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Abstract

In 1942, K. It6 published his pioneering paper on stochastic integration with re-
spect to Brownian motion. This work led to the framework for It6 calculus. Note that,
Ito calculus is limited in working with knowledge from the future. There have been many
generalizations of the stochastic integral in being able to do so. In 2008, W. Ayed and
H.-H. Kuo introduced a new stochastic integral by splitting the integrand into the adap-
tive part and the counterpart called instantly independent. In this doctoral work, we con-
duct deeper research into the Ayed—Kuo stochastic integral and corresponding anticipating
stochastic calculus.

We provide a new proof for the extension of It6 isometry for the Ayed-Kuo
stochastic integral which clearly demonstrates the intrinsic nature of the construction of
the general integral. Furthermore, we extend classical It6 theory results for martingales
to their Ayed—Kuo stochastic integral analogue, near-martingale. We show the near-
martingale property of Ayed—Kuo stochastic integral and optional stopping theorem for
near-martingales with bounded stopping times.

Using the general Ito formula for the Ayed—Kuo stochastic integral, we find ex-
plicit solutions for linear stochastic differential equations with anticipation. We show ex-
istence of solutions for certain classes linear stochastic differential equations with anticipa-
tion coming from initial condition as well as from the drift. We present a Trotter inspired
product formula to construct the solution. In the process, we also show the uniqueness of
the solution. While we mainly rely on the Ayed—Kuo formalism, other theories are used
minimally and out of necessity. Using the explicit solution, we show the relation between
a solution of an anticipating stochastic differential equations and its It6 projection. Fur-

vi



thermore, we establish Wentzell-Friedlin type large deviation principle for the solution of
a class of linear stochastic differential equation with an anticipating drift and non-adapted

initial condition.
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Introduction

In 1902, H. Lebesgue revolutionized mathematics with his introduction of the
Lebesgue integral and subsequently, measure theory [23]. N. Wiener used these measure-
theoretic tools in a mathematical model of Brownian motion, B(t) [31]. In 1942, K. It6
introduced a new stochastic integral while studying for a probabilistic method to construct
diffusion processes from infinitesimal generators [12] [16]. This Ito integral can be seen
as a generalization of Wiener integral. Ito theory has a measurability requirement which
leads to an inability to work knowledge from the future. There have been many gener-
alization include future information in the stochastic integral. Wiener’s work provided
motivation for L. Gross’s work into Abstract Wiener space for infinite dimensional analysis
[7]. In 1975, Hida build up white noise distribution theory in his analysis of Brownian
functionals [8]. In 1976, P. Malliavin proved the existence of transition probabilities
via probabilistic methods in [24] (See also [25]) leading to the current theory of Malli-
avin calculus. In the white noise distribution theory, the white noise integral provides a
generalization for It integrals.

In 2008, W. Ayed and H.-H. Kuo introduced a new anticipating stochastic inte-
gral to provide a natural and simplistic tool to analyze anticipating stochastic processes
[1]. Within this framework, this doctoral work is interested in extending Ito’s theory of
stochastic integrals to a general setting via the Ayed-Kuo stochastic integral.

The following diagram shows the relationships between the four areas of stochastic

analysis and where the Ayed—Kuo stochastic integral lies when considering the other areas.



( Ito Calculus )( )( Abstract Wiener Space J

-
A-K Stochastic Integral J
\_

( White Noise Theory j( )[ Malliavin Calculus ]

Figure 1.1. Relationships between the different areas of stochastic analysis.

This doctoral work is laid out as follows. In chapter 1, we introduce some funda-
mental ideas in classical 1to theory. We follow that with some introduction and results
into the analysis of rare events via large deviation. In chapter 3, we present the main fo-
cus of this research. We define the Ayed—Kuo integral and state important theorems and
properties. In chapter 4, we apply the new integral in solving a class of linear stochastic
differential equation with anticipation from the initial condition as well as from the drift
term. Finally, in chapter 5, we combine the tools obtained in the Ayed-Kuo stochastic in-
tegral to obtain large deviation results for a particular class of anticipating linear stochas-
tic differential equation. While this doctoral work greatly relies on the formalism of the

Ayed—Kuo stochastic integral, other theories are used minimally and out of necessity.



Chapter 1. Classical It6 Theory
1.1. Background

In 1827, English botanist R. Brown observed an “peculiar” phenomena when
studying pollen seeds suspended on the water [3]. He observed that the particles were
moving in an irregular pattern despite no outside forces. In a series of papers he pub-
lished regarding the phenomena [3] he writes, “I have formerly stated my belief that these
motions of the particles neither arose from currents in the fluid containing them, nor
depended on that intestine motion which may be supposed to accompany its evaporation.”
This irregular movement was named Brownian motion after Robert Brown.

It was not until much later in 1905 that renowned physicist Albert Einstein de-
scribed this irregular motion as the resulting diffusion due to the pollen being battered
by water molecules [6]. Einstein’s explanation of Brownian motion, via normal distribu-
tion, is similar to its modern mathematical definition. Interestingly, Einstein did not know
of Brown’s empirical observation and deduced the theory from molecular kinetic theory of
heat [6]. Alternately, in 1900, L. Bachelier applied Brownian motion to analyse stock price
fluctuations in his doctoral work [2]. In 1923, N. Wiener provided the first mathematical
model of Brownian motion, B(t) [31]. In it, he defined the basic probabilities as values of
a Gaussian measure defined on cylinder sets in the space of continuous functions.

In his pioneering paper “Stochastic Integral”, K. Ito introduced a stochastic inte-
gral and a formula, known as the It6’s formula [12]. The practical applications of 1td’s in-
tegral are diverse. One of the most prominent applications is to the Black-Scholes-Merton

theory of derivative pricing in finance. It6 calculus has been useful in the study of other



scientific fields like statistical physics, biological systems.
In the following sections, we review the definitions of the preliminary mathematical
concepts and their properties. We refer to [15] for details.
1.2. Stochastic Processes and Brownian Motion
Let (2, F,P) be a probability space where € is the sample space, F a sigma-field
and P a probability measure.
Definition 1.2.1. A stochastic process is a measurable function, X (t,w), defined on
[0,00) x Q with the following properties:
e for each t, X(t,-) is a random variable,
o for each w, X(-,w) is a measurable function (also called sample paths).
Definition 1.2.2. A stochastic process, B(t,w), is called a Brownian motion or a Wiener

process if it satisfies the following conditions:

1. P{w|B(0,w) =0} =1,

2. For any 0 < s <t , the random variable B(t,w) — B(s,w) is normally distributed

with mean 0 and variance t — s,
3. B(t,w) has independent increments,

4. P{w]| B(-,w) is continuous } = 1.
From the second condition, we can informally think of a Brownian increment as

|B; — Bs| =~ /|t — s| for s,t € [a,b]. Suppose s < t. Heuristically, when s approaches t,

|B;— Bs| _Vt—s 1
t—s  t—s CVi—s

— OQ.



This allows us to get an intuition on why Brownian motion paths are nowhere differen-
tiable. While the Brownian motion does not have finite variation, its quadratic variation is
finite. This well known result is a fundamental property in It6’s theory of stochastic inte-
gration.

Theorem 1.2.3 (Quadratic Variation of Brownian Motion). Consider a partition of the

finite interval [a,b] given by A, = {a =1ty <t; <ty--- <t,=0b}. Then

n

S (B, - Bi,) =b—a inL¥Q),

i=1

as ||An|| = maxi<i<n(t; — tioy) — 0.
1.3. Conditional Expectation and Martingales

Now we introduce some probabilistic concepts that will be used in much of this
text. We first review conditional expectation and some of its properties.
Definition 1.3.1. Suppose F is a sigma field such that G C F. Let X be a random vari-
able with finite mean. We define the conditional expectation of X given F, E[X | F], as
the unique random variable satisfying:

1. E[X | F] is F-measurable,

2. [,XdP= [,E[X|F|dP for all A€ F.

