
Louisiana State University Louisiana State University 

LSU Scholarly Repository LSU Scholarly Repository 

LSU Doctoral Dissertations Graduate School 

6-11-2022 

From Equal-mass to Extreme-mass-ratio Binary Inspirals: From Equal-mass to Extreme-mass-ratio Binary Inspirals: 

Simulation Tools for Next Generation Gravitational Wave Simulation Tools for Next Generation Gravitational Wave 

Detectors Detectors 

Samuel Douglas Cupp 
Louisiana State University and Agricultural and Mechanical College 

Follow this and additional works at: https://repository.lsu.edu/gradschool_dissertations 

 Part of the Cosmology, Relativity, and Gravity Commons, and the Numerical Analysis and Scientific 

Computing Commons 

Recommended Citation Recommended Citation 
Cupp, Samuel Douglas, "From Equal-mass to Extreme-mass-ratio Binary Inspirals: Simulation Tools for 
Next Generation Gravitational Wave Detectors" (2022). LSU Doctoral Dissertations. 5886. 
https://repository.lsu.edu/gradschool_dissertations/5886 

This Dissertation is brought to you for free and open access by the Graduate School at LSU Scholarly Repository. It 
has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU 
Scholarly Repository. For more information, please contactgradetd@lsu.edu. 

https://repository.lsu.edu/
https://repository.lsu.edu/gradschool_dissertations
https://repository.lsu.edu/gradschool
https://repository.lsu.edu/gradschool_dissertations?utm_source=repository.lsu.edu%2Fgradschool_dissertations%2F5886&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/129?utm_source=repository.lsu.edu%2Fgradschool_dissertations%2F5886&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/147?utm_source=repository.lsu.edu%2Fgradschool_dissertations%2F5886&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/147?utm_source=repository.lsu.edu%2Fgradschool_dissertations%2F5886&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.lsu.edu/gradschool_dissertations/5886?utm_source=repository.lsu.edu%2Fgradschool_dissertations%2F5886&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu


FROM EQUAL-MASS TO EXTREME-MASS-RATIO
BINARY INSPIRALS: SIMULATION TOOLS FOR NEXT
GENERATION GRAVITATIONAL WAVE DETECTORS

A Dissertation

Submitted to the Graduate Faculty of the
Louisiana State University and

Agricultural and Mechanical College
in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

in

Department of Physics and Astronomy

by
Samuel Douglas Cupp

B.S. in Physics, Austin Peay State University, 2015
August 2022



Acknowledgments

While we all like to imagine that much of our accomplishments are the results of our own

efforts, the truth is that much of what we do relies on others investing in our growth and

progress. Science without collaboration will inevitably fall short of what could have been

done, and students without mentors will learn far less. I, of course, am no different, and

many people have contributed to my success.

I thank my committee members for the time they spent reviewing my thesis and listening

to my general exam and thesis defense. I particularly thank Peter Diener and Steve Brandt

as my advisor and unofficial second advisor, respectively. They both put in a lot of work to

help me with research and general career advice/advancement. The office staff also deserve

thanks for the behind-the-scenes work. Paige Whittington particularly had to suffer my

many emails regarding graduation deadlines and scheduling, so thanks for bearing with me.

Several collaborators also worked with me heavily during this research. Roland Haas

contributed to my work on Carpet and CarpetX and helped me with understanding the

unpleasant guts inside Cactus. Barry Wardell, Niels Warburton, and Adam Pound spent a

lot of time at the Capra meetings and through email correspondence to help with the Lorenz

gauge code. Barry and Niels also wrote the effective source code I use for the RWZ gauge

code. I also have to thank Leor Barack for taking the time to dig up errata for a paper from

15 years ago to help me figure out what I needed to do to reproduce the derived equations

in that paper.

The largest contributors are certainly my parents, Sam and Melissa Cupp, who supported

my academic journey and provided a stable environment for my growth and development

as a person. Be it telling me to apply to REUs, helping me to move to Louisiana, or just

providing a safety net to make student life easier, they put great effort into helping me

succeed.

I also have to thank the faculty and staff in the Physics & Astronomy Department

at Austin Peay State University for helping me immensely in my studies. The close-knit

ii



community in the department helped most of us through the degree path, even when some

semesters for my class went completely off-the-rails. Particularly, I thank B. Alex King and

Justin Oelgoetz. I first met Alex during the Governor’s School for Computational Physics,

which I attended as a high schooler. From there all the way through my undergraduate degree

he went way above the call of duty to help people in the department. I also appreciate how

easy it was to convince him to teach classes for just me, though I think he might not see it the

same way. On the research side, Justin advised my undergraduate research and helped me

develop my skills as a computational scientist, which has benefited me greatly. Finally, the

department secretary Sherry Bagwell deserves tons of praise. Without her constant work,

I’m sure the entire department would collapse within hours, so thank you for all you do to

keep the gears turning.

While there are too many people to mention during my time at APSU, a few stand

out. Of the upperclassmen, James, Chris, and Robert were great friends and also put in

a lot of hours helping us with classwork and research. In my class, Travis Tanner, Justin,

Mees, and Sam Wyatt all made things way more fun and made the rough times bearable.

While he only showed up near the end, Christian spiced things up for our senior year. I also

have the distinction of being one of the few members of my class that spent all my time in

the department, so I avoided my work by helping underclassmen with theirs. Ricky, Travis

Hodge, Thomas, and Dominic provided welcome reprieve from my workload by asking me to

do something I already knew how to do, for which I am very thankful. Finally, I especially

want to thank Donny, with whom I probably spent the most time in undergrad. Though

he wasn’t in the department, he was a great roommate and friend. I hope you’re enjoying

Taiwan and your marriage.

I eventually ended up following Robert to LSU and was myself followed by Thomas,

so presumably a new APSU graduate will soon come to replace me in the department. In

addition to old faces, I met many new friends at LSU. While I won’t try to thank or mention

everyone, I will mention David and Nick. I spent many weekends playing board games in the

iii



Armenian enclave with David. He also formed the core of the weekly trivia group, messaging

everyone and showing up 30 minutes to an hour early to grab a table. I also watched shows

and just went out for dinner with Nick, talking about fictional lore or other (thankfully)

non-physics topics. It was through Nick I managed to worm my way into his undergrad

friend group. Though I hope one day to join voice chat without Ari and John watching a

twitch streamer, thanks for the fun times outside of that.

This research was funded by the NSF with the grants OAC 1550551 and OAC 2004157.

iv



Table of Contents

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Chapter 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Chapter 2. Synchronization Automation in the Cactus Framework . . . . . . . . . . . . . . . . . . . . 3
2.1. Einstein Toolkit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2. The PreSync Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3. Compatibility and Advanced Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Chapter 3. Extreme-mass-ratio Inspiral: The Self-Force Approach . . . . . . . . . . . . . . . . . . . . 17
3.1. EMRI Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2. Radiation Reaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3. Mode-sum Decomposition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4. Self-force Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.5. Self-Consistent Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.6. Effective Source Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.7. Hyperboloidal Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.8. Discontinuous Galerkin Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Chapter 4. Self-force Implementation in the Regge-Wheeler-Zerilli Gauge . . . . . . . . . . . . . 42
4.1. Tensor Spherical Harmonics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2. Numerical Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.3. Computational Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Chapter 5. Self-force Implementation in the Lorenz Gauge . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.1. Tensor Spherical Harmonics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.2. Evolution Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.3. Constraint Damping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.4. Methodology and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Chapter 6. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Appendix A. Tensor Spherical Harmonic Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Appendix B. Separation of the Evolution Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Appendix C. Coupling Matrix for the the Lorenz Gauge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Appendix D. Copyright Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

v



Abstract

Current numerical codes can successfully evolve similar-mass binary black holes systems,

and these numerical waveforms contributed to the success of the LIGO Collaboration’s detec-

tion of gravitational waves. LIGO requires high resolution numerical waveforms for detection

and parameter estimation of the source. Great effort was expended over several decades to

produce the numerical methods used today. However, future detectors will require further

improvements to numerical techniques to take full advantage of their detection capabilities.

For example, the Laser Interferometer Space Antenna (LISA) will require higher resolu-

tion simulations of similar-mass-ratio systems than LIGO. LISA will also be able to detect

extreme-mass-ratio inspiral (EMRI) systems. The EMRIs require a perturbative approach,

and these techniques lags far behind numerical relativity. Improvements to current similar-

mass codes and development of EMRI codes are necessary for future gravitational wave

studies.

My first project improved the underlying framework of the Einstein Toolkit (ETK). I

improved the ETK by implementing a new method for scheduling ghost zone synchroniza-

tion and application of boundary conditions. The new approach reduces inter-processor

communication overhead and improves the user experience. These improvements to the

ETK improve its computational efficiency and enable users to more easily contribute to the

collaboration.

I also implemented the first-order perturbative evolution equations for the EMRI system.

This work builds on code for simulating the toy model of a particle with a scalar charge.

This code differs from other time domain codes by evolving self-consistently by using the

full self-force to provide a highly accurate waveform. I extended this code to be capable of

evolving gravitational fields. I implemented even and odd master functions for the Regge-

Wheeler-Zerilli gauge and verified convergence of the energy and angular momentum fluxes

to frequency domain results. I derived and implemented evolution equations in the Lorenz

gauge. The evolution equations in the Lorenz gauge are considerably more complicated than
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the Regge-Wheeler-Zerilli gauge, and my code currently does not match the expected results.

Still, my code is stable at long times and has effective constraint damping. These two codes

represent significant progress towards the self-consistent evolution of the EMRI system at

first order.
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Chapter 1. Introduction

The past thirty years have seen significant advancements in gravitational physics, both in

computational and experimental techniques. The development of advanced engineering solu-

tions and new data analysis techniques culminated in the first gravitational wave detection by

the LIGO Collaboration [1]. These detections rely on having high resolution waveforms from

numerical calculations, especially for sky localization and parameter estimation. The future

of gravitational wave astronomy will expand the range of detectable astrophysical systems

and will require numerical waveforms for these systems. The next generation of ground-based

detectors will also require higher resolution waveforms to fully extract all of the scientific

data within the data stream, meaning current code must be improved to allow for faster

generation of high resolution waveform templates. Particularly, the rise of multi-messenger

astronomy means that gravitational wave signals must be identified with high accuracy so

that the sky localization allows for correlation between gravitational wave data and data

from other observatories (neutrinos with IceCube, light with traditional observatories, etc.).

Thus, future detectors require numerical codes to perform higher resolution simulations with

greater computational efficiency to fully extract all available scientific knowledge from these

experiments.

In addition, proposed space-based detectors, such as the planned Laser Interferometer

Space Antenna (LISA), will probe a different frequency range of gravitational waves than

ground-based detectors like LIGO. This difference will allow for the detection of new types

of binary systems, requiring the development of new numerical techniques to generate wave-

forms for these systems. One system of interest for LISA is the extreme-mass-ratio inspiral

(EMRI). The EMRI system consists of a compact object (with mass of order 10M�) moving

around a supermassive black hole (with mass of order 106M�). These systems are particularly

interesting because EMRIs have very long inspiral times, and LISA is expected to be capable

of detecting an individual inspiral for millions of orbits over several years. Measurement of

these systems will provide unique tests for general relativity in the strong-gravity regime.
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However, these long inspirals mean that several EMRI signals will almost certainly overlap,

and highly accurate waveform template catalogs are required for matched template filtering

and binary parameter estimation. While binary black hole mergers have been modeled at

high accuracy for similar-mass systems, the inspiral and merger in the extreme-mass-ratio

limit has yet to be completely resolved. Several scaling features of binary black hole systems

make EMRIs entirely unapproachable from techniques used for similar mass systems. The

dynamic timescale for the smaller object is proportional to the mass ratio, while the time

to merge is proportional to the inverse mass ratio. In addition, the spatial scale required

to resolve the smaller object sets a time step via the Courant-Friedrichs-Lewy (CFL) con-

dition which is far smaller than would otherwise be needed. All of these conspire to make

traditional numerical relativity techniques unusable in the extreme-mass-ratio limit. These

issues required the development of a new approach specifically for EMRIs, called the self-

force approach. This method uses perturbative techniques to expand the space-time metric

by order in the mass ratio.

I have worked on two projects for advancing waveform generation in preparation for

future gravitational wave detectors. I improved the Cactus Framework, which is the un-

derlying foundation of the Einstein Toolkit, an open-source codebase for doing numerical

relativity simulations. In this work, I improved the scheduling to reduce communication—

reducing runtime as a result—and simplify the user experience. I have also developed code

for performing EMRI simulations using the self-force approach. I implemented gravitational

self-force code in two different gauges, the Regge-Wheeler-Zerilli gauge and the Lorenz gauge.

In Chapter 2, I introduce the Cactus Framework and describe my improvements to its task

scheduling. In Chapter 3, I examine the extreme-mass-ratio inspiral in detail and the many

techniques that have been developed to simulate this system. I present my contributions

and results for my code in Chapters 4 and 5 for the two different gauges.
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Chapter 2. Synchronization Automation in the Cactus Framework

2.1. Einstein Toolkit

The Einstein Toolkit (ETK) is an open-source suite of computational tools for numerical

astrophysics simulations [3]. This toolkit is used for simulating a wide range of astrophysical

systems. While there are some groups which use the ETK for other research, most using

the toolkit are simulating neutron stars, black holes, and compact object binary mergers.

Excluding the self-force code by Peter Diener and myself, all code within the ETK is built on

the Cactus Framework (Cactus). Cactus is an open-source environment for numerically solv-

ing Cauchy problems on a compute cluster [4]. While Cactus is used as the core framework

for several codes, it was designed primarily for simulations of gravitational physics systems.

Cactus implements many basic requirements for numerical simulations, such as creation of

distributed data structures, I/O, checkpointing, and parallelism. As it is a ‘cactus’, the core

code which handles these features is referred to as the flesh, and the application modules

which perform numerical calculations or do other tasks are called thorns. These thorns can

be designed and tested on workstations and then easily run on clusters. These thorns provide

the necessary information for Cactus to connect them to other thorns. The core paradigm

of Cactus is to allow for contributors to focus on writing physics code while many of the

complications of running on clusters is offloaded to Cactus. This reduces the need to reinvent

the wheel and also allows for optimizations made to Cactus to benefit the research of many

different research groups.

Within a thorn, scheduling and boundary condition application information is also pro-

vided by the programmer for each scheduled subroutine. Cactus provides a basic workflow

engine in which thorns use a domain specific language (DSL) to schedule subroutines to run

at startup, at each time step, at after or before other subroutines, etc. Using this mechanism,

Adapted with permission from: S. Cupp et al., “The presync project: synchronization
automation in the cactus framework”, in Proceedings of the practice and experience in
advanced research computing on rise of the machines (learning), PEARC ’19 (2019), 25:1–
25:5 ©Association for Computing Machinery. All rights reserved.
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various thorns are able to coordinate their activities in a modular fashion. For example, I/O

routines can be scheduled to run after each time step and save data, and initial data routines

can be scheduled to run at startup. Cactus supports both Fortran and C/C++ code. Using

the DSL, Cactus is told the language of each subroutine and automatically implements the

proper linking so that the subroutines can communicate.

One performance issue in Cactus is the scheduling of ghost zone synchronization. Ghost

zones are a numerical technique used to resolve a problem in parallelized simulations. Most

algorithms for evolving physical systems (e.g. finite differencing) require data from adjacent

points on the numerical grid. When using muliple processes, the grid is split between the

MPI ranks, the local grid for a single processor does not have the data for grid points along

the processor boundaries. The region of the grid which is assigned to another processor but

required in order to evolve the local grid points is referred to as a ghost zone. To make this

adjacent data available, a copy of the ghost zone data is stored on the local memory. A

simple diagram of this is shown in Figure 2.1.

However, this local data must be updated to new values as the other processors evolve

their grid points. Thus, the ghost zone information must be synchronized at certain points

in the code. The Cactus scheduling system relies on the manual synchronization of ghost

zones for grid functions (i.e. distributed matrices). Using the DSL, the scheduled subroutine

must declare the set of grid functions to synchronize after it runs. Unfortunately, deciding

which subroutines should synchronize which grid functions is a non-trivial problem requiring

an in-depth understanding of how the core framework works. This problem is worsened

because of the ETK’s modular nature. Compiling the ETK requires providing a list of all

thorns that are present and need to be compiled and linked. A single simulation never needs

every thorn, so thorns are turned off or on at runtime based on the parameter file used to

initialize the simulation. Since the scheduling information of a subroutine is determined by

a compile-time declaration, thorn writers must determine a single correct choice of synchro-

nizations for all the possible thorn combinations. Incorrect synchronization can result in

4



Figure 2.1. Example of a grid split across two processors. On the left, the first processor
has its local grid (in purple) and a local copy some gridpoints from the second processor (in
yellow). The section in yellow is the ghost zone. On the right, the second processor has its
local data (in yellow) and its ghost zone (in purple).

over-synchronization (a performance problem) or under-synchronization (a numerical error).

Currently, programmers using Cactus have no tools to help them determine whether their

thorns are over-synchronizing or failing to synchronize. The case of under-synchronization

can be detected because the resulting simulations will accrue errors, but tracking down the

source can prove difficult. The difficulty of properly scheduling sync statements also creates

a barrier for users and thorn writers, especially new thorn writers who must become familiar

with the internal workings of Cactus before they can contribute to the research community.

In addition to synchronization issues, boundary conditions are handled separately from

synchronization in Cactus. This is unfortunate, because both synchronization and boundary

conditions are mechanisms for filling in the outer cells of distributed grids and are natu-

rally applied at the same time. The Boundary thorn in Cactus handles physical boundary

conditions, while the SymBase thorn manages symmetry boundary conditions. Regardless

5



of the type of boundary, however, boundary updates are scheduled manually. Many thorns

also introduce additional boundary condition subroutines via internal methods. Scheduling

of the subroutines provided by the Boundary thorn—and, by extension, any subroutines

registered with SymBase—is also left to the individual thorn writer. This paradigm leads to

similar issues as with synchronization. The implementation of ghost zone synchronization

and application of boundary conditions in Cactus both place an unnecessary burden on thorn

writers and increase the risk of numerical errors in simulations.

These operations are further complicated by the use of adaptive mesh refinement (AMR).

With a unigrid simulation—that is, one not using AMR—the grid spacings are determined

by the region with the need for the highest resolution. In astrophysical systems, this nor-

mally means around the star or black hole. However, this degree of resolution is entirely

unnecessary away from the object, so this wastes computational resources and in many cases

would simply make the simulation impossible to perform. AMR begins with a coarse grid

across the domain, and then defines refinement levels in the regions where a finer grid is

required. This process can be done multiple times, with each new level covering a smaller

part of the domain and having a smaller grid spacing. The ‘adaptive’ part of AMR allows

for the introduction of a new mesh refinement level during the simulation. If the numerical

errors grow too large, a new level can be introduced to remedy this.

Most simulations with the ETK require a special type of thorn called a “driver thorn”

to manage the grid and provide AMR. Carpet is the most commonly used driver thorn and

provides a Berger-Oliger style [5] of adaptive mesh refinement. AMR introduces two new

data movement operations in addition to synchronization of ghost zones: prolongation of

data from coarser grids to finer grids and restriction of data from finer grids into coarser

grids. Carpet’s AMR implementation uses smaller timesteps on fine grids than on coarse

grids (it uses an optimal Courant-Friedrichs-Lewi condition between spatial resolution and

time step). Prolongation involves interpolation in time, necessitating retaining data from

previous timesteps. These operations interact in complex ways with boundary conditions,

6



typically requiring that physical boundary and symmetry boundary conditions be applied

after each operation. Under certain circumstances, more than one application of the bound-

ary conditions may be required, e.g. such as when a fine grid catches up with a coarse grid.

