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Abstract

In 1942, K. Itô published his pioneering paper on stochastic integration with re-

spect to Brownian motion. This work led to the framework for Itô calculus. Note that,

Itô calculus is limited in working with knowledge from the future. There have been many

generalizations of the stochastic integral in being able to do so. In 2008, W. Ayed and

H.-H. Kuo introduced a new stochastic integral by splitting the integrand into the adap-

tive part and the counterpart called instantly independent. In this doctoral work, we con-

duct deeper research into the Ayed–Kuo stochastic integral and corresponding anticipating

stochastic calculus.

We provide a new proof for the extension of Itô isometry for the Ayed–Kuo

stochastic integral which clearly demonstrates the intrinsic nature of the construction of

the general integral. Furthermore, we extend classical Itô theory results for martingales

to their Ayed–Kuo stochastic integral analogue, near-martingale. We show the near-

martingale property of Ayed–Kuo stochastic integral and optional stopping theorem for

near-martingales with bounded stopping times.

Using the general Itô formula for the Ayed–Kuo stochastic integral, we find ex-

plicit solutions for linear stochastic differential equations with anticipation. We show ex-

istence of solutions for certain classes linear stochastic differential equations with anticipa-

tion coming from initial condition as well as from the drift. We present a Trotter inspired

product formula to construct the solution. In the process, we also show the uniqueness of

the solution. While we mainly rely on the Ayed–Kuo formalism, other theories are used

minimally and out of necessity. Using the explicit solution, we show the relation between

a solution of an anticipating stochastic differential equations and its Itô projection. Fur-

vi



thermore, we establish Wentzell–Friedlin type large deviation principle for the solution of

a class of linear stochastic differential equation with an anticipating drift and non-adapted

initial condition.
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Introduction

In 1902, H. Lebesgue revolutionized mathematics with his introduction of the

Lebesgue integral and subsequently, measure theory [23]. N. Wiener used these measure-

theoretic tools in a mathematical model of Brownian motion, B(t) [31]. In 1942, K. Itô

introduced a new stochastic integral while studying for a probabilistic method to construct

diffusion processes from infinitesimal generators [12] [16]. This Itô integral can be seen

as a generalization of Wiener integral. Itô theory has a measurability requirement which

leads to an inability to work knowledge from the future. There have been many gener-

alization include future information in the stochastic integral. Wiener’s work provided

motivation for L. Gross’s work into Abstract Wiener space for infinite dimensional analysis

[7]. In 1975, Hida build up white noise distribution theory in his analysis of Brownian

functionals [8]. In 1976, P. Malliavin proved the existence of transition probabilities

via probabilistic methods in [24] (See also [25]) leading to the current theory of Malli-

avin calculus. In the white noise distribution theory, the white noise integral provides a

generalization for Itô integrals.

In 2008, W. Ayed and H.-H. Kuo introduced a new anticipating stochastic inte-

gral to provide a natural and simplistic tool to analyze anticipating stochastic processes

[1]. Within this framework, this doctoral work is interested in extending Itô’s theory of

stochastic integrals to a general setting via the Ayed-Kuo stochastic integral.

The following diagram shows the relationships between the four areas of stochastic

analysis and where the Ayed–Kuo stochastic integral lies when considering the other areas.
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Itô Calculus Abstract Wiener Space

A-K Stochastic Integral

White Noise Theory Malliavin Calculus

Figure I.1. Relationships between the different areas of stochastic analysis.

This doctoral work is laid out as follows. In chapter 1, we introduce some funda-

mental ideas in classical Itô theory. We follow that with some introduction and results

into the analysis of rare events via large deviation. In chapter 3, we present the main fo-

cus of this research. We define the Ayed–Kuo integral and state important theorems and

properties. In chapter 4, we apply the new integral in solving a class of linear stochastic

differential equation with anticipation from the initial condition as well as from the drift

term. Finally, in chapter 5, we combine the tools obtained in the Ayed–Kuo stochastic in-

tegral to obtain large deviation results for a particular class of anticipating linear stochas-

tic differential equation. While this doctoral work greatly relies on the formalism of the

Ayed–Kuo stochastic integral, other theories are used minimally and out of necessity.
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Chapter 1. Classical Itô Theory

1.1. Background

In 1827, English botanist R. Brown observed an “peculiar” phenomena when

studying pollen seeds suspended on the water [3]. He observed that the particles were

moving in an irregular pattern despite no outside forces. In a series of papers he pub-

lished regarding the phenomena [3] he writes, “I have formerly stated my belief that these

motions of the particles neither arose from currents in the fluid containing them, nor

depended on that intestine motion which may be supposed to accompany its evaporation.”

This irregular movement was named Brownian motion after Robert Brown.

It was not until much later in 1905 that renowned physicist Albert Einstein de-

scribed this irregular motion as the resulting diffusion due to the pollen being battered

by water molecules [6]. Einstein’s explanation of Brownian motion, via normal distribu-

tion, is similar to its modern mathematical definition. Interestingly, Einstein did not know

of Brown’s empirical observation and deduced the theory from molecular kinetic theory of

heat [6]. Alternately, in 1900, L. Bachelier applied Brownian motion to analyse stock price

fluctuations in his doctoral work [2]. In 1923, N. Wiener provided the first mathematical

model of Brownian motion, B(t) [31]. In it, he defined the basic probabilities as values of

a Gaussian measure defined on cylinder sets in the space of continuous functions.

In his pioneering paper “Stochastic Integral”, K. Itô introduced a stochastic inte-

gral and a formula, known as the Itô’s formula [12]. The practical applications of Itô’s in-

tegral are diverse. One of the most prominent applications is to the Black-Scholes-Merton

theory of derivative pricing in finance. Itô calculus has been useful in the study of other
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scientific fields like statistical physics, biological systems.

In the following sections, we review the definitions of the preliminary mathematical

concepts and their properties. We refer to [15] for details.

1.2. Stochastic Processes and Brownian Motion

Let (Ω,F ,P) be a probability space where Ω is the sample space, F a sigma-field

and P a probability measure.

Definition 1.2.1. A stochastic process is a measurable function, X(t, ω), defined on

[0,∞)× Ω with the following properties:

• for each t, X(t, ·) is a random variable,

• for each ω, X(·, ω) is a measurable function (also called sample paths).

Definition 1.2.2. A stochastic process, B(t, ω), is called a Brownian motion or a Wiener

process if it satisfies the following conditions:

1. P{ω |B(0, ω) = 0 } = 1,

2. For any 0 ≤ s ≤ t , the random variable B(t, ω) − B(s, ω) is normally distributed

with mean 0 and variance t− s,

3. B(t, ω) has independent increments,

4. P{ω |B(·, ω) is continuous } = 1.

From the second condition, we can informally think of a Brownian increment as

|Bt −Bs| ≈
√
|t− s| for s, t ∈ [a, b]. Suppose s < t. Heuristically, when s approaches t,

|Bt −Bs|
t− s ≈

√
t− s
t− s =

1√
t− s →∞.

4



This allows us to get an intuition on why Brownian motion paths are nowhere differen-

tiable. While the Brownian motion does not have finite variation, its quadratic variation is

finite. This well known result is a fundamental property in Itô’s theory of stochastic inte-

gration.

Theorem 1.2.3 (Quadratic Variation of Brownian Motion). Consider a partition of the

finite interval [a, b] given by ∆n = {a = t0 ≤ t1 ≤ t2 · · · ≤ tn = b}. Then

n∑

i=1

(
Bti −Bti−1

)2 → b− a in L2(Ω),

as ‖∆n‖ = max1≤i≤n(ti − ti−1)→ 0.

1.3. Conditional Expectation and Martingales

Now we introduce some probabilistic concepts that will be used in much of this

text. We first review conditional expectation and some of its properties.

Definition 1.3.1. Suppose F is a sigma field such that G ⊂ F . Let X be a random vari-

able with finite mean. We define the conditional expectation of X given F , E[X | F ], as

the unique random variable satisfying:

1. E[X | F ] is F-measurable,

2.
∫
A
X dP =

∫
A
E[X | F ] dP for all A ∈ F .

Theorem 1.3.2. Consider existing setup as in Definition 1.3.1. In addition consider an-

other random variable Y . Then all the following equalities hold almost surely.

1. E[X + Y | F ] = E[X|F ] + E[Y |F ].

2. E(E[X | F ]) = E[X].

3. If X is independent of F then, E[X | F ] = E[X].

4. If X is F-measurable then, E[X | F ] = X.

5



5. If G ⊂ F then, E[X | G] = E(E[X | F ] | G).

6. If X is F-measurable and E[XY ] <∞ then, E[XY | F ] = XE[Y | F ].

Definition 1.3.3. A filtration on an interval, [a, b] ∈ [0,∞), is an increasing family of

sigma-fields and is defined as {Ft} = {Ft | t ∈ [a, b]}.

For the ease of notation, we suppress the ω in our stochastic processes for the ease

of calculation and clarity. For example, Xt = X(t, ω) and Bt = B(t, ω).

Definition 1.3.4. A stochastic process, Xt, is said to be adapted to the filtration {Ft} if

for each t ∈ [a, b], the random variable Xt is Ft-measurable.

Example 1.3.5. Bt is adapted with respect to {Ft} = σ {Bs | 0 ≤ s ≤ t}. We refer to {Ft}

as the natural Brownian filtration.

We introduce an extremely important class of processes that are used to model fair

games. Due to this feature, they find applications not only in probability theory, but also

in mathematical finance and numerous other fields.

Definition 1.3.6. Let Xt be a stochastic process adapted to the filtration {Ft} with

E|Xt| < ∞ for all t ∈ [a, b]. Then, Xt is a martingale with respect to a filtration {Ft} if

for any s ≤ t in [a, b],

E[Xt | Fs] = Xs a.s (almost surely).

Example 1.3.7. Bt is a martingale with respect to its natural Brownian filtration. Using

the properties of conditional expectation (Theorem 1.3.2) and the independent increments

6



of Brownian motion (Definition 1.2.2), whenever s ≤ t,

E [Bt | Fs] =E [Bt −Bs +Bs | Fs]

=E [Bt −Bs | Fs] + E [Bs | Fs]

=E [Bt −Bs] +Bs

=Bs.

An important theorem to understand the evolution of the evolution of a martingale

is the Optional Stopping Theorem. This theorem says that in expectation, one would gain

nothing by stopping a stochastic process without looking into the future. As asset prices

are modelled as martingales, this result is important in asset pricing in mathematical fi-

nance. We first define the concept of stopping times and then proceed to the theorem.

Definition 1.3.8. A random variable τ : Ω → [a, b] is called a stopping time with respect

to the filtration {Ft; a ≤ t ≤ b} if {ω; τ(ω) ≤ t} ∈ Ft for all t ∈ [a, b].

Theorem 1.3.9. Let Mt, a ≤ t ≤ b be a martingale with respect to the filtration {Ft} and

τ a stopping time. Then, E|Mt∧τ | <∞ and

E[Mτ ] = E[Ma]

if any of the following conditions are true:

1. τ is bounded almost surely,

2. There exists is a positive number, K, such that |Mt| < K for all ω and t with τ

almost surely bounded.

