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ABSTRACT

This dissertation is devoted to the study of the abstract Volterra equation

v(t) =  A  f  v(t — 3)dfi(s) +  f ( t )  for t  >  0, (VE)
Jo

where A is a  closed linear operator in a complex Banach space X,  fx is a  complex valued 

function of local bounded variation, and /  : [0, oo) X  is continuous and Laplace

transformable. Laplace transform methods are used to characterize the existence and 

uniqueness of exponentially bounded solutions v  for a given forcing term / ,  an operator 

A , and a given kernel fi. We extend the methods of a solution family (or a  resolvent) for 

(VE) by studying integrated and analytic integrated solution operator families. These 

notions are employed to characterize those pairs (A,/z) for which (VE) has unique 

solutions for all sufficiently regular forcing terms / .  Besides existence, uniqueness and 

wellposedness results for (VE), new results include TVotter-Kato type theorems for 

integrated solution operator families and a characterization of those pairs (A,fi ;) for 

which the integrated solution operator families are analytic in an open sector {A € 

(C | |arg A| <  a} for some a  6  (0, £].

iv



INTRODUCTION

The theory of abstract Volterra equations has been developed due to its applica

tions to problems in physics, engineering, and biology (see [G-L-S] or [Pr], for instance). 

The objective of this dissertation is to study the existence, uniqueness, continuous de

pendence, and analyticity of solutions to the abstract Volterra integral equation (or 

Volterra equation, for short)

v(t) = A  [  v(t — s)dfi(s) + f ( t )  for t >  0 ( V E )
Jo

by means of Laplace transform theory. Throughout, A  is a closed linear operator with 

its domain D(A ) and range in a complex Banach space X , and /  G C([0, oo); X)  is a 

forcing term. The function fx is complex valued and is assumed to be normalized and 

of bounded variation. A function v G C([0,oo); X )  with f gv( t  — s)dfx(s) G D(A)  and 

which satisfies (VE) for every t >  0 is said to be a solution of the Volterra equation 

(VE). This work does not address the existence of solutions which are only local in 

time, i.e., those v which satisfy (VE) for t G [0,T] for some T  > 0. In contrast to 

the abstract Cauchy problem v'{t) =  Av(t) +  /(£), v(0) =  s , where the existence of 

local solutions can be characterized (see [B-N]), the characterization of local solutions 

of (VE) remains unsolved.

In order to be able to apply Laplace transform methods to (VE) we will restrict, 

our discussion to Laplace transformable forcing terms / ,  exponentially bounded kernels 

/z, and exponentially bounded solutions v. In this case, the Laplace transform converts



(VE) into the characteristic equation

(I  -  dji(X)A)y(X) =  / ( X) for A >  w (CE)

where dfx(A) := e~>kidfx{t)i /(A) := / 0°° e~xtf(t)dt ,  y(A) =  v(A), and the number u> 

depends on the growth of functions u, /z, and / .  The Laplace transform method simpli

fies the problem (VE) by eliminating the time variable in the characteristic equation 

(CE). The main body of this work concerns the interaction between the solution v 

of the Volterra equation (VE) and the solution y of the characteristic (or resolvent) 

equation (CE).

Chapter 1 describes notation, results from Laplace transform theory, and some 

elementary lemmas concerning the vector valued convolutions t Jq f ( t  — s)dfx(s). 

Chapter 2 characterizes the existence and uniqueness of exponentially bounded solu

tions of (VE) by the regularity properties of the solutions y  of (CE) and the spectral 

properties of the operators I  — dfx(X)A. It also characterizes the existence of exponen

tially bounded, continuous solutions of the Volterra equation

where m  € IN, Aj are closed linear operators in X ,  and the kernels (ij are complex 

valued functions. Whereas Chapter 2 explores the solvability of (VE) for a given forcing 

term / ,  Chapter 3 investigates those pairs (A, fi) for which (VE) has unique solutions 

for all sufficiently regular / .  In recent years, the method of an integrated semigroup 

with generator A  has been applied successfully to the abstract Cauchy problem



u'(t) =  Au(t ), u(0) — x, and the associated integral equation

s)ds + x  = A  I u(t  — s)ds •+■
Jo

The main idea there is to regularize the equation by integrating it (n 4- l)-times for a 

nonnegative integer n  and to study the special Volterra equation

rt p i
v(t) — A  J  v(t — s)ds +  —a

instead, where v is the n-th antiderivative of u  (see [A], [A-H-N], or [N]). Extending 

this method, we will show that the notion of an integrated solution operator family 

with generator (A, fx) is suitable for studying the wellposedness of the Volterra equa

tion (VE). Also, Chapter 3 contains Trotter-Kato type approximations for Volterra 

equations, properties and a characterization of analytic integrated solution operator 

families, and an elementary example.

The starting point of this dissertation is the first chapter of the book Evolutionary 

Integral Equations and Applications by J. Priiss ([Pr]), which develops the elementary 

theory of strongly continuous solution families for (VE). We extend this theory in two 

directions. In Chapter 3 we study integrated solution operator families introduced 

by W. Arendt and H. Kellermann (see [A-K]) in 1987. Since one of the fundamental 

lemmas in that paper does not hold in the stated generality (Lemma 1.3, [A-K]), we 

reexamined their approach by assuming stronger regularity on the scalar function fx 

where it is required. The method of integrated solution operator families assumes the 

existence of (7 — dfx(X)A)~l as bounded operators for Re A >  iu for some constant

u(t) =  A  f  u{ 
Jo



u. As indicated in the example in Section 3.5, there are various cases where this as

sumption, which guarantees the solvability of (VE) for a  large class of forcing terms 

/ ,  is not satisfied. Thus, Chapter 2 studies (VE) without assuming the existence of 

( /  — dfi(X)A)~l for any A € <B and characterizes those forcing terms /  for which there 

exist solutions of (VE). The results in Chapter 2 are modified after those in [N] and 

[A-H-N]. Some results on integrated solution operator families are modified after those 

on integrated semigroups in a preliminary version of a forthcoming monograph by W. 

Arendt, M, Hieber, and F. Neubrander (see [A-H-N]).



CHAPTER 1 PRELIMINARIES

In Section 1.1 we introduce notation, review some elementary facts from inte

gration theory, and list some of the results from vector valued Laplace transform 

theory and some fundamental facts from functional analysis that are used through

out. In Section 1.2 we prove some elementary lemmas on vector valued convolutions 

1 J q f { t  — s)dg(s), t  >  0, that will be used to discuss solutions of Volterra equations.

1.1 Notations and Some Results from Laplace Transform Theory

Let A* be a  complex Banach space. Let ft be an (infinite or finite) interval in 

[0,oo). As usual, C(ft; A ) (respectively, C n(ft; A )) denotes the space of all continuous 

(respectively, n-times continuously differentiable) functions from ft to A. Let [a, 6] C IR. 

A function f  : [a,b] -¥ X  is of bounded variation if

n

var(/; a, b) :=  sup \\f(tj) -  /(fy_i)|| <  oo 
*  7=1

where n  = {a =  to <  • • • <  t n — b) is any partition of [a, b], We denote by B V ([a, 6]; X )  

the space of all functions /  : [a, 6] -> X  of bounded variation and by BVW([0,oo); A) 

the set of all functions /  : [0, oo) -> X  which are of bounded variation on [0,6] for 

every b > 0. For e >  Owe define jSVeQO, oo); A ) as the space of those functions /  6 

•BVioc([0, oo); A ) with /(0 ) =  0 and for which there exists a constant M  > 0 such that 

var( /;  0, t) < M e et for all t  > 0.

5



6

m
Let s be a simple function on [a, 6], i.e., s =  £  XkXsu f°r Xk € X  and characteristic

fc=i
functions %Efc of measurable sets Ek in [a, 6]. The Bochner integral of s is defined as 

b m
Ja — 53 x kTn(Ek)> A function /  : [a, 6] -4 X  is said to be Bochner integrable if 

k—l
there exists a  sequence of simple functions sn such that {sn(<)}ngN converges to f ( t )  

for almost every t  G [a, 6] and lim /*  ||/(<) — sn(t)||d< =  0. In this case the Bochner

integral of the function /  is defined as

[ bf ( t )dt  =
J a

We denote by L1([a, 6]; X ) the space of all Bochner integrable functions from [a, 6] to 

X  and by oo); X )  the space of all functions from [0, oo) to X  which are Bochner

integrable on [0,6] for every b >  0. If a  function /  : [o, 6] -* X  is weakly measurable, 

almost separably valued, and satisfies /j* ||/(t)||d£ <  oo, then /  G L1([a, 6];X) (for a 

proof, see Section 3.5, [H-P]). In many instances the weak measurability of a  function 

/  : [a, 6] X  as well as the condition ||/(t)||e?£ <  oo can be easily verified. The 

following lemma is useful for checking if /  is almost separably valued.

L em m a 1.1.1. Let fl be a finite or infinite interval in IR. Let /  be a function from

Q into X.  Then the following two statements are equivalent.

(i) There exists a  countable set Do C /( f l)  such that /( f t)  c  Do.

(ii) There exists a countable set D C X  such that /( f t)  C D.

Proof. The implication (i) =>  (ii) is obvious. We show that (ii) = >  (i). Suppose 

that D  is a  countable subset of X  for which /( f t)  C D. Let D\  be the set of the points 

x m in D such that B( xm , £) f |  /( f t)  ^  0 for some n  € IN. It is clear that D\  ^  0.

lim I sn(t)dt.



7

For every m  G IN and for those n  G IN for which /( f t)  n  B(xm, £) ^  0, take a point 

2/m,n £ /( f t)  n  B{xm, - ) .  Let Do — {y, | i G IN} be a  denvuneration of all those points 

7/m,n- We show that Do is a dense subset of /( f t) . Let t  G ft and fc €  IN. By the 

hypothesis, there exists an x m € D\  such that f ( t )  G B( xm, £%) for some m  G IN. 

Since B (x m, $%) contains a  point y, G Do, we obtain that B(yt, | )  contains /( t) .  Thus, 

Do is a  countable subset of /( f t)  for which /( f t)  C Do. / /

L em m a 1.1.2. £^([0,6]; X) C L x([0,&]; X).

P roof. Let /  G BV([a,b]\X).  Let Q be the set of rational numbers in [a, 6]. Let

0  :=  Q U  U where E n :=  {£ G [a,&] | ||/ ( t)  — /(? ) || >  £ for all q G Q}. Notice 

that every set E n is finite since /  G BV([a,b]\X).  Suppose that t G Oc. Then t 

is not an element of any E n. Hence for every n  G IN, there exists a  q G Q such that 

11/(0 — /(?)ll <  n* Thus, /([a, 6]) C O. Hence by Lemma 1.1.1, the function /  is almost 

separably valued. Since every /  G 2?Vr([0,6]; X )  is bounded and weakly measurable, it 

follows that /  G L1([a,6];X). / /

A function /  is of weak bounded variation (and hence weakly measurable) if and only
n

if it is of bounded semivariation (namely, || 53 f ( t j )  — /(« i) || <  M  for some constant
i= i

M  > 0 and any finite collection of nonoverlapping subintervals (Sj}t j ) of [a, 6], see [H- 

P] or [A-H-N], A function of bounded semivariation is not necessarily almost separably 

valued. For example, the function /  : [0,1] ->• L°°(IR) defined by f ( t )  := X[o,t) is of 

bounded semivariation, but is not almost separably valued since ||/(<) — f{s)  || =  1 if

1 ^  s.



For functions /  : [a, 6] —> X  and g : [a, 6] —► CD (or for /  : [a, 6] —> CD and

g : [o, 6] -> X )  the Riemann-Stieltjes integral of /  and g is defined as

[  f ( s)dg(s) := lim ^  /(& ) [ g ^ )  -  g(t , - i)]
J a  lffl j s l

if the limit exists, where 7r =  {a =  to <  * • * <  ~  6} is any partition of [a, 6] with

length |7r| =  max(£j- — t j - 1) and ^  G If one of /  and g is continuous and the
j

other is of bounded variation, then f *  f(s)dg(s) exists (for a proof, see the Appendix 

in [A-H-N] or Theorem 3.3.2 in [H-P]). If / Qb f (s)dg(s)  exists, then so does / b g(s)df(s) 

and the integration by parts formula

[ f(s)dg(s) =  f(b)g(b) -  f (a)g(a) -  f g(s)df(s) (1.1.1)
J a  J a

holds. If Bochner integrals and Riemann-Stieltjes integrals appear in a  statement or

an expression, the integral sign f  is used sometimes to emphasize Riemann-Stieltjes

integrals. The Riemann integral of a function /  : [a, b] X  is defined as the Riemann-

Stieltjes integral f ( t )dt  if it exists. Note that if /  €  C([a, 6]; X )  and if g : [a, 6] -> (D

is absolutely continuous, then the Riemann-Stieltjes integral §  f(t)dg(t)  coincides with

the Bochner integral f(t)g'(t)dt.  In particular, if /  G C([a,b]\X),  then / b f ( t )dt  =

fa f ( t)dt .  Hence for /  G C([a,b];X) the integral f ( t )dt  is unambiguous. If g G

C([a,6]; CD) and jF : [a, b] -> X  is an antiderivative of a Bochner integrable function / ,

then §*g{t)dF(t)  =  J*g(t) f ( t )dt  (for a proof, see [A-H-N], for example).

Let /  : [0, oo) -> X  and g : [0, oo) -* (D. If /  and g are both locally Bochner inte

grable, then the convolution of /  and g is defined as (f*g)( t ) /q f ( t —s)g(s)ds, t > 0, 

as usual, If one of /  and g is continuous and the other is of bounded variation, then



the Stieltjes convolution of /  and g is defined as ( /  * dg){t) :=  f*  f ( t  — s)dg(s), t >  0. 

It follows from (1.1.1) that

f f ( t  -  s)dg(s) =  f(0)g(t) -  f{t)g{0) + f g ( t -  s)d/(s), t  >  0. (1.1.2)
Jo Jo

For n  S IN, the n-th normalized antiderivative

t t  /•3n - l

t  H- /  /  ••• /  / ( s ) d s - - d s n_2 ds„_i, t > 0
Jo Jo Jo 

of a  function /  is denoted by Notice that

/M(<) =  ) t l i . . . t W (l) =  f*  ‘l y K u  (1-13)
^  JO Kn  -  !/»n —times

where 1 denotes the constant function t  i-» 1. Some basic properties of the Stieltjes 

convolution will be proved in the next section.

For /  € -£ioC([0, oo); X )  and for A 6 CD the Laplace integral of /  at A is defined as

/(A) :=  [  e~Xif ( t )dt  — lim [  e~xtf ( t )dtJo T-*oo Jq

if the limit exists. For the proofs of the following statements concerning the Laplace 

transform, see [A-H-N], If / ( Ao) exists for some Ao € (D, then /(A) exists for all A € CD 

with Re A >  Re Ao. Hence the abscissa of /  is defined as

ab8(/) := inf{Re A | /(A) exists}.

Clearly, —oo <  abs(/) <  oo. By (Dw we denote the set of all complex numbers A 

with Re A >  o>. If /  G ^^([O joo); X )  with abs(/) <  oo, then /  is called Laplace 

transformable and the function /  : CCabs(/) X  is called the Laplace transform of / .



The function /  is analytic on <Baba(/)* We define the exponential growth bound of a 

function /  G oo);AT) as

u ( f ) i n f  {a; €  1R | sup ||e“ wt/( t) || <  oo for some r  >  0}.
t>T

It is clear that abs(/) <  a>(/). In general u ( f )  does not determine a b s ( / ) ; for example, 

the function t h-> e ^ 0' cose4 (t >  0) is Laplace transformable, but not exponentially 

bounded. However, a function is Laplace transformable if and only if its antiderivative 

is exponentially bounded. In particular, the following relation holds. If u  > 0, then

( /)  <  w <==$■ w(/M) <  u . (1.1.4)

Thus, if Re A >  m ax{abs(/), 0}, then /(A) and /W(A) exist, and integrating by parts, 

we obtain

XfW(X)  =  /(A). (1.1.5)

Let a G Li-oc([0,oo); CD) with abs(|a|) <  u  for some u  >  0 and let fx :=  aM. Then from

(1.1.4), there exists a constant M  >  0 such that 1 — 1C ft- |a(s)|ds =
j  j  ,_1

fa |o(s)|ds <  Meut for any partition {fy} of [0,i]. This shows that the antiderivatives 

of absolutely Laplace transformable functions are contained in BVe{[0, oo); (D) for some 

e >  0. This will be used in Section 3.1.

For a function /  € HVioc([0,oo);.Y)U(7([0,oo);.AT) and for A G CD the Laplace- 

Stieltjes integral of /  a t A is defined as

f T
=  lim /  e~xtdf(t)T-iOO Jq

df(X)  := I  e ~ Mdf ( t )  
Jo



if the limit exists. Sometimes it is convenient to use the notations L( f )  — ( / ) A and
A

L s( f )  =  (d /)A for /  and d/, respectively. The abscissa of df  is defined as

abs(df) :=  inf{Re A | d/(A) exists}.