This event triggers (in order): prolongation from coarse to fine to fill in the outer regions

of the fine grid; restriction from fine to coarse grid to overwrite data on the inner region

of the coarse grid with data from the fine grid; and, finally, prolongation from coarse to

fine grid again because the source region of the prolongation operator overlaps with the re-

stricted region. All of these subtleties are well understood by Carpet which, however, lacks

direct control over when boundary conditions are applied and has to rely on thorn writers

to schedule appropriate subroutines instead.

2.2. The PreSync Project

I developed a new scheduling and synchronization method for Cactus to improve the

programmability and efficiency of the Einstein Toolkit. The new methodology takes a more

data-driven approach to the computation of data in the boundary and ghost zones of the grid

(computing that data only when it is needed), a first step toward making the framework as

a whole more data-driven, following a trend of many modern frameworks. For example, the

Cello Astrophysics code [6] is a re-write of Enzo [7] based on Charm++ [8], an asynchronous

multi-task framework. As another example, the Octo-tiger code [9], which simulates interact-

ing binary stars, was a re-write of an older MPI code that leverages the HPX Framework [10]

to use futures. Both Charm++ and HPX track data validity and only allow code to execute

when the requested data is ready.

As part of this project (referred to hereafter as PreSync), I also integrate the application

of boundary conditions into synchronization. Synchronization and application of boundary

conditions are now handled automatically by Cactus and are applied at the same time. The

new approach requires each subroutine to have “read” and “write” declarations for individual

grid functions. The read/write declarations for grid functions identify the region of validity.

PreSync tracks the interior, boundaries, and ghost zones independently, so all combinations

7



of validity are possible. However, for normal thorns the only declarations needed are usually

“interior” or “everywhere.” The “write” declarations change the grid function’s region of

validity, and “read” declarations require the grid function to be valid for the specified region.

Before scheduled subroutines run, Cactus checks these declarations and, if a grid function

is only valid on the interior but is needed everywhere, performs synchronization and applies

boundary conditions as needed.

This method removes the difficulty of deciding where synchronization should take place

and removes unneeded synchronizations. Programmers need only declare what grid functions

a given subroutine uses and on which parts of the grid they are read or written. The PreSync

project also modifies Cactus to include all the infrastructure needed to handle boundary con-

ditions; thorns which provide boundary conditions simply register their boundary conditions

with Cactus. These changes also decouple the scheduling information of different thorns;

where scheduling subroutines previously required knowing how that subroutine would in-

teract with others in the schedule tree (determined at runtime), scheduling subroutines

with PreSync only requires knowledge of that one subroutine and what it reads/writes. By

internalizing the details of synchronization and boundary condition application, I remove

unnecessary complications from thorn writers using Cactus effectively.

2.3. Compatibility and Advanced Features

In a large collaborative project such as the ETK, backward compatibility is important.

As such, PreSync does not prevent the old synchronization mechanism from functioning,

i.e. manual synchronization can still be used. PreSync has also been incorporated into the

legacy code, allowing for easier comparisons between the two methods. Once a thorn has

been properly updated to use PreSync, a single runtime flag allows for switching between

the old and new methods. This allows for quick and easy code comparison to verify that

PreSync has been properly implemented into an updated thorn.
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2.3.1. Runtime-Based Read/Write Declarations

While the subroutines of most thorns have simple read/write declarations, some subrou-

tines have more elaborate behavior which needs more advanced treatment. As an example,

GRHydro, the hydrodynamics evolution thorn in the Einstein Toolkit, has parameters which

can be changed at runtime that decide whether magnetic fields should be evolved. The

read/write declarations for a subroutine are normally given at compile time, which means

that the declarations themselves cannot take this choice into account. To resolve this dis-

crepancy, logical “if statements” are used in the scheduling, with the same subroutine being

scheduled with different read/write declarations depending on the state of the magnetic field

parameter. This was already being done in GRHydro to schedule different subroutines de-

pending on whether magnetohydrodynamics was active or not. However, some of GRHydro’s

subroutines instead use an if statement within the code that depends on a runtime param-

eter. This case requires some extra work to change the scheduling information, but most

thorns using the ETK can be transitioned relatively easily.

The I/O thorns exhibit even more dynamic behavior—any number of grid functions could

be chosen at runtime to write to files. Most grid functions are valid “everywhere” when the

simulation reaches the output stage. However, some thorns have output grid functions which

are only written and never read. Since they are never read, synchronization and boundary

condition application never triggers. To handle this case, or any other situation in which

a grid function’s ghost zones are not synchronized, the I/O thorns need to call special

subroutines to check the region of validity and trigger synchronization if necessary. PreSync

provides subroutines for this purpose, and the I/O thorns in Cactus have been updated to

use these features.

The AMR within Carpet also demands special treatment to properly interface with

PreSync. The prolongation operation in AMR requires that data on its coarse grid source be

valid “everywhere,” yet this data is only required once requested by the fine grid. PreSync
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thus recursively checks if coarser levels need to be synchronized or have prolongation applied

to them just before synchronizing a finer level.

2.3.2. Diagnostics

The greatest burden for the transition to PreSync is adapting old thorns to use the

new system. To assist with this endeavor, I provide various systems to provide feedback

and error checking for read/write declarations. These features also benefit current thorns

writers during and after the transition into the new method. Currently, Cactus gives all

subroutines read and write access to all grid functions. I employ automatic code generation

to create macros which instead limit the grid functions accessible to each subroutine. These

restricted macros are generated for each scheduled function and only provide access to grid

functions declared via read/write specifications. Therefore, the use of any grid functions in

the subroutine’s source not given in the read/write declarations will result in a compilation

error. Additionally, read-only grid functions are declared as constants, so writing the grid

function will also cause a compilation error. Cactus also sets the pointers to undeclared grid

functions to null when they should not be accessed, triggering runtime segmentation faults

when attempts to access grid functions which have not properly been declared.

The new macros can fail to detect a problem when a subroutine calls another subroutine

outside the normal Cactus scheduler, as the compiler does not know if the called subroutine

reads or writes the grid function within it. If C/C++ code explicitly passes the grid functions,

then the macros will behave as normal. However, some application thorns use the macros

within internal subroutines, which prevents this safety mechanism from working.

Currently, scheduled Fortran code cannot currently use the new macros, as Fortran re-

quires an explicit argument list, and Cactus passes the full list of variables. New Fortran

macros and argument lists are generated correctly, but the subroutine caller in Cactus must

be updated to use these as well. However, they can be used at compile time for debugging

and then reverted to the original once the code successfully compiles.
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To provide a check for correct region access (i.e. “interior” vs. “everywhere”), I have

created thorn named ReadWriteDiagnostics to determine which grid functions are written

by each subroutine at runtime. This thorn makes use of a Carpet feature that allows

special subroutines to be run before and after each regularly scheduled subroutine, providing

something similar to “aspect-oriented programming.”

ReadWriteDiagnostics uses checksums, computed both before and after a routine runs,

to determine whether a grid function has been written, and whether it was written in the

“interior” or “everywhere.” There are some subroutines which write grid functions lazily by

writing everywhere, knowing that the data written in the boundaries will be incorrect and

relying on another subroutine or an explicit synchronization will overwrite the “bad” data.

This behavior will, of course, create a false “everywhere” in the diagnostic tool. The code

may “write everywhere,” but the data is only valid on the interior. Ideally, thorn writers

should not do this, but in the past it was not a problem. In these cases, the diagnostic tool

will not be able to assist in error-checking.

2.4. Results

PreSync has been implemented in Cactus and the Einstein Toolkit, and the vast majority

of the test suite passes. Remaining tests rely on thorns which have not yet been converted

to be PreSync-ready. In addition, all the tests pass if PreSync is turned off, showing that

backward compatibility has been properly implemented. In addition, comparative tests using

the Einstein Toolkit have been run with the old and new methods, and PreSync synchronizes

approximately five percent less often. I ran the tests on two different machines: Melete and

SuperMike. On Melete, these changes lead to a speedup of four percent on two processors and

nearly twenty percent on thirty-two processors. The speedup on SuperMike is less consistent

but falls within the range of two to twenty percent improvement. For all of the collected

data, the plots show runtimes for both the old and new methods using various numbers of

processors. The relative difference plots show the relative difference of the runtimes (old−new
old

)

for each of the processor values.
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Figure 2.2. Runtime comparison of Cactus and PreSync Cactus Unigrid simulations with
103 (top) and 503 (bottom) grid points on Melete. The small grid test is too small to benefit
from parallelism, while the larger grid test is of sufficient size to benefit from parallelism.

The results for strong scaling tests using 103 and 503 numerical grids are shown in Fig-

ures 2.2 and 2.3. These tests were performed on the LSU Melete cluster. In both tests,

there is a clear runtime improvement with PreSync that increases with processor count.

PreSync takes four percent less time with two processors and seventeen percent less time

with thirty-two processors, showing significant improvements over the old synchronization

method. The 103 grid test only goes to eight processors because there was not enough useful

work to support more. While this specific test does not benefit from parallelism, it clearly

benefits from PreSync. As the processor count increases, PreSync’s runtime improvement

becomes more significant, as expected.
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Figure 2.3. Relative difference between Cactus and PreSync Cactus Unigrid simulations
with 103 (top) and 503 (bottom) grid points on Melete. The runtime is 3-20% shorter for
PreSync, depending on the number of processors.

The 503 grid test goes up to thirty-two processors on Melete. This test is large enough

that it benefits from the additional processors, and the parallelism-based improvements are

clearly visible. In addition, PreSync shows visible improvements over the old synchronization

method, as the percentage improvement on Melete continues to increase with increasing

processor count.

I also ran two strong scaling tests on SuperMike: the same 503 grid point test as on

Melete and an even larger 1003 grid point test. I used up to sixty-four processors (4 nodes)

on SuperMike for both tests. Figures 2.4 and 2.5 show the results from these tests. PreSync

outperforms the old method in every test and provides significant improvements over the old
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Figure 2.4. Relative difference between Cactus and PreSync Cactus Unigrid simulations with
503 (top) and 1003 (bottom) grid points on SuperMike. The runtime is 3-20% shorter for
PreSync, depending on the number of processors.

method with high processor count. The behavior change after sixteen processors is because

each node of SuperMike contains sixteen processors, so the larger runs introduce inter-

node communication in addition to inter-processor communication. The runtime speedup

is between two and twenty percent and increases with processor count. The transition

to multiple nodes stalls or reduces the improvement, but the pattern continues after this

transition.

These tests were performed on Unigrid, so the performance with adaptive mesh refine-

ment (AMR) is undetermined. However, these results already show that PreSync is more

computationally efficient than the old synchronization method. While the effect on AMR
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Figure 2.5. Runtime comparison of Cactus and PreSync Cactus Unigrid simulations with
503 (top) and 1003 (bottom) grid points on SuperMike. The increase at 32 processors is
because a single node on SuperMike only has 16 processors, so inter-node communication
slows down the test.

simulations is not yet quantified, the preliminary AMR testing shows reduced synchroniza-

tion as well, meaning that production-level simulations will likely see speed improvements

from PreSync.

The PreSync project makes programming Cactus easier and provides noticeable speed

improvements. Scheduling a subroutine only requires knowledge of that one subroutine,

removing the need for thorn writers to understand the details of how a routine fits into the

schedule as a whole. Also, deciding the read/write declarations for a subroutine is usually

a straightforward process, while the proper placing of sync statements is frequently a non-
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trivial problem. For backward compatibility, PreSync also allows for the old synchronization

method to be used, and parameters exist to switch between these methods at runtime.
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Chapter 3. Extreme-mass-ratio Inspiral: The Self-Force Approach

3.1. EMRI Basics

As previously mentioned, the EMRI system suffers from several unfortunate scaling issues

which prevent the use of traditional numerical relativity techniques. The smallest dynamic

timescale of physics in the evolution is proportional to the mass ratio, which means that the

numerical time step required to resolve the physics decreases as the mass ratio decreases.

Simultaneously, the total time till merger is proportional to the inverse mass ratio. Finally,

the spatial scale required to resolve the physics around the smaller object also sets a maximum

time step via the Courant-Friedrichs-Lewy (CFL) condition. All of these conspire to make

traditional numerical relativity techniques unusable in the extreme-mass-ratio limit.

Fortunately, the small mass ratio which causes these issues also provides an alternative

approach. Instead of evolving the system with the full metric g̃, we may consider a back-

ground metric g generated by the larger object perturbed by the smaller object—which we

hereafter refer to as the particle. The perturbation is expanded in the mass ratio ε = m
M

.

Then, the full metric is given by

g̃αβ = gαβ + εh1αβ + ε2h2αβ +O(ε3) (3.1)

where hnαβ is the nth order perturbation metric. To zeroth order, the particle follows a

geodesic in the background spacetime. At first order, the particle instead follows a geodesic

in the perturbed spacetime gαβ + εh1αβ. Unless explicitly mentioned, we henceforth only

consider the first order perturbation and drop the superscript on h. By mapping the geodesic

in the perturbed spacetime to a path in the background spacetime, we can find equations of

motion for the particle in the background spacetime:

aµ = −1

2
(gµν + uµuν)(2hRνλ;ρ − 2hRλρ;ν). (3.2)
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Note that the perturbation field in Equation 3.2 is the ‘regular’ field hR; this subtle change

from the ‘retarded’ field h to the ‘regular’ field hR is necessary in order to have a finite

quantities at the location of the particle. The details of the separation of the full perturbation

into a regular and singular piece are discussed in the following section. The equations of

motion for a point mass were first derived by Mino, Sasaki, and Tanaka [11] and Quinn and

Wald [12] and is sometimes referred to as the MiSaTaQuWa equation. An immediate concern

for these derivations is whether a general compact object behaves identically to the point

mass used in the derivation of the MiSaTaQuWa equation since internal dynamics could play

a part in the evolution. However, later work showed that these equations were valid for any

sufficiently compact object, regardless of internal structure [13–15]. These publications laid

the groundwork for the self-force approach, which is the method of evolving the (accelerating)

particle in the background spacetime by treating the perturbative field as an external force

acting on the particle. This acceleration is due to the particle’s own gravitational field, hence

the name ‘self-force’.

3.2. Radiation Reaction

While the self-force approach provides a promising avenue for evolving EMRIs, problems

quickly arise in computing these quantities. In order to calculate the force acting on the

particle, the perturbed metric h must be evaluated at the location of the particle. Of course,

the field generated by any point source is infinite at its own location, so this immediately

causes significant trouble. Therefore, a method must be developed to extract a non-singular

expression for the particle’s own field at its location. The problem has many similarities to

radiation reaction in electromagnetism, so we may examine this problem for inspiration.

As a simple example, consider a charged point particle moving around a (fixed) central

point. The particle produces an electromagnetic vector potential satisfying the wave equation

�Aα = −4πjα (3.3)
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where jα is the current density. The particle will emit outgoing radiation due to its motion.

Therefore, radiation reaction should drive the particle to spiral towards the center. However,

the current density of the point particle is a four-dimensional Dirac delta function, meaning

that the right-hand side of Equation 3.3 is infinite along the particle’s worldline. The force

on the particle due to radiation reaction is from its own field, and the singular nature of the

wave equation at the particle’s position prevents the immediate calculation of this force.

To determine the effect of the particle’s field on its own motion, a non-singular expression

must be found which fully encapsulates the effect of radiation reaction on the particle’s

trajectory. we shall refer to the specific solution to Equation 3.3 with outgoing radiation

and an inward-spiralling particle as Aα
ret, called the retarded solution. There, of course, also

exists a time-reversed “advanced” solution with ingoing radiation and an outward-spiralling

particle, denoted as Aα
adv. From these, we can construct a time-invariant solution

Aα
S =

1

2
(Aα

ret + Aα
adv) (3.4)

This solution has equal amounts of ingoing and outgoing radiation, canceling the effect on

the particle and causing it to simply orbit instead of spiraling. While this solution exerts no

force on the particle, all three solutions are equally singular along the particle’s worldline.

Therefore, the singular nature of Aα
ret may be removed by subtracting away Aα

S:

Aα
R = Aα

ret − Aα
S =

1

2
(Aα

ret − Aα
adv) (3.5)

Since Aα
ret contains the full effects of the radiation reaction and subtracting Aα

S removes the

singularity without introducing any new forces, Aα
R must be the (fully regular) field which is

responsible for the force on the particle. The singular field Aα
S has been rigorously shown to

not exert any forces on the particle [16, 17].

Unfortunately, spacetime curvature further complicates the application these results. By

using Green’s functions, one can derive the dependencies of these solutions on the particle’s
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Figure 3.1. The retarded field at spacetime point x depends on the particle’s motion at
spacetime point z(u) along the particle’s worldline γ. Similarly, the advanced field at x
depends on the particle’s motion at z(v).

worldline γ [17]. Here, I present a summary of these derivations. In Minkowski spacetime, the

retarded (advanced) field only has support on the past (future) light cone. For a spacetime

point x, the retarded field is generated by the particle at the retarded point z(u), where

u is the time parameter for that point on γ. Similarly, the advanced field is generated

by the particle at the advanced point z(v) with time parameter v. Figure 3.1 shows these

relationships. To calculate the radiation reaction, the point x is taken to be on the worldline.

In the limit as x approaches the worldline γ, z(u) → z(v) and thus the force due to radiation

reaction depends only on the particle’s current state.

x

z(u)

γ

Retarded Field

x

z(v)

γ

Advanced Field

Figure 3.2. The retarded field at spacetime point x depend on the particle’s motion for its
entire past history. Similarly, the advanced field at x depends on the particle’s motion for
its entire future history.

In contrast, the retarded field in curved spacetime depends on the particle’s entire past

history from time u backward to past time-like infinity. This occurs because of several
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reasons. In flat spacetime, radiation reaction only affects the particle the instant that the

radiation is emitted. In curved spacetime, emitted radiation can curve around the central

body and intersect with the particle’s worldline at a later time. Also, curved spacetime causes

backscattering of the radiation off of the curvature, which travels back towards the particle.

These additional sources all contribute to the retarded field. Similarly, the advanced field

depends on the particle’s entire future history from z(v) to future time-like infinity. Figure 3.2

shows these relationships. If x is taken to be on the particle’s worldline, then the regular

field Aα
R will depend on the particle’s entire history, past and future! Using the symmetric

field as defined in Equation 3.4 would therefore introduce noncausality to the equations.

x

z(u)

z(v)

γ

Singular Field

x

z(v)

γ

Regular Field

Figure 3.3. The singular field at spacetime point x depends on the particle’s motion in the
temporal interval u ≤ τ ≤ v. The regular field at x depends on the particle’s motion in the
temporal interval −∞ ≤ τ ≤ v.

A solution known as the Detweiler-Whiting Decomposition [18] resolved this problem by

introducing a new two-point function into the singular Green’s function which allows for a

clean separation of the singular and regular pieces of the field without any dependencies on

the particle’s future. The singular field at a spacetime point x depends on the particle’s

motion in the temporal interval u ≤ τ ≤ v. The regular field at x depends on the particle’s

motion in the temporal interval −∞ ≤ τ ≤ v. These relationships are shown in Figure 3.3.