7



1.4. Classical Ito Theory

From hereon, consider the probability space (Ω, {Ft},P) with t ∈ [a, b] and {Ft} the

natural Brownian filtration. Define L2
ad([a, b] × Ω) as the space of all stochastic processes,

f(t, ω) with t ∈ [a, b] and ω ∈ Ω such that,

• f(t, ω) is adapted to the filtration {Ft},

•
∫ b
a
E
[
|f(t)|2

]
dt <∞.

We start off the exposition by first introducing the Wiener integral.

Definition 1.4.1. Let t ∈ [a, b], Bt be Brownian motion and f(t) ∈ L2[a, b]. The Wiener

integral of f(t) is denoted by
∫ b

a

f(t) dBt,

and is defined in two steps.

Step 1: Consider a partition on [a, b] with a = t0 ≤ t1 ≤ · · · ≤ tn = b. Define the

step function given by

f(t) =
n∑

i=1

ai1[ti−1,ti)(t), t ∈ [a, b].

We define its Wiener integral as

∫ b

a

f(t) dBt =
n∑

i=1

ai(Bti −Bti−1
).

Step 2: For any f ∈ L2[a, b], we choose a sequence of step functions fn ∈ L2[a, b]

such that fn → f . Via step 1,
{∫ b

a
fn(t)dB(t)

}
is Cauchy in L2(Ω). As such we define

∫ b

a

f(t) dBt = lim
n→∞

∫ b

a

fn(t) dBt, in L2(Ω).

The Itô integral can be seen as a generalization of the Wiener integral. While the

8



construction is similar, the definition of the Itô integral has three steps and a key approxi-

mation lemma for step 2. We refer to [15] for details.

Definition 1.4.2. Let t ∈ [a, b], Bt be Brownian motion and f(t) be an adapted mean

square integrable stochastic process. The Itô integral of f(t) is denoted by

∫ b

a

f(t) dBt,

and is defined in three steps.

Step 1: Consider a partition on [a, b] with a = t0 ≤ t1 ≤ · · · ≤ tn = b. Define the

step stochastic process given by

f(t, ω) =
n∑

i=1

ξi−1(ω)1[ti−1,ti)(t),

where ξi−1 is Fi−1 measurable and E [ξ2
i−1] <∞. We define its Itô integral as

∫ b

a

f(t) dBt =
n∑

i=1

ξi−1(Bti −Bti−1
).

Step 2: We can show that for any f ∈ L2
ad([a, b] × Ω), there exists a sequence of

adapted step stochastic functions fn that converges to f in L2
ad([a, b]× Ω).

Step 3: For a general square integrable adapted function f , we define its Itô inte-

gral as

∫ b

a

f(t) dBt = lim
n→∞

∫ b

a

fn(t) dBt, in L2(Ω).

This definition is well defined as shown in [15]. While the Itô integral does not fol-

low the usual “partition - evaluation - summation - limit” strategy for Riemann integrals,

the left hand evaluation of the step functions have an intuitive similarity to Riemann inte-

grals. We state this property below.

9



Theorem 1.4.3. Let f(t) be a square integrable adapted stochastic process and suppose

E [f(s)f(t)] is a continuous function of t and s . Then

∫ b

a

f(t) dBt = lim
‖∆n‖→0

n∑

i=1

f(ti−1)
(
Bti −Bti−1

)
in L2(Ω),

where ∆n’s are partitions of [a, b].

We view this via a simple example.

Example 1.4.4. [15] Let t ∈ [0, 1]. We want to evaluate
∫ 1

0
BtdBt. From Example 1.3.5,

we have that the integrand is adapted and as such, we are looking at an Itô integral. Fur-

thermore, E [Bs.Bt] = min(t, s) which is continuous for both t and s. Hence, we can use

Theorem 1.4.3 the above integral as a Reimann-like sum. Namely,

∫ b

a

Bt dBt ≈
n∑

i=1

Bti−1

(
Bti −Bti−1

)

=
n∑

i=1

[
1

2

(
Bti−1

+Bti−1
−
(
Bti −Bti−1

))] (
Bti −Bti−1

)

=
1

2

n∑

i=1

[
(Bti)

2 −
(
Bti−1

)2
]

+
1

2

n∑

i=1

(
Bti −Bti−1

)2
.

The first summation term is an alternating series summation which leaves only the first

and the last term. The second summation term is the quadratic variation of Brownian mo-

tion and as such, we use Theorem 1.2.3 to get,

∫ b

a

Bt dBt =
1

2

(
B2
b −B2

a − (b− a)
)
.

Now that we have defined the Itô integral, we look into some of its fundamental

properties. For their proofs, refer to [15].

Definition 1.4.5. Let f ∈ L2
ad([a, b] × Ω) then the Itô integral,

∫ b
a
f(t) dBt, is a random

10



variable with mean 0 and variance

E

[(∫ b

a

f(t) dBt

)2
]

=

∫ b

a

E
[
|f(t)|2

]
dt. (1.1)

In addition, if f is deterministic then its’ Itô integral is normally distributed.

From equation 1.1, we can see that the mapping f →
∫ b
a
f(t) dB(t) is an isometry

from L2
ad([a, b]× Ω) to L2(Ω).

The stochastic integral performs a continuous time martingale transform of the in-

tegrand. As such, the Itô integral is also martingale as shown in the theorem below.

Theorem 1.4.6. Let Xt be a stochastic process such that

Xt =

∫ t

a

f(s) dBs , f ∈ L2
ad([a, b]× Ω),

then Xt is a continuous martingale.

We look at the diffusion processes that motivated K. Itô to introduce the Itô inte-

gral.

Definition 1.4.7. An Itô process is a stochastic process of the form

Xt = Xa +

∫ t

a

f(t) dBt +

∫ t

a

g(t) dt,

with Xa - Fa measurable, f ∈ L2
ad([a, b]× Ω) and, g ∈ L1

ad([a, b]× Ω).

In the above definition of the Itô process, the first integral is an Itô integral of a

mean square integrable adapted process and by Theorem 1.4.6, it is continuous. The sec-

ond integral is a Riemann integral for each ω. As such, the Itô process is continuous.

An integral part of Itô theory is the Ito formula. It can be seen as the stochastic

analog of the “chain rule”. It is useful in showing existence and uniqueness as well as in
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creating new stochastic processes from existing one. Furthermore, it helps in understand-

ing stability results for stochastic differential equations among many other applications.

Known classical results would be hard to obtain without the following Itô formula.

Theorem 1.4.8. Let Xt be an Itô process given by

Xt = Xa +

∫ t

a

f(t) dBt +

∫ t

a

g(t) dt,

with Xa - Fa measurable, f ∈ L2
ad([a, b] × Ω) and, g ∈ L1

ad([a, b] × Ω). Suppose Θ(t, x)

is a continuous function with continuous partial derivatives. Then Θ(t,Xt) is also an Itô

process and is given by

Θ(t,Xt) = Θ(a,Xa) +

∫ t

a

∂Θ

∂x
(s,Xs) dBs

+

∫ t

a

[
∂Θ

∂t
(s,Xs) +

∂Θ

∂x
(s,Xs)g(s) +

1

2

∂2Θ

(∂x)2
(s,Xs)

]
ds.

The multiplication of the differentials follow the rule shown Itô table in Table 1.1:

× dBt dt
dBt dt 0
dt 0 0

Table 1.1. Itô table

For the ease of computation and calculation, it is convenient to express stochastic

integral equations in their stochastic differential form. However, this is just mathemati-

cal convention as dBt/dt by itself does not make sense as almost all Brownian paths are

nowhere differentiable. As such, the stochastic differential equations are to be interpreted

as stochastic integral equations. For example, the differential form of the Itô process, Xt,

in Definition 1.4.7 is given by

dXt = f(t) dB(t) + g(t) dt.

12



As mentioned earlier, we can use the Itô formula to make new stochastic processes

or to evaluate stochastic integrals without resorting to the definitions. We show this fea-

ture with an example.

Example 1.4.9. Consider the function f(x) = x2. Then fx = 2x and fxx = 2. We use the

Itô formula in Theorem 1.4.8 to get

df(Bt) = fx(Bt)dBt +
1

2
fxx(Bt)dt,

d(B2
t ) = 2BtdBt + dt.

Hence, we have

B2
t −B2

a = 2

∫ t

a

BsdBs + (t− a).

We solve for the integral to get

∫ t

a

BsdBs =
1

2

(
(B2

t −B2
a)− (t− a)

)
.

Note that when t = b in the above example, we would get the same result as in

Example 1.4.4.

1.5. Exponential Process and Girsanov Theorem

Exponential functions are important in ordinary differential equation theory due to

their in variance with the derivative operator. We review a stochastic process with similar

significance with respect to the stochastic differential equation.

Example 1.5.1. Let f ∈ L2
ad([a, b]× Ω) and define the stochastic process,

Ef (t) = exp

[∫ t

a

f(s) dBs −
1

2

∫ t

a

f 2(s)ds

]
.

Using the Itô formula in Theorem 1.4.8, we have dEf (t) = f(t)Ef (t)dBt. Hence,

Ef (t) is a martingale.

13



Exponential processes are important in the theory of stochastic integration as it is

the direct analogue of the exponential function in ordinary differential equations. It is par-

ticularly useful in showing that translations of Brownian motion remains Brownian motion

under an equivalent probability measure. This result is called the Girsanov Theorem and

is listed below.

Theorem 1.5.2. Let f ∈ L2
ad([a, b]× Ω) and let EP[Ef (t)] = 1 for all t.Then

Wt = Bt −
∫ t

a

f(s)ds , t ∈ [a, b],

is Brownian motion with respect to the probability measure dQ = Ef (b)dP.
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Chapter 2. Rare Events and Large Deviation Principle

2.1. Introduction

The chance of buying a winning power ball ticket is astronomically low. However,

people still buy lotto tickets in large numbers despite knowing that winning is a rare

event. They do so because the potential win would completely change their life. Rare

events have the potential to leave a significant impact. As such, understanding how these

rare events happen is an interesting field of study.

This concept first appeared in mathematical history though the works of Swedish

mathematician Harald Cramér in modelling an insurance business[4]. If one is operating

an insurance company, they would have to consider both earning and claims when looking

at profitability for the company. We can assume that the earning come as premium at a

constant daily rate, x and the claims, Xi, arrive at a random rate. For any fixed earning

period, if the total claims is more than the total earning then the profit margins for the

company would decrease. Then what is the premium they have to charge their customers

in order to have the average future claims to be less than the average daily future earn-

ings?

Let use review some standard probabilistic results to analyse the question.

Theorem 2.1.1 (Law of Large Numbers).

Sn → µ, as n→∞,

where Sn = 1
n

∑n
i=1Xi and the limit is in sense of convergence in probability in the

weak sense and almost surely in the strong sense
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Theorem 2.1.2 (Central Limit Theorem).

