiction.
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So, we may assume that z = 1. Claim: z; is a zero of h. Note that since the
characteristic of k¥ = d, all the d-power roots of unity are equal to 1. Therefore

lemma 4.1.3 implies that

z, =27 for 1<n<d™ .

Therefore, for 0 < n < d™,

zt if0<n<d,
Yo = m'f'{") _ ifd<n=a.d,
ienitn) i 0 < n # a,d"

i

z}, (by 4.2.3.(ii)).
Now, ¢, vanishes on (1,zy,...,Zgm-1) impliés

0 = yum +Cam_1Yam-1 + -+ + CoYo
= o +egmzl 4t

= h(.‘E]).

Hence z; is a zero of A.

Conversely, Assume that there exists a € k such that h(a) =0. Put 2 =1
and z, = a" for n > 1. We verify that (z,z;,...,%4m-1) is a common zero of

the forms ¢y, ¢1,...,¢am-1. As above, we have by 4.2.3.(ii),

a” ifo<n<d,
yn = { ati®) ifd<n=a.d;
a'Mtaritn} - if d < n # a.d".
= a;
and therefore
0 = hlae) = o +egm_ia P44

= Ydm + Cgm_1Ydm_1 + >+ + CoYo;

Hence, ¢, vanishes on (z,%,...,ZTgm=1).
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To verify that ¢, vanishes on (2,7;,...,Tgm-1) for 1 < n < d™1, first
assume that » = d". Then f(n) = d™!, and therefore z,2%! — 2%, =
o — ¥ = ¥ — o) = 0. Hence, @, vanishes on (z,z;,...,Zgm-1) in
this case. Now assume that n = a,d", a, # 1. Then g(n) = d"*}, and we have
g — Tgr 240 = a® — o9 = oo’ ' aord™ =0, hence, ¢, vanishes on
(z,21,...,24m—1) in this case too. Finally, assume that n # a.d". By 4.1.1.(iii),
dn = f(n) + arg(n); hence, z§ — TymTo 29 %! = it — of(Masln) =

a®® — o™ = (), so ¢, vanishes on (z,z|,...,Tgm-1). This completes the proof

of the theorem. O
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