In the limit as x approaches γ, the regular field depends on the particle’s entire past history,

and the singular field only depends on the particle’s instantaneous motion. The regular

field—and by extension, the self-force—still depends on the particle’s entire past history,
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which makes initial conditions difficult to determine. I tackle the issue of initial conditions

later, in Section 3.7.

3.3. Mode-sum Decomposition

While the Detweiler-Whiting decomposition was a significant development in the field,

it alone is not sufficient to allow for numerical computation of the self-force. Mode-sum

decomposition was developed so that these singular quantities could be expressed as sums

of finite quantities for numerical computation. The combination of the Detweiler-Whiting

and mode-sum decompositions provide a reasonable method to calculate the regular field.

To explain the mode-sum decomposition, I use the case of a particle with scalar charge

q. The particle’s potential Φ satisfies the equation

�Φ = −4πq

∫
γ

δ(4) (x− z(τ))√
−g

dτ (3.6)

where, as before, z(τ) represents a parameterization of the particle’s worldline. From this,

the scalar self-force is

Fα = q∇αΦR = q(∇αΦret −∇αΦS) (3.7)

However, calculating these quantities directly proves difficult for several reasons. First, the

retarded field depends on the particle’s entire past history, which is not known. Second, both

potentials diverge at the particle’s location, meaning a finite representation must be found

to perform this subtraction. The mode-sum method does this by decomposing the field into

spherical-harmonic modes

Φ =
∑
`m

Φ`m(t, r)Y `m(θ, φ) (3.8)

This decomposition expresses the divergent field in terms of an infinite sum of finite fields; in

the case of spherically symmetric background spacetimes, this also produces completely de-

coupled evolution equations for each mode. Since the retarded field depends on the particle’s
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entire past history, the expression

(∇Φ)` =
∑
m

∇α

[
Φ`m(t, r)Y `m(θ, φ)

]
(3.9)

must be computed directly. The singular field, however, is only dependent on the particle’s

current motion. It can therefore always be expanded in powers of distance to the particle.

Thanks to this, multipole decomposition may be used to more quickly calculate the singular

component of the field. Taking all this into account,

Fα ≈ q

L∑
`=0

[
(∇Φ)` − (`+

1

2
)Aα −Bα − Cα

`+ 1
2

− Dα

(`− 1
2
)(`+ 3

2
)

− Eα

(`− 3
2
)(`− 1

2
)(`+ 3

2
)(`+ 5

2
)
− · · ·

] (3.10)

where L is the maximum ` in the truncated sum and Aα, Bα, and so on are the (`-

independent) functions from the multipole decomposition of the singular field. The polyno-

mials these ‘regularization parameters’ represent have been determined [19] , and all terms

after Cα evaluate to zero in the full sum from ` = 0 to ` = ∞. However, the Dα and Eα

terms are included in the truncated sum when possible, as they improve the convergence

rate of the `-mode sum. Unfortunately, these parameters are not known in general. The

regularization parameters have been calculated for orbits in Schwarzschild spacetime only up

to Dα [19, 20]. In Kerr spacetime, the parameters are only known up to Cα [21]. However,

additional parameters have been estimated by fitting numerical results to Equation 3.10.

3.4. Self-force Methods

Several different methods have been developed to evolve EMRIs using the self-force,

each with its own advantages and drawbacks. Most modern techniques incorporate both

the Detweiler-Whiting and mode-sum decomposition in some form. Some of the most well-

developed codes transform the equations from the time domain into the frequency domain.

Several frequency domain codes exist which can calculate the self-force for generic orbits
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to very high accuracy [22, 23]. However, frequency domain codes have two handicaps.

The lesser problem is that they are eccentricity-limited—more eccentric orbits require more

and more frequency modes to accurately capture the motion, and the number of modes

eventually becomes untenable. More critically, they are restricted to periodic orbits, which

means that they cannot directly evolve the inspiral. Despite this, they provide a method

to validate new codes. The validity of time domain codes can be partially assessed by

forcing the time domain simulation to follow a periodic orbit and examining the steady-state

solution that arises. After a sufficient amount of time, the various quantities (energy and

angular momentum fluxes through the horizon and out to infinity, the self-force, etc.) should

converge to the frequency domain results. The frequency domain codes produce extremely

high-accuracy results, providing excellent comparison data for validating other codes in the

EMRI community.

In the time domain, a wide array of codes have been developed, taking advantage of

several approximations to numerically evolve these systems. Many of these methods fall

under the broad class of approximations referred to as the adiabatic approximation, which

assumes that secular self-force effects act on a timescale much longer than the orbital period.

While this is valid early in the inspiral, it fails to capture the physics during the plunge,

when the particle trajectory transitions from a path well-approximated by geodesic orbits to

a quasi-radial infall into the central body.

One specific choice in this class is the radiative approximation. Work by Gal’tsov—and

expanded by Mino—showed that the averaged rates of change in the orbital parameters

caused by the true self-force could be reproduced by choosing a specific radiative Green’s

function to construct the self-force [24, 25]. This approximation therefore captured all the

dissipative parts of the self-force, but (by construction) ignored the conservative part; this

has been successfully implemented in numerical schemes already [26–28]. The decomposition

into conservative and dissipative forces occurs in most physical problems, though they may

not be discussed explicitly. Dissipative forces (such as friction) depend on the path of the
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particle, and their existence is often the reason a numerical approach is required. They

usually ‘bleed’ energy and momentum out of the system in some way, converting it into

heat, gravitational waves, etc. Conservative forces are path-independent, but they still have

effects on the evolution. To see how ignoring the conservative piece of the self-force affects

the results, Hinderer and Flanagan [29] performed a comprehensive study of these issues,

and they explicitly split the self-force into dissipative and conservative parts, by order:

fµ =
m

M
(fµ

(1)d + fµ
(1)c) +

m2

M2
(fµ

(2)d + fµ
(2)c) + · · · (3.11)

Their primary result was to express the orbital phase

φ =
M2

m

(
φ(0) +

m

M
φ(1) + · · ·

)
(3.12)

in terms of the quantities in Equation 3.11. They found that φ(0) depends on the averaged

part of fµ
(1)d and φ(1) depends on fµ

(1)c, the oscillatory part of fµ
(1)d, and the averaged part

of fµ
(2)d. This matches analysis of numerical results which show that the radiative approach

introduces cumulative errors in both the orbital phase and gravitational wave itself [30–

32]. Therefore, the radiative approximation, and most other adiabatic approximations, fail

to capture the first order correction to the orbital phase and is insufficient for parameter

estimation for LISA, though it may be sufficient for detection. Clearly, a method which

incorporates the conservative piece of the self-force is needed.

3.5. Self-Consistent Evolution

Ideally, a code should be developed which uses the full instantaneous self-force to drive

the particle’s motion, as this would provide the most realistic evolution for the particle. In

addition, it would provide insight into the accuracy of the other evolution schemes. The

self-consistent approach aims to do exactly this by driving the evolution with the calculated

self-force at each timestep. Thus far, however, there is only one concerted effort to produce

such a code. The code written by Peter Diener is designed to do precisely this [3]. The
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original code could only simulate the self-force with a scalar charge in the Schwarzschild

spacetime. In addition, the code has instability issues at long runtimes. Still, significant

progress has been made towards producing a functional self-consistent evolution code, and

it is included as part of the Einstein Toolkit as a standalone code (i.e. a code not using the

Cactus Framework). The code is also part of the Black Hole Perturbation Toolkit. Much of

my research has focused on expanding this code into the far more difficult gravitational case,

but I also contributed to the development of the scalar self-force code through my derivation

of the expressions for the angular momentum fluxes at the horizon and I + [33].

3.6. Effective Source Approach

One major difficulty with performing a self-consistent evolution is the computational ex-

pense. Determining the field using mode-sum decomposition is expensive, and the additional

cost of computing the self-force for every iteration for all the modes is prohibitively expensive.

As such, the effective source approach—also known as the puncture approach, in reference

to a similar strategy employed in standard numerical relativity—was developed to regular-

ize the source itself instead of performing the regularization during the mode-sum [34–39].

This method is used in other codes, but it is critically important for designing an efficient

self-consistent evolution code.

To demonstrate this approach, I shall again consider a scalar charge q with retarded

potential Φret. The coordinate x parameterizes the spacetime and represents the location of

interest within the field; the coordinate z(τ) represents the particle’s parameterized worldline

γ. The variable r measures the distance from x to the worldline. The source is a delta

function source along the particle’s worldline. For simplicity, I define the functional

σ(x, z) ≡ −4π

∫
γ

δ(4) (x− z(τ))√
−g

dτ. (3.13)

The wave equation for the retarded potential Φret is

�Φret = qσ(x, z). (3.14)
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The singular field ΦS obeys the same equation. I now introduce an approximate singular

field Φ̃S which obeys the equation

�Φ̃S = qσ(x, z) +O(rn) (3.15)

for some integer n ≥ 0. The approximate regular field is then

Φ̃R = Φret −W Φ̃S (3.16)

where W is a window function with specifically chosen attributes. The wave equation for

the regular field is then

�Φ̃R = �Φret −�
(
W Φ̃S

)
:= S(x, z) (3.17)

where S(x, z) is the effective source term. Examining the source term,

S(x, z) = �Φret −�
(
W Φ̃S

)
= qσ(x, z)−W�Φ̃S − Φ̃S�W − 2∇αW∇αΦ̃S

(3.18)

In the limit that x approaches the particle’s worldline (x → z), the two leftmost terms

become qσ(x, z) −W (qσ(x, z) +O(rn)). If the window function W is chosen to approach

unity in the limit x→ z, then the two singular terms will cancel out exactly. The other two

terms each introduce another restriction on W to enforce a finite effective source. For the

third term, ΦS ∝ r−1, which requires that �W ∝ rp, p ≥ 1. For the fourth term, ∇ΦS ∝ r−2,

which requires that ∇W ∝ rq, q ≥ 2. These two relations mean that W ∝ ri, i ≥ 3. To

preserve the symmetry of the source around the particle, i should be even, meaning that

W ∝ r4+2m,m ≥ 0. The value of m is chosen such that the error introduced by the window

function is of the same order as the error of the approximate singular field. All of these

restrictions have the added benefit of directly relating the effective regular field to the self-
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force:

lim
x→z

∇αΦ̃R = lim
x→z

(
∇αΦret −W∇αΦ̃S

)
− lim

x→z
Φ̃S∇αW

= lim
x→z

(
∇αΦret −∇αΦ̃S

)
= q−1Fα

(3.19)

The effective-source method reduces the singular nature of Equation 3.14 to the equation

�Φ̃R = S(x, z) (3.20)

which consists entirely of regular functions. The window function is also chosen to only have

support in the immediate vicinity of the particle’s worldline. This ensures that the effective

source is not smeared out across the space, and that the numerically calculated field Φ̃R

equals the true regular field at the particle but also equals the retarded field Φ̃ret outside the

region of support for W . Because of this, the regular effective field can be used for evolution

throughout the entire domain.

3.7. Hyperboloidal Coordinates

Another method used to improve the evolution of the self-consistent code is hyperboloidal

foliation [40]. The waveform needed for comparison with experiment must effectively be at

future null infinity, which is usually denoted as I +. Due to computational limitations,

the numerical domain cannot be extended far enough to approximate the result at I +,

so some form of extrapolation technique is traditionally used. However, this requires a

choice of boundary conditions for the outer boundary, which is not obvious for the EMRI

system. Instead, the spatial coordinate can be compactified to compress the entire spatial

coordinate into a finite coordinate space. First, I use the commonly used tortoise coordinate

instead of the Schwarzschild radial coordinate. For completeness, the relation between the
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Schwarzschild coordinate r and the tortoise coordinate r∗ is

r∗ = r + 2M ln
( r

2M
− 1
)

This coordinate transformation moves the horizon (at r = 2M) to r∗ = −∞. To compactify

the radial coordinate, the tortoise coordinate is transformed to the compactified coordinate

ρ:

r∗ =
ρ

Ω(ρ)
(3.21)

The function Ω is non-negative over the entire compactified region and satisfies the conditions

Ω(S) = 0, Ω′(S) 6= 0

where S is the coordinate value corresponding to I +. Finally, the following are required

to ensure continuity and differentiability along the transition interface from the tortoise

coordinate region to the compactified region:

Ω = 1 ∀ ρ ≤ R∗

dkΩ

dρk
|ρ=R∗ = 0 for 1 ≤ k ≤ kmax (3.22)

In Equations 3.22, R∗ is the coordinate where r∗ = ρ, and kmax determines the level of

differentiability of the layer. These restrictions on Ω allow for a smooth transition of the

fields across the transition layer between the two coordinate regions.

However, this compactification is not sufficient to resolve the waveform. After all, the

coordinates in the grid going out along the spatial coordinate ρ will eventually contain more

and more oscillations between each gridpoint. This means that the resolution of the grid is

greatly reduced in the outer gridpoints, ruining the data from the better resolved tortoise

region [41]. To resolve this, the Cauchy surface is chosen to asymptotically approach I +
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Figure 3.4. Penrose diagram of the hyperboloidal layer. The dashed line represents the inter-
face where the coordinates transition from tortoise coordinates to hyperboloidal coordinates.
Instead of the coordinates approaching spatial infinity i0, the coordinates asymptote to null
future infinity I +.

instead of spatial infinity in the outer region, which preserves the resolution [42]. This also

resolves the outer boundary problem, as the ingoing characteristic speed at null infinity (and

the outer coordinate) is zero, meaning nothing can propagate inwards. Therefore, the outer

boundary condition is simply to do nothing.

To construct the hyperboloidal layer, several desirable traits should be established.

1. The timelike Killing vector field is invariant in the layer. This preserves the direction

of time, again making the extraction of physical result simpler.

2. Outgoing null rays are invariant in the layer. This preserves the surface along which

waveforms are traditionally plotted, making their extraction from the numerical code

more straightforward.

3. The hyperboloidal coordinates {τ, ρ} must agree with the tortoise coordinates {t, r∗}

at the interface. This ensures that the coordinates are continuous, which will help with

numerical implementation and stability.
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For the following, I consider the transformation in the Schwarzschild spacetime. The first

condition effectively requires that ∂t = ∂τ , which means the transformation equation must

be of the form

τ = t− h(r∗) (3.23)

In general, the height function h could depend on angular components, but not for a spher-

ically symmetric space. For the second condition, invariant null rays is equivalent to

t− r∗ = τ − ρ (3.24)

Combining Equations 3.23 and 3.24 gives the following for the height function:

h(r∗) = r∗ − ρ(r∗) (3.25)

Taking the derivative,

H ≡ dh

dr∗
= 1− dρ

dr∗
(3.26)

The so-called boost function H is directly related to the Jacobian of the spatial compactifi-

cation. By using these coordinates in the outer region, there is no need to extrapolate the

waveform to null infinity, and no outer boundary conditions are required.

While this discussion focused on the outer boundary, I also perform a similar transfor-

mation at the inner boundary. As previously mentioned, the tortoise coordinate r∗ takes the

spatial coordinate r and stretches the domain 2M ≤ r ≤ ∞ to −∞ ≤ r∗ ≤ ∞. As such, an

inner hyperboloidal layer can be added in the inner region as well. The only change from

the above is in condition two. Instead of preserving the outgoing null rays, I preserve the

ingoing null rays. This changes Equation 3.24 to be

t+ r∗ = τ + ρ (3.27)
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which means that

h(r∗) = −(r∗ + ρ(r∗)) (3.28)

Taking the derivative,

H = −(1 +
dρ

dr∗
) (3.29)

In summary, I use three coordinate layers. The tortoise coordinates {t, r∗} are used

around the particle. At transition layer r∗ = ρ(r∗) = R+, I transform into the outer hy-

perboloidal coordinates {τ, ρ} defined by the first set of coordinate transformations. These

coordinates end at ρmax = S+, which is equivalent to null infinity. At transition layer

r∗ = ρ(r∗) = R−, I transform into the inner hyperboloidal coordinates {τ, ρ} defined by the

second set of coordinate transformations. These coordinates end at ρmin = S−, which is

the location of the horizon. Using these coordinates, I can avoid boundary conditions on

both ends of the computational domain with no reduction in numerical resolution, as well

as avoiding the need for extrapolation of the waveform.

3.8. Discontinuous Galerkin Method

3.8.1. Motivations

The final trick used to improve the numerical stability and reduce computational cost for

these simulations is the Discontinuous Galerkin (DG) method. As a finite-element method,

it reduces partial differential equations into a set of ordinary differential equations which are

then solved using a standard numerical algorithm. I use the 4th order Runge-Kutta method,

but the time integrator is chosen a runtime parameter and can be easily changed to any

other implemented method.

To explain why the DG method is used, I first review the benefits and downsides of other

common methods. For a more in-depth discussion of the DG method and its relation to

other numerical methods, the book by Hesthaven and Warburton [43] serves as an excellent

resource. Much of this section is a summary of the first few chapters of this book. I restrict

my discussion to a single dimension, as the tensor spherical harmonics I use reduce the system
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to a one-dimensional problem. For a simple example, consider the scalar conservation law

in the space Ω with some solution uE(x, t), flux fE(u), and forcing function g(x, t)

∂tuE + ∂xfE = g (3.30)

along with appropriate initial and boundary conditions. To evolve this, the exact function

uE and fE must be approximated with some u and f . The specifics of this approximation

defines the method.

Finite difference methods (FDM) are the earliest methods developed, and they have the

benefit of being very straightforward to implement. FDM involve dividing the space Ω with

K gridpoints xk and approximating the spatial derivative as

∂xfE ≈ f(xk+1, t)− f(xk−1, t)

hk − hk−1
(3.31)

where hk = xk+1 − xk is the local grid spacing. The method is defined by requiring that

the approximate solution u exactly matches uE at each gridpoint. By doing this for every

gridpoint, the system can be evolved forward using a time integration method. Extending

FDM to higher orders is also relatively straightforward, as it amounts to extending the

stencil used for approximating the spatial derivative from the nearest neighboring gridpoints

to the next-nearest neighbors, and so on. Unfortunately, this class of methods also has

several drawbacks. The source of this simplicity is the assumption that the grid is uniform,

meaning that the resolution is fixed across the domain. This is a poor choice for most

astrophysical systems, as the mesh needs to be far finer around sources than in empty

space. This issue was mentioned in Chapter 2, and Carpet solves it by using adaptive mesh

refinement. In that approach, each grid is uniform, but new grids are introduced in areas

needing finer meshes. These methods also have difficulties handling sudden boundary layers

(discontinuous material layers, star surfaces, etc.) and are prone to numerical instabilities

when used for these applications.
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To more naturally handle these types of systems, the requirement of uniform grids must

be relaxed. This led to the development of finite volume methods (FVM) and finite element

methods (FEM). FVM discretize Ω with K elements Dk =
[
xk−

1
2 , xk+

1
2

]
. The approximate

solution uk is defined at xk, the center of each cell. In this case, the approximation requires

that the average over the cell matches the exact solution, and leads to the equation

hk∂tu
k + fk+ 1

2 − fk− 1
2 = hkgk (3.32)

where the flux term has been changed to surface terms using the divergence theorem. Since

the equation for uk only depends on hk, this method depends purely on the local geometry

and does not impose conditions on the grid structure. Unfortunately, the fluxes are needed

at the boundaries of the elements, while the solution is only known at the cell center. The

flux reconstruction is non-trivial, but the simplest choice is just to average the cell centers

to find the value at the interface

uk+
1
2 =

uk+1 + uk

2
(3.33)

Then,

fk+ 1
2 = f

(
uk+

1
2

)
(3.34)

For linear problems and uniform grids, this method is identical to FDM, but it has far more

freedom in its allowed grid structure. However, extension to higher orders extends this stencil

like the FDM, which once again places restrictions on the grid structure.