Theorem 1.3.2. Consider existing setup as in Definition 1.3.1. In addition consider an-
other random variable Y. Then all the following equalities hold almost surely.

1. E[X +Y | F|] = E[X|F] + E[Y|F].

2. E(E[X | F]) =E[X].

3. If X is independent of F then, E[X | F] = E[X].

4. If X is F-measurable then, E[X | F] = X.

5



5. If G C F then, E[X |G] = E(E[X | F]|G).

6. If X is F-measurable and E[XY] < oo then, E[ XY | F] = XE[Y | F].
Definition 1.3.3. A filtration on an interval, [a,b] € [0,00), is an increasing family of
sigma-fields and is defined as {F;} = {F;|t € [a,b]}.

For the ease of notation, we suppress the w in our stochastic processes for the ease
of calculation and clarity. For example, X; = X (¢,w) and B, = B(t,w).

Definition 1.3.4. A stochastic process, Xy, is said to be adapted to the filtration {F;} if
for each t € |a,b], the random variable X, is JF;-measurable.

Example 1.3.5. B; is adapted with respect to {F;} = 0 {Bs|0 < s <t}. We refer to {F;}
as the natural Brownian filtration.

We introduce an extremely important class of processes that are used to model fair
games. Due to this feature, they find applications not only in probability theory, but also
in mathematical finance and numerous other fields.

Definition 1.3.6. Let X; be a stochastic process adapted to the filtration {F;} with
E|X:| < oo for allt € [a,b]. Then, X; is a martingale with respect to a filtration {F;} if

for any s <t in [a,b],

E[X: | Fs] = Xs a.s (almost surely).

Example 1.3.7. B; is a martingale with respect to its natural Brownian filtration. Using

the properties of conditional expectation (Theorem 1.3.2) and the independent increments



of Brownian motion (Definition 1.2.2), whenever s < t,

E (B, | F,] =E[B; — B, + B, | F{]
—E (B, — B,| F.| + E[B, | F\]
—E (B, — B] + B,

=D;.

An important theorem to understand the evolution of the evolution of a martingale
is the Optional Stopping Theorem. This theorem says that in expectation, one would gain
nothing by stopping a stochastic process without looking into the future. As asset prices
are modelled as martingales, this result is important in asset pricing in mathematical fi-
nance. We first define the concept of stopping times and then proceed to the theorem.
Definition 1.3.8. A random variable T : Q — [a,b] is called a stopping time with respect
to the filtration {Fy;a <t < b} if {w;T(w) <t} € F; for allt € [a,b].

Theorem 1.3.9. Let M, a <t < b be a martingale with respect to the filtration {F;} and

T a stopping time. Then, E|Mx.| < co and

if any of the following conditions are true:

1. 7 1s bounded almost surely,

2. There exists is a positive number, K, such that |M;| < K for all w and t with T

almost surely bounded.



1.4. Classical Ito Theory
From hereon, consider the probability space (£2,{F;},P) with t € [a,b] and {F;} the
natural Brownian filtration. Define L?,([a,b] x Q) as the space of all stochastic processes,
f(t,w) with ¢ € [a,b] and w € Q such that,
e f(t,w) is adapted to the filtration {F;},
o [JE[If®)]] dt < oc.
We start off the exposition by first introducing the Wiener integral.
Definition 1.4.1. Let t € [a,b], B; be Brownian motion and f(t) € L*[a,b]. The Wiener

integral of f(t) is denoted by
[ waz,
and is defined in two steps.
Step 1: Consider a partition on [a,b] with a = tg < t; < --- < t, = b. Define the

step function given by

We define its Wiener integral as

/b f(t) dBt = i ai<Bti - Btifl)'
a =1

Step 2: For any f € L*[a,b|, we choose a sequence of step functions f, € L?|a,b]

such that f, — f. Via step 1, {fab fn(t)dB(t)} is Cauchy in L*(2). As such we define

b b
[ rta= i [ 0. in @)

The Ito integral can be seen as a generalization of the Wiener integral. While the



construction is similar, the definition of the Ito integral has three steps and a key approxi-
mation lemma for step 2. We refer to [15] for details.
Definition 1.4.2. Lett € [a,b], B; be Brownian motion and f(t) be an adapted mean

square integrable stochastic process. The Ité integral of f(t) is denoted by

/ (1) aB,

and is defined in three steps.
Step 1: Consider a partition on [a,b] with a = to < t; < --- < t, = b. Define the

step stochastic process given by

f(ta w) = Z gi—l(w)l[tiﬂ,ti)(t)a
=1

where &_1 is F;_1 measurable and E[£2 |] < co. We define its Ité integral as

b n
/ f#)dBy = & 1(By, — By,_,).
a =1

Step 2: We can show that for any f € L2,([a,b] x Q), there exists a sequence of
adapted step stochastic functions f, that converges to f in L?,([a,b] X ).
Step 3: For a general square integrable adapted function f, we define its Ito inte-

gral as

b b
/f(t)dBt: li_}m/ fn(t)dB;, in L*(9).

This definition is well defined as shown in [15]. While the It6 integral does not fol-
low the usual “partition - evaluation - summation - limit” strategy for Riemann integrals,
the left hand evaluation of the step functions have an intuitive similarity to Riemann inte-

grals. We state this property below.



Theorem 1.4.3. Let f(t) be a square integrable adapted stochastic process and suppose

E[f(s)f(t)] is a continuous function of t and s . Then

b n
/f(t)dBt: lim " f(tio1) (B, = By,,) in L*(Q),

lAnll—0 4=

where A,,’s are partitions of |a, b].

We view this via a simple example.
Example 1.4.4. [15] Let t € [0,1]. We want to evaluate fol BidB;. From Ezample 1.5.5,
we have that the integrand is adapted and as such, we are looking at an Ito integral. Fur-
thermore, E [By.B;] = min(t, s) which is continuous for both t and s. Hence, we can use

Theorem 1.4.3 the above integral as a Reimann-like sum. Namely,

/ B,dB, ~ ZBQ . )
= Z { (Bi_, + Bi_, — (B, —Btil))] (B, — B,_,)

1 2 1 2
:52[ Bi)| 453 (Bu=Bi)".
i=1 i=1
The first summation term is an alternating series summation which leaves only the first

and the last term. The second summation term is the quadratic variation of Brownian mo-

tion and as such, we use Theorem 1.2.3 to get,

b
/ Bt dBt -

Now that we have defined the Ito integral, we look into some of its fundamental

(52— 52— (h—a).

N —

properties. For their proofs, refer to [15].

Definition 1.4.5. Let f € L?,([a,b] x Q) then the It6 integral, fabf(t) dBy, is a random

10



variable with mean 0 and variance

)

In addition, if f 1s deterministic then its’ Ito integral is normally distributed.

E :/ E[|f()]] dt. (1.1)

a

From equation 1.1, we can see that the mapping f — f: f(t)dB(t) is an isometry
from L2,([a,b] x Q) to L*().

The stochastic integral performs a continuous time martingale transform of the in-
tegrand. As such, the It0 integral is also martingale as shown in the theorem below.

Theorem 1.4.6. Let X; be a stochastic process such that

X, = /tf(s) dB,, f € L?,([a,b] x Q),

then X; 1s a continuous martingale.
We look at the diffusion processes that motivated K. Ito to introduce the [to inte-
gral.

Definition 1.4.7. An Ito process is a stochastic process of the form

X, = Xa+/atf(t) dBt+/atg(t) n

with X, - F, measurable, f € L?,([a,b] x Q) and, g € L},([a,b] x Q).

In the above definition of the Ito process, the first integral is an Ito integral of a
mean square integrable adapted process and by Theorem 1.4.6, it is continuous. The sec-
ond integral is a Riemann integral for each w. As such, the Ito process is continuous.