If /  G -BV̂ ocCfO, oo); A ) (J C([0, oo); A ) with abs(d/) <  oo, then /  is called Laplace- 

Stieltjes transformable and the function df  : (Dabs(d/) -> A  is called the Laplace- 

Stieltjes transform of / .  The function df  is analytic on (Dab8 (<{/)• If a  function /  G 

BVloc([Q,oo)‘X )  U C([0, oo); A ) is exponentially bounded and if /(0 ) =  0, then for a 

nonnegative number ui > w (/), it follows from (1.1.1) that

df(  A) =  A/(A) (1.1.6)

for all A 6 (Dw. Let u  € 1R. The Lipschitz continuous function space Lipw([0, oo); X )  

is defined to be the space consisting of those functions F  : [0, oo) -> X  with F(0) =  0 

and for which

/ t+h
ewrdr for t , / i > 0 } <  oo.

It is clear that if u  > 0 and F  €  Lipu ([0, oo); A"), then u(F)  <  w. If /  G £ ^ ([0 , oo); A) 

with oj(f) < oo, then for any number u  > w (/), / t 1) g  Lipw([0,oo); A ). The symbol 

IN0 denotes the set of nonnegative integers. If F  G Lipw([0,oo); A), then the fc-th 

derivative of dF  is given by

dFlk)( A )=  I™ e~xt( - t ) kdF{t) (1.1.7)
Jo

for every A G (Dw and every k  G INo. Thus, every function r  : (w,oo) 4  A  which has 

a Laplace-Stieltjes representation r — dF  for some tu G IR and F  G Lipw([0,oo); A) is



12

contained in C°°((o>,oo); X) ,  and by (1.1.7), satisfies

for all A >  oj and k  €  JN<j. This shows that the Laplace-Stieltjes transform maps the

space Lipw([0,oo);X) into the Widder space Cy^((u)oo);X)) which is defined as the 

space consisting of all those functions r G C°°((uj, oo) ;X)  for which

The following is one of the key results in Laplace transform theory. For numerical 

functions, it was shown first by D. V. Widder in 1936. The generalization to Banach 

space valued functions was obtained by W. Arendt in 1987. The following formulation 

is taken from [N].

T h eo rem  1.1.3 (Widder’s Theorem). The Laplace-Stieltjes transform is an isometric 

isomorphism from Lipw([0,oo); X )  onto C^((w , oo);X).

It follows from Widder’s Theorem that the Laplace transform is an injective opera

tion on the Laplace transformable functions in ^^([O , oo); X). To see this, let /  be 

a function in ^^([O joo); X )  with abs(/) <  u  for some u  >  0. Then the function 

t  F(t)  := Jq f ( s )ds  is continuous on [0, oo) and u(F) < uu It follows that the func

tion H(t)  := Jq F(s)ds  =  fW( t )  for t  >  0 is contained in Lipui([Q, oo);AT) for any 

wf > w, and

sup ||(A -  w)*+1 — (A) || <  oo.
*eWo,A>w
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for A >  a /. Thus, by Widder’s Theorem, if r  =  0 on (u/, oo), then H  = 0 on [0,oo). 

Thus, f ( t )  = 0 for almost all t  >  0. This proves the following important corollary to 

Widder’s Theorem.

C orollary  1.1.4 (Uniqueness Theorem). Let /  e  ^ ( [O .o o ) ;X )  with abs(/) <  oo. 

If there exists a n w >  abs(/) such that /(A) =  0 for all A >  cu, then /(£) =  0 for almost 

all t  >  0.

Stronger versions of the Uniqueness Theorem, which require only the condition that 

/(Afc) =  0 for certain types of sequences {AjJfceN with Re Afc — > oo as k — » oo, can 

be found in [B-N].

Widder’s Theorem and the following inversion theorem of the Laplace-Stieltjes trans

form (see [B-N]) will be crucial in characterizing solutions of Volterra equations in 

Chapter 2.

T heo rem  1.1.5 (Phragmen-Doetsch Inversion Theorem). Let F  6  Lipw([0, oo); AT) 

and define r  := dF.  Then for every n  G IN with n  >  w and every t  >  0,

ii*’®  -  E  <  j f i i f w
j=l 3' U

It follows from Widder’ Theorem and Theorem 1.1.5 that the inverse Laplace-Stieltjes 

transform L ~1 : (^ ((u^oo ); X )  -» Lipu ([0,oo)]X) is given by

(L7xr)(t) :=  F(t)  =  £  ^ ~ ^ +1 etnjr(nj )  for t  >  0. (1.1.8)

The statement (1.1.8) is called the Phragmen-Doetsch Inversion Formula.
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The following theorem is due to B. Hennig and F. Neubrander [H-N]. It character

izes the pointwise convergence of a  bounded sequence of functions in Lipu {[0, oo); X ) in 

terms of their Laplace-Stieltjes transforms. It will be applied in proving TVotter-Kato 

type approximation theorems for integrated solution operator families in Section 3.3.

T heo rem  1.1.6. Let {Fn}ng]N be a sequence in Lipw([0,oo); X )  for which there 

exists a constant M  >  0 such that ||Fn ||x,iPw <  M  for all n  €  IN. Then the following 

are equivalent.

(i) There exist constants a > u> and b >  0 such that lim dFn(A&) exists for all k  € INotl*400

where A* := a +  kb.

(ii) There exists an F  G Lipw([0,oo);X) such that ||d.F||iy;w <  M  and {dFn}ne]N 

converges uniformly to dF  on every compact interval in (cu, oo).

(iii) lim Fn(t) exists for every t  > 0.
n-»oo '

(iv) There exists an F  G Lipw([0,oo);X) with ||F||£,iPw < M  such that {.Fn}n6iN 

converges uniformly to F  on every compact interval in [0, oo).

If a function q has a Laplace or Laplace-Stieltjes representation, then q is analytic 

on a right half plane and it follows from Widder’s Theorem that there exist constants 

M,  w >  0 such that ||Ag(A)|| <  M  for all A € (Dw. A partial inverse of this statement 

is included in the following representation theorem (for a  proof, see [B-N]), which will 

be applied in characterizing integrated solution operator families in Section 3.1.

T h eo rem  1.1.7. For u  > 0 let q : (Bw -> X  be an analytic function for which there 

exists a constant M  such that ||Aq(A)|| <  M  for all A € <CW. Let 6 >  0. Then there exist
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an /  G C7([0,oo);X) and a constant C > 0 such that ||/(<)|| <  Ctbewt for all t >  0 and 

q(A) =  Ab/(A) for all A G <DW.

Let u) G IR and 0 <  9 < i t . EW(0  denotes the open sector {z  G CD | |arg(,z — w)| <  0). 

The following is a Laplace transform representation theorem of analytic functions on 

a  sector Ew>e for 0 <  9 < j .  It will be applied in Section 3.4 where analytic solution 

operator families for the Volterra equation (VE) will be studied.

T h eo rem  1 .1 .8 . Let 0 <  9q < j , u  e  IR. and let q : (o;,oo) 4 X b e a  function. 

Then the following are equivalent.

(i) There exists an analytic function /  : Eo,0o -> X  for which q =  /  on (w, oo), and 

sup ||e“ w*/(z)|| <  oo for every 6 € (O,0o)-

(ii) The function q admits an analytic extension q:  EW(0o+g. —> X  for which 

sup ||(A — w)g(A)|| <  oo for every 9 e  (0, 9q).

Moreover, if (i) holds, then for every 8 G (0, #o)> there exists a  constant Co > 0 such 

that

\\zkf W ( z )|| <  C0ewIte Z(\u>\\z\ + l ) k

for all z  G Eg.

Finally, we list three fundamental theorems from functional analysis which will 

be used in the following chapters. As usual, the set of all bounded linear operators 

from a Banach space X  into a Banach space Y  is denoted by L ( X , Y ), and L {X yX )  is 

abbreviated by L(X) ,



T heorem  1.1.9 (Uniform Boundedness Theorem). Let I  be an index set and Ta € 

L(X,  Y )  for all a  6 J. If for each x  € X  there exists a constant M x > 0 such that 

sup ||Tq (x)|| <  Mx, then {Ta | a  € 1} is uniformly bounded, i.e., there exists a  con-
a£/
stant M  >  0 such that sup ||Ta|| <  M.

a 6/

The following is an extension of the Uniform Boundedness Theorem (see [Ly], [A-E-K], 

or [A-H-N]) which will be used in Section 3.2.

T heo rem  1.1.10 (Uniform Exponential Boundedness Theorem). Let F  : [0, oo) — ► 

L ( X ; Y )  be a  function such that F(-)x is exponentially bounded for each x  € X . Then 

there exist constants M  > 0 and G IR such that ||F(£)|| <  Meut for all t  > 0.

Recall that a  subset of X  is called total if its linear span is dense in X.

T h eo rem  1.1.11 (Banach-Steinhaus Theorem). Let {Tn}ngw be a uniformly bound

ed sequence in L( X ,Y ) ,  i.e., sup ||Tn || <  M  for some constant M  > 0. If the sequence
r»6 lN

{Tna:} converges for each x  in a total subset of X,  then there exists a T  6 L(X,  Y)  

such that ||T|| <  M  and {Tn®} converges to T x  for every x  6 X.

1.2 Vector Valued Convolutions

In this section we investigate regularity properties of vector valued Stieltjes con

volutions t Jq f ( t  — s)dg(s) = f  * dg(t)t and functions t  h> f*  S( t  — s) f (s)ds , where 

{5'(<)}t>o is a  strongly continuous operator family. Also, we prove the multiplicativity



17

of the Laplace transform of a Stieltjes convolution, i.e., /  *dg  =  f  • dg, and establish 

the interchangeability in the order of iterated integrals.

Let X  be a complex Banach space and let ft be a finite or infinite interval in 

[0, oo). As usual, a  function /  : ft -4 X  is said to be Lipschitz continuous if there exists 

a  constant M  > 0 such that | |/ ( r )  — /(s ) || <  M\r — s| for all r, s G ft. Lip(f t ;X)  

denotes the space consisting of all Lipschitz continuous functions /  from ft into X  with 

norm ||/ ||l* p •'= inf{M | ||/ ( r )  — /(s ) || <  M\r  — s| for all r, s G ft}.

P ro p o sitio n  1.2.1. Let one of E  and F  denote a Banach space X  and the other (D. 

Then the following hold.

(a) If /  € Lip{[0,6]; E)  and g G BV{[0,6]; F),  then f * d g €  BV([0,b]', X) .

(b) If /  G C7([0,6]; E)  and g G BV([0,6]; F ), then /  * dg G ^ ( [ 0 ,6]; X).

(c) If /  G C([0,6]; E)  and g G BV{[0,6]; F)  n  C7([0,6]; F ), then /  * dg G C([0,6]; X).

(d) If /  G £*([0,6]; E)  and g G Lip{[0,6]; F),  then /  * dg G C([0,6]; X).

P roof, (a) Suppose that /  G Lzp([0,6]; X )  and g G W ([0,6];(D). Let M  > 0 be 

a constant such that ||/ ( r )  — f ( s )|| <  M\r — s| for all r, s G [0,6]. Suppose that 

g G 2?V([0,6]; (D). Let 0 =  so <  • • • <  sn — b be any partition of [0,6], Then

D l ( / *  d3)(si) ~ ( f *  d9) ( s j -1)||
3 = 1

^ 2  II /  -  S)^(S)II + 11 /  * [/(Si -  s ) -  f ( S3 - l  -  S)]d5(s)||
j —l Jo

n  n

-  o < r < b ^ s3~ l ' s 3) + M  £ ( si ”  Si-i)var(5;0,6)
~r“  i= i i= i

=  [ +  Mb  ]var(^; 0,6).
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Hence /  * dg E J5V([0,6];.Y). The proof of the case that /  E Lip([0,6]; CD) and g E 

BV(tO,6];X) is the same.

(b) Suppose that /  E (7([0,6];X) and g E BV([0,6];(D). W ithout loss of generality, we 

may assume that /  ^  0 and that g is not constant. Recall that if a  function h : [0,6] -> 

X  is weakly measurable, is almost separably valued, and satisfies / 0fc ||/i(i)||d£ <  oo, then 

h E L1([0,6];X). Define h := f *dg  on [0,6]. First, we show that h : [0,6] -4 X  is weakly 

measurable. Note that C’1([0,6];.X') is dense in C([0,6];X) and that C 1([0,6]; -X") C 

Lip([0,6];X). Hence for every n  E IN, there exists an /„  E C'1([0,6];X) such that 

max ||/( t)  -  fn(t)\\ < i  and thus

|| f f ( t  — s)dg(s) — [  f n( t - s ) d g ( s )|| <  -var(^;0 ,6)
Jo Jo n

for all t G [0,6]. By (a), f n * dg is contained in i?V([0,6]; X )  and is hence weakly 

measurable on [0,6] for every n  E IN. Thus, /  * dg, the uniform limit of the sequence 

{fn * dp}neiN, is weakly measurable on [0,6].

To show that f * d g  is almost separably valued on [0,6], it will suffice by Lemma 1.1.1 

to find a countable subset of X  whose closure contains ( /  * dflO([0,6]). Let Q be the 

set of rational numbers in [0,6] and let P  be the set of all complex numbers with
m

rational real and imaginary parts. Define D  :=  { £  PjfiQj) | Pj 6 -P, gj € Q, and
j= i

m E IN} which is countable in X.  Let t E [0,6] and let e be any positive number. 

Since ( /  * dg)(t) exists, there exist a partition 0 =  «o <  si <  • • • <  sm — t of 

[0,t] and intermediate points £j E [sj-i,S j] for j  E IN with 1 <  j  < m  for which
. m  _____

II Jo f i t -  s)d9is) -  E  /(* -  ~  0(si- i) ] || <  f  • Since /  is continuous, }{Q) -
l

/([0,6]). Therefore, for every j  E IN with 1 <  j  < m,  we can find points qj E Q and
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Pj G P  for which

max | | / ( t  -  £j) -  /(<fc)|| <  - — te- 
i <i<«* 3var(p;0,6)

and £  l9 (« i)-9 (« i-0 -P il < 3  max | | / ( t ) | |‘
J=1 0<t<fcM WM

Thus,

rt rn
|| / f { t - s ) d g ( s ) - ^ 2 f ( Q j ) P j \ \

/ t m
f ( t  -  s)dg(s) - ^ 2  f i t -  £j) [gisj) -  gisj - i

j= i
m m

+ II53 W4 “ &) “ /(«»')] [s(5;) “ «(«i-i)] II + II53 -  Pj] ||
3=1 j=l

<  €.

This shows that ( /  * d<7)([0,&]) C D.  Finally, the inequality / 06 | |( /  * dg)it)\\dt <  oo 

follows from the inequality || f i t  — s)dp(s)|| <  max ||/(s ) || • var(<?; 0, b) for all t >  0. 

Therefore, /  * dg G Xx([0,6];X) .  The case /  G C([0,6];(D) and g G BF([0,6];X) can 

be shown similarly by replacing the set P  by a countable subset P i of X  for which 

<7([0,&]) c  P i (which exists by Lemma 1.1.2).

(c) Suppose that /  G C7([0,6]; X )  and g G -BV([0, &]; @ )nC([0,6]; (D). Let e >  0 be given. 

Since /  G C([0,6];X) and since the variation of a continuous function of bounded 

variation is continuous, there exists 8 =  5{e) >  0 such that ||/ ( t)  — /(s ) || <  e and 

varig; s, t) < e for any s <  t G [0,6] with t — s < 8. Hence, for any s < t G [a, 6] with 

t — s <  8,

IK /  * <te)(0 - i f *  «to)(*)|| <  || j f  [f{t  -  r) -  f i s  -  r)]dp(r)|| +  || £  f i t  -  r)dp(r)||

<  e var(<7; 0,6) +  max ||/(r)||var(^; s,t).
0 < r< o
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This shows that it follows that f  * dg & (^([a, 6]; X) .  The proof of the case that /  6

C([0,6]; (E) and g £  W ([0 ,6];X ) n  C(t0,6];X) is the same.