The source of this issue is the reliance on cell averages. To avoid this, let the elements

instead be defined as Dk =
[
xk−1, xk+1

]
with K elements and K+1 gridpoints. Within each

element, the solution is approximated with

u(x) =

Np∑
n=1

bnψn(x) (3.35)
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In the simple case of linear functions,

u(x) =
1∑

i=0

u(xk+i)`ki (x) (3.36)

where `ki (x) is the linear Lagrange polynomial. Since each neighboring element shares a node

at the boundary, the global representation of the solution

u =
K∑
k=1

ukNk(x) (3.37)

can be constructed where N i(xj) = δij form a basis. From this, one defines a space of test

functions φ ∈ V and enforce that

∫
Ω

(∂tu+ ∂xf − g)φ(x)dx = 0 (3.38)

Different choices of test functions generate different numerical schemes. The Galerkin scheme

chooses

φ(x)
K∑
k=1

v(xk)Nk(x) (3.39)

which leads to the matrix representation

M∂tu + Sf = Mg (3.40)

where

Mij =

∫
Ω

N i(x)N j(x)dx (3.41)

Sij =

∫
Ω

N i(x)∂xN
j(x)dx (3.42)

The vectors u, f, and g contain the values of these functions at the K + 1 gridpoints. This

is the basis of the FEM. There are no restrictions on the grid structure, and the higher
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order methods are obtained by increasing the degrees of freedom within the element (see

Equation 3.37), which allows for two different methods of increasing the accuracy. This

so-called hp-adaptivity allows for the ability to change the local order of the method (p-

adaptive) and the ability to change the local grid spacing (h-adaptive).

Of course, the FEM methods have their own drawbacks. By the form of Equation 3.40,

this is an implicit method which requires inverting M , which can cause problems for time-

dependent problems. Also, the symmetric basis functions N i can cause stability issues with

problems for which there is a specific directional flow of information (e.g. wave equations,

advection equations, conservation laws). FDM and FVM resolve this through implementing

upwinding, which biases the numerical method towards the ‘upwind’ direction to stabilize

the simulation [44].

A desired numerical method would preserve the hp-adaptivity of FEM but without the

global statement of basis in Equation 3.37 and need for an implicit evolution scheme. The

Discontinuous Galerkin finite element method combines features from FVM and FEM to

produce such a method. This method starts with the FEM discretization Dk =
[
xk−1, xk+1

]
with K elements and K + 1 gridpoints. However, the unknowns in the equation uk are

duplicated at the endpoints. For simplicity I consider the linear approximation (i.e. the

solution within each element is approximated by a linear polynomial). Then, the solution

vector u would take the form

u = [u1, u2, u2, u3, . . . , uK , uK , uK+1] (3.43)

and has length 2K instead of K + 1. As before, the local solution in each element is

expanded using Lagrange polynomials which are also used as the space of test functions.

These functions are only defined on the element, so there are no smoothness restrictions

between elements. Now, Equation 3.38 is instead only an integral over the local element
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instead of the entire domain

∫
Dk

(
∂tu

k + ∂xf
k − g

)
`kj (x)dx = 0 (3.44)

This is possible only because of the duplicated points at the element boundaries. By taking

inspiration from FVM, the divergence theorem can be used to give

∫
Dk

(
`kj (x)∂tu

k − fk∂x`
k
j (x)− g`kj (x)

)
dx = −fk`kj (x)|x

k+1

xk (3.45)

In the case where `kj (x) is constant, this reduces to Equation 3.32 for FVM. The surface

terms in both equations serve the role of connecting the physics between the two elements.

While there are many different prescriptions for calculating these surface terms, most use

some form of numerical fluxes between the elements to account for these terms. From here,

an equation similar to Equation 3.40 arises, except that the matrices are all local. The

method is therefore explicit instead of implicit, and the matrix inversion is far less costly.

3.8.2. Implementation

The DG method combines features of FVM and FEM to produce a hybrid scheme which

deals with localized approximations and non-uniform grids. These features all benefit the

EMRI system, as the resolution must be higher near the particle than the rest of the space.

The localization of the expressions also improves parallelism, an important feature for modern

computational codes. The DG formalism can be expressed in either a modal or nodal form

uk(x, t) =

Np∑
n=1

û(t)ψn(x) (3.46)

=

Np∑
i=1

uk(x, t)`ki (x) (3.47)
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where N = Np − 1 is the order of the interpolating polynomial. As before, `ki (x) are the

Lagrange polynomials, and uk(x, t) is the nodal representation. The modal representation is

û(t), and the natural choice for the basis is

ψn = P̃n−1 = anPn−1 (3.48)

an =

(√
2n

2n+ 1
− 1

)−1

(3.49)

where Pn−1 are the Legendre polynomials and an are normalization coefficients. These P̃n−1

are from the class of Jacobi polynomials (also called hypergeometric polynomials) which

have the form P
(α,β)
n (x) with α = β = 0.

While our code uses the nodal representation, I introduce both so as to properly discuss

the choice of grid points within each element. To find the û, the functions u must be projected

onto the P̃ basis, which means computing the inner product

û = (u, P̃n−1) (3.50)

This could be approximated by calculating the Gaussian quadrature over the Np gridpoints

in the element. Alternatively, we can enforce that the modal representation exactly matches

the nodal representation at each interpolation point ξi

u(ξi, t) =

Np∑
n=1

û(t)P̃n−1(ξi) (3.51)

which can be concisely written as

V ũ = u (3.52)

where V is the generalized Vandermonde matrix with elements

Vij = P̃j−1(ξi) (3.53)
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Now that the basis is well-defined, the next step is to choose the gridpoints ξi, as nothing

has yet restricted our choice of interpolating points. The simplest is obviously uniform

spacing, but to make a good choice requires some criterion for establishing the ‘goodness’ of

a set of ξi. To do this, I consider the maximum norm

‖ uE − u ‖=‖ uE − u∗ + u∗ − u ‖

where u∗ is the best approximating polynomial for order N . By the triangle inequality,

‖ uE − u ‖≤‖ uE − u∗ ‖ + ‖ u∗ − u ‖

However, u is a projection of uE. The function u∗ is in the projected space, but it is also

made up of the polynomials, so it is a projection of itself. If the projection operator is given

by F , then

‖ u∗ − u ‖ =‖ F (u∗)− F (uE) ‖

=‖ F ‖‖ u∗ − uE ‖

which is a special case of Lebesgue’s lemma. This gives

‖ uE − u ‖≤ (1 + Λ) ‖ uE − u∗ ‖

where Λ =‖ F ‖. it follows that the ideal polynomial representation arises when Λ is

minimized.

In the modal basis, u is given by Equation 3.51. However, we have restricted the in-

terpolation to be exact at the gridpoints. Then, for the purposes of computing the norm

it is equally valid to use Equation 3.46. Then, the norm of the projection is given by the
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Lebesgue constant

Λ = max
r

Np∑
i=1

|`i(ξr)| (3.54)

However, this criterion for optimizing the grid is in terms of the nodal basis. To extract in-

formation about the local grid structure from this result requires returning to Equation 3.52.

By uniqueness of both of the polynomial interpolations, it follows from Equation 3.52 that

V T `(r) = P̃(r) (3.55)

where `(r) and P̃(r) are vectors of length N containing the polynomials for the respective

basis. To minimize Λ, the particular solution of `(r) should be minimized. The solution to

the linear system of equations in Equation 3.55 can be found using Cramer’s rule. For a

general equation of the form

Ax = b (3.56)

the solution is

xi =
det(Ai)

det(A)
(3.57)

where Ai replaces the i-th column of A with b. In the case of Equation 3.55, the denominator

is simply the transposed Vandermonde matrix V T . Thus, the desired grid spacing maximizes

the determinant of V , which is defined in terms of the modal basis. In one dimension, the

optimized gridpoint locations are known as the Legendre-Gauss-Lobatto (LGL) quadrature

points [45, 46].

Our code uses the nodal representation, and the Jacobi polynomials, Vandermonde ma-

trix, integration weights for the LGL quadrature points, etc. are all implemented in the Grid

submodule. In practice, the LGL points congregate near the element boundaries. This is

unsurprising, as capturing the effects of the fluxes at the element boundaries should require

higher resolution than the center of the element domain. By using the DG method, our code

is hp-adaptive, as the order of the (p)olynomial interpolation within each element and the
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element size (h) can be scaled independently. Also, the fluxes at the element boundaries only

depend on the elements which share that boundary, unlike FVM. The method is also fully

explicit in time, unlike FEM. In summary, the DG method allows for varied grid structures

which are well-suited to the EMRI self-force problem and have many benefits over other

traditional methods.
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Chapter 4. Self-force Implementation in the Regge-Wheeler-Zerilli
Gauge

4.1. Tensor Spherical Harmonics

In the following two chapters, I explain two different EMRI codes I have developed to

simulate the gravitational self-force. The work in this chapter uses the Regge-Wheeler-Zerilli

(RWZ) gauge, and the following chapter uses the Lorenz gauge. The RWZ gauge is defined

to simplify the results from the tensor spherical harmonic decomposition of the spacetime

metric. As such, the exact specification of the gauge is significantly more complicated than

the Lorenz or other more common gauges. This gauge is used because the resulting evolution

equations are significantly easier to deal with than other gauges. This methodology has

reached significant maturity and is presented in it’s entirety in a covariant, gauge-invariant

formalism by Martel and Poisson [47]. Here, I shall summarize the derivation of the RWZ

gauge and discuss its benefits, adopting similar notation to Martel and Poisson.

To begin, I take the space-time manifold M4 and split it into two submanifolds, M2 and

S2. The lowercase letters (a, b, c, . . . ) are used for indices in the M2 submanifold, and the

uppercase letters (A,B,C, . . . ) are used for indices in the S2 submanifold. In Schwarzschild

coordinates, the submanifold M2 represents the (t, r) plane, and S2 represents the (θ, φ) two-

sphere. I also define coordinates, metrics, and covariant derivatives for these submanifolds.

The coordinates xa span M2, and θA spans S2. ∇a is the covariant derivative associated

with M2, and DA is the covariant derivative associated with S2. The 2-metrics are given

by gab and ΩAB, respectively. The indices a, b, c, etc. run over the values 0 and 1, while the

indices A,B,C, etc. run over the values 2 and 3. Then, the full space-time metric can be

given in terms of the submanifold quantities:

ds2 = gabdx
adxb + r2ΩABdθ

AdθB
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To express the perturbation equations in a general form, I also require several other terms.

First, I define the dual vector

ra ≡
∂r

∂xa

which is normal to constant-r surfaces (r being the Schwarzschild radial coordinate). This

also provides an alternative form for the frequently seen factor

f ≡ 1− 2M

r
= rara

Next is the Levi-Cevita tensor for the M2 submanifold εab. Finally,

ta ≡ −εabrb

is the time-like Killing vector. With this, I can begin the derivation of the RWZ gauge.

The RWZ derivation is generally split into the even and odd sectors. The even tensor

spherical harmonics are designated by a Y , and the odd tensor spherical harmonics are

designated by a X. The tensor spherical harmonics are further divided by their indices:

scalar, vector, and tensorial. The scalar spherical harmonics are simply the usual Y `m. The

vector spherical harmonics are

Y `m
A = DAY

`m (4.1)

X`m
A = −εBADBY

`m (4.2)

Finally, the tensorial spherical harmonics are

Y `m
AB =

[
DADB +

1

2
`(`+ 1)ΩAB

]
Y `m (4.3)

X`m
AB = −1

2

[
εCADB + εCBDA

]
DCY

`m (4.4)
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I can now decompose the perturbed metric g̃αβ using the tensor spherical harmonics and

the metrics on the submanifolds

g̃ab = gab + hab

g̃aB = haB (4.5)

g̃AB = r2ΩAB + hAB

where hαβ is the metric perturbation. As a reminder of notation, there are several different

covariant derivatives and metrics. The full perturbed metric is g̃αβ. The background 4-metric

is gαβ, and the associated covariant derivative is ∇a. On the submanifold M2, the metric is

gab and the associated derivative is ∇a. On the submanifold S2, the metric is ΩAB and the

associated derivative is DA. The last tool we need is an understanding of how the metric

perturbation behaves in each submanifold. I begin by defining the dual vector

Ξα ≡ (Ξa,ΞA)

along with its tensor spherical harmonic decomposition

Ξa ≡


∑

`m ξ
`m
a Y `m, even parity

0, odd parity

ΞA ≡


∑

`m ξ
`mY `m

A , even parity∑
`m ξ

`mX`m
A , odd parity

where ξ`ma and ξ`m depend only on the coordinates xa. I use this to generate a gauge

transformation of the form

∇αgβγ = ∇αg
′
βγ ≡ ∇α

(
gβγ −∇αΞβ −∇βΞα

)
= 0
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Since gauge transformations are generally assumed to be ‘small’, these new factors can be

absorbed purely into the metric perturbation, leading to the gauge transformation

h′αβ ≡ hαβ −∇αΞβ −∇βΞα

For this expression to be useful, it must be expressed with quantities defined on the sub-

manifolds M2 and S2. While the general form will be the same as above, additional terms

will arise from the Christoffel symbols of the 4-metric. I must first express the Christoffel

symbols of g in terms of the quantities in the submanifolds. The symbols can be split into

those with all indices in a single submanifold and those with mixed symbols. Starting with

the M2 symbols,

Γa
bc =

1

2
gaγ
(
∂bgγc + ∂cgγb − ∂γgbc

)
= MΓa

bc +
1

2
gaD (∂bgDc + ∂cgDb − ∂Dgbc)

= MΓa
bc

where MΓa
bc is the Christoffel symbol for the submanifold M2. In the final step I use the fact

that the mixed terms gaB = 0. Similarly,

ΓA
BC =

1

2
gAγ

(
∂BgγC + ∂CgγB − ∂γgBC

)
= SΓA

BC
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The mixed Christoffel symbols are ΓA
bc, Γa

BC , ΓA
Bc, and Γa

Bc. First,

ΓA
bc =

1

2
gAγ

(
∂bgγc + ∂cgγb − ∂γgbc

)
=

1

2
gAD (∂bgDc + ∂cgDb − ∂Dgbc)

= −1

2
gAD∂Dgbc

= 0

The final step follows from the knowledge that gab = gab is independent of the angular

components. Similarly,

Γa
BC =

1

2
gaγ
(
∂BgγC + ∂CgγB − ∂γgBC

)
=

1

2
gad (∂BgdC + ∂CgdB − ∂dgBC)

= −1

2
gad∂dgBC

= −1

2
gad∂d

(
r2ΩBC

)
= −rgadrdΩBC

= −rraΩBC
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The third combination is

ΓA
Bc =

1

2
gAγ

(
∂Bgγc + ∂cgγB − ∂γgBc

)
=

1

2
gAD (∂BgDc + ∂cgDB − ∂DgBc)

=
1

2
gAD∂cgDB

=
1

2
gAD∂c

(
r2ΩDB

)
= rrcg

ADΩDB

= r−1rcΩDBΩDB

= r−1rcδ
A
B

Finally,

Γa
Bc =

1

2
gaγ
(
∂Bgγc + ∂cgγB − ∂γgBc

)
=

1

2
gad (∂Bgdc + ∂cgdB − ∂dgBc)

= 0

Summarizing, the non-zero Christoffel symbols are

Γa
bc =

MΓa
bc

ΓA
BC = SΓA

BC

Γa
BC = −rraΩBC

ΓA
Bc = r−1rcδ

A
B

As a reminder, the goal is to express the metric perturbation with a gauge transformation

in terms of only quantities on the submanifolds. These Christoffel symbols are needed to
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map the covariant derivative of the gauge transformation onto the submanifolds. On M2,

∇aΞb = ∂aΞb − Γγ
abΞγ

= ∂aΞb − Γd
abΞd − ΓD

abΞD

= ∇aΞb

In the mixed components, the angular derivative gives

∇AΞb = ∂AΞb − Γγ
AbΞγ

= ∂AΞb − Γd
AbΞd − ΓD

AbΞD

= DAΞb − r−1rbδ
D
AΞD

= DAΞb − r−1rbΞA

and the M2 derivative gives

∇aΞB = ∂aΞB − Γγ
aBΞγ

= ∂aΞB − Γd
aBΞd − ΓD

aBΞD

= ∇aΞB − r−1raδ
D
BΞD

= ∇aΞB − r−1raΞB

For both of the previous expressions, the reason the partial derivatives become covariant

derivatives is because they are acting on objects which are tensors in a different space. For

example, the covariant derivative DA treats Ξb as a scalar, and so it does not generate any
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Christoffel symbols. Finally, the S2 component is

∇AΞB = ∂AΞB − Γγ
ABΞγ

= ∂AΞB − Γd
ABΞd − ΓD

ABΞD

= DAΞB + rrdΩBCΞd

These quantities finally allow for the expression of the gauge transformation purely in

terms of quantities from the submanifolds. The M2 component is simply

h′ab = hab −∇aΞb −∇bΞa

= hab −∇aΞb −∇bΞa

Unsurprisingly, the M2 component has no additional factors, as only the angular nature of

S2 introduces a difference between the derivatives. For the mixed components,

h′aB = haB −∇aΞB −∇BΞa

= haB −∇aΞB −DBΞa +
2

r
raΞB

Finally, for S2,

h′AB = hAB −∇AΞB −∇BΞA

= hAB −DAΞB −DBΞA − 2rrcΞcΩAB
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Summarizing, the rules for applying the gauge transformation on the metric perturbation

are

h′ab ≡ hab −∇aΞb −∇bΞa (4.6)

h′aB ≡ haB −∇aΞB −DBΞa +
2

r
raΞB (4.7)

h′AB ≡ hAB −DAΞB −DBΞA − 2rrcΞcΩAB (4.8)

To examine the mode-decomposed quantities, I also need the derivatives of Ξ in their

spherical harmonic form. In the even sector

∇aΞb =
∑
`m

Y `m∇aξ
`m
b (4.9)

∇aΞB =
∑
`m

Y `m
B ∇aξ

`m (4.10)

DAΞb =
∑
`m

ξ`mb Y `m
A (4.11)

DAΞB =
∑
`m

ξ`mDAY
`m
B

=
∑
`m

ξ`m(Y `m
AB − 1

2
`(`+ 1)ΩABY

`m) (4.12)

In the odd sector the non-zero derivatives are

∇aΞB =
∑
`m

X`m
B ∇aξ

`m (4.13)

DBΞA +DAΞB =
∑
`m

ξ`m
(
DBX

`m
A +DAX

`m
B

)
(4.14)

= 2
∑
`m

ξ`mX`m
AB (4.15)

where I have chosen to only consider the combination DBΞA+DAΞB. I do this because only

the combined term is needed, and it takes on a simpler form than just the covariant derivative.