An integral part of 1to6 theory is the Ito formula. It can be seen as the stochastic

analog of the “chain rule”. It is useful in showing existence and uniqueness as well as in

11



creating new stochastic processes from existing one. Furthermore, it helps in understand-
ing stability results for stochastic differential equations among many other applications.
Known classical results would be hard to obtain without the following It6 formula.

Theorem 1.4.8. Let X, be an Ito process given by

X, = Xa+/atf(t) dBtJr/atg(t) dt,

with X, - F, measurable, f € L?,([a,b] x Q) and, g € L!,([a,b] x Q). Suppose O(t, z)
is a continuous function with continuous partial derivatives. Then O(t, X;) is also an Ito

process and is given by

£ 90
Ot X)) = O(a. X,) + | (s, X,)dB,

a

"Toe 00 1 0%0
+ [ G0+ S0 Xate) + s ) s

The multiplication of the differentials follow the rule shown It6 table in Table 1.1:

X dBt dt
dB, | dt | 0
d | 0 |0

Table 1.1. Ito table

For the ease of computation and calculation, it is convenient to express stochastic
integral equations in their stochastic differential form. However, this is just mathemati-
cal convention as dB;/dt by itself does not make sense as almost all Brownian paths are
nowhere differentiable. As such, the stochastic differential equations are to be interpreted
as stochastic integral equations. For example, the differential form of the It6 process, X;,

in Definition 1.4.7 is given by

dX, = f(t)dB(t) + g(t) dt.

12



As mentioned earlier, we can use the Ito formula to make new stochastic processes
or to evaluate stochastic integrals without resorting to the definitions. We show this fea-
ture with an example.

Example 1.4.9. Consider the function f(x) = x*. Then f, = 2z and f., = 2. We use the

Ito formula in Theorem 1.4.8 to get

U(B) = L(B)AB, +  fu(B)it,

d(B?) = 2B,dB; + dt.
Hence, we have
t
Bf—Bgzz/ BydB; + (t — a).
We solve for the integral to get

/t B.dB, - % (B~ B — (t — ).
Note that when t = b in the above example, we would get the same result as in
Example 1.4.4.
1.5. Exponential Process and Girsanov Theorem
Exponential functions are important in ordinary differential equation theory due to
their in variance with the derivative operator. We review a stochastic process with similar

significance with respect to the stochastic differential equation.

Example 1.5.1. Let f € L2,([a,b] x Q) and define the stochastic process,

t 1 t
Er(t) = exp {/ f(s)dBs — 5/ fQ(s)ds} :
Using the It formula in Theorem 1.4.8, we have dE¢(t) = f(t)E¢(t)dB:. Hence,
Es(t) is a martingale.

13



Exponential processes are important in the theory of stochastic integration as it is
the direct analogue of the exponential function in ordinary differential equations. It is par-
ticularly useful in showing that translations of Brownian motion remains Brownian motion
under an equivalent probability measure. This result is called the Girsanov Theorem and
is listed below.

Theorem 1.5.2. Let f € L2 ([a,b] x Q) and let Ep[E;(¢)] =1 for all t. Then

Wt:Bt—/tf(s)ds , t€la,b),

is Brownian motion with respect to the probability measure dQ = E¢(b)dP.

14



Chapter 2. Rare Events and Large Deviation Principle
2.1. Introduction

The chance of buying a winning power ball ticket is astronomically low. However,
people still buy lotto tickets in large numbers despite knowing that winning is a rare
event. They do so because the potential win would completely change their life. Rare
events have the potential to leave a significant impact. As such, understanding how these
rare events happen is an interesting field of study.

This concept first appeared in mathematical history though the works of Swedish
mathematician Harald Cramér in modelling an insurance business[4]. If one is operating
an insurance company, they would have to consider both earning and claims when looking
at profitability for the company. We can assume that the earning come as premium at a
constant daily rate, x and the claims, X;, arrive at a random rate. For any fixed earning
period, if the total claims is more than the total earning then the profit margins for the
company would decrease. Then what is the premium they have to charge their customers
in order to have the average future claims to be less than the average daily future earn-
ings?

Let use review some standard probabilistic results to analyse the question.

Theorem 2.1.1 (Law of Large Numbers).
Sp = [, asn — oo,

where S,, = %Z?:1 X; and the limit is in sense of convergence in probability in the

weak sense and almost surely in the strong sense

15



Theorem 2.1.2 (Central Limit Theorem).

(% Z(Xz - M)) — N(o,0%),

where the limit is in distribution

Theorem 2.1.1 tells us that as the number of claims increases, asymptotically the
average value of a claim would approach a number p while Theorem 2.1.2 tells us what
the limiting distribution would be normal around the number p. However, we do not know
at what rate the average claim would approach . Let us assume that x is the premium
earned per day and S, = > | X, is the average claim on the nth day. We want to know
how the probability of the event that the average future claim is more that the average
daily earnings depends on the premium charged. Namely we want to know how P(|S, >
x|) is dependent of the value of z. We would want this probability to not only be small
but exponentially small as to guarantee that that the chance of losing profitability for the
company is exceedingly small. Large deviation principle is this study of rare events via
analysis of probabilities of rare events that are exponentially small.

Heuristically, consider a topological space X and a complete Borel o-field B. Large
deviation principle characterizes the asymptotic behavior of a family of probability mea-
sures, {i.}, on (X, B) as € decreases to zero via a rate function. It does so via the asymp-
totic exponential bounds on the open and closed sets in the topological space.

In the following sections, we review some preliminary definitions and explore some
known results in the theory. We follow the exposition given by Dembo and Zeitouni in [5].
2.2. Large Deviation Principle and Some Properties

We start off with the definition of the rate function and Large Deviation Principle.
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Definition 2.2.1. A function, I, is called a rate function on X if I maps X to R and if
the level sets of I are compact subsets of X

Definition 2.2.2. A family of probability measures, {p.}, satisfies the large deviation
principle with a unique rate function, I1(e) if the following inequalities hold:

e (Uppper Bound)
lim sup € log p.(F') < — inf I(x),

e—0 zeF

for all closed sets F.

e (Lower Bound)

. -
llglglfelog we(0) > ;IGI(f) I(x),

for all open sets O.

Now that we have defined what large deviation principle is, we look into some use-
ful results in the theory. The following result is called Contraction principle and states
that the continuous image of random variables satisfying large deviation principle also sat-
isfies large deviation principle.

Theorem 2.2.3 (Theorem 4.2.1 of [5]). Let X and Y be two separable metrizable topolog-
ical spaces, I a rate function on X, and f a continuous function mapping X to Y. Then
the following conclusions hold.

1. For eachy € ),

J(y) & inf {I(z)|z e f(y)}

s a rate function on ),

2. If {X,} satisfies large deviation principle on X with rate function I, then {f (X,)}
satisfies large deviation principle on Y with rate function J.
Large deviation principle is also preserved between sequences of random variables
that are super-exponentially close to each other as shown by the following theorem.
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Theorem 2.2.4 (Theorem 4.2.16 of [5]). Forn € N, let X,, and Y,, be random variables
on (2, F, P) and take values in X. Given that {X,} satisfies large deviation principle on

X with rate function I and that {Y,} is super-exponentially close to {X,} i.e,

1
limsup — log P{d(X,,Y,) > 0} = —occ.

n—oo TN

2.3. Large Deviation Principle for Random Variables

We return to the mathematical setting that Cramér investigated the insurance
problem as introduced in Section 2.1.
Theorem 2.3.1 (Theorem 2.2.3 of [5]). Let X,, € R be i.i.d random vectors with X, dis-
tributed according to a d-dimensional probability measure p. Let A be the logarithmic mo-

ment generating function associated with b, namely,
A(N) £ log E[eV)].