(
1√
n

n∑

i=1

(Xi − µ)

)
→ N(o, σ2),

where the limit is in distribution

Theorem 2.1.1 tells us that as the number of claims increases, asymptotically the

average value of a claim would approach a number µ while Theorem 2.1.2 tells us what

the limiting distribution would be normal around the number µ. However, we do not know

at what rate the average claim would approach µ. Let us assume that x is the premium

earned per day and Sn =
∑n

i=1 Xi is the average claim on the nth day. We want to know

how the probability of the event that the average future claim is more that the average

daily earnings depends on the premium charged. Namely we want to know how P (|Sn ≥

x|) is dependent of the value of x. We would want this probability to not only be small

but exponentially small as to guarantee that that the chance of losing profitability for the

company is exceedingly small. Large deviation principle is this study of rare events via

analysis of probabilities of rare events that are exponentially small.

Heuristically, consider a topological space X and a complete Borel σ-field B. Large

deviation principle characterizes the asymptotic behavior of a family of probability mea-

sures, {µε}, on (X ,B) as ε decreases to zero via a rate function. It does so via the asymp-

totic exponential bounds on the open and closed sets in the topological space.

In the following sections, we review some preliminary definitions and explore some

known results in the theory. We follow the exposition given by Dembo and Zeitouni in [5].

2.2. Large Deviation Principle and Some Properties

We start off with the definition of the rate function and Large Deviation Principle.
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Definition 2.2.1. A function, I, is called a rate function on X if I maps X to R and if

the level sets of I are compact subsets of X

Definition 2.2.2. A family of probability measures, {µε}, satisfies the large deviation

principle with a unique rate function, I(•) if the following inequalities hold:

• (Uppper Bound)
lim sup
ε→0

ε log µε(F ) ≤ − inf
x∈F

I(x),

for all closed sets F .

• (Lower Bound)
lim inf
ε→0

ε log µε(O) ≥ − inf
x∈O

I(x),

for all open sets O.

Now that we have defined what large deviation principle is, we look into some use-

ful results in the theory. The following result is called Contraction principle and states

that the continuous image of random variables satisfying large deviation principle also sat-

isfies large deviation principle.

Theorem 2.2.3 (Theorem 4.2.1 of [5]). Let X and Y be two separable metrizable topolog-

ical spaces, I a rate function on X , and f a continuous function mapping X to Y. Then

the following conclusions hold.

1. For each y ∈ Y,

J(y) , inf
{
I(x) |x ∈ f−1(y)

}

is a rate function on Y,

2. If {Xn} satisfies large deviation principle on X with rate function I, then {f (Xn)}

satisfies large deviation principle on Y with rate function J .

Large deviation principle is also preserved between sequences of random variables

that are super-exponentially close to each other as shown by the following theorem.
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Theorem 2.2.4 (Theorem 4.2.16 of [5]). For n ∈ N, let Xn and Yn be random variables

on (Ω,F , P ) and take values in X . Given that {Xn} satisfies large deviation principle on

X with rate function I and that {Yn} is super-exponentially close to {Xn} i.e,

lim sup
n→∞

1

n
logP {d(Xn, Yn) > δ} = −∞.

2.3. Large Deviation Principle for Random Variables

We return to the mathematical setting that Cramér investigated the insurance

problem as introduced in Section 2.1.

Theorem 2.3.1 (Theorem 2.2.3 of [5]). Let Xn ∈ R be i.i.d random vectors with X1 dis-

tributed according to a d-dimensional probability measure µ. Let Λ be the logarithmic mo-

ment generating function associated with µ, namely,

Λ(λ) , logE[e〈λ,X1〉].

Then, the sequence of probability measures {µn} satisfies large deviation principle with the

convex rate function Λ∗(·), namely:

1. For any closed F ⊂ R,

lim sup
n→∞

1

n
log µn(F ) ≤ − inf

x∈F
Λ∗(x).

2. For any open O ⊂ R,

lim sup
n→∞

1

n
log µn(O) ≥ − inf

x∈O
Λ∗(x).

where µn is the law of Sn = 1
n

∑n
i=1Xi and Λ∗(x) , supλ∈Rd {〈λ , x〉 − Λ(x)} is the

Frechet-Legendre transform of Λ.

We refer the reader to the Garter-Ellis Theorem for non-i.i.d case in [5].
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2.4. Large Deviation Principle for Stochastic Processes

Let us explore some results to familiarize ourselves to some large deviation results

on the sample paths. We start off with some results for the building blocks of stochastic

calculus. From Theorem 2.3.1, we have an understanding about the large deviation be-

havior of the sample mean. Given a sequence of random variables, the following theorem

provides insights into the large deviation behavior of the whole set of random variables

indexed by t. For this section, we fix t ∈ [0, 1].

Given a sequence of i.i.d random variables {Xn} with Λ(λ) , logE
(
e〈λ,X1〉

)
< ∞

for all λ ∈ R, we consider the random walk given by,

Zn(t) =
1

n

bntc∑

i=1

Xi, 0 ≤ t ≤ 1.

Theorem 2.4.1 (Theorem 5.2.1 of [5]). Let µn is the law of Zn(·) in L∞ ([0, 1]). Then the

measures, µn satisfy large deviation principle in L∞ ([0, 1]) with the rate function,

I(ψ) =





∫ 1

0

Λ∗(ψ̇(t)) dt, if ψ ∈ AC,

∞, otherwise,

where AC denotes the space of absolutely continuous functions and Λ ∗ (x) is the Frechet-

Legendre transform of Λ(•).

We proceed to Schilder’s Theorem which establishes sample path deviations for

Brownian motion. Let Bt, t ∈ [0, 1], be Brownian motion starting at 0 and for all ε > 0, let

pε be the probability measure induced by
√
εB• on C0 ([0, 1]). Then as ε → 0, pε =⇒ δ0.

As such,

Theorem 2.4.2 (Theorem 5.2.3 of [5]). The sequence of probability measure {pε} as ε→ 0

follows large deviation principle on C0 ([0, 1]) with rate function I(f) where
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I(f) =





1
2

∫ 1

0
|f ′(t)|2dt, if f ∈ H1,

∞, Otherwise,

where H1 = {f ∈ C0 ([0, 1]) | f(t) =
∫ t

0
f ′(s)ds and f ′ ∈ L2[0, 1]}.

Let us look at how we can use an existing large deviation principle results to obtain

new ones.

Example 2.4.3. Let Y ε
t =
√
ε(B1 − Bt) with t ∈ [0, 1]. Then, {Y ε

t } follows large deviation

principle on C1,0[0, 1] with the rate function J given by

J(ψ) =





1

2

∫ 1

0

|f(t)|2dt, if ψ(t) =

∫ 1−t

0

f(s) ds with f ∈ L2[0, 1],

∞, otherwise,

where C1,0[0, 1] = {f | f is continuous and f(1) = 0}.
Proof. Define Zt = (B1 −B1−t) for t ∈ [0, 1]. Then we have the following properties:

1. Z0 = B1 −B1 = 0.

2. Let 0 ≤ u ≤ v ≤ s ≤ t ≤ 1 then, we have that 1 ≥ 1−u ≥ 1− v ≥ 1− s ≥ 1− t ≥ 0.

As such, Zt − Zs = B1−s − B1−t is independent of Zv − Zu = B1−u − B1−v via the

independent increments of Brownian motion.

0 1− t 1− s 1− v 1− u 1

Zt − Zs Zv − Zu

Figure 2.1. A t-dependence plot of the disjoint increments of Z• .

3. Zt − Zs = B1−s −B1−t ∼ N(0, t− s) for 0 ≤ s ≤ t ≤ 1.

4. Zt is continuous almost surely as a sum of continuous functions.
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From Definition 1.2.2, we have that Zt is a Brownian motion. Consider the function

Λ(ψt) = ψ1−t for f continuous. Then, Λ : C0[0, 1] → C1,0[0, 1] is a continuous function that

is its own inverse. Furthermore, Λ(
√
εZt) = Λ(

√
ε(B1 − B1−t)) =

√
ε(B1 − Bt) = Y ε

t . Using

the contraction mapping property in Theorem 2.2.3 along side the large deviation prin-

ciple results in Theorem 2.4.2, Y ε
t follows large deviation principle with the rate function

given by

J(ψ) = I ◦ Λ−1(ψ•) = I(ψ(1− •))

=





1

2

∫ 1

0

|f(t)|2dt, if ψ(1− t) =

∫ t

0

f(s) ds with f ∈ L2[0, 1],

∞, otherwise,

=





1

2

∫ 1

0

|f(t)|2dt, if ψ(t) =

∫ 1−t

0

f(s) ds with f ∈ L2[0, 1],

∞, otherwise,

where we performed a change of variables for the last equality.

Via Schilder’s Theorem and an application of the super-exponential approxima-

tion given in Theorem 2.2.4, we can obtain large deviation results for a class of solutions

of stochastic differential equations, namely :

Theorem 2.4.4 (Theorem 5.6.3 of [5]). Given a stochastic differential equation with state

driven noise:

Xε(t) = Xε(0) +
√
ε

∫ t

0

α(Xε(s))dB(s) +

∫ t

0

β(Xε(s))ds, t ∈ [0, 1],

with {Xε(t)} ∼ µε and X(0) = 0. The sequence of probability measures {µε} satisfies large
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deviation principle with rate function I given by,

I(f) =





1
2

∫ 1
0

〈
f ′(t)− β(f(t)) , A−1(t) (f ′(t)− β (f (t)))

〉
dt, if f ∈ H1,

∞, otherwise,

where A(t) = αα∗(t).

We are interested in cases where the stochastic differential equations need not nec-

essarily be adapted. From the definition of the Itô integral in Definition 1.4.2, we see that

the stochastic integral is not defined when the integrand is not adapted. As such, we first

switch our focus to the Ayed–Kuo integral which provides an intuitive and simplistic way

to approach anticipating integrals.
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Chapter 3. General Theory of Stochastic Analysis

3.1. Introduction

The following question was posed by Itô in the 1976 International Symposium of

Stochastic Differential Equations in Kyoto [13]. Is

∫ 1

0

B1dBt = B1

∫ 1

0

dBt = B2
1 ? (3.1)

He added that B1 is not adapted to the natural Brownian filtration Ft and as such,

∫ 1

0
B1dBt can not be defined as an Itô integral. In working with this limitation, he pro-

posed an initial enlargement of filtration by taking Gt = σ{B1, Bs | 0 ≤ s ≤ t} and

decomposed the Brownian motion as

Bt =

(
Bt −

∫ t

0

B1 −Bu

1− u du

)
+

∫ t

0

B1 −Bu

1− u du.

In this formulation, Bt is quasi-martingale with respect to the new filtration while B1 is

adapted to Gt. As such, Equation (3.1) holds true in the enlarged filtration.

The Ayed–Kuo stochastic integral takes inspiration from Itô. Instead of keeping the

integrand B1 while simultaneously changing the filtration and decomposing the integra-

tor Bt, the new stochastic integral maintains both the Brownian motion and the filtration

while decomposing the integrand into adapted part and the counter-part called instantly

independent. In this chapter, we will review the Ayed–Kuo Stochastic integral and prove

some new results.

Section 3.3 and Section 3.4 of this chapter previously appeared, substantially unchanged, in
the open access Journal of Stochasic Analysis article: Kuo, H.-H., Shrestha, P., and Sinha, S.,“An
Intrinsic Proof of an Extension of Itô’s Isometry for Anticipating Stochastic Integrals,”https://
digitalcommons.lsu.edu/josa/vol2/iss4/8/ and in the open-access arXiv article: Kuo, H.-H.,
Shrestha, P., Sinha, S., and Sundar, P., “On near-martingales and a class of anticipating linear SDEs,”
https://arxiv.org/abs/2204.01932 respectively.
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3.2. Instantly Independent and Counter Filtration

Let us first define the notion of instantly independence and the filtration space we

operate on for instantly independent processes.