The metric perturbation can now be expanded using the tensor spherical harmonics and

50



examined for each parity. For the following sections, summations over ` have the bounds

1 < ` < ∞, as ` = 0 and ` = 1 must be handled separately. Summations over m have the

bounds −` ≤ m ≤ `.

4.1.1. Even Parity

For the even parity, the metric perturbation has three non-zero components:

hab =
∑
`m

p`mab Y
`m (4.16)

haB =
∑
`m

j`ma Y `m
B (4.17)

hAB = r2
∑
`m

(
K`mΩABY

`m +G`mY `m
AB

)
(4.18)

The fields p`mab , j`ma , K`m, and G`m are all defined on M2 and only depend on xa. To derive

the RWZ gauge, I use Equations 4.6–4.12 to derive the transformations for the scalar fields

in Equations 4.16–4.18. Solving for the transformation for p`mab ,

h′ab = hab −∇aΞb −∇bΞa

=
∑
`m

p`mab Y
`m −

∑
`m

Y `m∇aξ
`m
b −

∑
`m

Y `m∇bξ
`m
a

=
∑
`m

Y `m
(
p`mab −∇aξ

`m
b −∇bξ

`m
a

)
For j`ma ,

h′aB = haB −∇aΞB −DBΞa +
2

r
raΞB

=
∑
`m

j`ma Y `m
B −

∑
`m

Y `m
B ∇aξ

`m −
∑
`m

ξ`ma Y `m
B +

2

r
ra
∑
`m

Y `m
B ξ`m

=
∑
`m

Y `m
B

(
j`ma −∇aξ

`m − ξ`ma +
2

r
raξ

`m

)
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Finally for K and G,

h′AB = hAB −DAΞB −DBΞA − 2rrcΞcΩAB

= r2
∑
`m

(
K`mΩABY

`m +G`mY `m
AB

)
−
∑
`m

ξ`m(Y `m
AB − 1

2
`(`+ 1)ΩABY

`m)

−
∑
`m

ξ`m(Y `m
AB − 1

2
`(`+ 1)ΩABY

`m) + 2rrcΩAB

∑
`m

Y `mξ`mc

=
∑
`m

Y `m
AB

(
r2G`m − 2ξ`m

)
+
∑
`m

ΩABY
`m
(
r2K`m − `(`+ 1)ξ`m + 2rrcξ`mc

)

Since all the gauge transformations cleanly separate by ` and m modes, these equations give

the transformations for the scalar fields in the even sector. Dropping the `,m superscripts,

p′ab = pab −∇aξb −∇bξa (4.19)

j′a = ja −∇aξ − ξa +
2

r
raξ (4.20)

K ′ = K +
`(`+ 1)

r2
ξ − 2

r
raξa (4.21)

G′ = G− 2

r2
ξ (4.22)

Now, I use the gauge freedoms to reduce the number of scalar fields. To do so, I first

need to find a gauge invariant quantity to decide how to define this new gauge. I start by

examining K. First, notice that the quantity

`(`+ 1)

r2
ξ

can be canceled out with the term from

`(`+ 1)

2
G′
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Next, the term

−2

r
raξa

is obtained with the contraction

−2

r
raja

Of course, simply adding these together will not perfectly cancel all the terms. Some other

term needs to be added to make this construction gauge invariant. So far, the expression for

some gauge-invariant quantity K is

K = K +
`(`+ 1)

2
G− 2

r
raja+?

Transforming this gives

K = K ′ +
`(`+ 1)

2
G′ − 2

r
raj′a+?′

= K +
`(`+ 1)

r2
ξ − 2

r
raξa +

`(`+ 1)

2

(
G− 2

r2
ξ

)
− 2

r
ra
(
ja −∇aξ − ξa +

2

r
raξ

)
+?′

= K +
`(`+ 1)

2
G− 2

r
raja −

2

r
ra
(
−∇aξ +

2

r
raξ

)
+?′

From here, the solution is somewhat clear. The remaining term is just the covariant derivative

∇a

(
ξ

r2

)
=

1

r2
∇aξ −

2

r3
raξ

and this term is the gauge transformation term for G. The quantity

r2

2
∇aG

′ =
r2

2
∇aG−∇aξ +

2

r
raξ

gives the desired term. Thus I arrive at

K ≡ K +
1

2
`(`+ 1)G− 2

r
ra
(
ja −

r2

2
∇aG

)
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Next, I construct a second gauge-invariant quantity from p. As with K, the derivative terms

are most easily replicated with a covariant derivative of ja. Then,

pab = p′ab −∇aj
′
b −∇bj

′
a+?′

= pab −∇aξb −∇bξa −∇a

(
jb −∇bξ − ξb +

2

r
rbξ

)
−∇b

(
ja −∇aξ − ξa +

2

r
raξ

)
+?′

= pab −∇bja −∇ajb −∇a

(
−∇bξ +

2

r
rbξ

)
−∇b

(
−∇aξ +

2

r
raξ

)
+?′

This rather familiar term is, of course, the same one needed for K. It is convenient to define

the quantity

εa ≡ ja +
1

2
r2∇aG

to simplify these quantities. Then, the gauge-invariant combinations of the scalar fields are

pab ≡ pab −∇aεb −∇bεa (4.23)

K ≡ K +
1

2
`(`+ 1)G− 1

r
raεa (4.24)

Finally, consider the case where ξ = r2

2
G Then, G′ = 0 and

j′a = ja −∇aξ − ξa +
2

r
raξ

= ja −∇a

(
r2

2
G

)
− ξa +

2

r
ra
r2

2
G

= ja −
r2

2
∇aG−∇a

(
r2

2

)
G− ξa + rraG

= ja −
r2

2
∇aG−∇a

(
r2

2

)
G− ξa + rraG

= ja −
r2

2
∇aG− ξa
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The gauge transformation with components

ξ =
r2

2
G

ξa = ja −
r2

2
∇aG

will always set ja = G = 0, and the gauge-invariant quantities pab = pab and K = K become

the only non-zero scalar fields of the tensor spherical harmonic decomposition in the even

sector. This is the definition of the RWZ gauge in the even sector, first derived and used by

Regge and Wheeler in Schwarzschild coordinates [48].

What remains is to determine the mode-decomposed evolution equations that arise from

the Einstein equations. However, this derivation is quite ugly and tedious, and the final gen-

eralized forms are very complicated. Surprisingly, however, they can be reduced significantly

through the definition of a master function. This Zerilli-Moncrief function is defined as

ψ`m
even ≡ 2r

`(`+ 1)

[
K

`m
+

2

Λ

(
rarbh

`m

ab − rra∇aK
`m
)]

where

Λ ≡ (`− 1)(`+ 2) +
6M

r

where I have reintroduced the `, m notation for the final result [47]. This master function

has been published in numerous forms and definitions depending on normalization factor

and choice of coordinates, the earliest being Zerilli [49] and Moncrief [50]. This function

satisfies the Zerilli equation

(�− Veven)ψeven = Seven (4.25)

with potential

Veven =
1

Λ2

[
µ2

(
µ+ 2

r2
+

6M

r3

)
+

36M2

r4

(
µ+

2M

r

)]
(4.26)
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where µ ≡ (`−1)(`+2). Again, I will not derive this equation here, but a detailed derivation

of this equation can be found in the paper by Martel [51]. The most surprising feature of

the RWZ gauge is that it transforms the gravitational self-force problem into a simple wave

equation. All of the scalar fields in the even sector reduce down to requiring the evolution

of the wave equation of a single variable ψ.

4.1.2. Odd Parity

The odd parity sector begins very similarly to the even sector, except that the odd sector

has far less components. Decomposing the metric perturbation yields

hab = 0

haB =
∑
`m

p`ma X`m
B (4.27)

hAB =
∑
`m

p`m2 X`m
AB (4.28)

The fields p`ma and p`m2 are both defined on M2 and only depend on xa. As before I examine

their behavior under a gauge transformation using Equations 4.7 and 4.8.

h′aB = haB −∇aΞB −DBΞa +
2

r
raΞB

=
∑
`m

p`ma X`m
B −

∑
`m

X`m
B ∇aξ

`m +
2

r
ra
∑
`m

X`m
B ξ`m

=
∑
`m

X`m
B

(
p`ma −∇aξ

`m +
2

r
raξ

`m

)
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h′AB = hAB −DAΞB −DBΞA − 2rrcΞcΩAB

=
∑
`m

p`m2 X`m
AB − 2

∑
`m

ξ`mX`m
AB

=
∑
`m

X`m
AB

(
p`m2 − 2ξ`m

)
As with the even sector, these expressions separate by mode, giving the gauge transforma-

tions

p′a = pa −∇aξ +
2

r
raξ (4.29)

p′2 = p2 − 2ξ (4.30)

To find the gauge-invariant quantity in the odd sector, it is important to recognize that

p2 cannot be the correct starting point because it is impossible to get ξ from pa. Then, the

path to the solution is relatively straightforward.

p′a = p′a −∇a (c1p
′
2) +

2

r
rac2p

′
2 (4.31)

p′a = pa −∇aξ +
2

r
raξ −∇a (c1(p2 − 2ξ)) +

2

r
rac2(p2 − 2ξ) (4.32)

p′a = pa −∇a (c1p2) +
2

r
rac2p2 −∇aξ +

2

r
raξ + 2c1∇aξ −

4

r
rac2ξ (4.33)

p′a = pa −∇a (c1p2) +
2

r
rac2p2 −∇aξ(1− 2c1) +

2

r
raξ(1− 2c2) (4.34)

(4.35)

To get the terms with ξ to cancel, c1 = c2 =
1
2
. Then, the gauge-invariant quantity is

pa ≡ pa −
1

2
∇ap2 +

1

r
rap2

By choosing ξ = p2
2

, p2 goes to zero and pa = pa. This is the Regge-Wheeler gauge condition

in the odd sector.
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Finding the evolution equations for the remaining fields requires calculating the mode-

decomposed Einstein equations for the metric perturbation in the odd sector. While slightly

less painful than the even sector calculations, I again simply refer to the comprehensive paper

by Martel and Poisson [47]. In another miraculous turn of events, the odd sector also allows

for the definition of a single scalar field, the Cunningham-Price-Moncrief function:

ψ`m
odd ≡

2r

(`− 1)(`+ 2)
εab
(
∇ap

`m
b − 2

r
rap

`m
b

)

This master function simplifies the field equations into the Regge-Wheeler equation

(�− Vodd)ψodd = Sodd (4.36)

with potential

Vodd =
`(`+ 1)

r2
− 6M

r3
(4.37)

These equations were first published by Cunningham, Price, and Moncrief [52], and later

publications extended these results to frequency domain [53] and eventually to the gauge-

invariant formalism of Martel and Poisson [47].

4.2. Numerical Implementation

With the RWZ gauge finally ready, I can now discuss the details of the code itself. The

derivation in Section 4.1 reduces the problem of evolving the gravitational fields to that of

simulating a scalar wave equation for each ` and m mode. The only difference between

the scalar self-force and the RWZ self-force is a change in the potential. The scalar wave

equation is rearranged to be of the form

∂2t ψ = cr∗r∗∂
2
r∗ψ + ctr∗∂t∂r∗ψ + ct∂tψ + cr∗∂r∗ψ + cψ + S (4.38)

in the tortoise region. The same equation is used in the hyperboloidal regions, except that

the derivatives are with respect to the coordinates of the region. While not visible, the c

58



coefficient contains the potential term. Since Equations 4.25 and 4.36 take on the same

general form, they can be treated identically. The only change is in the coefficient c. The

non-zero coefficients in the tortoise region are

cr∗r∗ = 1 (4.39)

ctorteven = − 2(r − 2M)

r4 (λr + 3M)2
(
λ2(λ+ 1)r3 + 3λ2Mr2 + 9λM2r + 9M3

)
(4.40)

ctortodd = −2(r − 2M)

r4
((λ+ 1)r − 3M) (4.41)

where λ = (`−1)(`+2)
2

. To see the potentials from Equations 4.26 and 4.37, note that λ+ 1 =

`(`+1)
2

and that the potential was divided by f−1, the coefficient on the ∂2t ψ term. In the

hyperboloidal regions, the coefficients become

cρρ =
1∓H

1±H
(4.42)

cτρ = − 2H

1±H
(4.43)

cτ = − H ′

1±H
(4.44)

cρ = ∓ H ′

1±H
(4.45)

chypeven =
1

1−H2
ctorteven (4.46)

chypodd =
1

1−H2
ctorteven (4.47)

where the upper sign is for the outer region and the lower sign is for the inner region.

Since H → ±1 as it approaches I + and the horizon, respectively, it is immediately clear

that the first four coefficients are finite. Since H ′ → 0 in both limits, only cτρ and c are

non-zero in the limit. The only possible problem is in c, but the quantity r−2M approaches

zero faster than 1 − H2, so all of the coefficients in the principal part are finite. At the
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horizon, the only non-zero coefficient is

cτρ = 1 (4.48)

Approaching I +, the non-zero coefficients are

cτρ = −1 (4.49)

c = −`(`+ 1)

2S+

(4.50)

where both the even and odd potentials conveniently have the same limit. To proceed, I

implemented these expressions into the self-force code, which is in Fortran. This code uses

all of the tricks and techniques discussed in Chapter 3. The effective source code is provided

by Barry Wardell and Niels Warburton. I also use initial data for some simulations which

is calculated using a frequency domain code written by Seth Hopper. This code is also the

source of the frequency domain results with which I compare my code.

4.3. Computational Results

To test and validate the code, I simulate the EMRI system with various choices of DG

order and number of elements. I restrict this investigation to circular orbits, as the effective

source code currently available can only handle the circular case. The initial data code

can already handle eccentric orbits, and my code is ready for validation and testing on

both eccentric orbits and the full inspiral. For orbit calculations, a frequency domain code

calculates the steady-state solution to the system. In the time domain, this means I force

the particle to stay on the orbit and let the simulation converge to a solution. Any initial

data in the master functions will propagate out of the domain, and all the quantities of the

system will converge to a specific value determined by the behavior of the orbiting particle.

The time to convergence can be improved by using initial data calculated by the frequency

domain code, but this is only beneficial for the first few ` modes. The initial data converges

to the final value following a power law with an `-dependent exponent. This means that
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the higher modes are fully converged by the time the small ` values have converged, even if

they use initial data. As such, I use initial data of zero for all higher modes. In an inspiral

simulation, the simulation will perform a circular or elliptical orbit until the steady-state

solution is reached. Then, the particle is allowed to begin the inspiral. This method works

because the early inspiral is well-approximated by the adiabatic approximation, which is

effectively what this method generates as initial data for the inspiral.

My simulations evolve the EMRI and output the energy and angular momentum fluxes

through the horizon and out to I +. While I have implemented output for reconstruction of

the metric perturbation, I do not currently have data with which to compare. The full self-

force also cannot be constructed because I only have ` ≥ 2 in the simulation. As mentioned

in Section 4.1, the master functions are only valid for these modes. The ` = 0 and ` = 1

modes must be handled separately, and this is not yet implemented. For all simulations, the

point mass is confined to a circular orbit with r0 = 10M around a Schwarzschild black hole.

As mentioned before, the initial data reduces the runtime, so I use initial data for ` = 2 to

` = 5 and include modes up to ` = 40. This simulation is evaluated up to T = 1000M . The

initial data is meant only to speed up the simulation, so I also simulate the first five modes

with no initial data for T = 10, 000M to verify that the same result is reached.

In addition to fluxes, calculation of the polarizations of the gravitational waves are also

important. However, I do not examine these quantities here. While I have implemented

the calculations for the gravitational wave polarizations, I do not currently have compar-

ison data, so I cannot use them for validation. The expressions for the polarizations and

fluxes at I + are found by expanding the perturbation in powers of r−1 and examining the

behavior of ψ at the boundaries [47]. After deriving the piece of the perturbation which

represents the radiative field, the two polarizations of the gravitational waves and the fluxes

can be derived [54]. At the horizon, only the fluxes need to be calculated, and those ex-

pressions are derived by evaluating the field equations at r = 2M and integrating over the

sphere [55]. Conveniently, the expressions for the fluxes are identical for both boundaries.
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The polarizations are given by

h+ =
1

r

∑
`m

[
ψ`m

even

(
∂2θ +

`(`+ 1)

2

)
Y `m − im

sin(θ)
ψ`m

odd (∂θ − cot(θ))Y `m

]
(4.51)

h× =
1

r

∑
`m

[
im

sin(θ)
ψ`m

even (∂θ − cot(θ))Y `m + ψ`m
odd

(
∂2θ +

`(`+ 1)

2

)
Y `m

]
(4.52)

and the fluxes are given by

〈
dE

dv

〉
=

1

64π

∑
`m

(`− 1)(`+ 1)(`+ 2)
〈
|ψ̇`m

even|2 + |ψ̇`m
odd|2

〉
(4.53)〈

dJ

dv

〉
=

1

64π

∑
`m

(`− 1)(`+ 1)(`+ 2)
〈
ψ̄`m

evenψ̇
`m
even + ψ̄`m

oddψ̇
`m
odd

〉
(4.54)

Here, the coordinate v is from the coordinates (v, r, θ, φ). At I +, this represents the out-

going Eddington–Finkelstein coordinates (v = t+ r∗) and at the horizon this represents the

ingoing Eddington–Finkelstein coordinates (v = t − r∗). Traditionally, the ingoing coordi-

nates uses u instead of v, but I do not give Equations 4.53 and 4.54 twice since they have an

identical form for both boundaries. The fact that these expressions are in a different coor-

dinate system may initially seem problematic, but the time coordinate of the hyperboloidal

coordinate τ asymptotes to the Eddington–Finkelstein coordinates u and v, respectively. At

the boundaries the time derivatives in these coordinates are identical and may be evaluated

without worry. Also, these equations appear to mix even and odd ψ at first glance, but the

even (odd) field is zero when the mode is odd (even). Therefore, any given (`,m) mode will

only have a single term.

To check convergence, I vary the number of elements and DG order. The number of

elements used are 16, 32, and 64. The DG orders used are 4, 6, 8, 10, 12, and 16. The number

of elements in the tortoise region—the t_size parameter in the code—varies with the number

of elements. I use t_size values of 5, 10, and 20, respectively. I set S− = 20, and the location

of the particle in tortoise coordinates is R∗ = 12.7725887222398. With these parameters,
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this sets S+ = 45.545177444479563. The location of the boundary between the hyperboloidal

layers and the tortoise region are T− = −7.7102792291600828 and T+ = 33.255456673639642.

Once the simulation has run for long enough to reach a stable solution, I average over

the last 50 data points of output. I take these results and compare with the frequency

domain calculations by plotting the absolute difference between them. Figures 4.1, 4.2,

and 4.3 show the absolute difference between the energy flux calculated by my code and the

frequency domain results as computed by Seth Hopper’s code. Figures 4.4, 4.5, and 4.6 show

the absolute difference between the angular momentum flux calculated by my code and the

frequency domain results as computed by Seth Hopper’s code. The plots are divided by the

number of elements, and all show multiple lines for the different DG orders. The data points

marked with a ‘◦’ used initial data, and data points marked with a ‘+’ did not.