(d) Suppose that /  € L1([0,6]; (E) and g £ Lip([0,b]\X). We define the Riemann- 

Stieltjes integral Jq f ( t  — s)dg(s) of /  and g as follows. For t  £  [0,6], define operators 

K t : <7([0,6];(E) -4 X  by K th :=  J*h(t  -  s)dg(s). Then ||liTt/i|| <  |M|z,iP||/i||i. Thus,

Kt  has a bounded extension to L1([0,6]; (E) and for every t  >  0,

is well-defined, where {/in}n6iN is a  sequence of continuous functions converging to /  

in i 1([0,6]; <E). It follows from (c) that the function t »-> Jq hn(t — s)dg(s), t > 0 is 

continuous for every n £  IN. Moreover, \\Ktf  — K thn\\ < \\g\\LiP\\f — h„ ||i. Thus, the

f  *dg £ C([0,6]; X).  The proof for the case that /  £  L1([0,6]; X )  and g £ Lip{[0,6]; (B) 

is the same. / /

The Stieltjes convolution f * d g  of functions /  6  C'([0,6];X) and g £  BV([0,6]; (D) is 

not necessarily continuous. To see this, take g £ B V ([0,6]; X )  with g(0) — 0 and which 

is not continuous. Then 1 1-4 (1 * dg)(t) =  g(t) is not continuous on [0,6].

The Stieltjes convolution f *dg  of functions /  £  C([0,6]; X )  and g £ BV([0,6]; (E) is not 

necessarily of bounded variation. To see this, consider the function g(s) :=  X(o,oo)(s)> 

and a function /  € C([0,6];X) which is not of bounded variation. Then /  * dg =  /  is 

not of bounded variation on [0,6],

function t  i-4 K t f  is the uniform limit of the continuous functions. This shows that

Remark.
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L em m a 1.2.2. Let /  be a  continuous function on [a, 6] X [c,d]. Let g and h be 

functions of bounded variation on [a, 6] and [c, d], respectively. Assume that one of the 

functions / ,  <?, and h has values in a  Banach space X  and the other two in CD. Then

n f (t ,s)dh(t)dg(s) -  f  f f(t,s)dg(s)dh(t).  (1.2.1)
J a  J c

Proof. Let /  €  C([a,b] x [c, rf]; A"), g <= W ([a,6];(D), and h € W ([c,d];(D). Then 

Ja s)dh(t) and / d f ( t ,  s)dg(s) are continuous on [c, d] and [a, 6], respectively. Hence 

the iterated integrals in (1.2.1) exist. If X  =  (D, then (1.2.1) follows from the mean 

value theorem for Riemann-Sticltjes integrals and the integral property /  kd(a + ft) = 

J  kda + f  kd/3 (see Theorems 30.6 and 31.9, and Exercise 31.v in [B], for example). 

Let X  be a complex Banach space and let x* e  X*.  Then

( [  f f(t,s)dh{t)dg(s),  x*) =  f  !  ( f ( t , s) ,  x*)dh(t)dg(s)
J a  J c  J a  J c

-  f f  ( /(M ) , x*)dg(s)dh(t)
J c  J a

=  ( /  [  f(t,s)dg(s)dh(t),  x*).
J c  J a

Since a:* 6 X * is arbitrary, (1.2.1) follows. The proofs of the other cases are similar. 

//

C orollary  1.2.3. Let /  be a  continuous function on [a, 6] x [a, 6] and g be a function

of bounded variation on [a, 6], Assume that one of /  and g has values in a Banach space

X  and the other in CD. Then

f b  pb pb pb
/  ® f ( t }s)dg(s)dt= ® /  f ( t }s)dtdg(s). (1.2.2)

J a  J a  J a  J a



b bProof. Since both t i-+Ja f ( t ,  s)dg(s) and s h* f a /(£, s)dt are contained in the space

C([a,6];A'), £  /*  f( t ,s)dg(s)dt  =  J* J* / ( t ,  s)dg(s)dt and £ f { t , s ) d t  -  J* f ( t , s )d t

(see Section 1.1). Hence, by Lemma 1.2.2, the statement (1.2.2) follows. / /

L em m a 1.2.4. Let T  >  0 and A € C. Let /  be a continuous function and g be a 

function of bounded variation on [a, 6], Assume that one of /  and g has values in a 

Banach space X  and the other in (D. Then

p T  p t  p T  p T
/  ffi e~xtf ( t  — s)dg(s)dt = ® /  e~xtf ( t  — s)dtdg(s). (1.2.3)

Jo Jo Jo Ja

If /  is Bochner integrable and g is Lipschitz continuous on [0,T], then (1.2.3) remains

valid.

P roof. By Proposition 1.2.1, the hypotheses on /  and g imply that f *d g  is contained 

in L 1([0,T];AT) and that s e~Xtf ( t  — s)dt is continuous on [0,T]. Hence the

integrals in (1.2.3) exist. Let ft be the region {(t,s) €  1R,2 | 0 <  s <  £ <  T}. Define 

/ :  [0, T] x [0, T] 1? by

/(£, s) =  |  e~ * W  ~  s ) if (*>s) € A
"xtf (  0) otherwise.

Then /  is continuous. By Corollary 1.2.3,

f  <fi f { t  — s)dg(s)dt =  ® [  f ( t -  s)dtdg(s). 
Jo Jo Jo Jo

Since
fT  /»r  ̂ f t  fjT p'T
/  ® f ( t -  s)dg(s)dt — /  ® e~Xtf ( t  — s)dg(s)dt + ® e~Xtf(Q)dg(s)dt

Jo Jo Jo Jo Jo Jt

~  J  Ho e"Xt̂ t ~  s)d9{s)dt +  J  e~xt[g(T) -  g(t)]dtf(0)
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and

f T  , t  _ r T  f T  f T  r a
® / /(< — s)dtdg{s) — (b /  e“Xtf ( t  — s)dtdg(s) +  ® /  e~Xtf(0)dtdg(s),
Jo Jo Jo Ja Jo Jo

it suffices to show that

f T  r T  fa
/  e“ At[flf(T)-p(t)]d<  =  A /  e~Xtdtdg(s). (1.2.4)

jo Jo Jo

When A =  0,

r T  r T
/  [p (T )-^ (f)]d t =  T p (T ) -  /  g(t)dt and

Jo Jo

/•T />a /-T
® /  did^(s) =  Tg(T) -  /  #(s)ds.
Jo Jo Jo

When A ^  0,

r>T 1 _  q-A T  /*T/*■* 1 — p-a j  AJ
J  e~Xt[g(T) -  g(t)]dt = --------   g(T) -  J  e~Xtg(t)dt and

f T  f a  f T  i  p—Aa
<P /  e~Xidtdg(s) =  ® ----------- dg(s)
Jo Jo Jo a

= jls{T)~ l  e"“*w ]
=  i  [j(T) -  e - V T )  -  j T  Ae-A*s(»)<i»]

1 -  /•T
=  j  0 ( r )  -  jf  e“ Aag(s)ds.

Thus, the statement (1.2.4) holds. / /

As usual, we call an operator family S  =  {<S'(I0}t>o in L(X)  strongly continuous 

if S(-)x : [0, oo) AT is continuous for every re € AT. The following will be applied in 

Chapter 3.
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L em m a 1.2.5. Let S  be a  strongly continuous operator family. Let /  G C([0, oo); X )

and let \i G BV\0c([0, oo); (D) with fi{0) — 0. Then for every t > 0,

pt  p t—a pt  p t—r
/  f  S(t  — s — r)f(s)dfi(r)ds =  ® /  S(t  — s — r)f(s)dsdfi(r).  (1.2.5) 

Jo Jo Jo Jo

Proof. For t > 0, let ft be the region {(s,r) G 1R2 | 0 <  s <  Z, 0 <  r  <  Z — s).

Define g : [0, Z] X [0, Z] -¥ X  by

a(s r \ _  J  S(t  -  s -  r) f (s)  if (s, r) G ft
I  S(®)f(s) otherwise.

Then g is continuous on [0, Z] x [0,Z]. For each s G [0,Z],

/  9{s,r)dn{r)= [  S{t -  s -r) f{s)dyt{r)  +  [  S{0)f(s)dyt{r)
JO Jo J t - 3

= [  S( t  -  3 -  r)f(s)dfi(r)  -f S(0)/(s)/i(Z) -  S(0)f(s)fx(t -  s).
Jo

The function s t-> g(s, r)dfi(r) — S(0)f(s)y(t)  is continuous [0,Z]. Since yt has at most 

countably many discontinuities, the function s S(0)f(s)fj,(t — s) is almost separably 

valued. It is clear that the function s h* S(0)f(s)yt(t  — s) is weakly measurable and 

norm-bounded on [0,T]. Thus,

3 pt
s /  S(t  -  s -  r)f(s)dyt(r) = /  g(s, r)dyt(r) -  S(0)f(s)yi(t) +  S(0)f(s)yt(t  -  s) 

Jo Jo

is contained in L 1 ([0, Z]; X) .  Hence the left hand side of (1.2.5) exists. For each r  G [0, Z],

f  g ( s , r )ds= f  S ( t -  s — r ) f ( s )ds+ f  S(0)f(s)ds.
Jo Jo J t —r

Thus,

r n  [  S( t  — s — r) f (s)ds  = [  g( s , r )ds~  f  S(Q)f(s)ds 
Jo Jo J t —r
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is continuous in (0,t). Hence the right hand side of (1.2.5) exists. Now, we show the 

equality in (1.2.5). By Corollary 1.2.3,

f t  f t  f t  f t
/  ® g(s, r)dfi(r)ds = <J> g(s, r)dsdfi(r).

Jo Jo  Jo Jo

Calculating each side of this equation, we obtain that

pt  p t
/  /  g(s,r)dti{r)ds 

Jo Jo
p t  p t —a pt  p t

— I f  g(s,r)d/i(r)ds + /  ® S(0)f(s)d/x(r)ds
Jo Jo Jo J t - a

= J  j> S(t  — s — r)f(s)dfj,(r)ds + J  S(Q)f(s)[n(t) — n(t  — s)]ds,

and

ct ptf t  f t
f  /  g(s,r)dsdfjt(r)
Jo Jo

pt  p t —r  p t  pt
— f  g(s,r)dsdfj,(r) +  (p /  S(0)f(s)dsdg,(r)

Jo Jo Jo J t - r

= <f [  g(s,r)dsdfi{r) + [  S(0) / (s)ds- f j . ( t ) -  [  f i(r)d\ f (̂(̂ /(sjds]
Jo Jo Jo Jo ' • J t —r  J

=  <f f g(s, T)dsdjjt(r) +  [  S(0) f ( s )ds‘n ( t ) -  f S(0) f{ t  — r)g.(r)dr
Jo Jo Jo Jo

pt  p t —r  p t  pt
= <P g(s,r)dsdfj.(r) +  /  S(0)f(s)ds • ji(t) — /  S(0)f(s)f i(t  — s)ds

Jo Jo Jo Jo

= j> J  S(t  — s — r)f(s)dsdn(r)  +  J  S(0)f(s)  [/̂ (<) — /t(t — s)] ds. 

Therefore, the equality in (1.2.5) follows. / /

L em m a 1.2.6. Suppose that S : [0,oo) -> L(X)  is strongly continuous and that 

/  € C([0,oo); X) .  Then for t  >  0,

n S( s) f ( r  — s)drds= [  [  S (s ) f ( r  — s)dsdr. (1.2.6)
Jo Jo
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Proof. Let fi be the region {(r, s) G 1R | 0 <  a < r <  £}. Define g  : [0, <] x [0, t] — ► X  

by

a(r s\ =  /  S(a)f{r -  s) if (r,s) € fi 
I £ (5 ) / ( 0 ) otherwise.

Since S  is strongly continuous and since /  €  C([0, oo); X) ,  it follows that g is continuous 

on [0, t] x [0, t]. For every r G [0, £],

[  g(r, s)ds =  f  S ( s ) f ( r  — s)ds +  [  S(s)f(0)ds.
Jo Jo Jr

Hence

r 4  /  S (s ) f ( r  — s)ds = f  g(r, s)ds +  f  S(s)f(0)ds  
«/o */0 »/r

is continuous on [0,£]. For every s G [0,i],

f  (g(r, s)ds =  [  S ( s ) f ( r  — a)ds +  [  5(s)/(0)ds.
Jo Jo J a

Hence

Jta pt rt
' S ( s ) f ( r  — s)ds = /  g(r , s)ds+ I S(s)f(0)ds  
0 Jo Ja

is continuous on [0,t]. Thus, the integrals in (1.2.6) exist. Now, we show that they are 

equal. By Lemma 1.2.2,

ft ft ft  ft
/  /  s)drds =  I /  p(r, a)dsdr.

Jo Jo Jo Jo

Calculating each side of this equation, we obtain

[ f g{r, a)drda — f f S (s ) f ( r  — a)drds +  f [ S(a)f(0)drds
Jo Jo Jo Ja Jo Jo

=  f  [  S(a) f (r  — a)drda +  f  aS(a)f(0)ds,
J q Ja Jo
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and

[ f 9(ri s)dsdr =  f f S(s)f(r  -  s)dsdr +  f [  S(s)f(0)dsdr.
JO Jo Jo Jo Jo Jr

Thus, it suffices to show that Jo Jr S(s)f(0)dsdr  =  Jq sS(s)f(0)dsdr.  By the integra

tion by parts formula (1 .1 .1 ),

J  J  S(s)f(0)dsdr  =  — J  r ^ J  .^ (^ / (O jd s j  =  J  r • S(r)f(Q)dr.

Therefore,

f f S(s)f (r  — s)drds =  f f S(s)f(r  — s)dsdr. / /
Jo Ja Jo Jo

The Laplace transform of a  Stieltjes convolution has the following multiplicative 

property, which is essential for transforming the Volterra equation (VE) to the charac

teristic equation (CE).

P ro p o sitio n  1.2.7. Suppose that /  G C?([0, oo); X)  with w (/) <  oo and that g G 

■FV'eQf^oo); (D) for some e >  0. Let u  > max{w(/), e}. Then ab s(/ * dg) <  to and for 

A G (Dw,

f*dg(X)  =  /(A)®(A).

P roof. The proof is similar to the standard one for the Laplace transform (see [S], 

for example). It follows from Proposition 1.2.1 that f * d g G  L}oc([0,oo);X ). Let T  >  0 

and let A G (Dw. Applying Lemma 1.2.4, we obtain that
rT

[  e At( /  * dg){t)dt 
Jo

/*T /*i rT rT
— <p — s)dg(s)dt  =  ® I — s)dtdg(s)

J q J q Jq Js

=  ® j f(t)dtdg(s)  =  ® e~As [  e~Xif(t)dtdg(s)  = :  Iy .
Jo J q J q J q
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Divide the region {(t, s) e lR 2 | 0 < s < T,  0 <  £ <  T  — s} of the integral Iy into 

three subregions as follows :

Figure 1.

Then
T

IT =  f e~Xadg(s) [  e~Mf(t)dt  
J o J o

r T - a
+  e - /  e Xtf(t)dtdg(s)  +  J  e~Xa e xtf(t)dtdg(s)

=: I(T) +  II(T) +  III(T) (in order of the integrals).

Hence, it suffices to show that both II(T) and III(T) converge to 0 as T  — > oo. We

start with II(T). From the integration by parts formula (1.1.1) and by differentiating

the integrand of the Riemann-Stieltjes integral in II(T),

rT  ,  r T - a
q-A t,I I (T )=  J  [e->’ £  ' e - “ m d t \ d g ( s)

- - e - x^ g { - )  e~Xif(t)dt  — g(s)d[e~Xa e~xtf(t)dtj

T

~ - e- XTg(Z)J^ e~Xtf(t)dt

. +  J \ - Xag(s)[x£  3e~xtf( t )dt  +  e~x(T~a)f (T  — s)J ds

=: Hx(T) +  II2 (T) (in order of the integrals).

Since Re A >  w(g) > u> and Re A >  abs(/), we obtain that Hi(T) — > 0 as T  — > oo.
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The integral Il2 (T) is estimated as follows :

iiifecnu

< [|A | sup r \ \ e - * * » f ( t ) \ \ d t +  sup e“ wRe A||/ ( W)||1 / V ^  ^ ( s ) |d s .
L o<u<$Jo  o<u<? J J $

Since Re A >  abs( /) , it follows that sup sup || / 0U e“ At/(i)d t|| <  oo. Since Re A >
r>Oo<u^^f

w (/), it follows that sup sup ||e” uRe A/(u ) || <  °°- These inequalities and the con-
t >oo<«<?

dition Re A >  abs(p) imply that Il2 (T) — > 0 as T  — > 0 0 . Thus, II(T) — > 0 as 

T  — > 0 0 . Applying the integration by parts formula (1.1.1) yields

III(T) =  j j  [*~Xa 3e - xtf{t)di\dg{s)

~ ~ I o  9 ^ d le ~ Xa J $

*  ' ■  c
It follows that

^ rj\ j

=  J  e~Xag(s) ĵ e“ Â T" ^ / ( r — s) +  J  e~Mf(t)dt^ds.

||III(T)|| <  [ sup e " uRe A||/(*)|| +  sup f  e_Re At||/(i) ||d i] f *  |e“ A5p(s)|ds.
%<u<TJ 1r * Jo

Since Re A >  u ( f )  and since Re A >  abs(/), it follows that

[ sup e“ uRe A||/( t) || +  sup f e"Re A4 ||/(t)||d i] — > 0  

t< «< 7  ?<«<?’•'?  J

as T  — > 0 0 . This fact and the condition Re A >  abs(<?) imply that III(T) — ► 0 as

T  — > 0 0 . Consequently, I t  converges to dg(X)f(X) as T  — > 0 0  which implies that

/  * dg{A) exists and is equal to f(X)dg(X) for every A € Cw. / /

Finally, we investigate the differentiability of Stieltjes convolutions.
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L em m a 1 .2 .8 . Suppose that /  is a  continuously differentiable function with / ( 0 ) =  0  

and that g is a continuous function of local bounded variation on [0,oo). Assume that 

one of /  and g has values in a Banach space X  and the other in <D. Then u := f  *dg E 

C l ([0, oo); X ), and for every t  > 0,

u ' i t ) -  f  f \ t  — s)dg(s). 
Jo

P roof. Let H  := f  * dg. Then by Proposition 1.2.1, H  e  C7([0, oo); JC). Hence it 

suffices to show that u' =  H. Let T  > 0. Applying Lemma 1.2.4 for A =  0,

i?[1l (T )=  [ T f  f ' ( t - s ) d g ( s ) d t  = F  F  f \ t - s ) d t d g { s )
«/o v0 J0 */s

=  /  I  f 1 (t)dtdg(s) =  j  f ( T  — s)dg(s) — I  f(0)dg(s)
Jo Jo Jo Jo

=  /  f ( T - s ) d g ( s )
Jo10

=  u(T).