Then, the sequence of probability measures {u,} satisfies large deviation principle with the
convez rate function A*(-), namely:

1. For any closed F C R,

1
lim sup — log i, (F) < — inf A*(z).
n

n—00 zeF

2. For any open O C R,

1
lim sup — log 1, (0O) > — inf A*(z).

n—r00 z€0

where py, is the law of S, = 137" X; and A*(z) £ supyepa {(X, z) — A(2)} is the
Frechet-Legendre transform of A.
We refer the reader to the Garter-Ellis Theorem for non-i.i.d case in [5].
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2.4. Large Deviation Principle for Stochastic Processes

Let us explore some results to familiarize ourselves to some large deviation results
on the sample paths. We start off with some results for the building blocks of stochastic
calculus. From Theorem 2.3.1, we have an understanding about the large deviation be-
havior of the sample mean. Given a sequence of random variables, the following theorem
provides insights into the large deviation behavior of the whole set of random variables
indexed by ¢. For this section, we fix t € [0, 1].

Given a sequence of i.i.d random variables {X,,} with A(\) £ logE (¢**7) < oo

for all A € R, we consider the random walk given by,

Theorem 2.4.1 (Theorem 5.2.1 of [5]). Let w, is the law of Z,(-) in Lo ([0,1]). Then the

measures, f, satisfy large deviation principle in Ly, ([0, 1]) with the rate function,

/ M@ i e AC
Iy =170

o0, otherwise,
where AC denotes the space of absolutely continuous functions and A x () is the Frechet-
Legendre transform of A(e).

We proceed to Schilder’s Theorem which establishes sample path deviations for
Brownian motion. Let By, t € [0,1], be Brownian motion starting at 0 and for all € > 0, let
pe be the probability measure induced by /eB, on Cj ([0,1]). Then as ¢ — 0, p. = .
As such,

Theorem 2.4.2 (Theorem 5.2.3 of [5]). The sequence of probability measure {p.} as ¢ — 0
follows large deviation principle on Cy ([0, 1]) with rate function I(f) where
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- LN pw)d, if f e HY,

0, Otherwise,
where H' = {f € Co ([0,1)) | f(t) = [, f'(s)ds and f' € L?[0,1]}.
Let us look at how we can use an existing large deviation principle results to obtain
new ones.
Example 2.4.3. Let Y = \/e(By — By) with t € [0,1]. Then, {Y;} follows large deviation

principle on C1 [0, 1] with the rate function J given by

1 1 ) . 1—t . )
P / FOPd,  if o) = / £(s)ds with f € L7[0,1],

o0, otherwise,

where C10[0,1] = {f| fis continuous and f(1) = 0}.
Proof. Define Z; = (B — By—_) for t € [0, 1]. Then we have the following properties:

1. Zy =B, —B; =0.

2. Let 0<u<wv<s<t<1then, we havethat 1 > 1—-u>1—-v>1—-s5s>1—t>0.
As such, 7, — Z, = B1_, — By1_; is independent of Z, — Z, = B1_, — By_, via the

independent increments of Brownian motion.

7, — 7, Ly — 2y

0 1—1¢ 1—s 1—w 1—u 1

Figure 2.1. A t-dependence plot of the disjoint increments of Z, .

3. Zy—Zs=B1_s—B_1~NO,t—s)for0 <s<t<1.

4. Z; is continuous almost surely as a sum of continuous functions.
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From Definition 1.2.2, we have that Z; is a Brownian motion. Consider the function
A(¢y) = 91— for f continuous. Then, A : Cy[0, 1] — [0, 1] is a continuous function that
is its own inverse. Furthermore, A(v/€Z;) = A(y/e(By — B1-¢)) = V/€(By — By) = Y,*. Using
the contraction mapping property in Theorem 2.2.3 along side the large deviation prin-
ciple results in Theorem 2.4.2, Y,* follows large deviation principle with the rate function

given by

J(W) =To A (1h) = I((1 — o))
%/0 |f(O))dt, if (1 —t) :/0 f(s)ds with f € L*[0,1],
oo, otherwise,

/|f Pdt, if (1) / f(s)ds with f € L*[0,1],

oo, otherwise,
\

where we performed a change of variables for the last equality. m

Via Schilder’s Theorem and an application of the super-exponential approxima-
tion given in Theorem 2.2.4, we can obtain large deviation results for a class of solutions
of stochastic differential equations, namely :

Theorem 2.4.4 (Theorem 5.6.3 of [5]). Given a stochastic differential equation with state

driven noise:

X.() = X.(0) + e /D (X, (5))dB(s) + /O B(X.(s))ds, telo1],

with {X(t)} ~ pe and X(0) = 0. The sequence of probability measures {j} satisfies large
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deviation principle with rate function I given by,

I(f) = LIS @) = BUF@) , A7Y @) (F'(1) = B(F () dt,  if feH,

00, otherwise,
where A(t) = aa*(t).

We are interested in cases where the stochastic differential equations need not nec-
essarily be adapted. From the definition of the It6 integral in Definition 1.4.2, we see that
the stochastic integral is not defined when the integrand is not adapted. As such, we first
switch our focus to the Ayed—Kuo integral which provides an intuitive and simplistic way

to approach anticipating integrals.
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Chapter 3. General Theory of Stochastic Analysis
3.1. Introduction
The following question was posed by Ito in the 1976 International Symposium of

Stochastic Differential Equations in Kyoto [13]. Is

1 1
/ BdB; = Bl/ dB, = B} ? (3.1)
0 0

He added that B is not adapted to the natural Brownian filtration J; and as such,
fol B1dB; can not be defined as an It6 integral. In working with this limitation, he pro-
posed an initial enlargement of filtration by taking G, = o{By,Bs|0 < s < t} and

decomposed the Brownian motion as

t . t .
o l—u 0o l1—u

In this formulation, B; is quasi-martingale with respect to the new filtration while B; is
adapted to G;. As such, Equation (3.1) holds true in the enlarged filtration.

The Ayed-Kuo stochastic integral takes inspiration from It6. Instead of keeping the
integrand B; while simultaneously changing the filtration and decomposing the integra-
tor By, the new stochastic integral maintains both the Brownian motion and the filtration
while decomposing the integrand into adapted part and the counter-part called instantly
independent. In this chapter, we will review the Ayed—Kuo Stochastic integral and prove

some new results.

Section 3.3 and Section 3.4 of this chapter previously appeared, substantially unchanged, in
the open access Journal of Stochasic Analysis article: Kuo, H.-H., Shrestha, P., and Sinha, S.,“An
Intrinsic Proof of an Extension of It6’s Isometry for Anticipating Stochastic Integrals,”https://
digitalcommons.lsu.edu/josa/vol2/iss4/8/ and in the open-access arXiv article: Kuo, H.-H.,
Shrestha, P., Sinha, S., and Sundar, P., “On near-martingales and a class of anticipating linear SDEs,”
https://arxiv.org/abs/2204.01932 respectively.
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3.2. Instantly Independent and Counter Filtration

Let us first define the notion of instantly independence and the filtration space we
operate on for instantly independent processes.
Definition 3.2.1. A stochastic process, f(t), is said to be instantly independent with re-

spect to the filtration {F} if f(t) is independent to F; for each t € [a,b].

Definition 3.2.2. A family, {G"}, of complete sigma fields is called a Counter-filtration
of {Fi} if
1. For each t € [a.b], G is independent of F;,
2. for eacha <s <t<b, G® >gGWH.
We define the counter-filtration process space for our instantly independent pro-
cesses.
Definition 3.2.3. Define L? ([a,b] x Q) as the space of all stochastic processes, g(t,w),
t € [a,b], w € Q, satisfying,
e g(t,w) is adapted to the natural Brownian counter-filtration, Gg®,
. f;E [(%)2] ds < 0.
Remark 3.2.4. L2 ([a,b] x Q) is a subspace orthogonal to L%, ([a,b] x ).
Example 3.2.5. Define F, = 0{B, — ByJla < 5 <t < b} and G = ¢{By — ByJa <t <
s < by. Then, {GDY is a counter-filtration of {F;}. We will refer these filtrations as the
Natural Brownian filtration and Natural Brownian counter-filtration.
The action of the stochastic integral on processes adapted to the natural Brown-
ian counter-filtration is very similar to the action of the Ayed—Kuo integral on processes

adapted to the natural Brownian filtration. Namely, the integral acts as an isometry be-
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tween two spaces. As such, we have the following result.