The reason I do not use the relative difference is because many high-order modes are

effectively zero for the circular case. Due to the numerical methods, my code will produce

a value on the order of 10−20 to 10−30 depending on the resolution of the DG parameters,

while the frequency domain code will generally get values from 10−34 all the way down to

10−90. While both of these are effectively zero, it makes producing a meaningful relative

difference plot difficult.

In these plots, the time domain results clearly converge to the frequency domain results

as the DG order and element count are increased. The 16 element simulations display this

most clearly, as that is a very small number of elements. Since the number of elements

is low, increasing the DG significantly improves the accuracy of the code. As the number

of elements increases, increasing the order has less and less effect. In Figure 4.3, the high

`-mode data at the horizon has completely converged, and even the 4th-order simulation is

nearly identical to the higher order simulations.

To reproduce these results one parameter is of particular importance. For modes without

initial data, the effective source is turned on smoothly so that there isn’t a sudden disconti-

nuity introduced by using zero initial data. In practice, not doing so with the scalar self-force
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resulted in the excitation of unphysical modes, so it is also used here. The speed at which

this is turned on is controlled by the parameter tsigma. I use tsigma = 10−6 to rapidly

turn on the source. I first performed these calculations with a larger tsigma. However, this

results in higher error in the initial time. A similar numerical error would arise from turning

the effective source on smoothly with initial data. Since the initial data from the frequency

domain code is close to the correct solution for the full source, turning it on smoothly ef-

fectively uses the wrong source temporarily, causing the simulation to take longer to settle

down to the correct solution and defeating the purpose of using initial data.

The final steady state solution for the energy flux is unaffected by numerical error from

turning on the source, but the angular momentum flux accumulates error from the transi-

tional phase. The reason for this is that the source of error is only present in the angular

momentum flux equation. In Equation 4.54, the expressions include ψ itself, not just the

time derivative. This quantity is obviously just an integral of ψ̇ over the simulation (plus

any initial value). However, ψ̇ only settles down to the correct value once any bad initial

data propagates out of the domain. During this time, the incorrect ψ̇ accumulates error in

ψ, which then appears in the angular momentum flux. This error would also be evident

in the gravitational wave polarizations, as they also depend on ψ. This is not visible in

Figures 4.4-4.6 at I + because the error which is introduced is significantly smaller than

the final values for the angular momentum flux. Thus, using initial data to ‘prime’ the

simulation not only improves runtime but also reduces a source of error in the code. To

minimize this effect on the modes using zero initial data, the value of tsigma should be set

to be small so that the initial transient source quickly becomes the full source while still

remaining smooth. Since the initial values are zero or near-zero, the errors introduced dur-

ing the transient source phase are minimal so long as tsigma is sufficiently small. For these

simulations, I set tsigma = 10−6 for all of these simulations.

There are also several unusual features I should explain in these plots. First, The horizon

data plot in Figures 4.3 and 4.6 show the lowest order method appearing to achieve the
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highest accuracy. This is actually because the high ` modes are close to zero, and the

difference between the two solutions is limited by how small the time domain value can get

during the run. In the case of the lowest resolution, the numerical inaccuracy actually leads

to the flux dropping to zero faster, which is closer to the frequency domain results than the

higher order simulations. Second, the jagged nature of some of the data points is because

the data from my code and the frequency domain code matched for all the outputted digits.

When that happens, I approximate the difference as being one digit beyond the available

data. Finally, the simulations using initial data are supposed to get the same result as with

no initial data but take less time to run. However, the higher order simulations show the data

using initial data to level off in accuracy. This is especially noticeable in the horizon data

plot in Figures 4.2 and 4.3. This happens because the initial data code also has numerical

error. At some point, the inaccuracy of the initial data becomes the dominant error in the

final results, causing the final result to differ from the results without initial data. The ‘bad’

initial data has to propagate completely out of the domain, which can take longer than just

starting with zero initial data. If the initial data simulation were run for as long as the

simulation with no initial data these data points should converge, but the proper solution is

to calculate initial data to an accuracy appropriate for the simulation.

These results show that my time domain code agrees with highly accurate and well-

tested frequency domain codes for circular orbits and is ready for eccentric orbits. The only

changes to go from circular orbits to eccentric orbits and inspirals is the effective source

code. Testing for eccentric orbits proceeds similarly to the circular orbit. Other than a

new effective source, the only remaining task before testing full inspirals simulations are

possible is the implementation of evolution equations for the ` = 0 and ` = 1 modes. Once

these modes are implemented, the full self-force calculation can be compared for circular and

eccentric orbits as a final validation before inspiral simulations begin.
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Figure 4.1. The absolute difference between the calculated energy flux and the frequency
domain results at the horizon (top) and I + (bottom) as function of ` with 16 DG elements
at different DG order (purple: 8, green: 10, blue: 12, orange: 14 and yellow: 16). The points
marked with a ‘◦’ used initial data, and those marked with a ‘+’ did not use initial data.
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Figure 4.2. The absolute difference between the calculated energy flux and the frequency
domain results at the horizon (top) and I + (bottom) as function of ` with 32 DG elements
at different DG order (purple: 8, green: 10, blue: 12, orange: 14 and yellow: 16). The points
marked with a ‘◦’ used initial data, and those marked with a ‘+’ did not use initial data.
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Figure 4.3. The absolute difference between the calculated energy flux and the frequency
domain results at the horizon (top) and I + (bottom) as function of ` with 64 DG elements
at different DG order (purple: 8, green: 10, blue: 12, orange: 14 and yellow: 16). The points
marked with a ‘◦’ used initial data, and those marked with a ‘+’ did not use initial data.
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Figure 4.4. The absolute difference between the calculated angular momentum flux and the
frequency domain results at the horizon (top) and I + (bottom) as function of ` with 16
DG elements at different DG order (purple: 8, green: 10, blue: 12, orange: 14 and yellow:
16). The points marked with a ‘◦’ used initial data, and those marked with a ‘+’ did not
use initial data.
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Figure 4.5. The absolute difference between the calculated angular momentum flux and the
frequency domain results at the horizon (top) and I + (bottom) as function of ` with 32
DG elements at different DG order (purple: 8, green: 10, blue: 12, orange: 14 and yellow:
16). The points marked with a ‘◦’ used initial data, and those marked with a ‘+’ did not
use initial data.
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Figure 4.6. The absolute difference between the calculated angular momentum flux and the
frequency domain results at the horizon (top) and I + (bottom) as function of ` with 64
DG elements at different DG order (purple: 8, green: 10, blue: 12, orange: 14 and yellow:
16). The points marked with a ‘◦’ used initial data, and those marked with a ‘+’ did not
use initial data.
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Chapter 5. Self-force Implementation in the Lorenz Gauge

As discussed in Chapter 4, I have developed a code to simulate the gravitational self-force

in the Regge-Wheeler-Zerilli gauge. This naturally leads to a preliminary question. Since the

RWZ equations are developed and implemented, why bother developing evolution equations

in an entirely new gauge? There are several reasons for this. First, the implementation of

multiple gauges provides further validation of the numerical methods used. Particularly, any

observable quantities are gauge-invariant, so having results in multiple gauges can provide a

more rigorous test of validity. These comparisons are difficult in practice, but they can be

done with sufficient effort. Secondly, work on second-order self-force by the EMRI community

is furthest along in the Lorenz gauge. As mentioned in Section 3.4, LISA requires second-

order contributions, so I must also consider what will provide the smoothest transition to

second-order simulations in the future. While the RWZ gauge is quite convenient at first-

order, that convenience has yet to manifest at second-order. Thus, the Lorenz gauge appears

to be a more ‘natural’ choice, so it should be developed in preparation for the possibility

that it will be needed at second-order.

5.1. Tensor Spherical Harmonics

The derivation for the Lorenz gauge begins similarly to the RWZ gauge—with a tensor

spherical harmonic decomposition. The primary difference is that where the RWZ gauge

simplifies the evolution equations by choice of gauge, the Lorenz gauge does not. Hence, the

evolution equations are far less elegant. However, the general methods are quite similar. The

Lorenz gauge is defined as ∇β g̃αβ = 0, and it is more convenient to consider the trace-reversed

metric perturbation

h̄αβ = hαβ −
1

2
gαβ (5.1)

Then, the metric perturbation equations reduce to

�h̄αβ +Rµ
α
ν
βh̄µν = −16πTαβ. (5.2)
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I then decompose this equation using tensor spherical harmonics. I am not using the same

formalism as in Chapter 4, as this section builds off of the work of Barack, Lousto, and

Sago [56, 57] as its basis. In the case of the RWZ gauge, the details of the form of the

tensor spherical harmonics do not matter because all ten of the scalar fields generated by

the decomposition reduce to a single scalar field ψ. In contrast, the Lorenz gauge will not

remove all of the different scalar fields in the decomposition, and I will instead find ten

coupled evolution equations for each (`, m) mode. The exact form of the equations will

depend on choice of decomposition, so I must be more explicit in my choice of basis. I start

with the basis used by Barack and Sago [57], which I will refer to as the BLS basis. In

Schwarzschild coordinates, the trace-reversed metric perturbation is related to the tensor

harmonics by the equation

h̄αβ =
m

r

∑
`m

10∑
i=1

a(i)`h
(i)
BS(t, r)Y

(i)`m
αβ (θ, φ; r) (5.3)

where

a(i)` =
1√
2


1, i ∈ {1, 2, 3, 6}

[`(`+ 1]−1/2 , i ∈ {4, 5, 8, 9}

[`(`− 12)(`+ 2)]
−1/2

, i ∈ {7, 10}

The first seven h(i) correspond to the even-sector fields in Section 4.1.1, and the last three

correspond to the odd-sector fields in Section 4.1.2. The tensor spherical harmonics Y (i)`m
αβ

here are the same as those used by Barack and Sago [57], and they are included in Ap-

pendix A. This differs from the Barack and Lousto basis [56] by applying the rescaling of

h̄
(3)
BS ≡ f−1h̄

(3)
BL (5.4)

This rescaling was done because the h̄(3)BL field vanishes at the horizon. I verified during my

experimentation that this change resolves several singular components of the coupling matrix
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that are present if the original basis is used. It is also at this point where I diverge from

the work of Barack, Lousto, and Sago. I will discuss the point at which their basis breaks

later, but I found that it is impossible to generate well-behaved evolution equations in the

inner hyperboloidal region using the BLS basis because some of the coupling coefficients will

inevitably be singular at the horizon. No amount of fiddling with constraints could properly

resolve this issue, leading to my adoption of a new basis. For the remainder of the paper, I

use the following basis:

h(1) ≡ h
(1)
BLS + h

(2)
BLS (5.5)

h(2) ≡ h
(1)
BLS − h

(2)
BLS (5.6)

h(4) ≡ h
(4)
BLS + h

(5)
BLS (5.7)

h(5) ≡ h
(4)
BLS − h

(5)
BLS (5.8)

h(8) ≡ h
(8)
BLS + h

(9)
BLS (5.9)

h(9) ≡ h
(8)
BLS − h

(9)
BLS (5.10)

The scalar fields h(3), h(6), h(7), and h(10) are unchanged from the BLS basis.

5.2. Evolution Equations

After choosing a basis, I insert Equation 5.3 into Equation 5.2 to generate evolution

equations for each h(i). This requires finding linear combinations of the equations such that

only a single ∂2t h(i) appears in each equation (or ∂2τh(i) in hyperboloidal coordinates). This

term remains on the left-hand side while all other terms become the right-hand side for

the numerical implementation. Finding the correct combination for each evolution equation

is rather straightforward, and these combinations are given in Appendix B. In the tortoise
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region, these equations take the form

∂2t h
(i) = cr∗r∗∂

2
r∗h

(i) + ctr∗∂t∂r∗h
(i) + ct∂th

(i) (5.11)

+ cr∗∂r∗h
(i) + ch(i) +

10∑
i=1

M
(i)
(j)h

(j) + S

where S is the source term and M (i)
(j) is the coupling matrix. This matrix is an operator and

contains derivatives, as the fields also couple to the first derivatives of the other fields.

The various c coefficients come from the principal part (�h̄αβ) of the equation and do

not depend on i. The potential term is contained within the c coefficient. Since the principal

part is unchanged from the RWZ gauge, the first four coefficients are identical and are given

by Equation 4.39 in the tortoise region and Equations 4.42–4.45 in the hyperboloidal layers.

The remaining potential term is

ctort = −r − 2M

r3

(
`(`+ 1) +

2M

r

)

in the tortoise region and

chyp = − 1

1−H2
ctort

in the hyperboloidal regions. In the limits, the coefficients are given by Equation 4.48 at the

horizon and Equations 4.49 and 4.50 at I +. While the potentials are different, their values

in the limits are once again identical.

The final step is to find the limits for the coupling matrix. This step is where the BLS

basis results in singular coefficients at the horizon. In the limit approaching I +, the coupling

matrix is finite. The limit towards the horizon is unfortunately not. The division by 1−H2

(which is zero in the limit) creates this issue, as some terms do not have a corresponding term

in the numerator to counteract it. In the BLS basis, the singularities appear in equations

for i ∈ {1, 2, 4, 5, 8, 9}. This could potentially be solved by using the constraint equations
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to cancel out these terms. However, an additional factor interferes with this method for

resolving the singular terms.

5.3. Constraint Damping

When selecting a gauge, two options are available. One is to use the degrees of freedom

to eliminate variables. This is what the RWZ gauge does, reducing the total number of scalar

fields from ten to two. The other option is to keep all the variables along with the constraint

equations. This implementation of the Lorenz gauge keeps all ten scalar fields along with

four constraint equations. Ideally, these should all be satisfied throughout the simulation to

ensure the validity of the results. Part of this is finding a way to calculate or approximate

constraint-satisfying initial data. However, even with good initial data numerical error can

introduce constraint violations during a simulation.

To ensure that the constraints remain satisfied, I add constraint damping terms to the

evolution equations so that any constraint violations which occur will rapidly return to

zero. As a reminder, the four constraint equations are derived from the gauge condition

Zα ≡ ∇βh̄αβ = 0. To introduce constraint damping, Barack and Lousto[56] propose adding

term to Equation 5.2

−κ (tαZβ + tβZα) (5.12)

where κ is a positive constant and tα is a future-directed timelike vector field, which is shown

to damp the constraints by Gundlach et al [58]. Adding this damping term (which is equal

to zero in the continuum limit) drives any changes of the constraints from zero back towards

zero, helping to stabilize the code.

This addition also has no effect on the principal part of the equation, so the only part

that changes is the coupling matrix M (i)
(j). This also means that the construction devised for
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the evolution equations is also still valid. Barack and Lousto choose for their damping

κ = −f ′ (5.13)

tα =
(
1, f−1, 0, 0

)
(5.14)

Z̃α = (fZr, Zr, Zθ, Zφ) (5.15)

(5.16)

which violates the requirement that κ be constant. They validate this choice by providing

numerical evidence for the damping effect and argue that so long as κ varies slowly with

respect to the background curvature the damping effect should not be affected [56]. It also

violates the requirement that κ be positive, but that is not discussed. They also choose

tα = (1, f−1, 0, 0), which is lightlike instead of timelike. This might interact with κ such

that the sign change is not a problem, but that is not analytically proven. Finally, Zα is

replaced with Z̃α. These choices are all likewise defended on the basis of the numerical

evidence of damping. The paper differs from the values I have here because of several typos.

I have verified the quantities reported here after discussions with Barack and rederiving the

coupling coefficients in the Schwarzschild coordinates using the original BLS basis, with one

exception. I found that to get the same equations they report I must set κ = 0 for the i = 3

equation. Since this term is zero in the continuum limit, there is no problem with doing so.

I use the same tα as in Equation 5.14 and transform it into the new coordinates. My κ

differs from Equation 5.13, and I also choose a different κ for i = 3, hereafter referred to

as κ3. The reason for this is that the term that arises in this equation requires an f in the

inner hyperboloidal region to remain finite at the horizon. This did not appear in the BLS

equations because κBLS
3 = 0. To preserve the proper units, I use f/r so that it matches the

units of f ′. Instead of Z̃α, I just use Zα. I give the values for tα, κ, and κ3 in Table 5.1. It

is also important to note that Barack, Lousto, and Sago work in Schwarzschild coordinates,
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Table 5.1. Values used for damping in the various coordinate regions. The κ values in the
inner layer are complicated and given in Table 5.2.

Inner Layer Tortoise Region Outer Layer
tα

(
1, 1+H

1−H
, 0, 0

)
(1, 1, 0, 0)

(
1, 1+H

1−H
, 0, 0

)
κ Varies −f ′ −f ′

κ3 Varies −f/r −(1−H)f/r

while I am working in tortoise coordinates. This leads to the apparent difference in our

definitions of tα.

The behavior of damping in the inner layer is quite finicky, and I will discuss this in

detail, but first I must finally deal with the issue of singular terms in the coupling matrix.

The constraint damping may not seem to relate to resolving the singular terms, but I can

use these equations to cancel out the singular terms. Since the constraints are zero, I am free

to add them to the equations as needed. Then, I could potentially find a combination which

will cancel out the bad terms exactly. However, a subtlety arose when attempting to cancel

these out in the BLS basis. I can, in fact, cancel out the terms in the BLS equations using

the constraint equations. However, upon implementing them and running the simulation, I

saw that the constraints were rapidly violated, and that those violations were not damped

at all. Further analysis shows that the terms I need to add to the evolution equations for

i ∈ {1, 5, 9} are the same terms which arise from the constraint damping, but with the

sign switched. Worse, they die off slower than the damping terms, meaning that near the

horizon constraint violations were actually amplified instead of damped! This clearly causes

numerical instability is not any better than having singularities.

These difficulties led to my search for a new basis, which culminated in my choice of the

basis given in Equations 5.5–5.10. The singular terms in the new evolution equations can be
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canceled by adding the following to the respective right-hand side:

eq(2) = eq(2) − 2H

1−H2
Zτ

eq(5) = eq(5) − 2H

1−H2
Zθ (5.17)

eq(9) = eq(9) − 2H

1−H2
Zφ

This results in finite values at the horizon without ruining the constraint damping. As for

the damping itself, simply choosing −f ′ proved insufficient. Some of the equations required

a factor of (1 + H) in κ to keep the term finite at the horizon. In addition, the terms

rapidly approach zero as they approach the horizon. In my testing, I found that numerical

instabilities would arise very near the horizon and grow uncontrollably. To remedy this, I

tested with the κ values given in Table 5.2. I introduce the positive constants c1, c2, and c3

Table 5.2. Expressions used for κ in the inner layer. The constants c1, c2, and c3 are variables
in the code that can be changed for experimenting with damping.

i = 1 i = 3 i ∈ {4, 8}
κ −f ′ (1− c1H) −f(1 +H) (1− c2H) −f ′(1 +H) (1− c3H)

to allow for testing in the code with different values. Since H → 0 at the the layer boundary,

these are all continuous with the damping in the tortoise region. At the horizon, H → −1,

and the ci factors are all just positive multiplicative factors.

After canceling the singular terms and introducing constraint damping, the evolution

equations are finally ready to be implemented into the code. For completeness, I provide

the full form of the coupling matrix M (i)
(j)h

(j) for the tortoise and inner hyperboloidal layers

in Appendix C. The outer hyperboloidal layer immediately follows from the tortoise matrix,

and this relation is also described in the Appendix.