Thus, u'(t) =  H(t)  for every t  >  0. / /

C orollary  1.2.9. Let n  €  INo. Suppose that /  is an n-times continuously differen

tiable function with /M (0) =  0 for k G IN with 0 <  k < n  — 1 and g is a continuous 

function of local bounded variation on [0 , oo). Assume that one of /  and g has values 

in a  Banach space X  and the other in (D. Then u  :=  /  * dg €  Cn([0,oo); X )  and for 

every t >  0 ,

u ^ ( t ) — f f W ( t  — s)dg(s).
Jo
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L em m a 1.2.10. Let /  E L 1 ([0,6];(E) and g E Lip([0,6]; X). Then the function u :=

a.e. t E [0,6]. Moreover, u  is continuously differentiable if g(0) =  0.

P roof. By Proposition 1.2.1 (d), the function t J q f ( t  — s)dg(s) is well-defined and 

in C([0,6]; X) .  Let 0 <  T  < b. By Lemma 1.2.4,

Therefore, u'(t) = Jq f i t  — s)dg(s) + f(t)g{0) for almost all t  E [0,6] and it follows from

Proposition 1.2.1 (d) that u'  is continuous if p(0) =  0. / /

The following lemma will be used to prove a variation of constants formula for

integrated solution operator families in Section 3.1.

L em m a 1.2.11. Suppose that S  : [0,oo) —> L(X)  is strongly continuous and that

/  * (dpM) is differentiable a.e. on [a, 6], and

' ( t ) =  f f { t~ s )dg ( s )  + f ( t )g( 0 ) 
Jo

/  /  f i t  — s)dg[s)dt =  /  /  f { t - s )d tdg{ s )
Jo J o J o  Ja

/*r . j1—j
I  I m d t d g ( s ) = [  f m ( T - s ) d g ( s )

Jo Jo Jo

= f m (.0)g(,T) -  /W (T)9 (0) -  F g(,s)dfM(T -  a)
Jo

- f m (T)g(0) + F  g(s ) f (T  -  s)d, 
Jo

f f ( T  -  s )dg l%)  -  fW(T)g(0)  
Jo

=  « ( r ) - /W (T )s (o ) .

/  6  C^QOjOoJjX). Then for t > 0,

J t [ J ‘ S(t  -  »)/(.)*>] =  S ( i) /(0 ) +  J ‘ S(4 -  a)l'(s)da.
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P roof. For t >  0,

j f  S(t  -  s) f (s)ds  =  j f  S(s) f ( t  -  s)ds =  j f  5(s) [/(O) +  J  9 / '(r)rfr] rfs

=  f  S (s ) /( 0 )rfs+ f  f  S(s)f ' (r)drds.
Jo Jo Jo

pt f t  f t —a
s ( S) m d s +  /  /

/o ./O ^0

Since 5  is strongly continuous, s »-> 5 (s)/(0 ) is continuous on [0, <]. Hence it suffices

to show that

d - rt rt~s
H I  S(a) f ’(r)drda] = J  S{t  -  s ) f ,(s)ds.dt

By change of variables and from Lemma 1.2.6,

rt  r t - a  r t  r t
f  [  S(s)f ' (r)drds = f  [  <S'(s)/,(r — s)drds

J0 * 0  vQ J&

=  f  f  S ( s ) f ( r  — s)dsdr = f  f  S(r  — s ) f , (s)dsdi 
Jo Jo Jo Jo

From the proof of Lemma 1.2.6 we obtain that r  S(r — s)f ' (s)ds  is continuous 

on [0,t]. Therefore,

Tt [ J ‘ J ‘ ‘ S M ( r ) d r d s ] =  J ‘ S ( t - s ) f ( s ) d a. / /



CHAPTER 2 EXISTENCE AND UNIQUENESS OF SOLUTIONS 
OF ABSTRACT VOLTERRA EQUATIONS

In this chapter we study the abstract Volterra equation

v{t) =  A f v(t — s)d[i(s) +  f ( t )  for t >  0 (VE)
Jo

by applying Laplace transform theory. We assume that A is a  closed linear operator 

with domain D(A)  and range in a  complex Banach space X , that fx E BVt {[0, oo); (D) 

for some e >  0, and that /  is a Laplace transformable function in C([0, oo); X )  (for 

notations, see Section 1.1).

A function v E C([0, oo); X )  is called a  solution of (VE) if Jq v(t — s)dfi(s) €  D(A)  

for every t  >  0 and if it solves (VE).

A function v €  C([0,oo); X )  is defined to be a  weak solution of (VE) if

(v(t), y * ) = ((v * d/x)(t), **) + (/(t), y *)

for all t  > 0, y* 6  D(A *), and z* E A*y*. Note that A* is multi-valued unless A  is 

densely defined. However, ((AI  — A)-1 )* =  (AJ — A* ) - 1  is single-valued and bounded 

(but not necessarily one-to-one) for every A € p(A). For a  definition and discussion of 

strong solutions of (VE), see Chapter 3. We first show that weak solutions of (VE) 

are solutions of (VE). The following is a  slight generalization of a result from [Pr] 

(Proposition 1.4).

33
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T h eo rem  2 .1 . Suppose tha t p(A) 0. Then every weak solution of (VE) is a  solution 

of (VE).

P roof. Let A €  p(A). Suppose that v G C([0, oo); X )  is a weak solution of (VE). Let 

t >  0. Then

(v(t), y*) =  ((v * dfi)(t), z*) + (/(<), y*)

for every y* G D(A*) and every z* G A*y*. Hence

((v * dp)(t), — 2 *) =  (/(£) — v(£), y*) and thus,

((w * dp)(t), Xy* -  z •) =  (A(v * d //)(t) +  f{t)  -  v{t), y*).

Let x* G X*.  Since A G p(A*), there exists a 7/g € D{A*) such that x* G (AJ—A*)7/q. It 

follows that x* =  Xijq—Zq for some atf £ Hence, (A—A*)-1®* =  ((A—A)-1 )*®* =  

Vo. and

((v * dp ) ( t ), a;*) =  (A(v * d /i)(t) +  /(< ) -  v(t), ((AJ -  A )- 1 )*®*).

Thus, <(t/*d/i)(t), **) =  ((A J-A )“ 1(A(w*d/i)(t)+/(<)-y(t)), **).

Since x* € X  is arbitrary, it follows that (v*dp)(t) =  (AI—A)~1 (A(v*d/i)(t)+f(t)—v(t)). 

Therefore, X(v * dp)(t) — A(v  * dp){t) =  X(v * dp){t) +  f ( t )  — v(t). From this equation 

we conclude that v is a solution of (VE). / /

Exponentially bounded solutions of (VE) can be characterized in terms of the 

Laplace transforms of the functions involved in the equation (VE) and the characteristic 

equation

( I  -  dp(X)A)y(X) =  /(A ) (A >  u )  (CE)
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for some u  > 0 .

T heo rem  2.2. Let v G C([0, oo);X) with u){v) < oo and let u  be any number such 

that uj >  max{e, abs(/), w(v)}. Then the following are equivalent.

(i) v  solves (VE).

(ii) ®(A)u(A) g D(A)  and ( I  -  djl(X)A)v(X) =  /(A) if A € <CW.

(iii) dfi(k)v(k) G D(A)  and ( I  — dfj,(k)A)v(k) =  f ( k )  if w <  k  G IN.

P roof. To show (i) ==>• (ii), suppose that v is an exponentially bounded solution of 

(VE). Since the Laplace transforms of the functions 1 1-> v*dfi(t) and 1 1-> A(v*dfi)(t) = 

v(t) — f ( t )  exist for A G (Cw> it follows from the closedness of A  and Proposition 

1.2.7 that d/J,(\)v(\) G D(A)  and Ad/t(X)v(X) — v(X) — /(A) for all A G Gw. The 

implication (ii) =>• (iii) is obvious. We show the implication (iii) =$■ (i) by means of 

the Phragmen-Doetsch Inversion Formula (1.1.8). Suppose that (iii) holds. Let <J > u. 

Observe that Proposition 1.2.7 and (1.1.4) imply that v^2\  /P I, and (v*d/j.)W = vPl *dfi 

are all contained in Lipu,»([0,oo);X). It follows from (1.1.6) and (1.1.5) that v(X) =  

AdvI2)(A), /(A) =  Ad/P1(A), and v(X)dfi(X) =  (v*df i )(A) =  X(d(v * d/j)Pl)A(A) for 

Ag(Cw. We obtain from these identities and from (iii) that

<ffi(fc) -  dfP) (k) =  A{d{v * d^)Pl)A(ib) (2.1)

for every k  G IN with k > u'.  Hence, by the inversion formula (1.1.8),

(v * dy)\2\ t )  =  lim  -- V - — etn*(d(v*d(i)W)*(nj)} 
n °°i=i 't'

and

v(2J(i) __ /P l(t) =  l̂irn  ̂y t ( Vt — Gtn^A{d(v * d/i)Pl)A(nj),
n 00 v—1
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Thus, by the closedness of A,

v^  (0  “  / ^ ( 0  ”  -^(v * d /x)^(<)

for every t >  0. Since all the functions involved in this equation are twice differentiable 

and since A  is closed, it follows that v solves (VE). / /

Theorem 2.2 says that solving the equation (VE) can be simplified to solving 

the equation (CE) in which the time variable t is eliminated. The Laplace transform 

approach to (VE) consists of three steps. First, find a  solution y  of (CE) on (to, oo). 

Second, check whether or not the function y  is a Laplace transform of a  continuous 

exponentially bounded function. Finally, if y has a Laplace transform representation, 

then the inverse Laplace transform of y is an exponentially bounded solution of (VE). 

The main difficulty in the Laplace transform approach to (VE) is in the second step. In 

other words, it is hard to check if a function can be represented as a  Laplace transform of 

a continuous, exponentially bounded function. On the other hand, the representation as 

a Laplace-Stieltjes transform of a Lip^-functions can be verified by Widder’s Theorem. 

The following is a  Hille-Yosida type characterization of the Lipu ([Q, oo); Absolutions 

of (VE).

C oro llary  2.3. Let to >  max{e, abs(/)} and M  >  0 be a constant. Then the 

following are equivalent.

(i) There exists a solution v G Lipu ([0,oo);X) of (VE) with ||v||lu>u, <  M.

(ii) There exists a function y  G C^((to,oo);X)  for which ||y||w,w <  M, d/z(A)y(A) G 

D(A), and (I  — dfi(\)A)y(X)  — A/(A) for every A G (Dw.



37

(iii) There exists a function y €  Cff((w,oo);X)  for'which ||2/||w,w <  M, dp(k)y(k) e  

D( A ), and ( I  — dp(k)A)y(k)  =  k f (k )  for every k  6  IN with k>u>.

P roof. It follows from Widder’s Theorem (Theorem 1.1.3) that F  6  Lipu ([0, oo); X )  

if and only if dF  : A h> dF{A) =  AF(A) is contained in Cf f ( (u too)]X)  and that 

Mid p , ,  < M  if and only if ||dF||w,w <  M.  To show (i) =$■ (ii), suppose that (i) 

holds. Then, by Theorem 2.2, Ad/x(A)u(A) e  D(A)  and ( I  -  df i ( \ )A) \v ( \ )  =  A/(A) 

for all A € (Dw. Hence, setting y(A) := Au(A) =  du(A) for every A e  (Dw, we obtain (ii). 

Obviously, (ii) implies (iii). To show (iii) = >  (i), suppose that (iii) holds. Then there 

exists a v 6  Lipw([0, oo);X )  such that y(A) =  dv(A) =  Au(A) for every A 6  (Cw. Thus, 

( /  — dp(k)A)v(k) = f (k )  for all k  6  IN with k > 10. Hence statement (i) follows from 

Theorem 2.2. / /

It follows from Theorem 2.2 that the exponentially bounded solutions of the 

Volterra equation (VE) are unique if and only if for any u> > 0, the equation

( I  -  dp( \ )A)y( \ )  =  0 (A >  w)

has no nonzero solution y which has a Laplace representation y(X) — v(X) for some v € 

-LjocQO, oo); X).  Another uniqueness theorem is given by the following generalization of 

the results in [H-P] and [L] for the abstract Cauchy problem. In the following theorem 

a condition on the range of dp and the point spectrum <jp(A) of A  implies that the 

equation (VE) has at most one exponentially bounded solution.
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T heorem  2.4. Suppose that there exists a sequence {Afc}fcgn in (De such that Re A*. 

— > oo a sk  — y oo, and for which either dfi( Afc) =  0 or d[i( Afc) - 1  $ <Jp(A) for all k E IN. 

Then (VE) has at most one exponentially bounded solution.

P roof. It suffices to show that v = 0 is the only exponentially bounded solution to 

the equation

v(t) = A  [  v(t — s)dfj,(s) for t > 0.
Jo

Suppose that v E  C([0, oo); AT) is an exponentially bounded solution of this equation. 

Then it follows from Theorem 2.2 that

v(X) =  dfj,(X)Av(X)

for all A E  Cw, where u  — max{e, oj(v ) } .  We claim that v =  0 on (Dw. Let us assume 

not. Notice that v(Xk) = d/x(Xk)Av(Xk) for sufficiently large k E  IN since Re A & — ► oo 

as k — y oo. Since either d/x(Xk) = 0  or d^(Afc) - 1  ^  crp(A), it follows that v(Xk) =  0  for 

all sufficiently large k. Then since v ^  0 on (Dw, A*, is a zero of order m  of the analytic 

function v for some m E  IN, i.e., t^(Afc) =  0 for 0 <  j  <  m — 1 and v*m)(Afc) #  0. 

Hence, by the closedness of A,

#"■>(*0 = A f a - v ) < mH \ k) = = r ^ x k) A ^ ( \ k).
7=0 ' 3 '

Since t^m)(Ak) i=- 0, it follows that d/i(Afc) - 1  G 0P(A)} which is a  contradiction. Hence 

v = 0 on (Dw. Thus, by the Uniqueness Theorem (Corollary 1.1.4) and from the conti

nuity of v we conclude that v  =  0  on [0 , oo). / /
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Next, for 2 <  n  6  IN, we consider the Volterra equation 

n
v(t) — y 2 A j  v(t -  s)dnj(s) +  f ( t )  f o r t > 0 . (2 .2 )

j =l Jo

We assume that Aj  are closed linear operators in a  Banach space X , that fij are 

functions Z?Vr£([0, oo); (D) for some constant e >  0 and all j  6  IN with 1 <  j  <  n, and 

that /  is a Laplace transformable function in C([0, oo); AT). Exponentially bounded 

solutions of (2.2) can be characterized as in Theorm 2.1.

T heo rem  2.5. Let v be an exponentially bounded function in C([0, oo); X).  Suppose 

that (v * d f i j ) ( t )  e  D(Aj)  for every t  > 0 and abs(Aj(v * d/ij)) <  oo for every j  6  IN 

with 1 < j  < n  — 1 for some integer n >  2. Let w be any number such that u  > 

max{e, abs(/), u(v), abs(Aj(v * d(Xj ) )  for j  G IN with 1 <  j  < n — 1}. Then the 

following are equivalent.

(i) v solves (2 .2 ).