Definition 3.2.1. A stochastic process, f(t), is said to be instantly independent with re-

spect to the filtration {Ft} if f(t) is independent to Ft for each t ∈ [a, b].

Definition 3.2.2. A family, {G(t)}, of complete sigma fields is called a Counter-filtration

of {Ft} if

1. For each t ∈ [a.b], G(t) is independent of Ft,

2. for each a ≤ s < t ≤ b, G(s) ⊃ G(t).

We define the counter-filtration process space for our instantly independent pro-

cesses.

Definition 3.2.3. Define L2
ct ([a, b]× Ω) as the space of all stochastic processes, g(t, ω),

t ∈ [a, b], ω ∈ Ω, satisfying,

• g(t, ω) is adapted to the natural Brownian counter-filtration, G(t),

•
∫ b
a
E
[
(ψt)

2] ds <∞.

Remark 3.2.4. L2
ct ([a, b]× Ω) is a subspace orthogonal to L2

ad ([a, b]× Ω).

Example 3.2.5. Define Ft = σ{Bs − Ba|a ≤ s ≤ t ≤ b} and G(t) = σ{Bb − Bs|a ≤ t ≤

s ≤ b}. Then, {G(t)} is a counter-filtration of {Ft}. We will refer these filtrations as the

Natural Brownian filtration and Natural Brownian counter-filtration.

The action of the stochastic integral on processes adapted to the natural Brown-

ian counter-filtration is very similar to the action of the Ayed–Kuo integral on processes

adapted to the natural Brownian filtration. Namely, the integral acts as an isometry be-

24



tween two spaces. As such, we have the following result.

Theorem 3.2.6 (Proposition 2.1.3 and Theorem 2.1.8 of [33] ). Let ψt be a square inte-

grable stochastic process adapted to the natural Brownian counter-filtration, G(t) or alter-

nately ψ ∈ L2
ct ([a, b]× Ω). Then

1. ψt is instantly independent to the natural Brownian filtration {Ft},

2. E
[∫ b

a
ψs dBs

]
= 0,

3. E
[(∫ b

a
ψs dBs

)2
]

=
∫ b
a
E
[
(ψt)

2] ds.

It is natural to ask what if a function is both instantly independent and adapted?

Then the function would be deterministic. Indeed if a function f(t), t ∈ [a, b] is Ft-

adapted and instantly independent for each t then,

f(t) = E [f(t) | Ft] = E [f(t)] , t ∈ [a, b],

where the first equality is via adaptedness and the second equality is via instantly inde-

pendence. Thus, f(t) = E [f(t)] for all t in [a, b]. This means that f is deterministic.

3.3. Ayed–Kuo Stochastic Integral

As mentioned earlier, for the Ayed–Kuo stochastic integral, we decompose the in-

tegrand into adapted and instantly independent parts. Let us view it via an illuminatory

example.

Example 3.3.1 (Example 2.4 of [10]). Consider
∫ b
a
Bb dBt. Since the integrand, Bb, is

not {Ft}-adapted, the integral is not defined within Itô theory. Note that for each t, we can

decompose

Bb = Bt + (Bb −Bt),
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where Bt is Ft-measurable, and Bb − Bt is independent of Ft due to the independence of

increments of Brownian motion. Thus, we have decomposed the anticipating integrand into

an adapted and an instantly independent process.

Motivated by Itô’s original construction, we take left end point approximation for

the adapted parts and right end point approximation for the instantly independent part.

This way we can “define” the integral

∫ b

a

Bb dBt =

∫ b

a

[Bt + (Bb −Bt)] dBt

= lim
‖∆n‖→0

n∑

j=1

[
Btj−1

+
(
Bb −Btj

)]
(Btj −Btj−1

)

= lim
‖∆n‖→0

n∑

j=1

[
Bb −

(
Btj −Btj−1

)]
(Btj −Btj−1

)

=Bb lim
‖∆n‖→0

n∑

j=1

(Btj −Btj−1
)− lim

‖∆n‖→0

n∑

j=1

(Btj −Btj−1
)2

=Bb lim
‖∆n‖→0

n∑

j=1

(Btj −Btj−1
)− lim

‖∆n‖→0

n∑

j=1

(tj − tj−1)

=Bb (Bb −Ba)− (b− a),

where in the last equality, we have used the quadratic variation of Brownian motion.

With this example to illuminate the path ahead, we introduce the Ayed–Kuo

stochastic integral.

Definition 3.3.2. The Ayed–Kuo stochastic integral of a stochastic process Φ(t) intro-

duced in [1] is defined in the following three steps.

1. Suppose f(t) is an Ft-adapted continuous stochastic process and φ(t) be an contin-

uous stochastic processes that is instantly independent with respect to Ft. Then the
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stochastic integral of Φ(t) = f(t)φ(t) is defined by

∫ b

a

f(t)φ(t) dB(t) = lim
‖∆n‖→0

n∑

j=1

f(tj−1)φ(tj)(B(tj)−B(tj−1)),

provided that the limit exists in probability.

2. For a process of the form Φ(t) =
∑n

i=1 fi(t)φi(t), the stochastic integral is defined by
∫ b

a

Φ(t) dB(t) =
n∑

i=1

∫ b

a

fi(t)φi(t) dB(t).

3. Let Φ(t) be a stochastic process such that there is a sequence {Φn(t)}∞n=1 of stochas-

tic processes of the form in step 2 satisfying

(a)
∫ b
a
|Φn(t)− Φ(t)|2 dt→ 0 almost surely as n→∞, and

(b)
∫ b
a

Φn(t) dB(t) converges in probability as n→∞.

Then the stochastic integral of Φ(t) is defined by

∫ b

a

Φ(t) dB(t) = lim
n→∞

∫ b

a

Φn(t) dB(t) in probability.

This integral is well defined, as demonstrated by the following lemma.

Lemma 3.3.3 (Lemma 2.1 of [10]). Let fi(t), 1 ≤ i ≤ m and gj(t), 1 ≤ j ≤ n be {Ft}-

adapted stochastic processes and let φi(t), 1 ≤ i ≤ m and ψj(t), 1 ≤ j ≤ n be instantly

independent with respect to {Ft}. Suppose the stochastic integrals
∫ b
a
fi(s)φi(s) dB(s) and

∫ b
a
gj(s)ψj(s) dB(s) exist for all i, j. Assume that,

m∑

i=1

fi(t)φi(t) =
n∑

j=1

gj(t)ψj(t).

Then,
m∑

i=1

∫ b

a

fi(s)φi(s) dB(s) =
n∑

j=1

∫ b

a

gj(s)ψj(s) dB(s).
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This technique of decomposing the integrand into adapted and instantly indepen-

dent processes easily extends to case when the integrand is a product of adapted and an-

ticipating processes, as the following example demonstrates.

Example 3.3.4. Using the decomposition BbBt = (Bb − Bt)Bt + (Bt)
2 for t ∈ [a, b],

we write the integrand as a sum of products of adapted and instantly independent parts. As

such, we can use the definition to get

∫ b

a

BbBt dBt =

∫ b

a

(
Bt(Bb −Bt) +B2

t

)
dBt

=Bb

∫ b

a

Bt dBt −
∫ b

a

Bt dt−
�
��

�
��

∫ b

a

B2
t dBt +

�
��

�
��

∫ b

a

B2
t dBt

=
1

2
Bb

(
B2
b −B2

a − b+ a
)
−
∫ b

a

Bt dt.

3.3.1. Mean of the Ayed–Kuo Stochastic Integral

We first look at the mean of the Ayed–Kuo stochastic integral. From Definition

1.4.5, we have that the Itô integral is a mean zero process. We expect the same for the

Ayed–Kuo stochastic integral. The following result shows that it is indeed the case for a

certain class of integrands.

Theorem 3.3.5. Let Φ(x, y) be continuous on both variable such that Φ(Bt, Bb − Bt) ∈

L2([a, b]× Ω). Furthermore, assume that the partial sums

n∑

i=1

Φ(Bti−1
, B1 −Bti)

(
Bti −Bti−1

)

are uniformly integrable. Then

E
[∫ b

a

Φ(Bt, Bb −Bt) dBt

]
= 0.

Proof. Using the definition of the Ayed–Kuo stochastic integral in Definition 3.3.2 and

the uniform integrability condition on the partial sums to interchange the limit and the
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expectation, we have

E
[∫ b

a

Φ(Bt, Bb −Bt) dBt

]
= lim
‖∆‖n→ 0

n∑

i=1

E
[
Φ(Bti−1

, Bb −Bti)
(
Bti −Bti−1

)]
(3.2)

0 ti−1 ti 1

Bti−1 B1 −Bti
Bti −Bti−1

Figure 3.1. A t-dependence plot of the disjoint increments of B•.

Note that, as independent increments of Brownian motion, both Bti−1
and Bb − Bti

are independent of
(
Bti −Bti−1

)
. As such, continuity of Φ implies that Φ(Bti−1

, Bb − Bti)

is independent of Bti −Bti−1
. Hence,

E
[
Φ(Bti−1

, Bb −Bti)
(
Bti −Bti−1

)]
= E

[
Φ(Bti−1

, Bb −Bti)
]
E
[
Bti −Bti−1

]
= 0. (3.3)

where the last equality is due to the zero mean of the Brownian interval. We combine the

results of Equation 3.2 and Equation 3.3 to complete the proof.

3.3.2. Extension of Itô’s Isometry (Variance)

Suppose f and φ are continuous functions on R. It is proved in Theorem 3.1 of [18]

that

E

[(∫ b

a

f(Bt)φ(Bb −Bt) dBt

)2
]

=

∫ b

a

E
[
f(Bt)

2φ(Bb −Bt)
2
]
dt

+ 2

∫ b

a

∫ t

a

E [f(Bs)φ
′(Bb −Bs)f

′(Bt)φ(Bb −Bt)] ds dt. (3.4)

The result is motivated by Theorem 13.16 in the book [17] where it is shown via

white noise methods. The proof in [18] is lengthy, imposes stronger conditions on the inte-

grand, and involves tedious computations via the binomial expansion. More importantly,
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it doesn’t showcase the crucial feature of the Ayed–Kuo theory of stochastic integration

- the left end point and the right endpoint evaluation for the adapted and instantly inde-

pendent processes. In what follows, we provide intrinsic proof of the formula in Equation

(3.4) for a more general case.

In the proof of Theorem 3.3.6 and Theorem 3.4.2 below, we shall use the σ-fields

Fs = σ{Bu; a ≤ u ≤ s}, a ≤ s ≤ b,

G(t) = σ{Bb −Bv; t ≤ v ≤ b}, a ≤ t ≤ b, and

H(t)
s = σ

(
Fs ∪ G(t)

)
, a ≤ s ≤ t ≤ b.