5.4. Methodology and Results

To derive these equations, I use Mathematica to apply the tensor spherical harmonic

decomposition, solve for the evolution equations, and apply the limits. The notebook then
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automatically generates Fortran code which I incorporated into the same code framework

used for the RWZ code. This code is noticeably more complicated than the RWZ code,

however, as it contains ten coupled equations for each `, m mode instead of just one. This

is part of the motivation for using Mathematica to generate code pieces, as it removes the

human error of manually typing many long, complicated expressions.

The long-term goal of this code is to be able to simulate the gravitational self-force for

an inspiraling object. However, the first test of code validity is to examine how initial data

will evolve without a source. Without a source, the initial data simply propagates into

the horizon and out to I +, eventually decaying to zero. This decay is equivalent to the

behavior of the black hole post-merger where only the central black hole remains. Since a

single black hole can only have mass and spin, any ` modes higher than ` = 1 must decay

away via gravitational waves. This part of the gravitational wave signal is referred to as

the quasinormal mode (QNM) ringdown. The QNM ringdown has a specific behavior that

known to very high accuracy, and this behavior is determined purely by the background

spacetime. For the Schwarzschild metric, each ` mode oscillates with a specific complex

frequency ω. Berti, Cardoso, and Starinets provide a detailed overview of quasinormal

modes in all its flavors, along with an extensive literature review [59]. For my purposes, I

am using the QuasiNormalModes Mathematica package from the Black Hole Perturbation

Toolkit to generate these values [60].

I assess my code’s current performance via several metrics. First, I validate that it is

stable for long after the initial data has propagated out of the domain. This is to ensure

that the constraint damping is working properly. Second, I examine the wave behavior as

it propagates out, especially across the boundaries between the coordinate regions. Third,

I check that the constraints remain approximately zero for the entire runtime (in the case

of constraint-satisfying data) or decays rapidly (for simple gaussian initial data). Finally,

I approximate the QNM frequencies of my data and compare them to frequency domain

calculations.
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5.4.1. Numerical Stability

I perform all my analysis with both constraint-satisfying initial data and constraint-

violating initial data. As the code’s behavior is generally the same in both, I show the

data for the constraint-satisfying initial data unless specifically mentioned. I solve for the

constraint-satisfying initial data using the constraints and setting

h(i) = 0, i /∈ {4, 6, 10} (5.18)

∂th
(i) = ∆, i /∈ {4, 6, 10} (5.19)

where

∆ = AExp

[
−(r∗ − r0)

2

2σ2

]
I then solve for the remaining scalar fields by enforcing Zα = ∂tZα = 0. The derived initial

data expressions are

h(4) =
2M − 3r

f
∆

∂th
(4) = −

(
1 +

2M

r
+

4M

r − 2M

)
∆

h(10) = −2r

f
∆

∂th
(10) = 0

The expressions I derive for h(7) and its derivative via this method are very complicated, so

I do not reproduce them here. The constraint-violating initial data uses the initial data in

Equations 5.18 and 5.19 for all modes.

Evolving with only the damping used in the other regions results in a very unstable

simulation. The scalar fields rapidly become unstable in the inner hyperboloidal region.

As an attempt to counteract this, I introduced the ci given in Table 5.2. The constraint

damping is meant to help with stability, but many of those terms go to zero in the inner
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layer. The ci introduce multiplicative factors with the goal of intensifying the damping in

the layer and improve the stability. I tested different combinations of these quantities to try

to find a combination which resulted in stable evolution. Even if this is the correct solution,

the choice of ci requires carefully balancing the added term. Making ci too small would not

affect or only delay the numerical instability, while making them too large would introduce

new numerical errors which would again cause numerical instability.

I found that c1 6= 0 leads to instabilities, which only leaves c2 and c3. I found that

c2 = c3 = c provided improved stability. To show the difference caused by changing the

damping term, I compare a simulation with c = 0 to one using c = 50. Since the effect is

purely in the inner layer, I only plot that section of the domain and set the vertical axis

to match the magnitudes near the horizon. Figure 5.1 plots time slices of h(5) for both

simulations. Introducing the extra factor certainly delays the onset of numerical instability.

Increasing the resolution does not change the behavior for h(5), though it does for h(8). The

effect of improving the numerical resolution is shown in Figure 5.2. While the increased

resolution delayed the onset of the instability for 30M , it did not resolve it. Hence, this

problem is not primarily caused by insufficient numerical resolution and is instead coming

from an issue with the evolution equations themselves.

Since the introduction of the c factors improves the numerical stability, I ran several

different choices of c to test its effects. I tested with c ∈ {50, 100, 500, 1000, 10000}. For all of

these simulations, I set gaussian parameters to A = 1, σ = 2, and r0 = 24.394449154672440.

The runtime parameter r_center is in Schwarzschild coordinates, and the value of r0 comes

from my choice of r_center = 20. I also set S− = −20, which automatically sets S+ =

68.788898309344887. The layer interfaces are at T− = −3.3520815669978354 and T+ =

52.140979876342712. For each choice of c, I ran simulations with DG orders of 8 and 10 and

element counts of 32 and 64. Since I am simply examining the stability, I only simulate the

` = 2 mode. I only show data for m = 0 because the evolution equations and initial data are

independent of m, and the plots are identical for different m. As there are minor differences
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c=0
c=50

Figure 5.1. Comparison between simulations with c = 0 and c = 50. Several time slices of
the h(5) field are shown, and the radial domain is restricted to the hyperboloidal region. The
DG resolution was 32 elements at 8th order. The additional factor clearly counteracts the
instability in the inner region.

between constraint-satisfying and constraint-violating initial data, I include plots of both.

Figure 5.3 shows two time slices for the constraint-violating initial data with 32 elements,

and Figure 5.4 gives the same plots with 64 elements. Similarly, Figure 5.5 shows two time

slices for the constraint-satisfying initial data with 32 elements, and Figure 5.6 gives the same

plots with 64 elements. In all four plots, the top row shows the data with DG order 8, and

the bottom row shows the data with DG order 10. The most obvious feature is that in the

first time slice, the data matches for all choices of c with constraint-satisfying initial data and

almost matches for the constraint-violating initial data. Since the damping effect is stronger

with higher c, the constraint-violating initial data unsurprisingly has some minor differences

as the evolution is forced to be constraint-satisfying more quickly via the damping. Also,
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32 elements,
8th order

64 elements,
10th order

Figure 5.2. Plots showing the effects of increasing the DG resolution on the numerical
instability for h(8) with c = 0. Two different times are given for each plot as the timestepping
depends on the DG resolution. While the higher resolution simulation remains stable for
slightly longer, the increase in resolution does not solve the core issue of the instability.

the second time slice shows that some choices of c are unstable. The simulation with 32

elements and order 8 is unstable with c = 1000, and the simulations with 64 elements are

unstable with c = 50. To be able to easily plot any data, I replaced NaNs with 10133 so that

all data was plottable. This is why the 32 element, order 8 simulation is a straight line at

the top of the plot. It is entirely NaNs by t = 152M . The final feature is the noise that

appears in several places in the domain. Specifically, these can be seen in the second time

slices in Figures 5.3 and 5.5. The noise is present in just a single element: the first element

in the hyperboloidal layer. The transition between the coordinates clearly introduces some

numerical error. This feature is absent in Figures 5.4 and 5.6 because the error is reduced

with increasing resolution. Figure 5.5 also has some noise in the element containing the

center of the gaussian pulse. The reason this is visible in the constraint-satisfying initial

data and not the constraint-violating initial data is likely due to the form of the initial data
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for h(i), i ∈ {4, 7, 10}. This is particularly true of h(7), which is the derivative of a gaussian

that peaks at around 500. Since the value is much larger, the numerical error is also larger,

making it more visible in these plots.

c=50

c=100

c=500

c=1000

Figure 5.3. Plots of h(5) using constraint-violating initial data with 32 DG elements at two
different time slices. The DG order 8 (top) and order 10 (bottom) show the same behavior.
Minor differences are visible for the different choices of constraint, but the overall decay and
oscillations match. The exception is c = 1000 at order 8, which is very unstable has become
entirely NaN’s by the first time slice.

Figures 5.3–5.6 show that the best choices for c are on the order of 100, but these

simulations were only run to t = 600M . The initial data has mostly decayed to zero by that

point, but numerical instability could arise later. Since actual self-force simulations will need

to run longer, I ran simulations for c ∈ {100, 500} up to t = 10000. For these simulations, I

only used constraint-satisfying initial data. Figure 5.7 shows the final outputted time slice for

h(5) for these simulations. The scalar field has almost completely decayed away, being on the

order of 10−6. The reduction of numerical error at the layer interfaces and the source clearly
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c=50

c=100

c=500

c=1000

Figure 5.4. Plots of h(5) using constraint-violating initial data with 64 DG elements at two
different time slices. The DG order 8 (top) and order 10 (bottom) show the same behavior.
Minor differences are visible for the different choices of constraint, but the overall decay and
oscillations match. The exception is c = 50, which is very unstable and grows uncontrollably
at later times.

decreases with increasing DG resolution, as expected. However, the c = 100 simulation with

64 elements at 10th order is again unstable.

To summarize, the 32 element, 8th order simulation becomes unstable with c = 1000. On

the other hand, the 64 element simulations are unstable with c = 50. Finally, the 64 element,

10th order simulation is unstable with c = 100 at long times. From this, a general trend

becomes clear. As the DG resolution increases, higher c values are more stable, and vice

versa. Of all the tested values, constraint damping with c = 500 is stable for all tested DG

configurations and match the results from other stable choices of c for a given DG resolution.

Hence, I will restrict any further analysis to the c = 500 simulations.
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c=50

c=100

c=500

c=1000

Figure 5.5. Plots of h(5) using constraint-satisfying initial data with 32 DG elements at two
different time slices. The DG order 8 (top) and order 10 (bottom) show the same behavior.
The evolution perfectly matches for all choices of c except c = 1000 at order 8, which is very
unstable has become entirely NaNs by the first time slice.

5.4.2. Constraint Damping

Now that I have chosen c, the next important criterion for validating the code is examining

the constraints during the evolution. For the constraint-violating initial data, the expectation

is that the constraints will quickly fall to zero once the initial wave has propagated out. Since

the initial data is ‘bad’, the constraint damping is limited in its effect until the initial data

has propagated out of the domain. For the constraint-satisfying initial data, the ideal result

would be that the constraints remain zero for the entire simulation. However, numerical

error will always introduce some violations even with perfect initial data, and the damping

is meant to quickly correct any deviations from zero. For the constraint analysis, I only show

the results for the simulations using 64 elements and 10th order, as the increasing order does

not directly improve the constraint damping.
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c=50

c=100

c=500

c=1000

Figure 5.6. Plots of h(5) using constraint-satisfying initial data with 64 DG elements at two
different time slices. The DG order 8 (top) and order 10 (bottom) show the same behavior.
The evolution perfectly matches for all choices of c except c = 50, which is unstable and
grows uncontrollably during the simulation.

Figure 5.8 shows the first four outputted time slices for the constraints. At time t = 0,

all the constraints are zero, as expected. The odd sector constraint remains zero, but the

three even sector constraints do not. The reason for this is, once again, the initial data

for h(7). While analytically the data is constraint-satisfying, h(7) and its derivatives are

significantly larger than the other fields, and any calculations involving differences between

them will naturally introduce numerical errors. Due to this, constraint violations arise in the

simulation despite the (analytically) constraint-satisfying initial data. If a better formulation

of initial data were used, the even sector constraints should behave similarly to the odd sector

constraint. Lower resolution simulations primarily differ from these results in the odd sector

where the constraint violations arise from numerical error in the calculations and not from

a difference in magnitude of the fields themselves. Because of this, the constraint violations
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c=100

c=500

Figure 5.7. Plots of h(5) using constraint-satisfying initial data at the final outputted time
slice. The top row uses 32 DG elements, and the bottom row uses 64 DG elements. The left
column uses 8th order, and the right column uses 10th order. Even at long times, c = 500
is stable for all the tested configurations. However, c = 100 is unstable at the highest
resolution.

at the interface in Z4 are three orders of magnitude lower in this run than in the lowest

resolution simulation. Figure 5.9 shows the same simulation later in the run. The constraint

violations approach, and Z4 has already reached round-off error.

For comparison, Figures 5.10 and 5.11 show the same plots for the constraint-violating

initial data. As expected, the constraints are initially non-zero and resemble the gaussian

pulses I used as initial data. Since the even sector of both cases have similar magnitudes

shortly after the simulation starts, the decay rate of Z1, Z2, and Z3 are the same. Interest-

ingly, the odd sector constraint Z4 decays much faster than the other three, having reached

10−12 at t = 260M . This behavior is not evident with constraint-satisfying initial data

because Z4 starts with a much lower magnitude in that simulation.

89



t=0.
t=13.7342
t=27.4685
t=41.2027

Figure 5.8. Plots the constraints with constraint-satisfying initial data. At t = 0, the
constraints are zero. The constraints become excited by numerical errors resulting from the
difference in magnitude of the fields, but the magnitudes of the constraint violations die off
over time.

5.4.3. Metric Reconstruction

Figures 5.8–5.11 display the constraint damping present in the code. The best example

of its effect is in the odd sector, as that domain is not affected by the large difference in

magnitude between h(7) and the other scalar fields. A better assessment of these effects would

require a new formulation for the initial data, which is not currently available. As such, the

next stage of assessing the code is examining the behavior of the metric perturbation. First,

the metric must be reconstructed from the h(i). The linear combinations of the scalar fields to

give the tensor components of the metric pertrubation are given by Barack and Lousto [56].
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t=260.95
t=319.857
t=370.824

Figure 5.9. Plots of the constraints with constraint-satisfying initial data. By t = 260M , Z4

is at round-off error, and it remains at this order for the remainder of the simulation.

As my basis is slightly different from theirs, the metric reconstruction equations are

h`mtt =
(
h
(1)`m

+ h
(2)`m

+ fh
(6)`m

)
Y `m (5.20)

h`mtr∗ = f−1
(
h
(1)`m − h

(2)`m
)
Y `m (5.21)

h`mr∗r∗ = f−2
(
h
(1)`m

+ h
(2)`m − fh

(6)`m
)
Y `m (5.22)

h`mtθ = r
[(
h
(4)

+ h
(5)
)
Y `m
V 1 +

(
h
(8)

+ h
(9)
)
Y `m
V 2

]
(5.23)

h`mtφ = r sin(θ)
[(
h
(4)

+ h
(5)
)
Y `m
V 2 −

(
h
(8)

+ h
(9)
)
Y `m
V 1

]
(5.24)

h`mr∗θ = r
[(
h
(4) − h

(5)
)
Y `m
V 1 +

(
h
(8) − h

(9)
)
Y `m
V 2

]
(5.25)

h`mr∗φ = r sin(θ)
[(
h
(4) − h

(5)
)
Y `m
V 2 −

(
h
(8) − h

(9)
)
Y `m
V 1

]
(5.26)
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t=0.
t=13.7342
t=27.4685
t=41.2027

Figure 5.10. Plots of the constraints with constraint-violating initial data. At t = 0, the
constraints are non-zero, as expected.

h`mθθ = r2
(
h
(3)
Y `m + h

(7)
Y `m
T1 + h

(10)
Y `m
T2

)
(5.27)

h`mθφ = r2 sin(θ)
(
h
(7)
Y `m
T2 − h

(10)
Y `m
T1

)
(5.28)

h`mφφ = r2 sin2(θ)
(
h
(3)
Y `m − h

(7)
Y `m
T1 − h

(10)
Y `m
T2

)
(5.29)

where

Y `m
V 1 =

1

λ21
∂θY

`m

Y `m
V 2 =

1

λ21 sin(θ)
∂φY

`m

Y `m
T1 =

1

λ22

[
sin(θ)∂θ

(
sin−1(θ)∂θY

`m
)
− sin2(θ)∂2φY

`m
]

Y `m
T2 =

2

λ22
∂θ
(
sin−1(θ)∂φY

`m
)
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t=260.95
t=315.887
t=370.824

Figure 5.11. Plots of the constraints with constraint-violating initial data. While Z4 started
with the same magnitude as the other constraints, it damps far more quickly.

I use here the same notation as in Appendix A with λ21 ≡ `(`+1) and λ22 ≡ λ21(`− 1)(`+2).

The final test of the validity of the code is whether the behavior of the metric reconstruc-

tion matches the quasinormal mode ringdown behavior. If the QNM frequencies are correct,

then the code is ready for introducing the effective source and moving on to circular orbits.

To extract these frequencies, I output data for the reconstructed metric perturbation at a

single radial location and fit that data with a damped sinusoid. The expected form of the

QNM ringdown is of the form

h` = AeωI t sin(ωRt) (5.30)

The ` = 2 QNM frequency for a Schwarzschild black hole is

ωR = 0.37367168441804177 (5.31)

ωI = −0.08896231568893546 (5.32)
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I used the QuasiNormalModes Mathematica package from the Black Hole Perturbation

Toolkit to generate these values [60].

Unfortunately, the QNM frequencies are incorrect for all the data I have analyzed.

Changes in DG resolution also do not improve the results. To verify that I was compar-

ing to the correct frequencies, I used the qnm Python package[61] from the Black Hole

Perturbation Toolkit to verify the values in Equations 5.31 and 5.32. Normally, to extract

the frequencies, I plot the logarithm and quickly extract the frequency. However, the recon-

structed metric is clearly not just a damped sinusoid, as shown in Figure 5.12. The lowest

and highest resolutions match, so the solution is also not converging to a different answer.

Figure 5.12. Plot of the log of the hrφ component of the metric perturbation. The data is
not a damped sinusoid.

While the data clearly fails to capture the ringdown behavior, I do attempt to extract an

approximate frequency by plotting a damped sinusoid over the data. Since the data does not

have pure damped sinusoid behavior, I perform an approximate fit by eye on log(abs(hrφ)).

This fit is shown in Figure 5.13. I do this because the time series data appears like it might

be a combination of multiple sinusoids. As such, a more ‘correct’ fit is unlikely to give

any meaningful information until the reason for this behavior is found and fixed. I give
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the frequencies from my fit and from frequency domain calculations in Table 5.3. While

a fit by eye is very approximate, it is sufficient to show that my data does not have the

proper frequency or decay rate. The reasons for the large differences in the frequencies is

Time domain results Frequency domain solution
ωR 0.47 0.374
ωI −0.06 −0.0890

Table 5.3. Comparison of QNM frequencies between my code and frequency domain results.
Frequencies for my data were determined by adjusting the sinusoid parameters until it most
closely matched the numerical data.

currently unknown, but it is possible the constraint violations are polluting the ringdown

effect. Alternatively, the increased numerical errors in the first element in each hyperboloidal

layer could be causing artificial waves to propagate back into the tortoise region where this

extraction occurs.

32 elements,

8th order

64 elements,

10th order

Estimated Fit

Figure 5.13. Plot of the logarithm of the hrφ component of the metric perturbation. A fit
estimated by eye has been added to approximate the dominant frequency behavior of the
data.