Theorem 3.2.6 (Proposition 2.1.3 and Theorem 2.1.8 of [33] ). Let 1y be a square inte-
grable stochastic process adapted to the natural Brownian counter-filtration, G or alter-
nately ¥ € L2 ([a,b] x Q). Then

1. 1y is instantly independent to the natural Brownian filtration {F;},

2 E [ v.dB,] =0,

2
3. E [(ff% aB,) } = ["E [(¢)?] ds.
It is natural to ask what if a function is both instantly independent and adapted?

Then the function would be deterministic. Indeed if a function f(¢), t € l[a,b] is Fi-

adapted and instantly independent for each ¢ then,

fO=E[fO) A =E[f@)], telab],

where the first equality is via adaptedness and the second equality is via instantly inde-
pendence. Thus, f(t) = E[f(t)] for all ¢ in [a,b]. This means that f is deterministic.
3.3. Ayed—Kuo Stochastic Integral

As mentioned earlier, for the Ayed—Kuo stochastic integral, we decompose the in-
tegrand into adapted and instantly independent parts. Let us view it via an illuminatory
example.
Example 3.3.1 (Example 2.4 of [10]). Consider f; By, dB;. Since the integrand, By, is
not {F;}-adapted, the integral is not defined within Ité theory. Note that for each t, we can

decompose
Bb — Bt ‘I— (Bb - Bt)7
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where By 1s Fy-measurable, and By, — By is independent of F; due to the independence of
increments of Brownian motion. Thus, we have decomposed the anticipating integrand into
an adapted and an instantly independent process.

Motivated by Ito’s original construction, we take left end point approximation for
the adapted parts and right end point approximation for the instantly independent part.
This way we can “define” the integral

b b
lBM&le%H&—&HMt

n

- IIAlirln%szl [Btj—l + (Bb - Bt]’)} (Bi, — By,,)

= lim Z [Bb - (Btj - Btj_l)} (Btj - Btj_1)

anl—0
‘]7
=By By, =By~ | B, - B, )
b ||A7111‘,‘I14)0 j_l( t; t]*l) HATILI”rl‘)O 2_:( t; t]—l)
n n
=B & By = By,) - i t;—t;
b ||A,ILIHIL0 j:1( t; tgfl) HATILIHnHO jZI( J J 1)

=B, (By — B,) — (b—a),

where in the last equality, we have used the quadratic variation of Brownian motion.
With this example to illuminate the path ahead, we introduce the Ayed-Kuo

stochastic integral.

Definition 3.3.2. The Ayed—Kuo stochastic integral of a stochastic process ®(t) intro-

duced in [1] is defined in the following three steps.

1. Suppose f(t) is an Fi-adapted continuous stochastic process and ¢(t) be an contin-

uous stochastic processes that is instantly independent with respect to F;. Then the
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stochastic integral of ®(t) = f(t)o(t) is defined by

/f ZHAlllﬁl_me i-1)0(t;)(B(t;) — B(tj-1)),

provided that the limit exists in probability.

. For a process of the form ®(t) => 7", fi(t)pi(t), the stochastic integral is defined by

[ewas® =Y [ rwe ase)

. Let ®(t) be a stochastic process such that there is a sequence {®,(t)} ., of stochas-
tic processes of the form in step 2 satisfying

(a) f; D, () — ®(t)|” dt — 0 almost surely as n — oo, and
(b) fab D, (t)dB(t) converges in probability as n — oo.

Then the stochastic integral of ®(t) is defined by

b b
/ O(t)dB(t) = lim [ D,(t)dB(t) in probability.

n—oo

This integral is well defined, as demonstrated by the following lemma.

Lemma 3.3.3 (Lemma 2.1 of [10]). Let fi(t),1 < i < m and g;(t),1 < j < n be {F}-

adapted stochastic processes and let ¢;(t),1 < i < m and ¢;(t),1 < j < n be instantly

independent with respect to {F}. Suppose the stochastic integrals ff fi(s)i(s) dB(s) and

s)dB(s) exist for all i, j. Assume that,

> K060 = > 0,00

Z/fz )u(s) dB(s Z/gj $)05(5) dB(s).
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This technique of decomposing the integrand into adapted and instantly indepen-
dent processes easily extends to case when the integrand is a product of adapted and an-
ticipating processes, as the following example demonstrates.

Example 3.3.4. Using the decomposition ByB; = (B, — B;)B; + (By)? fort € |a,b],
we write the integrand as a sum of products of adapted and instantly independent parts. As

such, we can use the definition to get

b b
/ BB, dB, = / (B«(By — By) + BY) dB,

b b b b
:Bb/ BtdBt—/ Btdt—%JrW
b

1
5B (B =B b+ a)— [ B

3.3.1. Mean of the Ayed—Kuo Stochastic Integral

We first look at the mean of the Ayed-Kuo stochastic integral. From Definition
1.4.5, we have that the It integral is a mean zero process. We expect the same for the
Ayed—Kuo stochastic integral. The following result shows that it is indeed the case for a
certain class of integrands.
Theorem 3.3.5. Let ®(x,y) be continuous on both variable such that ®(By, By, — B;) €

L*([a,b] x Q). Furthermore, assume that the partial sums

Z (E(Bti717 B - Bti) (Bti - Bti—l)

i=1

are uniformly integrable. Then
b
]E |:/ @(Bt,Bb - Bt) dBt - O

Proof. Using the definition of the Ayed—Kuo stochastic integral in Definition 3.3.2 and
the uniform integrability condition on the partial sums to interchange the limit and the
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expectation, we have

n

b
E U ®(B,, B, — By) dBt} = lim Y E[®(B

lAll,—o0 By — By,) (Bti - Bti,l)] (3.2)
" i=1

i—17

Bt', B[/Z o Bszl Bl Bt

Figure 3.1. A t-dependence plot of the disjoint increments of B,.
Note that, as independent increments of Brownian motion, both B;, , and B, — B,
are independent of (Bti — Bti_l)- As such, continuity of ® implies that ®(B;,_,, B, — By,)

is independent of B,, — B;, ,. Hence,

E[®(Bi, ,,By— By) (Bi, — B, ,)| =E|[®(By, ,,B,— By,)|E [B;, — B;, ,] =0. (3.3)
where the last equality is due to the zero mean of the Brownian interval. We combine the
results of Equation 3.2 and Equation 3.3 to complete the proof. O

3.3.2. Extension of It&’s Isometry (Variance)
Suppose f and ¢ are continuous functions on R. It is proved in Theorem 3.1 of [18]

that

_/ E [f(B)’¢(By — B)?] dt

(/th o(By — By) dBt>2

+2 / / & (By — B,)f'(B))d(By — B,)] ds dt. (3.4)

The result is motivated by Theorem 13.16 in the book [17] where it is shown via
white noise methods. The proof in [18] is lengthy, imposes stronger conditions on the inte-
grand, and involves tedious computations via the binomial expansion. More importantly,
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it doesn’t showcase the crucial feature of the Ayed—Kuo theory of stochastic integration
- the left end point and the right endpoint evaluation for the adapted and instantly inde-
pendent processes. In what follows, we provide intrinsic proof of the formula in Equation
(3.4) for a more general case.

In the proof of Theorem 3.3.6 and Theorem 3.4.2 below, we shall use the o-fields

Fs=0{By; a <u<s}, a<s<hb,
GY =0{B,— By t<v<b}, a<t<b, and

HY =0 (F,ug"), a<s<t<b

Here {F, : s € [a,b]} is the natural Brownian filtration and {G® : ¢t € [a,b]}
the natural Brownian counter-filtration generated by the Brownian motion. We shall call
HY as the separation o-field. We conjecture on the importance of the joint o-field H.
Taking conditional expectation judiciously with respect to the separation o-field plays a
significant role in the proof the following theorem.