(ii) If A € (Dw, then dfj,j(X)v(X) e  D(Aj)  for every j  €  IN with 1 <  j  < n  and

(J -  £  =  /(A).
3=1

(iii) If u  < k €  IN, then dfi(k)v(k) € D(Aj ) for every j  € IN with 1 < j < n  and

{ i  -  = Kk) .
i=i

P roof. The proof is similar to that of Theorem 2.2. To show (i) ==> (ii), suppose 

that v  is an exponentially bounded solution to (2.2). Since v  is a  solution of (2.2), it

follows from the hypothesis that abs(^4n(w * dfin)) < u>. Hence, Laplace transforming

the equation (2.2) for A € GJu,, by Proposition 1.2.7 and the closedness of the operators
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A j t the statement (ii) follows. The implication (ii) =*► (iii) is obvious. We show the 

implication (iii) =>• (i) by means of the Phragmen-Doetsch Inversion Formula (1.1.8). 

Suppose that (iii) holds. By Proposition 1.2.7, abs(v * dfij) < u) for all j  6  IN with 

1 <  j  <  n. Let u'  > u.  Then we observe that Proposition 1.2.7 and (1.1.4) imply that 

■yt2! 5 / I2), and (v * d/xj)^ = * dfj,j for j  G IN with 1 <  j  <  n  are all contained

in Lipw>([0,oo);X).  It follows from (1.1.8) and (1.1.5) that v(X) = Arfwt2!(A), that 

/(A) =  Ad/I2)(A), and that v(X)dfi(X) = v * dfXj(X) =  X(d(v * dfij)W)A(X) for j  € IN 

with 1 <  j  < n  for every A 6  (D w*. Hence, from (iii) and these identities,

_   n

dwPl(fc) — d f W ( k )  =  A j ( d ( v  *  d /f j)^ )A(fc)
j = l

for every k  G IN with k >  a /. As in Theorem 2.2 it follows from the inversion formula 

(1.1.8) and the closedness of the operators Aj  that for every t >  0,

^ I2] W  “  f l2](t)  =  ^ 2 A j ( v  * d i i j ) W( t ) .  
j = l

Since Aj  are closed and all the functions involved in this equation are twice differen

tiable, the statement (i) follows. / /

The L£pw([0,oo); Absolutions of (2.2) can be characterized as follows. For closed
n

linear operators Aj  in a Banach space X  for j  e  IN, 1 <  j  <  n, [ f |  D(Aj)\  denotes the
j= in

Banach space f |  D(Aj)  equipped with the graph norm ||a:||<j =  ||a;|| +  ||j4im|( -| f-
3 = 1

||«^n*|| for a; e  f |  D (Aj)- 
j=i

C orollary  2 .6 . Let u  >  max{e, abs(/)} and M  > 0. Then the following are equiva

lent,
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n —1
(i) There exists a  solution v G Lipu {[0, oo); [ f) D(Aj)))  of (2.2) with |M|z,t‘p <  M.

j=i 
n —1

(ii) There exists a function y G C^((w,oo); [ f l D(Aj)]) with ||y||w,w <  M  such that
j= l

dFn(X)y(A) € D{An) and ( 1 — ^2 d(ij(X)Aj)y(X) =  A/(A) for all A € CDW.
i=i

n —1
(iii) There exists a  function y G oo); [ f |  D(Aj)]) with ||3/||w)W <  M  such that

i=i

d/in(k)y(k) G D(An) and ( / — J2 dfi j(k)Aj)y(k) =  fc/(fc) for all k G IN with k > u .
3=1

n —1
P roof. It follows from Widder’s Theorem that F  € Lipw([0,oo);[ f) D(Aj)]) if and

3=1
  __  ^  n —1

only if dF  : A H- dF(X) =  XF(X) is contained in C ^((w ,oo);[ f |  D(Aj)))  and that
3=1

ll-P’IUipu < M  if  and only if ||d.Fj|iyiW <  M.  To show (i) =$► (ii), suppose that (i) holds.
n —1

Since v G Lipw([0, oo); [ p) D(Aj)])> it holds that a>(v) < ut and AjV G Z/ipw([0, oo); X)
3=1

for j  G IN with 1 <  j  < n  — 1 . Hence, by the closedness of Aj  and by Proposition 1.2.7, 

we obtain abs(i4j(u * dfij)) = sbs((Ajv) * dfij) < u  for all j  G IN with 1 <  j  < n  — 1. 

Hence, from Theorem 2.5 and by the facts from Widder’s Theorem mentioned at the 

beginning, it follows that dfin(X)v(X) G D(An) for all A G (Dw and that y  := v G 

% ( [ 0 , o o ) : m  D(Aj)\)  with IIj/II^  <  M.  Also, ( I -  £  % (A )A 3 )y(A) =  A/(A) for
3=1 3=1

all A G (Dw. The implication (ii) ==>■ (iii) is obvious. To show (iii) ==}► (i), suppose that
n —1  ,

(iii) holds. Then there exists v G Xzpw([0,oo); [ f j D(Aj)\)  such that y(X) =  dv(X) =
3=1

^  n —1
Xv(X) for every A G (Dw. Since v G i/ipw([0,oo); [ f |  D(Aj)]) and since the operators Aj

3=1

are closed, it follows from Proposition 1.2.7 that &bs(Aj(y*d(ij)) — abs((Ajv)*dfij) < u  

for all j  G IN with 1 <  j  < n  — 1. Hence, d/ij(k)v(k) G D(Aj)  for all k  G IN with k >  u>
n    ^

and for every j  G IN with 1 <  j  < n  and ( / — ]C dfij(k)Aj)v(k)  =  f ( k )  for every k  G IN
3=1

with k > u>. Thus, by Theorem 2.5, the statement (i) follows. / /



CHAPTER 3 SOLUTION OPERATOR FAMILIES

This chapter is built on the discussion of Volterra equation

f t  xn
v(t) — A  v(t — s)dfi(s) +  —rx for t  >  0 and x G  X ,  (3.1)

Jo n *

where A is a closed linear operator in a complex Banach space X,  /z G J5Ve([0, oo); (D)

for some e >  0, and n  G No. The equation (3.1) can be obtained by integrating the

equation

u(t) = A  I u(t — s)d(Jt(s) +  x  
Jo

n-times and setting v(t) :=  ufnl(t). For this reason we call (3.1) an integrated Volterra 

equation. Suppose that (3.1) has a  unique exponentially bounded solution v(‘) =  v(-, x) 

for every x  G X.  For every t  > 0, define a  linear operator S(t) : X  X  by S(t)x := 

v(t ,x).  It follows from Theorem 2.2 that

for all A >  u) for some number u  > e. Assuming that ( /  — dfi(X)A)~1 exists in L(X)  

for A >  we obtain that

( /  — djl(X)A)~1x  = An + 1  f ° ° e - Mv{t)dt = Xn+1 e~XtS(t)xdL
Jo Jo

This observation motivates us to investigate those operators A for which there exist a

constant u  > e and a strongly continuous, exponentially bounded family {S(t)}t>o of

operators in L(X)  for which ( I  — dfi(X)A)~1 G L (X)  and

( I  -  dj i ( \ )A)~l x  =  An + 1  f e - XiS{t)xdt  =  Xn+1S(X)x
Jo

42



43

for all x  G X  for all X > u>.

Section 3.1 deduces some properties of the operator family {«S'(<)}t>o, which is 

called the integrated solution operator family with generator We will show that

the Volterra equation

v(t) =  A f v(t — s)dfi(s) + f ( t )  (VE)
Jo

has unique exponentially bounded solutions v for sufficiently regular functions /  if 

{A,(Ji) generates an integrated solution operator family. Most results in Section 3.1 are 

generalization or modifications of results in [A-H-N] and [A-K]. Section 3.2 investigates 

the wellposedness of the equation (3.1) and its stronger version

r t  j n
v(t) =  J  Av(t  — s)dfjt(s) +  — x  for t > 0  and x  6  D(A).

A function v  G C([0, oo); [D(A)j) which satisfies the equation

y (t) = [  Av(t  — s)dfi(s) +  f ( t )  for t  > 0 (3.2)
Jo

is called a strong solution of (VE). Section 3.3 shows Trotter-Kato type approximation 

theorems for stable sequences of integrated solution operator families. Section 3.4 

shows some properties of analytic integrated solution operator family. Finally, Section 

3.5 discusses an elementary example in terms of solution operator families.

3.1 Integrated Solution Operator Families

In this section we study integrated solution operator families associated with 

Volterra equations (VE). In a sense this is a generalization of the method of inte

grated semigroups, which has been used successfully to study the abstract Cauchy
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problem u'(t) — Au(t)  , «(0) =  x  (see for example, [A], [N], or [A-H-N]). We assume 

throughout that A is a  closed linear operator with its domain D(A)  and range in a 

complex Banach space X  and }jl €  BV^OjOo); (D) for some e >  0.

D efin ition  3.1.1. Let n  S INo* Let M  > 0 and u> > e be some constants. Suppose 

that S  : [0, oo) -> L(X)  is a strongly continuous mapping which satisfies the following,

(i) ||S(t)|| <  Meut for all t > 0.

(iii) For every A >  w, ( /  — dn(X)A)~1 exists in L(X)  and

(J — dn(X)A)~lx  =  An+1 5(A)x =  An + 1  [  e~xtS(t)xdt  for all x  G X.  (3.1.1)
Jo

Then S  is called the n-times integrated solution operator family (of exponential type 

(M; u>)) with generator (A,/x). A 0-times integrated solution operator family is simply 

called a  solution operator family.

Remark 3.1.2.

(i) If (3.1.1) holds for all A >  w, then it holds for all A e  (Du,, i.e., if {A,fi) generates 

an integrated solution operator family, then (I  — d/x(A)A) - 1  exists in L(X)  and (3.1.1) 

holds for every A G (Dw. This will be shown in Lemma 3.1.7.

(ii) It follows from (3.1.1) and the Uniqueness Theorem (Corollary 1.1.4) that for each 

n  € INo, every pair (A,/j) generates at most one n-times integrated solution operator 

family.

(iii) An n-times integrated solution operator family with generator (A, /1) where fi(s) =  

s, is the n-times integrated semigroup generated by A.
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(iv) If S  is the n-times integrated solution operator family of exponential type 

with generator (-4,//), then 6  Lipw([0,oo);.L(.X")). FVom (1.1.5), ASM (A)® =  S(X)x 

for all A >  u  and x  € X.  Hence {<S^(£)}t>o is the (n +  l)-times integrated, norm 

Lipschitz continuous solution operator family with generator and

 ̂ r°° r°°
{I -  dfi{X)A)~l =  An + 2  /  e~xtS^ ( t ) d t  =  An + 1  (b e~XtdS{t)

Jo Jo

for all A >  where the Bochner and Riemann-Stieltjes integral is taken in the operator 

norm.

L em m a 3.1.3. Let S  be an integrated solution operator family with generator (A, (i). 

Then S(t)x E D(A)  and AS( t ) x  = S( t )Ax  for every t > 0 and every x  € D(A).

P roof. Let S  be the n-times integrated solution operator family of exponential type 

(M\ u)  with generator (4,/z). W ithout loss of generality we may assume that dfi ^  0 

on (w,oo). Let A, v > u  with dfi(v) ^  0. Let x  £ D(A).  Then x  =  (J — d^{u)A)~l z 

for some z  € X.  Since (I  — d/j,(X)A)~1 and ( I  — d(i{u)A)~l are bounded and commute, 

and since A  is closed,

J  e~xtS(t)xdt  =  J  e~xtS( t ) ( I  — dn{y)A)~lzdt

J j - $ ^ [ { l _ ^ ) A r h ]

= (/ -  Ty.(v)A)-'
=  ( /  — dfj,(u)A)~l [  e~XiS(t)xdt  

Jo
=  /  e“ At(J — dfx{u)A)~l S(t)zdt.

Jo
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Hence, by Corollary 1.1.4, S(t)x  ss (J -  iljjt{u)A)“l S{t)(I  -  dji{u)A)x for almost all 

t  >  0 and thus, (I  — dii(u)A)S{t)x =  S{t)(I  — dfi(u)A)x for almost all t >  0. Since 

d/i(u) ^  0 and S  is strongly continuous, we conclude that AS( t )x  — S(t )Ax  for every 

t >  0 and every x  G D{A).  / /

The following lemma shows that if (A , n) generates an n-times integrated solution 

operator family S', then 1 S ( t ) x  is a  solution of (3.1) for every x  G X  and a solution 

of (3.2) for every x  G D(A).

L em m a 3.1.4. Let S  be an n-times integrated solution operator family with gener

ator (A,/x) for some n G INo. Then

f t  fn
S( t )x  = S(t  — s)Axdfx(s) +  —j-a; for every t >  0 and x  G D( A ), (3.1.2)

Jo ft'

Jq S(t  — s)xdfx(s) G D(A),  an d

f t
S( t )x = A  J  S(t  — s)xd/x(s) +  —a; for every t  > 0  and x  e  X .  (3.1.3)

P roof. Let S' be an n-times integrated solution operator family of exponential type 

(M;w) with generator (A, ft). Let A >  oj and let x  G D(A).  We obtain from (3.1.1) and 

Proposion 1.2.7 that

r  e- ^ l x  dt =: J — x
Jo n! A*+l

=  S (A )(7 - 5 (A ) A)x

— J  e“ Â S(t)a: — J  S(t  — s)Axdfx(s)^dt,
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The Uniqueness Theorem (Corollary 1.1.4) and the strong continuity of S  yield the 

equation (3.1.2). It follows from Theorem 2.2 and (3.1.1) that the function 1 S ( t ) x  

satisfies (3.1.3) for every t > 0 and x  G X.  / /

The following is an immediate consequence of (3.1.3).

C oro llary  3.1.5. Let S  be an n-times integrated solution operator family. Then 

S{0) =  I  if n  =  0 and S{0) =  0 if n  G IN.

In fact, the properties of an integrated solution operator family derived in Lemma 

3.1.3 and Lemma 3.1.4 characterize those exponentially bounded, strongly continuous 

operator families S  in L{X)  which are integrated solution operator families.

P ro p o sitio n  3.1.6. Let S  be a strongly continuous operator family in L(X)  for which 

there exist constants M  >  0 and u  > e such that ^(tJH  <  Meut. Let n  G INo. Then S  

is an n-times integrated solution operator family with generator (A, fj.) if and only if S  

satisfies the following.

(i) S(t )x  G D(A)  and AS( t )x  = S( t )Ax  for every t  > 0 and x  G D(A).

(ii) S(t )x  = A  Jq S( t  — s)x dfx(s) +  ^-a; for every t > 0 and i G X

P roo f. To show that (i) and (ii) are sufficient conditions for S' to be an n-times 

integrated solution operator family, suppose that S  satisfies (i) and (ii). For x  G D(A)  

the functions 1 1-> S(t )x  and 1 A S ( t )  — S( t )Ax  are continuous on [0,oo). Thus, by 

the closedness of A , we obtain that A Jq S(t  — s)xdfi(s) — fg S( t  — s)Axdfi(s).
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Therefore,

Jt 1 t n' S(t  — s)Axdfi(s) H— -£ 
o n -

for every t > 0 and x  G D(A).  For A >  take the Laplace transforms of this equation

and the one in (ii). By Proposition 1.2.7, S(X)( I—dfi(X)A)x =  y^prx for all £ € D(A ).

Moreover, by Theorem 2.2 it follows that dfi(X)S(X)x G D{A)  and (I —dfj,(X)A)S(X)x =

x h r x  for all £ G X  Hence ( I  — dn(X)A)~1 exist in L ( X ) and (J — dfi(X)A)~1x  —

Xn+1S(X)x for all A >  u  and x  G X.  Thus, S  is the n-times integrated solution operator

family with generator (A, / i ). / /

L em m a 3.1.7 Suppose that (A,fx) is a generator of an n-times integrated solution 

operator family S  of exponential type (M;u>). Then

^tT+i' ~  dfi{X)A)~lx  = S(X)x  for all x  G X  (3.1.4)

holds for every A G (Cw.

P roof. By the definition of an n-times integrated solution operator family, (3.1.4) 

holds for every A >  w. It follows from elementary Laplace transform theory that dfi 

and S  exist on (Dw. Let A G (Dw. From the equation (3.1.3), the closedness of A,  and 

Proposition 1.2.7, it follows that for every £ G X }

I «  -  j f  e - MS(t)xdt -  j f "  • - " S '

JpOO *t
f e” * 4 I S( t  — s)xdfi(a)dt 
o Jo 

=  djl(X)AS{X)x.

rXdt
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Similarly, from the equation (3.1.2) and Proposition 1.2.7, it follows that for every 

* 6  D(A),

S(X)x — ^ +l x  — J  e~*tS(t)xdt  — J  e~*t~ jxd t

poo p t
— I e“ At /  S(t  — s)Axdfi(s)dt  

Jo Jo
=  S(X)djl(X)Ax.