This code is still in development, but significant progress has been made towards having

a functional Lorenz gauge code. Issues with stability have been addressed through numerical

experimentation, and the constraint damping successfully damps any constraint violations.
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The automated Mathematica notebooks also allow for quick generation of new versions of

the code with different choices of basis and constraint damping. Future work will focus on

ruling out possible causes for the data to not behave as a pure damped sinusoid.
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Chapter 6. Conclusion

My dissertation work consists of two components. First, I contributed to the core of the

Einstein Toolkit by improving the Carpet AMR driver. Second, I wrote code to simulate the

gravitational self-force in two different gauges. In the Regge-Wheeler-Zerilli gauge my code

successfully simulates circular orbits. In the Lorenz gauge my code is stable and produces

waves which propagate out of the domain, marking significant progress towards having a

code which can handle the significantly more complicated evolution equations of the Lorenz

gauge.

The original Cactus system required thorn writers to explicitly specify when ghost zone

synchronization and the application of boundary conditions would occur for each grid func-

tion. This method places unnecessary burden on contributors who may not be as familiar

with Cactus’ method of scheduling subroutines. It also obscures the efficiency of the code, as

triggering syncs too often is a serious performance issue that could not be easily detected. I

replaced this system with PreSync which instead relies on the concept of ‘reads’ and ‘writes’.

The scheduling of each subroutine contains information about what grid functions it accesses,

which is purely local information that does not depend on anything outside that subroutine.

This removes the need for thorn writers to know where the subroutines will be in Cac-

tus’ schedule tree. They need only schedule the subroutines and provide the ‘read’/‘write’

information. The PreSync-enabled Cactus uses this information to automatically trigger

ghost zones synchronization and the application of boundary conditions as required. By

automating the process, the risk of over-synchronization is also greatly reduced. In addition,

I added features to assist in error-checking while using PreSync. New macros only provide

access to the grid functions declared in the schedule.ccl instead of all grid functions. The

poisoning feature writes NaNs into the data when the grid function is declared as ‘write’

to prevent the data from being accidentally used without an associated ‘read’ declaration.

The ReadWriteDiagnostics thorn provides feedback on the suggested region of validity for

declared grid functions. All these features improve the user experience as well as enhance the
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ETK’s computational efficiency. This work is published as a technical paper at the PEARC

Conference [2] and has been merged into the master branch of the Einstein Toolkit. I am

also currently working on the CarpetX driver, which is a successor to Carpet that is built

from the ground up with support for PreSync. This will encourage adoption of the new

scheduling paradigm and help transition the ETK community towards learning and using

the new features of PreSync.

My contributions to the self-force community consist of two new codes, both for simulat-

ing the gravitational self-force in the time domain. They take advantage of many techniques

and tricks—such as Discontinuous Galerkin method, hyperboloidal foliation, and the effec-

tive source approach—to make a fully self-consistent evolution of the EMRI system possible.

The code in the RWZ gauge successfully simulates circular orbits and rapidly converges to

frequency domain results. The code is also ready for simulating eccentric orbits, and the

initial data code is capable of generating eccentric initial data and results for comparison.

Once an effective source code is available, the code can be immediately compared to fre-

quency domain results for eccentric orbits. I am in the process of publishing a peer-reviewed

paper with these results, and the code is currently in review for acceptance into the Einstein

Toolkit. The code will also be added to the Black Hole Perturbation Toolkit, which is a

collection of computational codes for the EMRI community.

The Lorenz gauge code is less developed than the RWZ code, but significant progress has

been made. Finding a basis for which the evolution equations could be finite at both the

horizon and infinity proved difficult, as did ensuring that the methods employed to do so

preserved the constraint damping. The current version of the code is numerically stable for

long times and rapidly damps any constraint violations. While the QNM frequencies do not

match and the data shows some numerical artifacts, I have developed a streamlined system

for deriving and implementing new variants of the code. These Mathematica notebooks

simplify the process of revising the code and allow for quick and easy changes to constraint

damping, choice of basis, and other parameters without the burden of retyping the lengthy
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code by hand. The extra effort required for the Lorenz code is also justified, as second-order

self-force is currently being developed in the Lorenz gauge. As second-order accuracy is

required to meet LISA’s needs, working in the more difficult gauge is likely necessary to

prepare for the eventual extension to second-order.

My dissertation research serves to improve the computational tools available to the grav-

itational community, both in the established Einstein Toolkit community, and the newer

Black Hole Perturbation Toolkit community. The self-force codes represent one of the first

fully self-consistent time domain codes for the gravitational self-force.
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Appendix A. Tensor Spherical Harmonic Basis

The tensor spherical harmonic basis Y (i)`m
αβ can be chosen in a variety of ways. Here,

I give the basis used by Barack and Sago[57] in Schwarzschild coordinates {t, r, θφ}. Note

that Y (3)`m
αβ differs from the basis used by Barack and Lousto [56] by a factor of f . This

was introduced to improve the behavior of the evolution equations at the horizon. While the

perturbation equations are in coordinates other than Schwarzschild, I use this tensor spherical

harmonic basis and then explicitly transform the basis components in the Mathematica

notebook. For the following, Y `m are the standard spherical harmonics, s ≡ sin(θ), f ≡

1− 2M
r

, λ21 ≡ `(`+1), and λ22 ≡ λ21(`−1)(`+2). The angular operators D1 and D2 are given

by

D1 ≡ 2∂θφ − 2 cot(θ)∂φ, D2 ≡ ∂θθ − cot(θ)∂θ − s−2∂φφ (A.1)

With these definitions, the Y (i)`m
αβ are given by

Y
(1)`m
αβ = 1√

2


1 0 0 0
0 f−2 0 0
0 0 0 0
0 0 0 0

Y `m, Y
(2)`m
αβ = 1

f
√
2


0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

Y `m

Y
(3)`m
αβ = f√

2


1 0 0 0
0 −f−2 0 0
0 0 0 0
0 0 0 0

Y `m, Y
(4)`m
αβ = r

λ1

√
2


0 0 ∂θ ∂φ
0 0 0 0
∂θ 0 0 0
∂φ 0 0 0

Y `m

Y
(5)`m
αβ = r

fλ1

√
2


0 0 0 0
0 0 ∂θ ∂φ
∂θ 0 0 0
∂φ 0 0 0

Y `m, Y
(6)`m
αβ = r2√

2


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 s2

Y `m

Y
(7)`m
αβ = r2

λ2

√
2


0 0 0 0
0 0 0 0
0 0 D2 D1

0 0 D1 −s2D2

Y `m

Y
(8)`m
αβ = r

fλ1

√
2


0 0 s−1∂φ −s∂θ
0 0 0 0

s−1∂φ 0 0 0
−s∂θ 0 0 0

Y `m
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Y
(9)`m
αβ = r

fλ1

√
2


0 0 0 0
0 0 s−1∂φ −s∂θ
0 s−1∂φ 0 0
0 −s∂θ 0 0

Y `m

Y
(10)`m
αβ = r2

λ2

√
2


0 0 0 0
0 0 0 0
0 0 s−1D1 −sD2

0 0 −sD2 −sD1

Y `m
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Appendix B. Separation of the Evolution Equations

To evolve the gravitational self-force, I must first find separable equations for each field

h(i). This means choosing a combination of the equations (and derivatives of equations)

resulting from substituting Equation 5.3 into Equation 5.2 which only has the principal part

for a single h(i). The combinations for tortoise coordinates are given in Table B.1. The

combinations for the inner and outer hyperboloidal regions are given in Tables B.2 and B.3,

respectively. Q refers to the tensor components of the perturbation equation. For example,

Qtt +Qr∗r∗ means to add the t, t and r∗, r∗ components of Equation 5.2. As in Appendix A,

I use the definitions

s ≡ sin(θ), D1 ≡ 2∂θφ − 2 cot(θ)∂φ, D2 ≡ ∂θθ − cot(θ)∂θ − s−2∂φφ (B.1)

Note that changing from the inner and outer layers only has two steps. First, the signs

1 + H ↔ 1 − H are swapped. This is unsurprising given the similarity of the two coordi-

nates. The other change is the equations with H terms change Specifically, the equations

for {1, 2}, {4, 5}, and {8, 9} are all exchanged. This comes from the transformation used to

generate my basis. The linear combinations chosen separate these field pairs into ingoing

and outgoing fields. Since each layer preserves one of these types of waves, that equation

remains unchanged from the tortoise region. Thus, the conversion from the inner to outer

layer amounts to switching the equations between these pairs and changing the signs of all

the 1 ± H terms. Also, it is clear that the equations in the hyperboloidal layers reduce

to those of in the tortoise region in the limit H → 0, as one would expect. Some of the

multiplicative factors are singular in the limit towards the horizon and I +, but recall that

these are not the final evolution equations. Once these combinations are constructed, the

second time derivative of the h(i) must be isolated on one side of the equation, and the other

side will be divided by its coefficient. Thus, one can multiply these combinations by any

factor and still arrive at the same final equation.
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Table B.1. Explicit combinations to construct the evolution equations in tortoise coordinates
{t, r∗, θ, φ}.

To get the

equation for… use the combination…

i = 1 Qtt + 2Qtr∗ +Qr∗r∗

i = 2 Qtr∗ − 2Qtr∗ +Qr∗r∗

i = 3 Qtt −Qr∗r∗

i = 4 ∂θ [s (Qtθ +Qr∗θ)] + ∂φ [s
−1 (Qtφ +Qr∗φ)]

i = 5 ∂θ [s (Qtθ −Qr∗θ)] + ∂φ [s
−1 (Qtφ −Qr∗φ)]

i = 6 Qθθ + s−2Qφφ

i = 7 2
s
D1 (sQθφ) +D2 (s

2Qθθ −Qφφ)

i = 8 ∂φ (Qtθ +Qr∗θ)− ∂θ (Qtφ +Qr∗φ)

i = 9 ∂φ (Qtθ −Qr∗θ)− ∂θ (Qtφ −Qr∗φ)

i = 10 D1 (s
2Qθθ −Qφφ)− 2sD2 (sQθφ)

Table B.2. Explicit combinations to construct the evolution equations in hyperboloidal
coordinates {τ, ρ, θ, φ} for the inner layer.

To get the

equation for… use the combination…

i = 1 1−H
1+H

Qττ + 2Qτρ +
1+H
1−H

Qρρ

i = 2 Qττ − 2Qτρ +Qρρ

i = 3 Qττ +
2H
1−H

Qτρ − 1+H
1−H

Qρρ

i = 4 ∂θ
[
s
(
Qτθ +

1+H
1−H

Qρθ

)]
+ ∂φ

[
s−1
(
Qτφ +

1+H
1−H

Qρφ

)]
i = 5 ∂θ [s (Qτθ −Qρθ)] + ∂φ [s

−1 (Qτφ −Qρφ)]

i = 6 Qθθ + s−2Qφφ

i = 7 2
s
D1 (sQθφ) +D2 (s

2Qθθ −Qφφ)

i = 8 ∂φ
(
Qτθ +

1+H
1−H

Qρθ

)
− ∂θ

(
Qτφ +

1+H
1−H

Qρφ

)
i = 9 ∂φ (Qτθ −Qρθ)− ∂θ (Qτφ −Qρφ)

i = 10 D1 (s
2Qθθ −Qφφ)− 2sD2 (sQθφ)
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Table B.3. Explicit combinations to construct the evolution equations in hyperboloidal
coordinates {τ, ρ, θ, φ} for the outer layer.

To get the

equation for… use the combination…

i = 1 Qττ + 2Qτρ +Qρρ

i = 2 1+H
1−H

Qττ − 2Qτρ +
1−H
1+H

Qρρ

i = 3 Qττ +
2H
1+H

Qτρ − 1−H
1+H

Qρρ

i = 4 ∂θ [s (Qτθ +Qρθ)] + ∂φ [s
−1 (Qτφ +Qρφ)]

i = 5 ∂θ
[
s
(
Qτθ − 1−H

1+H
Qρθ

)]
+ ∂φ

[
s−1
(
Qτφ − 1−H

1+H
Qρφ

)]
i = 6 Qθθ + s−2Qφφ

i = 7 2
s
D1 (sQθφ) +D2 (s

2Qθθ −Qφφ)

i = 8 ∂φ (Qτθ +Qρθ)− ∂θ (Qτφ +Qρφ)

i = 9 ∂φ
(
Qτθ − 1−H

1+H
Qρθ

)
− ∂θ

(
Qτφ − 1−H

1+H
Qρφ

)
i = 10 D1 (s

2Qθθ −Qφφ)− 2sD2 (sQθφ)
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Appendix C. Coupling Matrix for the the Lorenz Gauge

In Equation 5.11 the biggest change from the evolution equations in the Regge-Wheeler-

Zerilli gauge is the addition of the coupling matrix M (i)
(j). This term is effectively just a nice

way of expressing all the terms which do not cleanly fit into the potential or principal part

terms. In this appendix I give the coupling terms M (1)
(j) h

(j) for the tortoise region. I also

describe how to convert these into the correct form for the hyperboloidal regions. I use the

definitions λ21 ≡ `(`+ 1) and λ22 ≡ λ21(`− 1)(`+ 2) from Appendix A.

M
(1)
(j) h

(j) = ff ′ (∂t + ∂r∗)h
(3) +

f

r3
[
(r − 4M)(2h(1) − 2h(4) − fh(3))− (r − 6M)fh(6)

]
M

(2)
(j) h

(j) = 2f ′ (∂t + ∂r∗)h
(2) +

f 2

r2
[
2h(2) + 2h(5) − f

(
h(3) + h(6)

)]
M

(3)
(j) h

(j) =
2

r
(∂t + ∂r∗)h

(2) +
f

r
(∂t − ∂r∗)h

(3) +
2f

r2

(
h(4) − h(1) +

r − 6M

r
h(3) − rf ′h(6)

)
M

(4)
(j) h

(j) = f ′ (∂t + ∂r∗)h
(5) − λ21f

r2
(
2h(1) − fh(3)

)
+

2f

r3
(r − 7M)h(4)

− f

r3
(r − 4M)

(
2h(5) − λ21fh

(6) + h(7)
)

M
(5)
(j) h

(j) = f ′ (∂t + ∂r∗)h
(5) +

2λ21f

r2
h(2) +

2f

r3
(r − 5M)h(5)

−
(
f

r

)2 [
λ21
(
h(3) + h(6)

)
+ 2h(4) − h(7)

]
M

(6)
(j) h

(j) =
2f

r3
(r − 4M)

(
h(4) + h(6)

)
− 2f

r2
(
h(1) + h2) − h(4) + h(5)

)
M

(7)
(j) h

(j) = −2f

r2
[
λ22
(
h(4) − h(5)

)
+ h(7)

]
M

(8)
(j) h

(j) = f ′ (∂t + ∂r∗)h
(9) +

f

r3
[
2(r − 7M)h(8) − (r − 4M)

(
2h(9) + h(10)

)]
M

(9)
(j) h

(j) = f ′ (∂t + ∂r∗)h
(9) +

2f

r3
(r − 5M)h(9) −

(
f

r

)2 (
2h(8) − h(10)

)
M

(10)
(j) h

(j) = −2f

r2
[
λ22
(
h(8) − h(9)

)
+ h(10)

]
The conversion from these to the outer layer is very simple, except for i = 3. For every other

component, the h(i) terms are divided by 1 − H2, and the (∂t + ∂r∗)h
(i) terms are divided

by 1 + H. The third component differs because the damping term includes 1 − H. This
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equation is

M
(3)
(j) h

(j) =
2(1−H)

r(1 +H)
(∂t + ∂r∗)h

(2) +
f

r
(∂t −

1−H

1 +H
∂r∗)h

(3)

+
2f

r2

(
h(4) − h(1) −H

(
h(2) + h(5)

)
+
r − 6M

r
h(3) − (rf ′ − fH)h(6)

)

The conversion to the inner layer is more complicated due to the ci I introduce. Here, I take

the choice of c1 = 0 and c2 = c3 = c. Equations which do not have damping or needed

to cancel terms again have simple transformations. For components which are not listed,

h(i) terms are divided by 1 − H2, the ∂th(i) terms are divided by 1 + H, and ∂r∗h
(i) terms

are divided by 1 − H. Due to the complexity of the inner layer, I introduce the notation

H+ ≡ 1 +H, H− ≡ 1−H, and H± ≡ 1−H2.

M
(2)
(j) h

(j) =
2Hf ′

H− (∂τ − ∂ρ)h
(1) + 2f ′

(
∂τ +

H+

H−∂ρ

)
h(2) +

2ff ′

H± ∂th
(3)

+
f

r3H± [4MH(−h(1) + h(2) + h(4) + h(5))

+ rf(2h(2) + 2h(5) − f(h(3) + h(6)))]

M
(3)
(j) h

(j) =
2(1− cH)

r

(
∂τ +

H+

H−∂ρ

)
h(2) +

fH+

H− (1− cH)(∂τ − ∂ρ)h
(3)

− f

rH±

[
2f ′ (h(3) + h(6)

)
+

1

r

(
2h(1) − fh(3) − 2h(4)

)]
− fH(1− c− cH)

r2H±

(
2h(2) + 2h(5) − f(h(3) + h(6))

)
M

(4)
(j) h

(j) =
f ′H(1− c− cH)

H+
(∂τ − ∂ρ)h

(5) + f ′(1− cH)

(
∂τ +

H+

H−∂ρ

)
h(5)

− λ21f

r2H±

(
2h(1) − fh(3)

)
− f

r2H± (rf
′(1 +H+(1− cH)) + 1− 3f)h(4)

− f

r2H± (f − rf ′H+(1− cH))(2h(5) − λ21fh
(6) + h(7))
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M
(5)
(j) h

(j) =
f ′H

H− (∂τ − ∂ρ)h
(4) + f ′(∂τ +

H+

H−∂ρ)h
(5) +

2λ21f

r2H±h
(2)

+
2f

r3H± (r − 5M)h(5) − ff ′H

rH±

(
2h(4) − 2h(5) + λ21h

(6) − h(7)
)

− f 2

r2H±

[
λ21
(
h(3) + h(6)

)
+ 2h(4) − h(7)

]
M

(8)
(j) h

(j) =
f ′H(1− c− cH)

H− (∂τ − ∂ρ)h
(8) + f ′(1− cH)(∂τ +

H+

H−∂ρ)h
(9)

+
f

r2H±

[
2(f − 3M

r
)h(8) − f

(
2h(9) + h(10)

)]
− ff ′H+

rH± (1− cH)
(
2h(8) − 2h(9) + h(10)

)
M

(9)
(j) h

(j) =
f ′H

H− (∂τ − ∂ρ)h
(8) + f ′(∂τ +

H+

H−∂ρ)h
(9) +

2f

r3
(r − 5M)h(9)

− f

r2H± (f + rf ′H)
(
2h(8) − 2h(9) − h(10)

)
− 6Mf

r3H±h
(9)
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Appendix D. Copyright Information

Permission Document for Chapter 2

The contents of Chapter 2 are taken from the paper “The PreSync Project: Synchro-

nization Automation in the Cactus Framework” [2] in the conference journal PEARC ’19:

Proceedings of the Practice and Experience in Advanced Research Computing on Rise of the

Machines (learning). The DOI address for this paper is here. This paper was published by

the Association for Computing Machinery on the ACM Digital Library. The article preview

and associated copyright information is given in Figure D.1.

Figure D.1. Snapshot of Publication used in Chapter 2

As per the Author Rights for the Association for Computing Machinery (shown in Fig-

ure D.2), the contents of the paper may be used for dissertations.

108

http://doi.acm.org/10.1145/3332186.3333042
https://authors.acm.org/author-services/author-rights


Figure D.2. Snapshot of ACM Author Rights agreement
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