Here {Fs : s ∈ [a, b]} is the natural Brownian filtration and {G(t) : t ∈ [a, b]}

the natural Brownian counter -filtration generated by the Brownian motion. We shall call

H(t)
s as the separation σ-field. We conjecture on the importance of the joint σ-field H(t)

s .

Taking conditional expectation judiciously with respect to the separation σ-field plays a

significant role in the proof the following theorem.

Theorem 3.3.6 (Theorem 3.1 of [20]). Suppose f, φ ∈ C1(R) such that f(Bt)φ(Bb −

Bt), f(Bt)φ
′(Bb −Bt), f

′(Bt)φ(Bb −Bt) ∈ L2([a, b]× Ω). Then

E

[(∫ b

a

f(Bt)φ(Bb −Bt) dBt

)2
]

=

∫ b

a

E
[
f(Bt)

2φ(Bb −Bt)
2
]
dt

+ 2

∫ b

a

∫ t

a

E [f(Bs)φ
′(Bb −Bs)f

′(Bt)φ(Bb −Bt)] ds dt. (3.5)

Remark 3.3.7 (Remark 3.2 of [20]). For the right-hand side of (3.5) to be well-defined,

we need the well-definedness of the two integrals. For the first integral, we directly see that

the integral is well-defined if f(Bt)φ(Bb − Bt) ∈ L2([a, b] × Ω). For conciseness, we write

ft = f(Bt), φt = φ(Bb − Bt), and similarly their corresponding derivatives. Using this
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notation, for the second integral, we can use Cauchy–Schwarz inequality to get

∫ b

a

∫ t

a

E [fsφ
′
sf
′
tφt] ds dt

≤
∫ b

a

∫ t

a

(
E
[
|fsφ′s|2

]) 1
2
(
E
[
|f ′tφt|2

]) 1
2
ds dt

≤
∫ b

a

(
E
[
|fsφ′s|2

]) 1
2
ds

∫ b

a

(
E
[
|f ′tφt|2

]) 1
2
dt

≤ (b− a)

(∫ b

a

E
[
|fsφ′s|2

]
ds

) 1
2
(∫ b

a

E
[
|f ′tφt|2

]
dt

) 1
2

,

where we used the Schwarz’s inequality in the last step.

Combining these results, we see that a sufficient condition for the second integral to

exist is f(Bt)φ(Bb −Bt), f(Bt)φ
′(Bb −Bt), f

′(Bt)φ(Bb −Bt) ∈ L2([a, b]× Ω).

Remark 3.3.8 (Remark 3.3 of [20]). In the proof of Itô’s isometry, one typically takes

conditional expectation with respect to the σ-field Fs in a simple manner. On the other

hand, our proof requires conditioning with respect to the σ-field H(t)
s in a very specific man-

ner.

Proof. For notational convenience, let

∆Bk = Btk −Btk−1
,

∆tk = tk − tk−1,

fk−1 = f(Btk−1
),

φk = φ(Bb −Btk).

Then by the definition of the Ayed–Kuo stochastic integral, we get

∫ b

a

f(Bt)φ(Bb −Bt) dBt = lim
‖∆n‖→0

n∑

i=1

fi−1φi∆Bi.
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By taking a subsequence, if necessary, we may assume that the convergence is in L2(Ω).

Therefore,

E

[(∫ b

a

f(Bt)φ(Bb −Bt) dBt

)2
]

= lim
‖∆n‖→0

n∑

i=1

n∑

j=1

E [fi−1φifj−1φj∆Bi∆Bj]

= lim
‖∆n‖→0

n∑

i=1

E
[
f 2
i−1φ

2
i (∆Bi)

2]+ 2 lim
‖∆n‖→0

n∑

j=1

j−1∑

i=1

E [fi−1φifj−1φj∆Bi∆Bj]

=: D0 + 2D1,

where we separated the sum into diagonal and off-diagonal elements in the penultimate

step and used the symmetry of i < j and i > j.

First we focus on the diagonal elements. Note that ∆Bi is independent of both

Fti−1
and G(ti). Moreover, fi−1 is Fti−1

-measurable and independent of G(ti). Similarly φi

is G(ti)-measurable and independent of Fti−1
. Therefore, by taking conditional expectation

with respect to Fti−1
, we get

E
[
f 2
i−1φ

2
i (∆Bi)

2] = E
[
E
(
f 2
i−1φ

2
i (∆Bi)

2 | Fti−1

)]

= E
[
f 2
i−1 E

(
φ2
i (∆Bi)

2 | Fti−1

)]

= E
[
f 2
i−1

]
E
[
φ2
i (∆Bi)

2] .

Similarly, taking conditional expectation with respect to G(ti) gives us

E
[
φ2
i (∆Bi)

2] = E
[
E
(
φ2
i (∆Bi)

2 | G(ti)
)]

= E
[
φ2
i E
(
(∆Bi)

2 | G(ti)
)]

= E
[
φ2
i

]
E
[
(∆Bi)

2] .
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Putting it all together along with the fact that E
[
(∆Bi)

2] = ∆ti, we get

E
[
f 2
i−1φ

2
i (∆Bi)

2] = E
[
f 2
i−1

]
E
[
φ2
i

]
∆ti = E

[
f(Bt)

2φ(Bb −Bt)
2
]

∆ti,

where we used the independence of increments of Brownian motion in the last equality.

Summing over i and taking limits, we get

D0 =

∫ b

a

E
[
f(Bt)

2φ(Bb −Bt)
2
]
dt.

The method for the off-diagonal elements is not so direct, and we highlight the key
tricks.

Trick 1 Note that ∆Bi is independent of both Fti−1
and G(ti), and is therefore indepen-

dent of H(ti)
ti−1

. So conditioning with respect to H(ti)
ti−1

gives us

E
(

∆Bi | H(ti)
ti−1

)
= E [∆Bi] = 0,

E
(

(∆Bi)
2 | H(ti)

ti−1

)
= E

[
(∆Bi)

2
]

= ∆ti.

Trick 2 Consider Bb − Bti − ∆Bj = (Bb − Btj) + (Btj−1
− Bti). Since Bb − Btj is G(tj)-

measurable and Btj−1
−Bti is Ftj−1

-measurable, the sum Bb−Bti−∆Bj is H(tj)
tj−1

-measurable.

By continuity of φ, we see that φ(Bb −Bti −∆Bj) is also H(tj)
tj−1

-measurable. This allows us

to conclude that

E [fi−1φ(Bb −Bti −∆Bj)fj−1φj ∆Bi ∆Bj]

= E
[
E
(
fi−1φ(Bb −Bti −∆Bj)fj−1φj ∆Bi ∆Bj | H(tj)

tj−1

)]

= E
[
fi−1φ(Bb −Bti −∆Bj)fj−1φj ∆Bi E

(
∆Bj | H(tj)

tj−1

)]

= 0. (3.6)
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H(tj)
tj−1

t0 a ti−1 ti tj−1 tj b

fi−1

fj−1

φi

φj

Figure 3.2. A t-dependence plot of the various processes. The dotted regions are removed.
Shaded regions represent the separation σ-field.

Therefore, subtracting E [fi−1φ(Bb −Bti −∆Bj)fj−1φj ∆Bi ∆Bj] from the term

E [fi−1φifj−1φj∆Bi∆Bj] does not change anything. This allows us to remove the de-

pendence of φi on {Bt : t ∈ (tj−1, tj)}. This is illustrated in Figure 3.2 by the purple

dotted region of φi.

Trick 3 Using the assumption φ ∈ C1(R) and considering the fact that Bt is continuous

and so ∆Bj → 0 as ‖∆n‖ → 0, we can approximate

φ(Bb −Bti)− φ(Bb −Bti −∆Bj) ' φ′(Bb −Bti −∆Bj) ∆Bj.

For brevity, we write Φij = φ′(Bb −Bti −∆Bj), i < j. Note that Φij is H(ti)
ti−1

-measurable.

Putting these together, we see that

E [fi−1φifj−1φj ∆Bi ∆Bj]

= E [fi−1 (φ(Bb −Bti)− φ(Bb −Bti −∆Bj)) fj−1φj ∆Bi ∆Bj]

' E
[
fi−1Φijfj−1φj ∆Bi (∆Bj)

2
]
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Conditioning with respect to the seperation σ - field, we have

E [fi−1φifj−1φj ∆Bi ∆Bj]

= E
[
E
(
fi−1Φijfj−1φj ∆Bi (∆Bj)

2 | H(tj)
tj−1

)]

= E
[
fi−1Φijfj−1φj ∆Bi E(∆Bj)

2
]

= E [fi−1Φijfj−1φj ∆Bi] ∆tj. (3.7)

Hti
ti−1

0 a ti−1 ti tj−1 tj b

fi−1

fj−1

φi

φj

Figure 3.3. A t-dependence plot of the various processes. The dotted regions are removed.
Shaded regions represent the separation σ-field.

We repeat Trick 2 on f(Btj−1
− ∆Bi) just as we did for φ(Bb − Bti − ∆Bj) to de-

rive (3.6). This allows us to remove the dependence of fj−1 on {Bt : t ∈ (ti−1, ti)}. This is

illustrated in Figure 3.3 by the purple dotted region of fj−1. Therefore,

= E [fi−1Φijfj−1φj ∆Bi ∆Bj] = 0,

where we used the tower property with respect to the σ-field H(ti)
ti−1

in this case. As before,

we get

f(Btj−1
)− f(Btj−1

−∆Bi) ' f ′(Btj−1
−∆Bi) ∆Bi.
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Continuing from (3.7),

E [fi−1φifj−1φj ∆Bi ∆Bj]

= E [fi−1Φijfj−1φj ∆Bi] ∆tj

= E
[
fi−1Φij

(
f(Btj−1

)− f(Btj−1
−∆Bi)

)
φj ∆Bi

]
∆tj

' E
[
fi−1Φijf

′(Btj−1
−∆Bi)φj (∆Bi)

2
]

∆tj

= E
[
E
(
fi−1Φijf

′(Btj−1
−∆Bi)φj (∆Bi)

2 | H(ti)
ti−1

)]
∆tj

= E
[
fi−1Φijf

′(Btj−1
−∆Bi)φjE

(
(∆Bi)

2 | H(ti)
ti−1

)]
∆tj

= E
[
fi−1Φijf

′(Btj−1
−∆Bi)φj

]
∆ti ∆tj. (3.8)

By the continuity of Bt, we see that as ‖∆n‖ → 0, so does ∆Bi and ∆Bj. More-

over, by the continuity of f ′ and φ′, we can conclude that as ‖∆n‖ → 0,

f ′(Bti−1
−∆Bi) −→ f ′(Btj−1

) = f ′j−1,

Φij = φ′(Bb −Bti −∆Bj) −→ φ′(Bb −Bti) = φ′i.

Finally, summing up (3.8) over i < j and taking limit, we get

D1 =

∫ b

a

∫ t

a

E [f(Bs)φ
′(Bb −Bs)f

′(Bt)φ(Bb −Bt)] ds dt.

This concludes the proof.

Theorem 3.3.6 also serves as a new tool in evaluating the second moment of antic-

ipating integrals. This is advantageous as explicitly evaluating the integral via the defi-

nition can get very tedious and complicated. We demonstrate this point of view with an

example.