Theorem 3.3.6 (Theorem 3.1 of [20]). Suppose f,¢ € C'(R) such that f(By;)p(By —

By), f(B)¢ (By — By), f'(B)$(By — By) € L*([a,b] x Q). Then

</th &(By — By) dBt)Q

+2/ / By — B,)f'(B)$(By — B)] ds dt. (3.5)

b
_/ E [f(B:)*¢(By — B,)?] dt

Remark 3.3.7 (Remark 3.2 of [20]). For the right-hand side of (3.5) to be well-defined,
we need the well-definedness of the two integrals. For the first integral, we directly see that
the integral is well-defined if f(B;)¢(By — B;) € L*(a,b] x Q). For conciseness, we write
fi = f(By), ¢ = o(By — By), and similarly their corresponding derivatives. Using this
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notation, for the second integral, we can use Cauchy—Schwarz inequality to get

[ [sinosola
// 1564 (E[Ift’qﬁtf])édsdt
< [[(=]iaf]) as [ (=[imor])

< (b—a) (/bE 1£:0F] ds)é (/bJE [z dt)é,

where we used the Schwarz’s inequality in the last step.

Combining these results, we see that a sufficient condition for the second integral to
exist is f(By)¢(By — Bt), f(Bi)#' (By — By), ['(B:)$(By — By) € L*([a,b] x Q).
Remark 3.3.8 (Remark 3.3 of [20]). In the proof of Ito’s isometry, one typically takes
conditional expectation with respect to the o-field Fs in a simple manner. On the other
hand, our proof requires conditioning with respect to the o-field HY in a very specific man-

ner.

Proof. For notational convenience, let

ABk Btk Btk,17
Aty =ty — tp_1,
fk—l = f(Btk—l)7

br = ¢(By — By,).

Then by the definition of the Ayed—Kuo stochastic integral, we get

b
/ f(B)¢(By — By) dB; = lim Zfl 1 AB;.

|An|—0
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By taking a subsequence, if necessary, we may assume that the convergence is in L?(2).

Therefore,

E < / " (BB, — By dBt>2

= lim ZZE[fi—1¢ifj—1¢jABiABj]
i=1 j—1

a0
n n j—1
= lim Y E[f2,¢>(AB)*]+2 lim E(f 16:fi16:ABAB.
||An||ao; fia0i (AB)] AMHoM; fiadifi10y il
=: Dy + 2Dy,

where we separated the sum into diagonal and off-diagonal elements in the penultimate
step and used the symmetry of ¢ < 5 and ¢ > j.

First we focus on the diagonal elements. Note that AB; is independent of both
Fi,_, and G%). Moreover, f;_; is F;, ,-measurable and independent of G*). Similarly ¢;
is G(*)-measurable and independent of F;, ,. Therefore, by taking conditional expectation

with respect to F;,_,, we get

E[f2,6? (AB)?] =E [E (2,67 (AB)* | Fi,)]
=E[f?, E(¢] (AB)’ | Fir_,)]
=E[f2,]E[¢} (AB)?].

Similarly, taking conditional expectation with respect to G gives us
E [¢? (AB,)?] =E [E (¢? (AB,)* | 6“)]
—E[6? E ((ABy)? | §®)]
= E [¢]] E [(AB))*].
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Putting it all together along with the fact that E [(ABi)Q} = At;, we get
E [f2.67 (AB)*] = E [f2,]E [¢]] Ati = E [f(B.)*6(By — B))*] At

where we used the independence of increments of Brownian motion in the last equality.

Summing over ¢ and taking limits, we get

Dy = / E [£(B)?6(By — B,)?] dt.

The method for the off-diagonal elements is not so direct, and we highlight the key
tricks.

Trick 1 Note that AB; is independent of both F;, | and G*), and is therefore indepen-

dent of ’Hgi So conditioning with respect to ’H?}l gives us

E(AB | #")) =E[AB] =0,

E((AB) | H!,) =E[(AB)] = At

Trick 2 Consider B, — B;, — AB; = (B, — By,) + (By,_, — By,). Since B, — By, is G-
measurable and B;, , — By, is Jy,_-measurable, the sum By,—B;, —AB; is ”Hg]_ )l—measurable.
By continuity of ¢, we see that ¢(B, — B;, — AB;) is also ’Hgi )1—measurable. This allows us

to conclude that
E[fi-1¢(By — By, — AB;) fj—1¢; AB; AB;]
=E []E <f¢—1¢>(Bb — By, — ABj) fj-1¢; AB; AB; | Hgﬂ)]
—E |fi16(By — B, — AB;)f;_16; AB; E (AB; | H"”
fz 1¢ b t; ])fj 1%3 L J tj1

—0. (3.6)
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fifl Cbi

~¥

0 a ticn b ti-1 4 b

Figure 3.2. A t-dependence plot of the various processes. The dotted regions are removed.
Shaded regions represent the separation o-field.

Therefore, subtracting E [f;_1¢(By — By, — AB;) fj—1¢; AB; AB;] from the term
E [fi—1¢ifj—16,AB;AB;] does not change anything. This allows us to remove the de-
pendence of ¢; on {B; : t € (tj_1,t;)}. This is illustrated in Figure 3.2 by the purple

dotted region of ¢;.

Trick 3 Using the assumption ¢ € C'(R) and considering the fact that B; is continuous

and so AB; — 0 as ||A,|| = 0, we can approximate

For brevity, we write ®;; = ¢'(B, — By, — ABj), i < j. Note that ®;; is ’Hgi)l—measurable.

Putting these together, we see that

E[fic1¢ifi—10; AB; ABj]
=E[fi1 (¢(By — By,) — ¢(By — By, — AB;)) fi—10; AB; ABj]

~E [fi1®ifj1¢; AB; (AB;)?]
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Conditioning with respect to the seperation o - field, we have

E[fi1¢ifj-1¢0; AB; ABj]
=E [E <fi—1<1)ijfj—1¢j AB; (AB))* | Hgﬂ)}

= E [fi-1®i;fj-10; AB; E(AB;)?]

=E[fi1Pi;fj-10; AB;| At;. (3.7)
Jim %5
fl*l ¢Z
0 a ticn b ti1 1 b

Figure 3.3. A t-dependence plot of the various processes. The dotted regions are removed.
Shaded regions represent the separation o-field.

We repeat Trick 2 on f(B;,_, — AB;) just as we did for ¢(By, — By, — AB;) to de-
rive (3.6). This allows us to remove the dependence of f;_; on {B; : t € (t;_1,t;)}. This is

illustrated in Figure 3.3 by the purple dotted region of f;_;. Therefore,
=E[fi-19i;fj-16; AB; AB;] =0,

where we used the tower property with respect to the o-field Hgl in this case. As before,
we get

f(B, )= f(Bi, , — AB) =~ f'(B,, , — AB,) AB,.
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Continuing from (3.7),

E[fic1¢ifj—1¢; AB; AB;]
=E[fi1®i;fi-10; AB;] At
= E [fi-1®i; (f(By,_,) — f(By,_, — AB;)) ¢; AB;] At

~E [fi1®yf (B, , — AB)¢; (AB;)?] At;

[
—E [E (fia®, (B, ~ AB)G; (ABY | (", )] A,
|

E|fi1®,f (B, , — AB)&,E ((AB,)2 | Hﬁfﬁ’l)] At

E [fim1®i f' (B, , — AB)¢;] At; At

(3.8)

By the continuity of By, we see that as ||A,| — 0, so does AB; and AB;. More-

over, by the continuity of f’ and ¢, we can conclude that as ||A,| — 0,

f/(Bti—l - AB@) — f/<Btj—1) = f]l'flv

®y = ¢'(By — By, = AB;j) — ¢(By — By,) = ¢
Finally, summing up (3.8) over i < j and taking limit, we get

D1 / / b Bs)f/(Bt)gb(Bb — Bt)] ds dt.