Hence we conclude that (7 — dfj,{X)A)~l exists in L(X)  and that (3.1.4) holds for all 

A e C  / /

C orollary  3.1.8. Let A  be an unbounded, closed linear operator in a  Banach space 

X  and fi € BVe([0, oo); (D) for some e >  0. Assume that there exists a  sequence {Afc}fc6 N 

in (Dw for which d/i(Afc) =  0 for all A; G IN and Re A* — > oo as k  — ► oo. Then (A, f i ) 

does not generate an integrated solution operator family.

P roo f. Assume that (A, fi) generates an n-times integrated solution operator family 

of exponential type (M; u)  for some constants M  > 0, w >  e, and n G Mo. Then by 

Lemma 3.1.7, the function (7(A) := ( I  — dfi(X)A)~1 is analytic on (Dw. By assumption, 

there exists a A & G (Dw with dfi( A*) =  0. Since the zeros of a nonzero Laplace-Stieltjes 

transform have no limit point, a  small circle T around At in (Bw such that dfi has no 

zero in and on T can be chosen. Applying the Cauchy Integral Formula to the function 

G , it follows from the closedness of A  that

.4 *  =  A G ( X k)z  =  A ± .  =  j L  I

— JL f  ~  ^ (A )A )- 1a:^  _  JL_ f  (7 — dfi{X)A)~lx  — x ^
~  2tt£ Jr (A -  Xk)djl(X) ~  Jr (A -  Xk)djl(X)
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for all x  G D(A).  Thus, for some constant Mi  >  0, ||A®|| <  Afi ||rr|| for all x  G D(A)  

which contradicts the unboundedness of A. I f

If (A, fi) generates an n-times integrated solution operator family of exponential 

type (M ; uj), then it follows from (3.1.4) that

||(J -  $ ( A M ) - ‘ || <  for all A S

Observe that for any iJ  >  w, the set { | A G (Dw»} is bounded. From this we 

conclude that if (A,//) generates an integrated solution operator family, then there 

exist constants M  > 0, u  > e, and a >  0 such that (7 — dy(X)A)~1 exists in L(X )  and 

||(7 —d/z(A)A)-1 || <  M|A|“ for all A G CCW. In fact, this polynomial boundedness of the 

operator (7 — d/j.(X)A)~1 on a right half plane is a necessary and sufficient condition 

for a  pair (A, y)  to generate an integrated solution operator family. The following is a 

modification of Theorem 3.2 in [A-K].

T h eo rem  3.1.9 A pair (A, y)  generates an integrated solution operator family if and 

only if there exist constants M  > 0, u  > e, and a > 0 such that (I - d y ( X ) A ) ~ 1 G L(X)  

with ||(7 — d/i(A)A)_1|| <  M\X\a for all A G (Dw.

P roof. It is left to show that the conditions are sufficient for (Aty)  to generate an 

integrated solution operator family. Suppose that there exist constants M  > 0, w >  e, 

and a >  0 for which (7 — dy(X)A)~x exist in L(X)  and ||(7 — dy(X)A)”1\\ <  M|A|° 

for all A G <DW. Then || — 1| <  M  for all A G <EW. Let n  be an integer such
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that n > a and let b := n  — a > 0 for A G (Dw. Then n >  1, and by Theorem 

1.1.7, there exists a function S  G (?([(), oo); L(X))  and a constant C > 0 such that 

||5'(<)|| <  C tbeut for all t  >  0 and =  A6 / 0°°e~XtS(t)dt  for aU A € <DW.

Hence, — =  / 0°° e~xtS(t)dt  for all A G (Dw. Therefore, (A ,^) generates an

n-times integrated solution operator family. / /

Analogously to integrated semigroups, a Hille-Yosida type characterization of an 

integrated solution operator family with generator (A,/j) is possible if A is a densely 

defined closed linear operator and [i is absolutely continuous in BV€{[0, oo); (D) for some 

e >  0. The following is modified from and improves Theorem 2.2 in [A-K].

T heorem  3.1.10. Suppose that A is a densely defined, closed linear operator in a 

Banach space X  and that is an absolutely continuous function in J5ye([0, oo); (E) for 

some e >  0. Let n  G INo, M  >  0, and a; >  e. Then the following are equivalent.

(i) The pair (A, //) generates an n-times integrated solution operator family of expo

nential type

(ii) For every A >  u t (I  — dfi(X)A) ~ 1 G L(X)  and the function H  : (u, oo) -* L(X)  

defined by H(X) = — d^(A)A) - 1  is contained in C°°((u),oo)\L(X)) and

satisfies the estimates

||-  j |1 <  ^  Z u )k+T ôr ^  ^ 6  INo and A >  w. (3.1.5)

P roof. To show (i) ==>• (ii), suppose that S  is the n-times integrated solution operator 

family of exponential type (M;<j) with generator (A,ft). Let A >  x  G X,  and



k  G INo. From (3.1.1) and Remark 3.1.2 (iv), — dfi(X)A)~l^x  =  S(X)x =

/ 0°° e~Atd5f^(<)ja; for all x  G X.  By Widder’s Theorem, H  6  C{fi((u, oo); L(X)) .  This

proves (3.1.5). To show (ii) ==> (i), suppose that (ii) holds. Then H  is contained in

C £ y ((d J , oo); L(X)).  Hence, by Widder’s Theorem, there exists T  G Lipw([0,oo);L(Af)) 

such that dT = H  on (w, oo) and ||T||£,jPul =• ||/f||w,w < M.  From (1.1.6),

An+2T(A) =  (I  -  M X ) A ) ~ 1 for A >  w.

Hence, T  is the (?i +  l)-times integrated solution operator family with generator (A,/i). 

We obtain from Lemma 3.1.4 that T(0) =  0 and

It follows from Lemma 1.2.10 that 1 1-> T(t)x  is continuously differentiable and that

for all x  G D(A).  Next, we show that T(-)x is differentiable for all x  G X.  Let t > 0. 

Since T  G Lipw([0, oo); L(X)),  the difference quotients Dh := are uniformly

bounded for h with 0 <  |/i| <  1 and t +  h > 0. Since lim Dhx  exists for x  € D(A), we

obtain from the Banach-Steinhaus Theorem (Theorem 1.1.11) that there exist opei’ators

Sit)  G LIX)  such that S(t)x  =  lim DhX =  lim ■r (t+,0^zT(t)x f01. a l l  x  G X.  Notice that
h-*Q /»-+ o “

S  is of exponential type (M; u>). To prove the strong continuity of the operator family

T(t)x  = [  T(t  — s)Axdfj,(s) 
Jo

for all t > 0 and all x  G D(A). Let g(t) := T(t)Ax.  Then
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S, let x  G Af, c >  0, and z  G D (A ) with ||a: — z\\ <  e. It follows from ||S>(t)x — S îo)®!! <  

l|5(t)|| ||a; — z\\ +  ||5'(<)z — <S'(<o)«|| +  ||S'(<o)|| ||® — z||, the continuity o f t  t-4 S(t)z  for 

z  G D(A),  and the exponential boundedness of S  that 1 S ( t ) x  is continuous on [0, oo). 

Thus, the operator family T  is strongly differentiable on [0, oo) and =  S(t)x  for 

all t >  0 and x  G X.  Therefore,

(I  -  djx(\)A)~lx  =  An + 2  [°° e~xtT(t)xdt = An + 1  e~xtS(t)xdt
J o J o

for all x  G X  and A >  u. This shows that S  is an n-times integrated solution operator 

family with generator (^4,/x). / /

For n  =  0, Theorem 3.1.10 includes the Generation Theorem in [Pr] (Theorem 1.3) 

which was proved first by G. Da. Prato and M. Ianelli in 1980 ([Da P-I]). To see this 

let a G I^Q O , oo);(C) such that / 0°° e“ wt|a(£)|eft <  oo (which is the condition on the 

kernel given in [Pr]). Then the function 1 1-> fi(t) :=  a(s)ds is absolutely continuous 

and by (1.1.4), fi G BVui{[0, oo); (D) for all u>' >  w.(see Section 1.1).

T heorem  3.1.11. Suppose that (A,fi) generates an n-times integrated solution op

erator family S  for some n  G INo- Let /  be a Laplace transformable function in 

C([0,oo); X ) .  Define w(t) := S(t  — s)f(s)ds  for every t  >  0. If w G Cn+1 ([0,oo); AQ, 

then -u/n+1) is a solution of (VE). If v G C([0, oo); X )  is a solution of (VE), then 

w G Cn+1 ([0, oo);X) and v =  tiAn+1).

P roof. Let t > 0 and 0 <  s < t. Since S' is an n-times integrated solution operator
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family with generator ( A , / i ) ,  it follows from (3.1.3) that

S(t  -  s ) f (s)  - a Jq S(s — t — r)f(s)d{j,(r) + — - p - / ( a ) .

Suppose that t h* w(t) := f 0 S(t  — s)f(s)ds  is a Cn+1 ([0,oo); A")-function. Then it 

follows from (3.1.3), the closedness of A, and Lemma 1.2.5 that

w{t) =  f  S(t — s)f(s)ds
Jo

= A  [  [  S( t  — s — r)f(s)dfj,(r)ds+ [  —— f (s)ds
Jo Jo Jo n '

= a [  f  S ( t — r — s)f(s)dsd{j,(r) + f l n+1](t)
Jo Jo

=  A [  w ( t — r)dfi(r) +
Jo

If w € Cn+1 ([0, oo); (D), then the closedness of A  and Corollary 1.2.9 imply that

w(»+1)(t) =  A  -r)dfx{r) + f( t) .
Jo

For the converse, suppose that v is a solution of (VE). Since (A, fi) generates the n-times 

integrated solution operator family S, it follows from (3.1.3) that

( i-_ s )n 
n!

Hence

^ —v(s) = S(t  — s)v(s) ~ a [  S(t — s — r)v{s)dfi(r) 
! Jo

utn+1l{t) = JQ ^~n f ~v (s )ds
f t  pt rt—s

=  / S{t — s)v(s)ds — A  /  S(t — s — r)v(s)dfi(r)d, 
Jo Jo Jo

(3.1.8)

By Lemma 1.2.5 and by change of variables,
f t  /*£—s r t r t—rf t  rc—s f t  f t —r

A I S(t  — s — r)v(s)dfi(r)ds =  A  I I S( t  — s — r)v(s)dsdfi(r) 
Jo Jo Jo Jo

f t  f t
=  A  I /  S(t  — s)v(s — r)dsdfi(r), 

Jo J r
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We claim that
«t rtp t  r t  r t  p s

/  /  S(t  — s)v(s — r)dsdfj,(r) = /  S(t  — s) I v(s — r)dfjt(r)ds.
Jo J r  Jo Jo

To prove this, let fi be the region {(r, s) G 1R2 | 0 <  r  <  s <  i}. Define g : [0, t] X [0, t] -> 

X b y

( • f S(t — s)v(s — r) if (r, s) G f i
9 (r >s) •— |  _  5 )v(o) otherwise.

Then g is continuous on [0,t] X [0,<]. Hence, by Corollary 1.2.3, it follows that
r*t r t  r t  r r

n /*C rr
S(t  — s)v(s — r)dsdjj,(r) + I S(t — s)v(0)dsdfj,(r)

Jo Jo
f t  f S  f t  f t=  I  I  S(t  — s)v(s — r)d(i{r)ds + I /  S(t  — s)v(0)dfjt(r)ds, 

Jo Jo Jo JaIt suffices to show that
rt rr rt rtr t  p r  p t  p t

/  /  S(t — s)v(0)dsdfx(r) = /  S(t — s)v(0)dfj,(r)d&
Jo Jo Jo Ja

Since
rfc .. r rJ  [ J  £(* “  «)v(0)dsjd/i(r)

=  J  S ( t  — s)v(0)dsf jt ( t)  — J  n ( r ) d [ J  S ( t  — s)u(0)rfsj

pt pt
=  /  S ( t  — s )v (0 )ds/ j , ( t )  — /  / x ( r )S ( t  — r )v ( 0 )d r ,

Jo Jo
and

f t  f t  f t
J  j  S ( t  — s )v (Q)dfi( r)ds  — J  S ( t  — s ) v ( 0 ) [n{t)  — f i ( s ) ]d s

f t  f t
=  I S ( t  — s )v (Q)ds t i ( t )  — I S { t  — s ) v ( Q ) n ( s )d s ,

Jo Jo
the claim holds. Since f g V ( t  — r)d/x(r)  G D ( A ) ,  and since S ( t )  and A  commute on the 

domain of A ,  it follows that
f t  f t  f t  fa

A  /  S ( t  — s ) v ( s  — r )d s d f t ( r )  — A  j  S ( t  — r )  I v { s  — r)df j , (r)ds
Jo J r  Jo Jo

pt pS
=  /  S ( t  — r ) A  /  v ( s  — r )d f i ( r ) d s

Jo Jo
f t  f t

=  I S ( t  — s ) v ( s ) d s  — /  S ( t  — s ) f ( s ) d s .
Jo Jo
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Hence it follows from (3.1.8) that

/o

Thus, w E C n+1 ([0,oo); X )  with io(0) =  0 and u;(n+1) =  v. / /

J/*t
| S(t  — s)f(s)ds  =  ro(t). 
o

Remark.

There is an essential difference between integrated solution operator families for 

Volterra equations (VE) and integrated semigroups for inhomogeneous abstract Cauchy 

problems. For an n-times integrated semigroup S  with generator A , S  satisfies the 

equation
r t  +n

S(t)x  = J S(t  — s)Axds +  - ^x

for all x  E D(A)  and t > 0. Thus, the mapping t S(t)x  for t > 0 is continuously

differentiable for all x  E D{A)  and

S'{t)x  =  5(<)A$+

If S  is an n-times integrated solution operator family with generator (A,/x), S  satisfies 

the equation
r t  +n

S(t)x  — J S(t  — s)Axdfi{s) +  — x

for all x  E D(A)  and t >  0. However, without any further regularity assumptions on 

//, this does not yield the differentiability of 1 1-» S(t)x  for x E D(A).

Let /  E Cn+1 ([0,oo);X) and let w(t) := Jq S(t  — s)f(s)ds  for every t > 0. Then, by

Lemma 1.2.11,

w'(t) — S(t) f(0)  +  f  S( t  — s)f '(s)ds  for t  > 0.
J  o
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Since in general there is no differentiability criteria for t h> S ( t ) f ( 0), we have to 

assume that / ( fc)(0) =  0 for 0 <  fc < n in order to get that w €  Cn+1 ([0, oo)]X) if 

/ 6 C"t l (|0 ,» ) iX ) .

C oro llary  3.1.12. Suppose that {A,y)  generates an n-times integrated solution op

erator family S  for some n  € INo. Suppose that /  =  ^In+1l for some g € C([0, oo); X).  

Then the function v defined as

v(t) := f  S(t  — s)g(s)ds, for t > 0  
Jo

is a solution of the Volterra equation v(t) = A  v(t — s)ds -f- f ( t )  for t  >  0.

P roof. This corollary follows immediately from the previous remark and Theorem 

3.1.11. However, since the proof of Theorem 3.1.10 is somewhat longwinded, we give

an alternative direct proof. Let t >  0 and 0 <  s < t. Since S' is an n-times integrated

solution operator family generated by (At fx), it follows from (3.1.3) that

S(t  -  s)g(s) = a [  S ( t - s -  r)g(a)dfjL(r) + ^  ^  g(s).
Jo n\

It follows from the closedness of A  and Lemma 1.2.5 that

v(t) = J  [a  J  S(t — s — r)g(s)dfx(r)ds +  ^  i?(s)j ds

- a [  f S(t  -  s -  r)g(s)dn(r)ds + f - — ^ —g(s)ds
Jo Jo Jo nl

=  A  f  f  S( t  — r — s)g(s)dsd/j,(r) +  <̂ n+1J(t)
jo Jo

- A  [  v(t — r)dfj,(r) +  /(<)•
Jo



58

Since S  is strongly continuous and g is continuous, v £  C([0 ,oo);X ). Therefore, v is 

an (exponentially bounded) solution of (VE). / /

The following is a  modification of Theorem 3.1.11 for strong solutions of (VE). 

The proof is omitted.

C oro llary  3.1.13. Let (A,fi) be a generator of an n-times integrated solution oper

ator family S  for some n £ INo* Let /  £  ^([O, oo); X).  Define w(t) := S(t  — s)f(s)ds  

for t  >  0. Then (VE) has a strong solution v £  C([0 , oo); [D(A)]) if and only if 

w £  Cn+1 ([0, oo); [D(w4)]). When one of these equivalent conditions holds, v =  ty(n+1) 

is the unique strong solution of (VE).