36



Example 3.3.9 (Example 3.4 of [20]). Apply Theorem 3.3.6 to the case with f(x) = x and

φ(y) = y. Then we have

E

[(∫ b

a

Bt(Bb −Bt) dBt

)2
]

=

∫ b

a

E
[
B2
t (Bb −Bt)

2
]
dt+ 2

∫ b

a

∫ t

a

E [Bs(Bb −Bt)] ds dt

=

∫ b

a

E
[
B2
t

]
E
[
(Bb −Bt)

2
]
dt+ 2

∫ b

a

∫ t

a

E [Bs]E [Bb −Bt] ds dt

=

∫ b

a

t(b− t) dt

=
1

6
(b3 − 3a2b+ 2a3). (3.9)

On the other hand, let us evaluate the stochastic integral
∫ b
a
Bt(Bb − Bt) dBt and

then use it to compute its second moment. By equation (2.5) in [9], we have

∫ t

0

Bs(BT −Bs) dBs =
1

2
BT (B2

t − t)−
1

3
B3
t , 0 ≤ t ≤ T,

which immediately yields the following stochastic integral

∫ b

a

Bt(Bb −Bt) dBt =
1

2
Bb

[
(B2

b −B2
a)− (b− a)

]
− 1

3

(
B3
b −B3

a

)
.

For brevity, we write ∆B = Bb−Ba, so Bb = (Bb−Ba)+Ba = ∆B+Ba. Performing

algebraic simplification, we get

∫ b

a

Bt(Bb −Bt) dBt =
1

6

(
∆3
B + 3Ba∆

2
B − 3(b− a)∆B − 3(b− a)Ba

)
.

Note that Ba and ∆B are independent with Ba ∼ N(0, a) and ∆B ∼ N(0, b− a). Therefore,
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any odd moment of either of Ba or ∆B is zero. Using this, we get

E

[(∫ b

a

Bt(Bb −Bt) dBt

)2
]

=
1

36
E
[
∆6
B + 9B2

a∆
4
B + 9(b− a)2∆2

B + 9(b− a)2B2
a

−6(b− a)∆4
B − 18(b− a)B2

a∆
2
B

]

=
1

6

(
b3 − 3a2b+ 2a3

)
,

which is exactly what we obtained in equation (3.9). But, obviously, here the computation

is more tedious and complicated.

The arguments used in the proof of Theorem 3.3.6 can also be applied to show the

following general results.

Theorem 3.3.10 (Theorem 3.5 of [20]). Let Φ(x, y) ∈ C1(R2) and assume that

Φ(Bt, Bb −Bt),Φx(Bt, Bb −Bt), Φy(Bt, Bb −Bt) ∈ L2([a, b]× Ω).

Then

E

[(∫ b

a

Φ(Bt, Bb −Bt) dBt

)2
]

=

∫ b

a

E
[
Φ(Bt, Bb −Bt)

2
]
dt

+ 2

∫ b

a

∫ t

a

E
[
Φy(Bs, Bb −Bs) Φx(Bt, Bb −Bt)

]
ds dt. (3.10)

We use this general result to obtain the covariance between two Ayed–Kuo stochas-

tic integrals.

Theorem 3.3.11 (Theorem 3.6 of [20]). Let Φ(x, y),Ψ(x, y) ∈ C1(R2) and assume that

1. Φ(Bt, Bb −Bt),Φx(Bt, Bb −Bt), Φy(Bt, Bb −Bt) ∈ L2([a, b]× Ω), and

2. Ψ(Bt, Bb −Bt),Ψx(Bt, Bb −Bt), Ψy(Bt, Bb −Bt) ∈ L2([a, b]× Ω).
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Then

E
[(∫ b

a

Φ(Bt, Bb −Bt) dBt

)(∫ b

a

Ψ(Bt, Bb −Bt) dBt

)]

=

∫ b

a

E [Φ(Bt, Bb −Bt)Ψ(Bt, Bb −Bt)] dt

+

∫ b

a

∫ t

a

E
[
Φy(Bs, Bb −Bs)Ψx(Bt, Bb −Bt)

+ Φx(Bt, Bb −Bt)Ψy(Bt, Bb −Bt)
]
ds dt.

Proof. For this proof, we write

F (t) = Φ(Bt, Bb −Bt),

G(t) = Ψ(Bt, Bb −Bt),

H(t) = F (t) +G(t).

Moreover, for brevity, we write Fx(t) = Φx(Bt, Bb − Bt), Fy(t) = Φy(Bt, Bb − Bt) and

corresponding notations for G(t) and H(t).

From the definition of H(t), we see that

E

[(∫ b

a

H(t) dBt

)2
]

= E

[(∫ b

a

F (t) dBt +

∫ b

a

G(t) dBt

)2
]

= E

[(∫ b

a

F (t) dBt

)2
]

+ E

[(∫ b

a

G(t) dBt

)2
]

+ 2 E
[(∫ b

a

F (t) dBt

)(∫ b

a

G(t) dBt

)]
.

Applying Theorem 3.3.10 for F (t), we get

E

[(∫ b

a

F (t) dBt

)2
]

=

∫ b

a

E
[
F (t)2

]
dt+ 2

∫ b

a

∫ t

a

E [Fy(s) Fx(t)] ds dt.
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We can obtain a similar equality for G(t). Putting all this together, we get

E

[(∫ b

a

H(t) dBt

)2
]

=

∫ b

a

E
[
F (t)2

]
dt+ 2

∫ b

a

∫ t

a

E [Fy(s) Fx(t)] ds dt

+

∫ b

a

E
[
G(t)2

]
dt+ 2

∫ b

a

∫ t

a

E [Gy(s) Gx(t)] ds dt

+ 2 E
[(∫ b

a

F (t) dBt

)(∫ b

a

G(t) dBt

)]
. (3.11)

On the other hand, first applying Theorem 3.3.10 and then using the definition of

H(t), we get

E

[(∫ b

a

H(t) dBt

)2
]

=

∫ b

a

E
[
H(t)2

]
dt+ 2

∫ b

a

∫ t

a

E [Hy(s) Hx(t)] ds dt

=

∫ b

a

E
[
F (t)2

]
dt+

∫ b

a

E
[
G(t)2

]
dt+ 2

∫ b

a

E [F (t)G(t)] dt

+ 2

∫ b

a

∫ t

a

E [(Fy(s) +Gy(s))(Fx(t) +Gx(t))] ds dt

=

∫ b

a

E
[
F (t)2

]
dt+

∫ b

a

E
[
G(t)2

]
dt+ 2

∫ b

a

E [F (t)G(t)] dt

+ 2

∫ b

a

∫ t

a

E
[
Fy(s)Fx(t) + Fy(s)Gx(t) +Gy(s)Fx(t) +Gy(s)Gx(t)

]
ds dt. (3.12)

Finally, equations (3.11) and (3.12) imply that

E
[(∫ b

a

F (t) dBt

)(∫ b

a

G(t) dBt

)]

=

∫ b

a

E [F (t)G(t)] dt+

∫ b

a

∫ t

a

E [Fy(s)Gx(t) +Gy(s)Fx(t)] ds dt,

which is exactly the desired result.

If Φ(x, y) = f(x) and Ψ(x, y) = φ(y), we have Φy ≡ 0 and Ψx ≡ 0. Therefore, we

obtain the following corollary.
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Corollary 3.3.12 (Corollary 3.7 of [20]). Let f, φ ∈ C1(R) and assume that

1. f(Bt), φ(Bb −Bt) ∈ L2([a, b]× Ω), and

2. f ′(Bt), φ
′(Bb −Bt) ∈ L2([a, b]× Ω).

Then

E
[(∫ b

a

f(Bt) dBt

)(∫ b

a

φ(Bb −Bt) dBt

)]

=

∫ b

a

E [f(Bt)φ(Bb −Bt)] dt+

∫ b

a

∫ t

a

E [φ′(Bb −Bs)f
′(Bt)] ds dt.

Corollary 3.3.12 provides the same power as the extension of the isometry in that it

allows us to explicitly calculate the covariance between anticipating and adapted integrals

without having to calculate the integral itself. We demonstrate that fact with an example

Example 3.3.13 (Example 3.8 of [20]). Let f(x) = x and φ(y) = y. Using Corollary

3.3.12, we get

E
[(∫ b

a

Bt dBt

)(∫ b

a

(Bb −Bt) dBt

)]

=

∫ b

a

E [Bt(Bb −Bt)] dt+

∫ b

a

∫ t

a

E [1] ds dt

=

∫ b

a

E [Bt]E [Bb −Bt] dt+

∫ b

a

(t− a) dt

=
1

2
(b− a)2.

Finally, we want to point our that the double integral in equation (3.10) can be re-

garded as a correction term when we extend Itô’s theory to anticipating stochastic integra-

tion. This correction term can be positive or negative, as illustrated in the next example.

Example 3.3.14 (Example 3.9 of [20]). Consider the case Φ(x, y) = px + y in Theorem

3.3.10, where p ∈ R. Then Φx = p and Φy = 1. Therefore, we can directly evaluate the
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double integral in equation (3.10) as

2

∫ b

a

∫ t

a

E
[
Φy(Bs, Bb −Bs) Φx(Bt, Bb −Bt)

]
ds dt = 2

∫ b

a

∫ t

a

p ds dt = p(b− a)2.

Therefore, the final term will be positive or negative depending on the sign of p.

3.4. Near-martingales

Let us consider the following stochastic process Xt =
∫ t

0
B1 dBs, t ∈ [0, 1]. Using the

definition of the Ayed–Kuo stochastic integral in 3.3.2 and following the steps in example

3.3.1 we have

Xt =

∫ t

0

B1 dBs = B1Bt − t, t ∈ [0, 1].

It is easy to see that Xt is not a martingale as B1 is not adapted to the natural

Brownian filtration {Ft} for t < 1. Let s ≤ t for s, t ∈ [0, 1]. We evaluate the conditional

expectation of Xt and Xs with respect to Fs. Hence

E [Xs | Fs] = E [B1Bs − s | Fs]

= BsE [B1 | Fs]− s

= B2
s − s.
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E [Xt | Fs] = E [B1Bt − t | Fs]

= E [(B1 −Bt +Bt −Bs +Bs)(Bt −Bs +Bs) | Fs]− t

= E
[

(B1 −Bt) (Bt −Bs) + (Bt −Bs)
2

+ 2 (Bt −Bs)Bs + (B1 −Bt)Bs +B2
s | Fs

]
− t

= E [(B1 −Bt) (Bt −Bs)] + E
[
(Bt −Bs)

2]

+BsE [B1 −Bs] + 2BsE [Bt −Bs] +B2
s − t

= B2
s − s,

where the last equality is due to the properties of Brownian motion. Notice that

E [Xs | Fs] = E [Xt | Fs]. This property is satisfied by many other stochastic processes.

In view of Definition 1.3.6, a martingale would trivially satisfy this relationship. In

essence, such a relationship can be seen as a generalization of the martingale property.

This discussion serves as the motivation for near-martingales defined below.

Definition 3.4.1 (Near-martingale). A stochastic process, Nt, a ≤ t ≤ b, with E|Nt | <∞

for all t is called a near-martingale with respect to the filtration{Ft} if for any a ≤ s ≤ t ≤

b, E[Nt −Ns | Fs ] = 0, a.s.