This concludes the proof.

O

Theorem 3.3.6 also serves as a new tool in evaluating the second moment of antic-

ipating integrals. This is advantageous as explicitly evaluating the integral via the defi-

nition can get very tedious and complicated. We demonstrate this point of view with an

example.
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Example 3.3.9 (Example 3.4 of [20]). Apply Theorem 3.3.6 to the case with f(x) = x and

¢(y) =y. Then we have

(/ab Bi(By — By) dBt>2

—/ab]E[Bf(Bb—Bt)ﬂ dt+2/ab/:E[Bs(Bb—Bt)] ds dt

E

/bJE[BﬂE[(Bb_Bt)ﬂ dt+2/b/t]E[BS]IE[Bb—Bt] ds dt

/abt(b—t) dt

(b* — 3a*b + 2a%). (3.9)

=

On the other hand, let us evaluate the stochastic integral fab By(By — By) dB; and

then use it to compute its second moment. By equation (2.5) in [9], we have

t 1 1
/ By(Br — B,) dB, = §BT(Bt2 —t) — §B§>, 0<t<T,
0

which immediately yields the following stochastic integral
’ 1 2 2 L 3
Bi(By — B.) dB, = 5By | (B} — B) — (b— a)] -5 (B} - BY).

For brevity, we write Ag = By— By, so By = (By— B,)+ B, = Ap+ B,. Performing

algebraic simplification, we get

(A% +3B,A% —3(b—a)Ap —3(b—a)B,) .

=

b
/ Bt(Bb - Bt) dBt —

Note that B, and Ag are independent with B, ~ N(0,a) and Ag ~ N(0,b—a). Therefore,
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any odd moment of either of B, or Ap is zero. Using this, we get

(/ab Bi(By — By) dBt)

1
=3 E [AS +9B2AL +9(b — a)’A%L + 9(b— a)*B?

2

E

—6(b— a)A} — 18(b — a) B AF]

(b3 —3a’b + 2a3) ,

S| =

which is exactly what we obtained in equation (3.9). But, obviously, here the computation
18 more tedious and complicated.
The arguments used in the proof of Theorem 3.3.6 can also be applied to show the

following general results.

Theorem 3.3.10 (Theorem 3.5 of [20]). Let ®(x,y) € C*(R?) and assume that
®(By, By — By), ®,(B,, B, — B,), ®,(B:, By — By) € L*([a,b] x Q).

Then

2

b
E :/ E [®(B:, B, — By)?] dt

(/:@(Bt,Bb — By dBt)

b t
+ 2/ / IE[(IDy(BS,Bb — B,) ©,(B,, By — Bt)] ds dt. (3.10)

We use this general result to obtain the covariance between two Ayed—Kuo stochas-

tic integrals.
Theorem 3.3.11 (Theorem 3.6 of [20]). Let ®(x,y), ¥(x,y) € C*(R?) and assume that
1. ®<Bt7 Bb — Bt>7 (I):L‘(Bta Bb — Bt)7 ®y(Bt7 Bb — Bt) c L2<[CL, b] X Q), and

2. U(By, B, — B,), (B, B, — By), V,(By, B, — B,) € L(|a,b] x Q).
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Then

E K/abcb(Bt,Bb — By) dBt) (/ab\I/(Bt,Bb — By) dBt)}

b
- / ]E [®(Bt7 Bb — Bt)\II(Bt, Bb - Bt)] dt

b t
+/ / E[cby(Bs,Bb—Bs)%(Bt,Bb—Bt)

+ (I)I(Bt, Bb - Bt)‘lly<Bt, Bb — Bt> ds dt.
Proof. For this proof, we write
F(t) - q)(Bt, Bb - Bt)7

G(t) = ‘I’(Bn By — Bt),

H(t) = F(t)+ G(t).

Moreover, for brevity, we write F,(t) = ®,(B;, B, — By), Fy(t) = ®,(B;, B, — B;) and
corresponding notations for G(t) and H(t).

From the definition of H(t), we see that

(/:H(t) dBt)Q _E :(/abm) dBtJr/abG(t) dBt)
g '( [rwan) | e |( [ owan)

+2E K/@bm) Y (/abaw is,))|.

Applying Theorem 3.3.10 for F'(t), we get

( / P dBt>

2
E

2 2

+E

2

E

:/abE[F@)Q] dt+2/ab/at]E[Fy(s) Fu(t)] ds dt.
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We can obtain a similar equality for G(t). Putting all this together, we get

E (/abH(t)dBt)Q :/a F(t)?] dt+2// ] ds dt
+/ G(t)?] dt+2/a/a | dsdt
+2EK/abF()dBt) (/ G()dBtﬂ. (3.11)

On the other hand, first applying Theorem 3.3.10 and then using the definition of

H(t), we get

E </bH(t) dBt>2
/ dt+2// | ds dt

:/bE[F()]dt+/ E[G()}dt+2/bE[F(t)G(t)]dt

a

42 / / E[(F,(s) + Gy () (Fu(t) + Ga(8))] ds dt

:/bE[F(t)2] dt+/bE[G(t)2} dt+2/bE[F(t)G(t)] dt

+2 / b /tE[Fy(S)Fx(t) + Fy(5)Ga(t) + Gy(s) Fu(t) + Gy(s)Gx(t)] ds dt.  (3.12)

Finally, equations (3.11) and (3.12) imply that

: l(/f” ) dBt> (f e dBf)}
/ | dt + / e G,()EL(D) ds dt,

which is exactly the desired result. O]

If ®(z,y) = f(x) and ¥(z,y) = ¢(y), we have &, = 0 and ¥, = 0. Therefore, we

obtain the following corollary.
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Corollary 3.3.12 (Corollary 3.7 of [20]). Let f,¢ € C*(R) and assume that
1. f(Bt)7¢(Bb - Bt) S L2([CL, b] X Q)7 and
2. ['(Be),¢'(By — By) € L*([a, ] x Q).

Then

o[([ 0000 ([ - 00n)

b b t
- / E[f(B)o(By — By)] dt + / / E[¢/(B, — B.)f (B)]ds dt.

Corollary 3.3.12 provides the same power as the extension of the isometry in that it
allows us to explicitly calculate the covariance between anticipating and adapted integrals
without having to calculate the integral itself. We demonstrate that fact with an example
Example 3.3.13 (Example 3.8 of [20]). Let f(x) = = and ¢(y) = y. Using Corollary

3.3.12, we get

[/bBt dBt) (/b(Bb By) dBt)]

b
]E Bt Bb Bt dt +/ / dS dt

/b
[

E[B — By dt—l—/(t—a)dt

(b—a)’.

l\DI»—t

Finally, we want to point our that the double integral in equation (3.10) can be re-
garded as a correction term when we extend It0’s theory to anticipating stochastic integra-
tion. This correction term can be positive or negative, as illustrated in the next example.
Example 3.3.14 (Example 3.9 of [20]). Consider the case ®(x,y) = px + y in Theorem

3.3.10, where p € R. Then ®, = p and ®, = 1. Therefore, we can directly evaluate the

41



double integral in equation (3.10) as

b t b t
2/ / E[be(Bs, By — B,) (B, By — Bt)} ds dt = 2/ / pds dt = p(b— a).

Therefore, the final term will be positive or negative depending on the sign of p.
3.4. Near-martingales

Let us consider the following stochastic process X; = fot By dBg, t € [0,1]. Using the
definition of the Ayed—Kuo stochastic integral in 3.3.2 and following the steps in example

3.3.1 we have
t
X, = / BydBs = BBy —t, te]|0,1].
0

It is easy to see that X, is not a martingale as B; is not adapted to the natural
Brownian filtration {F;} for ¢ < 1. Let s < ¢ for s,¢ € [0,1]. We evaluate the conditional

expectation of X; and X, with respect to F,. Hence
E[X,|F| =E[BBs; — s | F
= B,E B | Fs] — s

= B2 3.