3.2 T h e  W ellposedness o f A b s tra c t V o lterra  E quations

Let A be a closed linear operator with its domain D(A)  and range in a  complex 

Banach space X  and let fi £ BVe([0, oo); (B) for some e >  0. In Section 3.1 we showed 

that the Volterra equation

solution operator family S. In fact, S(')x  is the unique solution of the Volterra equation

and /  £ C([0,oo);X),  The following result is similar to Proposition 2.1 in [O],

for t > 0 (3.2.1)n

has a  solution v : t  S(t)x  for all x  € X  if (A, fi) generates an n-times integrated

(3.2.1)n for all x  £ X .  The convolution notation * is also used for the integral 

fo S(t  — s) f(s)ds  =: (S * f ) ( t )  for a  strongly continuous mapping S  : [0, oo) -» L(X)
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P ro p o sitio n  3.2.1. If (A,/z) generates an integrated solution operator family, then 

(VE) has at most one solution.

P roo f. Let S  be the n-times integrated solution operator family generated by (A, y)

for some n  G IN. Let j n denote the function t t-4 for t  >  0. Suppose that v(t) =

A  / q v(t — s)dy(s). Then

S  * v(t) = S  * A(v  * dy)(t)

= fs{r)A 
Jo

t p t - r
A  /  S(r)v(t — r  — s)dfi(s)dr 

Jo

nt—r
S(t — r — s)v(r)dfj.(s)dr

= So ^
= S *  v(t) -  j n * v(t) 

for every t > 0. Thus, j n *v  = 0. Therefore, v =  0 . / /

We will show next that (3.2.1)„ has a unique, exponentially bounded solution for 

all x  G X  if and only if (A, y)  generates an n-times integrated solution operator family. 

To show this the following lemma is crucial.

L em m a 3.2.2. The following statements are equivalent.

(i) The Volterra equation (3.2.1)n has a  unique, exponentially bounded solution for 

all x  G X.

(ii) The Volterra equation (3.2.1)n has a unique, exponentially bounded solution v(-) = 

v(' ,x)  for all x  G X  and there exist constants M  > 0, w >  e such that ||v(t)|| <  

M ewt||a;|| for all a: G X  and t > 0.

I

c—r
v(t — r — s)dy(s)dr
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Proof. The implication (ii) =$> (i) is obvious. We show that (i) =*► (ii). Suppose

that (i) holds. Considering C([0 , oo);X) as the PVechet space with the seminorms

pT( f )  — sup ||/(t)l|, T  >  0, define a map <j> : X  C7([0, oo);-X") by x  h-> v(>,x). 
o < t< T

Then <j) is linear since v(-,x) is a  unique solution of (3.2.1)n for each x  G X .  We 

show that <f> is continuous. Suppose that a  sequence {®m}meN converges to x  in X , 

and the sequence {i>(-, £m)}meiN converges to u in C([0, oo); X).  Since the sequence 

{/o v(J  — s ,x m)d/i(s)}m€iN converges to /q u(t — s)dy(s) in X  for every t > 0, we 

obtain from the closedness of A  that (it * dy)(t) G D(A)  and

tnu(t) = A  I u(t — s)dfi(s) H— -x 
Jo

for every t > 0 and x  G X.  Hence <j) is closed and everywhere defined, and therefore, 

continuous. For every t > 0 define S ( t ) : x  v(t,x)  on X.  Clearly, the operators S(t) 

are linear. Since S(t)x  = v(t,x) = <f>{a;)(i), we obtain that S(t) G L(X) .  Since t 

S(t)x  =  v(t,x)  is exponentially bounded for each x  G X ,  it follows from the Uniform 

Exponential Boundedness Theorem (Theorem 1.1.10) that there exist constants M  > 0 

and lu > e such that ||S'(t)a;|| =  ||i>(t,a:)|| <  Mewt||a;|| for all x  G X  and t > 0. / /

T heo rem  3.2.3. Let A  be a closed linear operator in a Banach space X  and /i G 

BV€{[0, oo); C) for some e >  0. The following are equivalent.

(i) The equation (3.2.1)n has unique, exponentially bounded solutions for all x  G X.

(ii) (Ay y)  generates an n-times integrated solution operator family.

Proof. The implication (ii) =>  (i) was shown in Proposition 3.2.1. Suppose that (i) 

holds, By Lemma 3.2.2, there exists a strongly continuous operator family {*S'(<)}t>o C
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L ( X ) for which there exist constants M  >  0, oj > 0 such that ||<S(t)|| <  M cwt for all 

t > 0  and
f t  +n

S(t)x  =  A  I S(t  — s)xdfj.(s) H— -x  for t  >  0
Jo n 1

and for every x  G X .  Let x  G D(A)  and t >  0. Define v(t) :=  S(t  — s)Axdfi(s) +  x . 

Then v(t) e  D(A)  and

f t  fn
Av(t) = A  S(t — s)Axdfx(s) +  —-Ax  

Jo n ‘
=  S(t)Ax — t-rAx +  t-rAx 

n\ n\

— S(t)Ax.

Thus,
f t  tn f t  fn

v(t) = /  Av{t — s)dfj,(s) H— -x =  A  /  v(t — s)d(i(s) H— -x.
Jo n! Jo n '

Then, by the uniqueness of the solutions of (3.2.l )n , v(t) = S(t)x.  Thus, AS(t)x  =  

S(t)Ax  for all t  > 0 and x  €  D(A). Thus, by Proposition 3.1.6, S  is an n-times 

integrated solution operator family generated by (A, ft). / /

If (A, ft) generates an n-times integrated solution operator family S, then the 

equation
f t  +n

v(t) =  / Av(t  — s)dfj,(s) H— -x for t  >  0 (3.2.2)n
Jo w.

also has an exponentially bounded solution S(t)x  in C([0, oo); [D(j4)]) for all

x  6  D(A),  i.e., the equation (3.2.1)n has exponentially bounded strong solutions for all 

x  G D(A).  Recall that [D(^4)j is defined as the Banach space D(A)  equipped with the 

graph norm ||®||yi =  ||x|| -f ||i4®||. The following lemma can be shown by modifying the 

proof of Lemma 3.2.2 by replacing the space X  with [D(i4)].
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L em m a 3.2.4. The following are equivalent.

(i) The equation (3.2.2)n has a  unique, exponentially bounded solution in the space 

C([0,oo); [25(A)]) for all x  G D{A).

(ii) The equation (3.2.2)n has a unique, exponentially bounded solution v(-) = v(>, x) G 

C([0, oo); [25(A)]) for all x  G 25(A) and there exist constants M  > 0, w >  e such 

that |M*) || <  Mewt||a;|| for all x  G D{A)  and t >  0.

By modifying the previous results on the equation (3.2.1)n, it can be shown that

(3.2.2)n has a unique, exponentially bounded solution in C7([0,oo); [25(A)]) for every 

x  G 25(A) if and only if (A, f i )  generates an n-times integrated solution operator family.

T heorem  3.2.5. Let A be a closed linear operator in X  and \i G 2?V’e([0, oo); (C) for 

some e >  0. The following are equivalent.

(i) The equation (3.2.2)n has a  unique, exponentially bounded solution in the space 

C([0,oo); [25(A)]) for all x  G 25(A).

(ii) (A, /1) generates an n-times integrated solution operator family.

P roof. To show (ii) ==> (i), suppose that (A,/i) generates an n-times integrated so

lution operator family S  of exponential type (M; w). Then it follows from Lemma 3.1.3 

and Lemma 3.1.4 that the function t h> S(t)x  for t > 0 is an exponentially bounded 

solution in (7([0, oo); [25(A)]) of (3.2.2)n for all x  G 25(A). We show the uniqueness of 

S(')x  as an exponentially bounded solution of (3.2.2)n which is continuous in || • ||^ 

for all x  G 25(A). Suppose that v(t) =  /q Av(t — s)dfi(s) for every t  > 0 for some
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exponentially bounded function u 6  C([0, oo); [£>(>1)]). It can be shown as in the proof 

of Proposition 3.2.1 that v(t) =  0 for all t > 0. We show (i) =*• (ii). This implication 

can be shown similarly to the proof of Theorem 3.2.3. Suppose that (i) holds. Then it 

follows by Lemma 3.2.4 and the closedness of A  that there exists a strongly continuous, 

uniformly exponentially bounded operator family {«S'(<)}t>o C £([£>(A)]) such that

Jf t  <n
' S(t — s)xdfj.(s) +  —r® for t >  0
0 n '

for every x E D(A). It can be shown by the same proof of Theorem 3.2.3 that S  is an 

n-times integrated solution operator family with generator (A,/i). / /

3.3 A pprox im ations of In teg ra te d  Solu tion  O p e ra to r Fam ilies

Let X  be a Banach space and {S'm}mGiN be a sequence of functions from [0, oo) to 

L(X).  If there exist constants M  > 0 and u  >  0 such that ||£m(£)|| <  Mewt for all m  E 

IN and t > 0, then the sequence {*S'm}meiN is said to be (M ; w)-stable (or simply stable). 

Let n  E  INo. hi this section we prove Trotter-Kato type approximation theorems on 

the convergence of a stable sequence (<S'm}mgiNof n-times integrated solution operator 

families Sm with generators (Am,fim) in terms of the convergence of the sequence 

{(I  — dfim(X)Am)~1x}m for every A >  u  and x  € X.

T heo rem  3.3.1. Let n  e  INo, e > 0, M  >  0, and u  > e be some constants. Let 

{S'nJmeiN be an (M;w)-stable sequence of n-times integrated solution operator families 

Sm with generators (Am,/im), where A m are closed linear operators in X  and fim E
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BVe([0, oo); (D) for all m G IN. Suppose that there exist A, a closed linear operator 

in X  and a function fi G HV'eQO, oo);(D) such that ( I  — dfi{X)A)"~1 exists in L(X )  for 

every A >  tv and lim ( I  — dfim(X)Am)~1x  — (I  — dfi(X)A)~1x  for every A >  u  and
m —too

x  € X .  Then (A, fi) generates an (n +  l)-times integrated solution operator family 

T  G Lipw([0, oo)\ L(X))  with ||T||z,;Pu, <  M.  Moreover, for every x  G X ,  {Sm (i)a:}meiN 

converges uniformly to T(t)x  on every compact interval in [0,oo). If, in addition, A  

is densely defined and fi is absolutely continuous on [0, oo), then (A,fi) generates an 

n-times integrated solution operator family of exponential type (M;u).

Proof. Define Tm(t)x f Q $rn(s)xds for every m G IN') i ^  0, and x  G <X» Then the 

(M;^-stab ility  of {5m}m€iN implies that Tm G LipLJ([0,oo)\L(X)) with ||Tm||£,t-Pu) < 

M  for all m  G IN . It follows from (1.1.6) that — dfim( \ ) A m)~lx  = Sm(X)x =

dTm{X)x = XTm(X)x for every A >  u  and x  G X.  Hence, Tm is the (n +  l)-times 

integrated solution operator family of exponential type (M; u>) with generator (Am, fim) 

and by the hypothesis, {dTm(X)x}mej  ̂ converges to (I  — dfi(X)A)~1x for every A > 

to and x  G X.  Since ||Tm(-)a;||LiPu) <  M||ir|| for all m G IN and x  G X  and since 

the sequence {dTm(A)x}m6iM is convergent for every A >  u,  it follows from Theorem 

1.1.6 that for every x  G X ,  there exists a T ,  G Lipw([0,oo); X )  with ||T,a:||^pu, < 

M||a;|| for which the sequence {Tm(-)x}me^  converges uniformly to T*(*) on every 

compact interval in [0,oo). Define T(t)x  :=  Tx(t) for every t  >  0 and every x  G 

X,  Then, by the uniqueness of a limit, T(t)  : X  -> X  is linear for every t > 0. 

Moreover, T  G Lipw([0, oo);L(X)) with ||T ||ijPw <  M.  Since {Tm(t)x}mgN converges 

uniformly to T(t)x  on compact intervals in [0,oo), it follows from Theorem 1.1.6 that
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{(£rm(A)£}m£]N converges uniformly to dT(X)x on compact intervals in (w, oo). Hence, 

by the uniqueness of limits,

-  T ^ \)A )-'x =  jS r(.\)x  =  f (\)x

for every X > oj and x  G X.  Thus, T  is the (n +  l)-times integrated solution operator 

family with generator (A,/i). Assuming that A  is densely defined and y  absolutely 

continuous, the same reasoning as in the proof of Theorem 3.1.10 yields that dTf$* =■ 

S(t)x  exists for all t  > 0 and x E X,  and that S  = {S(t)}t>o is an n-times integrated 

solution operator family generated by (A , y). / /

The previous theorem says that if {5m}meN is a stable sequence of n-times inte

grated solution operator families with generators (Am,/xm) where y m E BV^O, oo); (D) 

for all m  € IN, and if A  is densely defined closed linear operator in X  and y  an ab

solutely continuous function in BV'eQO, oo); (D), the strong convergence of the sequence 

{(J — dAim(A)Am)-1 }Tn£jN to ( /  — dy(X)A)~1 implies the existence of an n-times inte

grated solution operator family S  with generator (A, y) and the strong convergence of 

the sequence {Sm (')}meiN to S'W(-). In the following the uniform convergence of the 

sequence {Sm(*)®}meiN to S(-)x on compact intervals in [0,oo) for all x  E X  will be 

shown with some additional assumptions on (A,y)  and (A m, y m) for m G IN.

T h eo rem  3.3.2. Let n  G INo, e >  0, M  >  0, and w >  e be some constants. Let 

{Sm}meiN be an (M; w)-stable sequence of 71-times integrated solution operator families 

Sm with generators (Am, y m) where A m are densely defined, closed linear operators



66

in a  Banach space X  and /im are absolutely continuous functions in .BV'e([0,oo);(D) 

for all m  6  IN. Suppose that there exist a densely defined, closed linear operator A  

in X  and an absolutely continuous function /i e  BV^O, oo); (D) such that dfi ^  0 on 

(w, oo), ( I —d/j,(X)A)~1 exists in L(X)  for every A >  u,  and lim ( I —dfim(X)Am)~1x  =
m - * o o

(J — dfi(X)A)~1x  for every A >  w and x  € X.  In addition, assume the following.

(i) f) D{Am)( \D (A )  contains a dense subset D  of X.

(ii) 6  Lipw([0, oo); CD) for all m € IN, <  M\  for some constant Mi > 0

and all m 6  IN, and {/*(*(<)}mein converges to i±'(t) for every t  > 0.

Then, {A, ji) generates an n-times integrated solution operator family S  of exponential 

type (M; w), and for every x  e  X ,  {<S'm(*)a;}m£iN converges uniformly to S(')x  on 

compact intervals in [0 ,oo).

P roof. By Theorem 3.3.1, there exists an n-times integrated solution operator family 

S  of exponential type (M;o>) with generator (A,fi). For the convergence, we first show 

that for every y 6  D, the sequence {S'm(,)z/}meiN converges uniformly to S(-)y on

compact intervals in [0,oo). Let y 6  D. By Lemma 3.1.4,

tn
~  J  S m f t  ,s)-'4m2/d/Xm (s) -j- ^j2/ (3.3.1)

and S(t)y = f  S(t  — s)Ayd(x(s) + ^-ry (3.3.2)
Jo ni

for every t >  0. Define hm(A) := (I  — dfim(X)Am)~1 and h(X) := ( I  -  dfil(X)A)~1 for 

every m  6  IN and X >  u>. Then lim hm(X)x =  h(X)x for every X >  u  and x  €  X .  Letm—>oo

Ao >  oj such that d/z(Ao) ^  0 , Define z :=  ( I  — d/x(Xo)A)y. Then y =  h(Xo)z and 

||Sm(t)!/ -  S{t)yII <  ||Sro(t) (/i(A0)z -  hm(Xo)z) II +  \\Sm(t)hm(Xo)z -  S(()ft(A0 )z||.
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Since the sequence {<Sm}meN is stable, it suffices to estimate the second term in this 

expression. It follows from the assumption (ii) and Theorem 1.1.6 that {d/x(Ao)}meiN 

converges to dfi( Ao), that {/4n(‘)}m6iN converges uniformly to //(•) on compact intervals 

in [0,oo), and that fj/ € Lipw([0,oo);(D). By (3.3.1) and (3.3.2),

Id^AoJd/^mfAo)! ||<S,7n(t)^m(Ao)^ — 5(t)/l(Ao)£||

=  |d^i(Ao)d/im(Ao)| || f  Sm(t s)Amhm{\o)zdfim(s) 
Jo

-  f  S ( t  -  , )AMM))zdy{s)  +  -  ft(*o))*li

<  ||d/x(A0) [  Sm(t -  s)[/im(A0) -  I]zdiim(s) -  dfim(A0) [  S( t -  s)[h(A0) -  I]zdfi{s)||
Jo Jo

+^j \ \hm(X0)z -  h(X0)z.\\

Since /im(Ao) 2  — > h(Xo)z as m  — > oo, it suffices to estimate the first term in the last 

expression. This yields

||d/x(A0) /o Sm(t -  s)[/im(A0)2 -  z]n'm(s)ds-  

dfXm(Ao) Jo S(t  -  s)[/i(A0).s -  2]ji'(s)ds|| 

< |of/x(Ao) -  d/im(A0)| II Jo sm (t -  s)[/im(A0)* -  zKJ5)̂ !!