From Theorem 1.4.6, we know that martingales occur naturally within Itô theory.

Near-martingales and Ayed–Kuo integrals are true generalization of both of martingales

and Itô integrals respectively. It is natural to ask, should we expect something similar?

In what follows, we show that near-martingales do occur naturally within the Ayed–Kuo

theory.
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Theorem 3.4.2 (Theorem 3.3 of [21]). Let Φ(x, y) be a function that is continuous in both

variables such that the stochastic integral,

Nt =

∫ t

a

Φ(Bs, Bb −Bs) dBs, a ≤ t ≤ b,

exists and E|Nt | <∞ for each t in [a, b]. Furthermore, assume that the partial sums

n∑

i=1

Φ(Bti−1
, Bb −Bti)

(
Bti −Bti−1

)

are uniformly integrable. Then Nt, a ≤ t ≤ b, is a near-martingale with respect to the

filtration generated by Brownian motion given by {Ft} .

Remark 3.4.3. This result is shown in Theorem 3.5 of [18] for the case when Φ(x, y) =

f(x)φ(y).

Proof. Let t > s and consider a partition, ∆n, of [s, t] with t0 = s and tn = t. Via the def-

inition of the Ayed–Kuo Stochastic Integral in conjunction with the uniform integrability

condition on the partial sums, we have

E [Nt −Ns | Fs] =E
[∫ t

s

Φ(Bv, Bb −Bv) dBv | Fs
]

=E

[
lim
n→∞

n∑

k=1

Φ(Bk−1, Bb −Bk)∆Bk | Fs
]

= lim
n→∞

n∑

k=1

E [Φ(Bk−1, Bb −Bk)∆Bk | Fs] . (3.13)

Consider, the separation σ-field H(b)
a = σ(Fa ∪ G(b)). Then Fs ⊆ Fk−1 ⊆ H(k)

k−1. Using

this fact alongside the continuity of Φ in both variables, we have that Φ(Bk−1, Bb − Bk) is

H(k)
k−1 - measurable. Furthermore, via the independence of the Brownian increments, ∆Bk

is independent of H(k)
k−1.
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Figure 3.4. A t-dependence plot of the disjoint increments of B•. The shaded regions
represents the forward and separation σ-field.

Thus,

E [Φ(Bk−1, Bb −Bk)∆Bk | Fs]

=E
[
E
[
Φ(Bk−1, Bb −Bk)∆Bk |H(k)

k−1

]
| Fs
]

=E [Φ(Bk−1, Bb −Bk)E [∆Bk] | Fs]

=0.

Using this result for each k in equation (3.13), we have

E [Nt −Ns | Fs] = 0.

Thus, Nt is a near-martingale.

Example 3.4.4. Consider Nt =
∫ t
a
Bb dBs. Using Theorem 3.4.2 with Φ(x, y) = x + y, we

have that Nt is a near-martingale for a ≤ t ≤ b.

This theorem can be extended for the anticipating case as well. Namely,

Theorem 3.4.5. Let Φ(x, y) be a function that is continuous in both variables such that

the stochastic integral,

Nt =

∫ b

t

Φ(Bs, Bb −Bs) dBs, a ≤ t ≤ b,
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exists and E|Nt | < ∞ for each t in [a, b]. Then Nt, a ≤ t ≤ b, is a near-martingale with

respect to the filtration generated by Brownian motion given by {Ft} .

Remark 3.4.6. This result is shown in Theorem 3.6 of [18] for the case when Φ(x, y) =

f(x)φ(y).

These two results, Theorem 3.4.2 and Theorem 3.4.5, show that the near-

martingale property is an analogue of martingale property for the Ayed–Kuo stochastic

integral. This relation is further solidified by the following result that shows the intrinsic

relation between a near-martingale and a martingale.

Theorem 3.4.7 ( Theorem 2.11 of [11]). Let Nt, a ≤ t ≤ b be a stochastic process with

E|Nt | <∞ for each t ∈ [a, b] and let Mt = E [Nt | Ft]. Then

Nt is a near-martingale ⇐⇒ Mt is a martingale.

We use this result in obtaining a near-martingale optional stopping theorem for the

Ayed–Kuo stochastic integral.

3.4.1. Near-martingale Optional Stopping Theorem

We build up the optional stopping theorem using the strategy used for the martin-

gale case in [32]. Namely, we prove near-martingale version of the optional stopping theo-

rem for discrete stopping times and then extend it for continuous stopping times. For this

section, fix t ∈ [0, 1].

First we prove a result that shows that a stopped near-martingale is a near-

martingale. We use this result to prove the discrete case of the theorem.

Theorem 3.4.8 (Theorem 3.6 of [21]). Let Nt, t ∈ [0, 1], be a discrete-time near-

martingale and τ a stopping time. Then Nτ∧t is a near-martingale.
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Proof. Let tn be an arbitrary time and consider a partition 0 = t0 < t1 < · · · < tn and a

forward filtration F• associated with Nt. We define

Yn ,
n∑

i=1

1{ti−1≤ τ}
(
Nti −Nti−1

)
= Nτ ∧ tn −N0. (3.14)

Assume m < n, then

E [Yn − Ym | Fm] = E

[
n∑

i=m+1

1{ti−1≤ τ}
(
Nti −Nti−1

)
| Fm

]

=
n∑

i=m+1

E
[
1{ti−1≤ τ}

(
Nti −Nti−1

)
| Fm

]
.

Here ti > tm. In addition, 1{ti≤ τ} is Fi- measurable for each i. As such, taking conditional

expectation judiciously with respect to Fi−1 we get,

E [Yn − Ym | Fm] =
n∑

i=m+1

E
[
E
[
1{ti−1≤ τ}

(
Nti −Nti−1

)
| Fi−1

]
| Fm

]

=
n∑

i=m+1

E
[
1{ti−1≤ τ}E

[
Nti −Nti−1

| Fi−1

]
| Fm

]

= 0.

where the last equality is due to the near-martingale property of Nt. Thus, Yn is a near-

martingale. We use this fact alongside equation (3.14) to get

E [Nτ ∧ tn −Nτ ∧ tm | Fm] = E [Yn − Ym | Fm] = 0.

Thus we have shown that a stopped near-martingale is a near-martingale. We use

this result to prove a version of the near-martingale optional stopping theorem for discrete

time near-martingales.
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Theorem 3.4.9 (Theorem 3.7 of [21]). Let Nt be a discrete time near-martingale. Suppose

σ and τ are two bounded stopping times with σ ≤ τ . Then Nσ and Nτ are integrable, and

E [Nτ −Nσ | Fσ] = 0 almost surely.

Proof. Since σ and τ are bounded, there exists K < ∞ such that σ ≤ τ ≤ K. Let X• be

any near-martingale. Clearly, Xσ is integrable. Suppose B ∈ Fσ. Then for any n ≤ K, we

have B ∩ {σ = n} ∈ Fn, and so

∫

B∩{σ=n}
(XK −Xσ) dP =

∫

B∩{σ=n}
(XK −Xn) dP = 0.

Summing over n, we get
∫
B

(XK −Xσ) dP = 0, and so E [XK −Xσ | Fσ] = 0. Finally, let

Xn = Nτ∧n to get

E [Nτ∧K −Nτ∧σ | Fσ] = E [Nτ −Nσ | Fσ] = 0.

Before we proceed to continuous time near-martingales, we will need the concept of

backward near-martingales.

Definition 3.4.10 (Definition 3.8 of [21]). Let (Fn)∞n=1 be a decreasing sequence of σ-

algebras, and let N• = (Nn)∞n=1 be a stochastic process. Then the pair (Nn,Fn)∞n=1 is called

a backward near-martingale if for every n,

1. Nn is integrable and Fn-measurable, and

2. E [Nn −Nn+1 | Fn+1] = 0.

Lemma 3.4.11 (Lemma 3.9 of [21]). Let (Nn,Fn)∞n=1 be a backward near-martingale with

limn→∞ E [Nn] > −∞. If N• is non-negative for every n, then N• is uniformly integrable.

Proof. As n ↗ ∞, we have E [Nn] ↘ limn→∞ E [Nn] = infn E [Nn] > −∞. Fix ε > 0.
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By the definition of infimum, there exists a K > 0 such that for any n ≥ K, we have

E [Nk]− limn→∞ E [Nn] < ε.

For any k ≥ n and δ > 0, we have

E
[
|Nk|1{|Nk|>δ}

]
= E

[
Nk1{Nk>δ}

]
+ E

[
Nk1{Nk≥−δ}

]
− E [Nk] .

Moreover, since N• is a backward near-martingale, E
[
Nk1{Nk≥δ}

]
= E

[
Nn1{Nk≥δ}

]
. There-

fore,

E
[
|Nk|1{|Nk|>δ}

]
≤ E

[
Nn1{Nk>δ}

]
+ E

[
Nn1{Nk≥−δ}

]
− (E [Nn]− ε)

= E
[
|Nn|1{|Nk|>δ}

]
+ ε.

By Markov’s inequality and the non-negativity of X,

P {|Nk| > δ} ≤ 1

δ
E |Nk| =

1

δ
E [Nk] ≤

1

δ
E [N1]→ 0

as δ →∞. This concludes the proof.

We use these backward near-martingales and Lemma 3.4.11 to extend the near-

martingale optional stopping theorem to the continuous case. Namely,

Theorem 3.4.12 (Theorem 3.10 of [21]). Let N be a near-martingale with right-

continuous sample paths. Suppose σ and τ are two bounded stopping times with σ ≤ τ . If

N is non-negative or uniformly integrable, then Nσ and Nτ are integrable, and

E [Nτ −Nσ | Fσ] = 0 almost surely.

Proof. We use a discretization argument to prove the result. Let T > 0 be a bound for τ .

For every n ∈ N, define the discretization function

fn : [0,∞)→
{
k

n
: k = 0, . . . , n

}
: x 7→ b2

nxc+ 1

2n
∧ T,
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and let σn = fn(σ) and τn = fn(τ).

Now, for any n and t,

{τn ≤ t} = {fn(τ) ∈ [0, t]} =
{
τ ∈ f−1

n [0, t]
}

=

{
τ ∈ f−1

n

[
0,
b2ntc

2n

]}
∈ F b2ntc

2n
⊆ Ft,

so τn is a stopping time. Similarly, σn is a stopping time. Moreover, it can be easily

seen that σn ≤ τn for every n, and σn ↘ σ and τn ↘ τ as n ↗ ∞. Therefore, by

Theorem 3.4.9, we get Nσn and Nτn are integrable, and E [Nτn −Nσn | Fσn ] = 0 almost

surely. Furthermore, it is easy to see that Fσ =
⋂∞
n=1Fσn ⊆ Fσn for any n. Therefore,

E [Nτn −Nσn | Fσ] = 0 almost surely for any n.

If N is non-negative, by construction, (Nσn ,Fσn)∞n=1 is a backward near-martingale

such that Nσn ≥ 0 for every n. Therefore, E [Nσn ] ↘ E [Nσ] > −∞ as n ↗ ∞. Using

Lemma 3.4.11, (Nσn)∞n=1 is uniformly integrable. Similarly, (Nτn)∞n=1 is also uniformly inte-

grable. On the other hand, if N is uniformly integrable, this is trivial.