S
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E[X:| Fs| =E[B1B; — t| Fy
—=E (B, — Bi+ B, — B, + B,)(B, — B, + B,) | F,] — t
—E| (B, — B,) (B, — B,) + (B, — B,)*
+2(B; — Bs) Bs+ (B) — B)) B, + B? | F,| —t
=E[(B1 — By) (B, — B,)]| + E[(B: — B.)’]
+ B,E[B, — B,)+2B,E[B; — B,] + B> — t

=B%—s

S Y

where the last equality is due to the properties of Brownian motion. Notice that
E[X,|Fs] = E[X;|Fs]. This property is satisfied by many other stochastic processes.

In view of Definition 1.3.6, a martingale would trivially satisfy this relationship. In
essence, such a relationship can be seen as a generalization of the martingale property.
This discussion serves as the motivation for near-martingales defined below.

Definition 3.4.1 (Near-martingale). A stochastic process, Ny, a <t <b, with E| N;| < oo
for all t is called a near-martingale with respect to the filtration{ F;} if for any a < s <t <
b, E[N; — Ny | Fs] =0, a.s.

From Theorem 1.4.6, we know that martingales occur naturally within Ito theory.
Near-martingales and Ayed-Kuo integrals are true generalization of both of martingales
and Ito integrals respectively. It is natural to ask, should we expect something similar?

In what follows, we show that near-martingales do occur naturally within the Ayed—Kuo

theory.
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Theorem 3.4.2 (Theorem 3.3 of [21]). Let ®(x,y) be a function that is continuous in both

variables such that the stochastic integral,
t
N, = / ®(Bs, B, — B;) dBs, a<t<b,
exists and E| Ny | < oo for each t in [a,b]. Furthermore, assume that the partial sums

Z (I)(Bti—w Bb - Bti) (Bti - Bti—l)

i=1
are uniformly integrable. Then Ny, a < t < b, 1s a near-martingale with respect to the
filtration generated by Brownian motion given by {F;} .

Remark 3.4.3. This result is shown in Theorem 3.5 of [18] for the case when ®(x,y) =
f(@)o(y).

Proof. Let t > s and consider a partition, A, of [s,t] with ty = s and ¢,, = ¢t. Via the def-
inition of the Ayed—Kuo Stochastic Integral in conjunction with the uniform integrability

condition on the partial sums, we have

t
E[N, — N, | F,] =E U ®(B,, By — B,)dB, | ]—"51

=E | lim E (I)(kal, Bb — Bk)ABk | fs
n—00
k=1

n—00
k=1

Consider, the separation o-field Hgb) = o(F, U g@). Then Fy, C Fr_1 C H,(Cli)l Using
this fact alongside the continuity of ® in both variables, we have that ®(By_1, B, — By) is
H,E:k_)l - measurable. Furthermore, via the independence of the Brownian increments, AB;,
is independent of H,(g]i)l
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Figure 3.4. A t-dependence plot of the disjoint increments of B,. The shaded regions
represents the forward and separation o-field.

Thus,

E [®(Bi—1, By — Br)ABy | Fi
—E [E [®(Bi 1, B, - By)ABy | M| | 7]
=E [®(Bi—1, B, — Bp)E [ABy] | FJ]

=0.
Using this result for each k in equation (3.13), we have
E[N; — Ny | Fs] = 0.

Thus, NV; is a near-martingale. ]

Example 3.4.4. Consider N, = f; By dBs. Using Theorem 3.4.2 with ®(x,y) =z + vy, we
have that Ny is a near-martingale for a <t <'b.

This theorem can be extended for the anticipating case as well. Namely,
Theorem 3.4.5. Let ®(z,y) be a function that is continuous in both variables such that

the stochastic integral,

b
Nt:/ ®(B,, By, — By)dB,, a<t<b,
t
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exists and E| Ny | < oo for each t in [a,b]. Then Ny, a <t <'b, is a near-martingale with
respect to the filtration generated by Brownian motion given by {F;}.

Remark 3.4.6. This result is shown in Theorem 3.6 of [18] for the case when ®(x,y) =
f()o(y).

These two results, Theorem 3.4.2 and Theorem 3.4.5, show that the near-
martingale property is an analogue of martingale property for the Ayed—Kuo stochastic
integral. This relation is further solidified by the following result that shows the intrinsic
relation between a near-martingale and a martingale.

Theorem 3.4.7 ( Theorem 2.11 of [11]). Let Ny, a < t < b be a stochastic process with

E| Ni| < oo for each t € [a,b] and let My = E[N;|F;]. Then

N, is a near-martingale <= M; is a martingale.

We use this result in obtaining a near-martingale optional stopping theorem for the
Ayed—Kuo stochastic integral.
3.4.1. Near-martingale Optional Stopping Theorem

We build up the optional stopping theorem using the strategy used for the martin-
gale case in [32]. Namely, we prove near-martingale version of the optional stopping theo-
rem for discrete stopping times and then extend it for continuous stopping times. For this
section, fix ¢ € [0, 1].

First we prove a result that shows that a stopped near-martingale is a near-
martingale. We use this result to prove the discrete case of the theorem.
Theorem 3.4.8 (Theorem 3.6 of [21]). Let Ny, t € [0,1], be a discrete-time near-

martingale and T a stopping time. Then N x; is a near-martingale.
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Proof. Let t, be an arbitrary time and consider a partition 0 = ¢y < t; < --- < t,, and a
forward filtration F, associated with N;,. We define
Vo2 g < (N, = Nily) = Nong, — No (3.14)
i=1
Assume m < n, then

E[Yn_ym‘fm]:E Z IL{Yfi—1§7'} (Nti_Nti—l) ‘fm

i=m-+1

= > Ellugn (V=N [ 7]

i=m—+1
Here t; > t,,,. In addition, 1, <, is F- measurable for each i. As such, taking conditional

expectation judiciously with respect to F;_; we get,

E[Yn - Ym|‘Fm] = Z E []E |:]1{ti—1 <7} (Nti - Ntifl) |"T_‘ifl} “Fm]

i=m+1
n

- Z E [1{t¢—1 <nE [Nti — Ny, "Fifl] "Fm}

i=m+1

= 0.

where the last equality is due to the near-martingale property of N;,. Thus, Y,, is a near-

martingale. We use this fact alongside equation (3.14) to get

E[N:nt, — Neaty, | Fl = E[Y, = Y, | Fn] = 0.

Thus we have shown that a stopped near-martingale is a near-martingale. We use
this result to prove a version of the near-martingale optional stopping theorem for discrete

time near-martingales.
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Theorem 3.4.9 (Theorem 3.7 of [21]). Let N; be a discrete time near-martingale. Suppose
o and T are two bounded stopping times with o < 7. Then N, and N, are integrable, and

E [N, — N, | F,] = 0 almost surely.

Proof. Since ¢ and 7 are bounded, there exists K < oo such that ¢ < 7 < K. Let X, be
any near-martingale. Clearly, X, is integrable. Suppose B € F,. Then for any n < K, we

have BN {0 =n} € F,, and so

/ (X — X,)dP = / (Xx — X,)dP = 0.
Bn{o=n}

Bn{o=n}
Summing over n, we get [, (Xx — X,)dP = 0, and so E [Xx — X, | F,] = 0. Finally, let
X, = Nypn to get

E[N:ak — Nopo | Fo] =E[N. — N, | F,] =0.
O

Before we proceed to continuous time near-martingales, we will need the concept of

backward near-martingales.
Definition 3.4.10 (Definition 3.8 of [21]). Let (F,),—, be a decreasing sequence of o-
algebras, and let Ny = (N,,)°"_, be a stochastic process. Then the pair (N, F,),—, is called
a backward near-martingale if for every n,

1. N, 1s integrable and F,-measurable, and

2. E[N,, — Npi1| Fnia] =0.
Lemma 3.4.11 (Lemma 3.9 of