+|rf^m(Ao)| II Jo Sm(t -  s)[hm{X0)z -  z]ix'm{s)ds -  J0* S(t  -  s)[/i(A0)z -  z]fi,(a)da\\. 

Since {|| / 0’ Sm(' — s)[/im(Ao) 2  — 2 ]^ (s)c fs || | m G IN}meiN is uniformly bounded on 

compact intervals in [0 , oo), it suffices to estimate the second term above.

|| f  S m(t -  s)[hm(Xo)z -  z]fj.'m(s)ds -  f  S(t -  s)[/i(A0)* -  z](i?(s)ds\\
Jo Jo

<11 [  S m (* -s ) [M A o )* -* K m(s)ds|| +  || /  -S,TO(i~ s)[* (A 0)«-*][A*ro(fl)-/i/(fl)]rfs||
Jo Jo

+11 Jo !$»(* -  s) -  S(t  -  .)] [/i(Ao)* -  *]/x'(s)ds||.
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Since the sequence {Sm}mgN is stable and since y!m E Lipw([0, oo);(D) for all m  E IN, 

the first term converges uniformly to 0  as m  — > oo on compact intervals in [0 , oo). 

Since {S'rn}meiN is stable and {/i/m}meiN converges uniformly to n  on compact intervals 

in [0, oo), it suffices to estimate the third term above. By integration by parts,

|| j f  -  s) -  S(t -  s)} (h(X0)z -  z)n'(s)ds\\

. < I a* ' WI  I I ^ W - ^ W ] ^ ) * - * ) ! !

+CSS e?u] Jo ^  “  5 fll(5 )][^(a o) 2  -  z]\\ds.

Since {Sm (*)®} mgiN converges uniformly to T(*)x =  SW(*)® on compact intervals in 

[0, oo) for every x  E X  and since /x" is essentially bounded on compact intervals in 

[0 , oo), the last expression converges uniformly to 0  as m  — > oo on compact intervals 

in [0,oo). This shows that (Sm(')y}mgin converges uniformly to S(-)y on compact 

intervals in [0,oo) for every y E  D. Since D  =  X  and {Sm}meiN is stable, it follows 

that {Sm(-)®}meiN converges uniformly to S(-)x on compact intervals in [0, oo) for 

every x  E X .  / /

3.4 Analytic Integrated Solution Operator Families

In this section we will briefly discuss analytic integrated solution operator families 

for Volterra equations. These solution operator families are the analog of analytic inte

grated semigroups for the abstract Cauchy problem. In contrast to the characterization 

theorem (Theorem 3.1.10) of integrated solution operator families, the conditions on 

the function A) := ( I  — dy(X)A)~1 on (cj, oo) which characterize analytic integrated
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solution operator families are much easier to be checked. We assume that A  is a non

trivial, closed linear operator in a Banach space X  and that /z €• J3V^([0, oo); (D) for 

some e >  0  with d/i ^  0  on CDe.

For n  =  0 the following definition coincides with that of analytic resolvents in [Pr]. 

If n =  0, fx(t) =  i, and u  =  0, then it reduces to the definition of a bounded, analytic, 

strongly continuous semigroup (see, for example, [G]).

D efin ition 3.4.1. Let 9q G (0, f] , n  G Mo, M  > 0, and u  >  e. Suppose that a 

function S  : {0} U £o,0o -» L(X )  satisfies the following.

(i) The restriction <S'|[o,oo) °f S  to [0 , oo) is an n-times integrated solution operator 

family of exponential type (M ; u ) with generator (A,/x).

(ii) S  is analytic on the sector £o,0O’

(iii) For every 0 € (0,0o), there exists a constant M g  > 0 such that

sup | |e— < M g .
*GSo ,o

Then S  is said to be an analytic n-times integrated solution operator family of analyt- 

icity type (w; 9q) and with generator (A,fi).

P ro p o sitio n  3.4.2. Let (A,(i) be the generator of an analytic n-times integrated 

solution operator family of analyticity type (w; 0o)> Then d\i admits an analytic con

tinuation to the sector the function H  : (w,oo) -> L{X)  defined by H (A) =

— d/j,(X)A)~1 admits an analytic continuation to the sector £ w ,0o+ f , and 

sup || (A — w)#(A)|| <  oo for every 9 6  (O,0o).
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Proof. By Theorem 3.1.7, the function H  extends to the half plane and H(X)x —
A
S(X)x for every x  € X  and A € (Dw. By Theorem 1.1.9, the function H  also, admits 

an analytic continuation to the sector and sup ||(A — o>)7f(A)|| <  oo for
£̂£u»,0+ $

every 9 6  (0,#o)* Choose x  € D(A)  and x* G X*  such that the function <p(A) := 

(An+1i7(A)x, x*) = ( ( /  — dn(X)A)~lx, x*) =  f£ °e~ Xt(S(t)x, x*)dt for A G EW)0o+a 

on (Cw is not a  constant function. (Such x  and x* exist since A  and n  are nontrivial.) 

Then <p is analytic and

<£'(A) =  T^{X){{I-dJ i{X)A)-2Ax, x*) =  dfA ( \ ) \ 2n+2{H (\)2Ax,x*)

on SW)80+a. The function ip defined by ip(A) := ( ( /  — dn(X)A)~2Ax, x*) is not identi

cally zero on Y!Utg0+z.  Since otherwise, <p =  a constant on (Dw, which is a  contradiction. 

Also, "ip is analytic on EW(0o+a. Thus, d(i (A) =  for A G (Dw with ip(A) ^  0. Hence

dfj, extends analytically to Ew,0o+ i  and

<P'{A) =  dfl{X)({I -  dfl(X)A)-2Ax, x*)

f in f W .—.. __
■{dfj,(X)(I — dfi{X)A) Ax, x*)

dfi(X)

^  ^  ( ( I  — dfi(X)A)~2x  — (I — dfi(X)A)~lx, x*)
dfi(X)

where the function g(X) := ( ( /  — dft(X)A)~2x  — (7 — dfi(X)A)~1x, x*) is analytic on
A f

EW(0o+ j .  Thus, dfi(X) =  g(X) for A G (Ew with <p'(X) ^  0. Therefore, dfj, extends 

analytically to EW)0o+s.. / /

P ro p o sitio n  3.4.3. Let n  G INo, uj >  e, and 9q G (0, §]. Suppose that (7—dn(X)A)~1 

exists in L ( X ) for every A >  u  and that the function H  : (w, oo) L(X )  defined by
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■^(^) — ^ ( A ) ^ ) * " 1 admits an analytic extension H  to the sector

such that sup ||(A — o>)lf (A)|| <  oo for every 9 6  (0, #o). Then (A,(i)  generates a
^€Su>,e+5

norm continuous, (n +  l)-times integrated solution operator family S  which admits an

extension S  to {0} U Eo,0o such that S  is analytic on Eo,0„ and sup ||e“ w*5/(,z)|| <  oo
2€2o,0

for every 9 £ (0 , 0 o)-

P roof. It follows from Theorem 1.1.8 that there exists an analytic function W  :

EO,0O -* L ( X ) such that sup ||e-W2 W^(z)|| <  oo for every 9 € (O,0o) and
*G2o ,o

on (w,oo). Defining S(t) := fg W(s)ds  for every t  >  0, H (A) =  A / 0°° e~xtS(t)dt  for all 

A >  uj. / /

T heo rem  3.4.4. Let A  be a densely defined, closed linear operator in X  and let /j. 

be an absolutely continuous function in 13V^([0,oo); (D) for some e >  0. Let n  G INo, 

u  >  e, and 9q 6  (0, |] .  The following are equivalent.

(i) The pair (A, fj.) generates an analytic, n-times integrated solution operator family 

S  of analyticity type (u; 9q).

(ii) ( I  — dfi(X)A)~1 exist in L (X )  for all A >  u) and the function H  : (w,oo) -> L(X)  

defined by H ( A) =  — dfi(X)A)~1 has an analytic continuation H  to the 

sector EWi0o+i  such that sup ||(A — w)if(A)|| <  oo for every 9 6  (O,0o)*
AGS„<e+̂

P roof, The implication (i) = >  (ii) was shown in Proposition 3.4.2. To show the 

implication (ii) =£> (i), suppose that (i) holds. It follows from Theorem 1.1.8 that
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there exists an analytic function S  : Eo,0o “> such that sup ||e“ W25'(2)|| <  oo 

for every 0 G (0 ,0o) and

H (X)x =  M t f A r ' x  = J J 3 e~XtS(t)xdt

for all A >  u> and x  G X .  Since for some constant M  > 0, ^(tJH  <  M eut for all t >  0, 

it follows that

for every k G INo, A > u>, and x G X.  Theorem 3.1.10 yields that (A,fi) generates an 

n-times integrated solution operator family Si.  Since

■ ~ ^ ( I  — d/jL(X)A)~1x  = J  e~xtS(t)xdt = J  e~xtSi(t)xdt

for all x  G X ,  the Uniqueness Theorem (Corollary 1.1.4) implies that S(t)  =  S\(t)  for 

all t >  0. This shows (i). / /

For n  =  0, Theorem 3.4.4 coincides with the generation theorem of analytic resolvents 

in [Pr], and for n  =  0 and /x(t) = t, it is the generation theorem of analytic, strongly 

continuous semigroups. The following is an immediate consequence of Theorem 1.1.8. 

The estimate (3.4.1) improves Corollary 2.1 in [Pr].

R em ark  3.4.5. Let S  be an analytic, integrated solution operator family of ana- 

lyticity type (cj;6q) with generator (A,n).  Then, for every 6 G (0 ,0o)> there exists a 

constant Cg >  0 such that

||«*S,(fc)(*)|| <  C0euRe e(\u\\z\ +  1)* (3.4.1)

for all z G Eg.
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3.5 A n E xam ple

In this section we demonstrate some results of Chapter 2 and 3 by discussing the 

delay problem

v'(t) =  Av(t)  for 0 <  t <  1,

v'{t) =  Av(t) +  Av(t  — 1) for t > 1,

v(0) =  x, (3.5.1)

where A  is an unbounded, closed linear operator in a  Banach space X  and x  e  X.  

Integrating (3.5.1), we obtain the equivalent equation

{Jq Av(s)ds +  x  for 0 <  t < 1,
.

f 0 Av(t  — s)ds + 2 f x Av(t — s)ds +  x  for t > 1.

Thus, the problem (3.5.1) can be written as

v(t) = [  Av(t — s)d/i(s) +  x  for t  >  0, (3.5.2)
J o

where

ix(t) =  | t for 0 <  t < 1,
21 for t > 1. (3.5.3)

Clearly, y, e  jBV£([0, oo); (D) for all e >  0 and a simple calculation shows that dy{A) =  

for every A 6 (Do. In the following the mild solutions of (3.5.2), i.e., the solutions 

of the equation

v(t) — A  f  v(t — s)d/x(s) + x  for t  >  0 (3.5.4)
Jo

with (j. as in (3.5.3), will be studied.
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We ask first for which unbounded operators A , the pair (A, p) generates an analytic, 

integrated solution operator family. As in the proof of Corollary 3.1.8 it can be shown 

that if A  is unbounded and (A, rj) generates an analytic, integrated solution operator 

family of analyticity type (w; 0O), then drj(\) 0 for all A G Ew,0o+ f ‘ Since {A G 

(D | dp(X) =  0} =  {(2n  +  l)i | n  G IN}, no pair (A,/z) with A  unbounded generates 

an analytic, integrated solution operator family.

Next, we ask for which operators A  the pair (A,/a) generates an integrated solution 

operator family. Theorem 3.1.9 says that (A,/a) generates an integrated solution op

erator family if and only if there exist constants u  > 0, M  >  0, and a > 0 such that 

( I  -  dJ(A)A) " 1 G L{X)  and || ( I  -  dfA(X)A)~1\\ <  M|A|° for all A G <BW. Let w >  0. 

Since

for all A G (Du,, a necessary condition on A  for (A, /a) to generate an integrated solution 

operator family is that ^  G p(A) for all A G (Dw. The function A l-f-e“ A
dfi(X) t

maps the half plane (Dw onto the open disk D  with center (1 , 0 ) and radius e-w, which 

is contained in a sector Eo,0 for some 6 G (0, j  ]. The function A 4 j  maps D  into the 

same sector S 0 ,0 . Consequently, (D̂  is mapped into the sector So,0+$ by the function 

A j ^ - . Thus, if there exist some constants M  >  0, 6 G (0, f  ], and 6 >  —1 for 

which A  satisfies

£ 0 ,0+§ C p(A) and ||1?(A, A)|| <  M|A | 6 for all A G S Ol0+§, (3.5.5)
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then ( /  — dfx(X)A)^1 G L(X)  and

K Z - S k A M ,- !  -  j ^ f  I ^ M ) I  <  <  M i |A|6+1

for a constant M i >  0 and all A G Cw. Therefore, the condition (3.5.5) is sufficient for 

(A, n) to generate an integrated solution operator family. Moreover, if the resolvent 

set of A  does not contain a region Ew,0+ § for any u  > 0 and 6 G (0, f] , then (A,n)  

does not generate an integrated solution operator family. In this case, the results of 

Chapter 2 can be applied. This will be done in the following.

Let A  be the differential operator ^  in AC =  Co([0, oo); (D) with maximal domain. To 

solve (3.5.4) by means of Theorem 2.2, we solve first the characteristic equation of 

(3.5.4), i.e., the first order differential equation

( /  -  — ^ M A)(7’) =  j® (r ) for r  >  0 (3.5.6)

for every A >  w for uj >  0. From the condition that y(A) G Co([0, oo); <D) for all A >  u,  

the solution

V(*)(r)  =  i ^ = X * ( r  +  0 A( j- ~ ^ = a )  for r  >  0 

to (3.5.6) is obtained. Let x(r) =  e- r  for every r > 0. Then

y(X)(r) =  — ]— T / ° ° e " (H ^ x)te“ (r+t)dt = ------— — r  = ------ ^ — 3— .
■A A  ) 1 +  e -A  JQ a  +  1 +  e~x A(1 -  ( - ± ± f ^ ) )

Hence

k=Q

fo r  A >  ui >  2 .  L e t

W ) : = i (^  =  g g )\  / k \  1
. n . . .  A* A3=0
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for every k € INo and A >  2. Since the inverse Laplace transform of the function 

A pr is for £ >  0 for every k G IN and since the inverse Laplace transform of 

the function A i-4 is H j  =  l(j-,oo), i.e., the unit step function at j ,  it follows that

L~lh [ t )  =  J ‘ P =  H f  (t) for t  >  0.

Thus, the inverse Laplace transform of the function y, given by

£ ~ V f )  =  * £ ( - ! ) * £  fOT‘ S 0 ,  (3.5.7)
fc=0 j= o

is a mild, exponentially bounded solution of the equation (3.5.4) for X  =  Co([0, oo); (D), 

A  =  and x(r) =  e_ r.

Clearly, the problem (3.5.1) can be solved directly by the variation of constants formula 

(see also [Pr]). The problem (3.5.1) can be written as

v'(t) =  Av(t)  +  f ( t )  for t  > 0, v(0) =  x,

where

m  =  { 0 for 0 <  t < 1
Av(t — 1) for t > 1.

Suppose that A  is a generator of a Co-semigroup (T(£)}t>o. Then by the variation of 

constants formula,

v ( t ) = T ( t ) x +  f  T(t  — s) f(s)ds  for t  > 0
Jo

is a solution of (3.5.1). Thus, (3.5.1) has a mild solution v(t) =  T(t)x  on [0,1] for all 

a: 6 X.  On [0,2] the problem (3.5.1) has a mild solution for all x  6 D(A)  which is given
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by n\ _ / T^ x for 0  ̂   ̂1
— \  T( t)x  +  T(t  — s)A?;(s — l)rfs for l < t < 2
_  ( T(t)x  for 0 <  t < 1

\  T(t)x + (t -  l )T( t  -  I) A x  for 1 <  t <  2.

In general, (3.5.1) has a mild solution v on [0,n] for all x  E D{An~l ) and it is given by

»(*) =  E -  k )+)Ak*<
k=o

where t+ =  max{t, 0} for t € IR..

Again, let X  — Co([0, oo); (D), A — and x(r) = e~r. Then A  is the generator of the 

shift semigroup {T(t)}t>o defined by T(t)g(s) = g(s + 1) for g € X .  Let x(r) =  e- r . 

Then since A kx  =  (—1)*® and T((t  — k)+)Akx  = (—l ) fce“ (4-fc)+® for every k 6 INo, 

the solution v to (3.5.1) with X  =  Co([0,oo);(D), A  = and x(r) =  e- r  is given as

v(t) =  ( - l ) fce~((t~fc)+)g for t >  0. (3.5.8)
k=0

By the uniqueness of Laplace transform, the solution (3.5.8) coincides with the solution 

(3.5.7).
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