Using the right continuity of N and the boundedness assumption of σ and τ , we

get limn→∞Nσn = Nσ and limn→∞Nτn = Nτ almost surely. Furthermore, the uniform in-

tegrability of (Nσn)∞n=1 and (Nτn)∞n=1 allows us to conclude that Nσ and Nτ are integrable

and that the convergence is also in L1, giving us E [Nτ −Nσ | Fσ] = 0 almost surely.

We highlight the special case of Theorem 3.4.12.

Corollary 3.4.13 (Corollary 3.11 of [21]). Let N• be a non-negative near-martingale with

right-continuous sample paths and τ a bounded stopping time. Then Nτ is integrable, and

E [Nτ ] = E (N0) almost surely.
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Chapter 4. General Itô Formula and Applications of the General
Ito integral

The Itô formula is a fundamental aspect of Itô theory. For any theory to extend Itô

theory, it is also very useful to formulate the Itô formula in that setting. There are several

such extensions in literature [17] [25]. The Ayed–Kuo stochastic integral provides a sim-

plistic and intuitive extension that accounts for both instantly independent and adapted

processes. We use the general Itô formula for the results in this chapter. Let t ∈ [a, b].

First, let Xt and Y (t) be stochastic processes of the form

Xt = Xa +

∫ t

a

g(s) dB(s) +

∫ t

a

h(s) ds, (4.1)

Y (t) = Y (b) +

∫ b

t

ξ(s) dB(s) +

∫ b

t

η(s) ds, (4.2)

where g(t), h(t) are adapted (so Xt is an Itô process), and ξ(t), η(t) are instantly indepen-

dent such that Y (t) is also instantly independent. Then we have the following general Itô

formula

Theorem 4.0.1 (Theorem 3.2 of [10]). Suppose
{
X

(i)
t

}n
i=1

and
{
Y

(t)
j

}m
j=1

are stochas-

tic processes of the form given by equations (4.1) and (4.2), respectively. Suppose

θ(t, x1, . . . , xn, y1, . . . , ym) is a real-valued function that is C1 in t and C2 in other

variables. Then the stochastic differential of θ(t,X
(1)
t , . . . , X

(n)
t , Y

(t)
1 , . . . , Y

(t)
m ) is given

Sections 4.1 - 4.3 of this chapter previously appeared, substantially unchanged, in the open access
Journal of Stochasic Analysis article: Kuo, H.-H., Shrestha, P., and Sinha, S., “Anticipating Linear
Stochastic Differential Equations with Adapted Coefficients”, https://digitalcommons.lsu.edu/josa/
vol2/iss2/5/.
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by

dθ(t,X
(1)
t , . . . , X

(n)
t , Y

(t)
1 , . . . , Y (t)

m )

= θt dt+
n∑

i=1

θxidX
(i)
t +

m∑

j=1

θyjdY
(t)
j

+
1

2

n∑

i,k=1

θxixkdX
(i)
t dX

(k)
t −

1

2

m∑

j,l=1

θyjyldY
(t)
j dY

(t)
l .

Corollary 4.0.2 (Corollary 2.11 of [9]). Suppose Xt is an Itô process and ψ(t, x, y) is a

real-valued function that is C1 in in t and C2 in x and y. Then the stochastic differential

of θ(t,Xt, B(b)) is given by

θ(t,Xt, B(b)) = θt dt+ θx dXt +
1

2
θxx(dXt)

2 + θxy dXt dY
(t).

Now, we come to an important class of processes that occur ubiquitously in solu-

tions of stochastic differential equations.

Definition 4.0.3. The exponential process associated with adapted stochastic processes

α(t) and β(t) is defined as

Eα,β(t) = exp

[∫ t

a

α(s) dB(s) +

∫ t

a

(
β(s)− 1

2
α(s)2

)
ds

]
. (4.3)

If β ≡ 0, then we write

Eα(t) = exp

[∫ t

a

α(s) dB(s)− 1

2

∫ t

a

α(s)2 ds

]
.

Remark 4.0.4. The exponential process Eα,β(t) is an Itô process satisfying the stochastic

differential equation





dEα,β(t) = α(t)Eα,β(t) dB(t) + β(t)Eα,β(t) dt, t ∈ [a, b],

Eα,β(a) = 1.

(4.4)
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Similarly, the exponential process Eα(t) is an Itô process satisfying the stochastic

differential equation 



dEα(t) = α(t)Eα(t) dB(t), t ∈ [a, b],

Eα(a) = 1.

The proof of the result follows from a direct application of Itô’s formula.

4.1. Motivating Examples of Anticipating SDEs

We begin with some examples to show the non-trivial nature of the extension of the

stochastic integral regardless of the origin of the anticipation. These serve as motivations

for our main results. In this section, we fix t ∈ [0, 1].

4.1.1. Anticipation due to coefficients

We progressively increase the complexity of the diffusion coefficient of the stochas-

tic differential equation and observe how it affects the solution. In the first case, we take

the diffusion coefficient to be a constant.

Example 4.1.1 (Example 3.1 of [19]). Let α be a constant. The process

Eα(t) = exp

[
αB(t)− 1

2
α2t

]
, t ∈ [0, 1]

is a solution of the stochastic differential equation





dEα(t) = αEα(t)dB(t), t ∈ [0, 1],

Eα(0) = 1.

We proceed to upgrade our diffusion coefficient to be a deterministic function.

Example 4.1.2 (Example 3.2 of [19]). Suppose α(t) is a deterministic function. The pro-

cess

Eα(t) = exp

[∫ t

0

α(s) dB(s)− 1

2

∫ t

0

α(s)2 ds

]
, t ∈ [0, 1]
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is a solution of the stochastic differential equation





dEα(t) = α(t)Eα(t)dB(t), t ∈ [0, 1],

Eα(0) = 1.

We now consider the case then f is adapted.

Example 4.1.3 (Example 3.3 of [19]). Consider the adapted coefficient α(t) = B(t). The

process

X(t) = exp

[
1

2

(
B(t)2 − t−

∫ t

0

B(s)2 ds

)]
, t ∈ [0, 1]

is a solution of the stochastic differential equation





dX(t) = B(t)X(t) dB(t), t ∈ [0, 1],

X(0) = 1.

From the example 3.3.1 and the examples presented above in this section, a reason-

able guess is that

Z(t) = exp

[∫ t

0

B(1) dB(s)− 1

2

∫ t

0

B(1)2 ds

]

= exp

[
B(1)B(t)− t− 1

2
B(1)2t

]
, t ∈ [0, 1]

is a solution of the stochastic differential equation





dZ(t) = B(1)Z(t) dB(t), t ∈ [0, 1],

Z(0) = 1.

However, this is false. Using the general Itô formula, we have the following result.

Theorem 4.1.4 (Theorem 3.3 of [9]). The stochastic process

Z(t) = exp

[
B(1)B(t)− t− 1

2
B(1)2t

]
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is a solution of




dZ(t) = B(1)Z(t) dB(t) +B(1)(B(t)− tB(1))Z(t)dt, t ∈ [0, 1],

Z(0) = 1.

We are then left with a question. What is the solution of the stochastic differential

equation given by 



dZ(t) = B(1)Z(t) dB(t), t ∈ [0, 1],

Z(0) = 1.

We have the following result.

Theorem 4.1.5 (Theorem 3.1 of [9]). The process

Z(t) = exp

[
B(1)

∫ t

0

e−(t−s) dB(s)− 1

4
(B(1))2(1− e−2t)− t

]
, t ∈ [0, 1]

is a solution of the stochastic differential equation




dZ(t) = B(1)Z(t) dB(t), t ∈ [0, 1],

Z(0) = 1.

The above examples demonstrate the non-trivial nature of anticipating coefficients.

4.1.2. Anticipation due to initial condition

Consider the following stochastic differential equations with anticipating initial con-

ditions.

Example 4.1.6 (Examples 4.1-3 of [1]).




dX(t) = X(t)dB(t), t ∈ [0, 1],

X(0) = x, x ∈ R.
(4.5)

It is well known that the solution to (4.5) is

X(t) = xeB(t)− 1
2
t
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However, if we take this solution and replace x with B(1) and apply the general Itô

formula to the resultant expression, we obtain a different stochastic differential equation.

In particular,

Y (t) = B(1)eB(t)− 1
2
t (4.6)

is a solution of 



dY (t) = Y (t)dB(t) +
1

B(1)
Y (t)dt, t ∈ [0, 1],

Y (0) = B(1).

(4.7)

Here, the initial condition is outside the classical theory of Itô calculus since B(1)

is not F0-measurable. We can use the general Itô formula along with the Picard iteration

method to show that Y (t) is indeed the unique solution.

On the other hand, if we replace all the B(1) terms in (4.7) with x ∈ R then we

obtain the following stochastic differential equation





dZ(t) = Z(t)dB(t) +
1

x
Z(t)dt, t ∈ [0, 1],

Z(0) = x, x ∈ R.

with its solution

Z(t) = xeB(t)− 1
2
t+ 1

x
t

In comparing the two equations (4.5) and (4.7), we see that when we replace the

non-anticipating term with an anticipating term, an extra term appears in the drift term

of the stochastic differential equation. Furthermore, by replacing all the anticipating terms

in (4.7) with a real number, we obtained an extra drift factor in (4.6). Through these ex-

amples, we can observe interesting patterns with linear stochastic differential equations

with respect to anticipation.
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Example 4.1.7 (Section 3 of [14]). Consider the following motivational example:




dX(t) = X(t)dB(t), t ∈ [0, 1],

X(0) = B(1).

Equation (4.5) would suggest that our solution would be (4.6). However, that is not

the case. We have an extra drift term as demonstrated by (4.7). With that in mind, we

“guess” that the solution has the form

X(t) = (B(1)− ξ(t)) eB(t)− 1
2
t

with ξ being a deterministic function that needs to be determined. Via a simple application

of the general Itô formula to the function θ(t, x, y) = (y − ξ(t))ex− 1
2
t, we get that

dX(t) = (B(1)− ξ(t))eB(t)− 1
2
t dB(t) +

[
eB(t)− 1

2
t − ξ′(t)eB(t)− 1

2
t
]
dt.

The dt term in the above equation must be zero for X(t) to be a solution. There-

fore, by solving the following ordinary differential equation




ξ′(t) = 1 , t ∈ [0, 1],

ξ(0) = 0,

we get our solution

X(t) = (B(1)− t)eB(t)− 1
2
t.

We use this example as inspiration for the following theorem that provides solu-

tions for a class of stochastic differential equations with anticipating initial conditions.

Theorem 4.1.8 (Theorem 5.1 of [22]). Let α(t), h(t) ∈ L2[0, 1], β(t) ∈ L1[0, 1] . Assume

that ψ(t) is a C2 function. Then the unique solution of the stochastic differential equation



dX(t) = α(t)X(t)dB(t) + β(t)X(t) dt, t ∈ [0, 1],

X(0) = ψ

(∫ 1

0

h(s)dB(s)

)
,
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is given by the equation

X(t) = ψ

(∫ 1

0

h(s)dB(s)−
∫ t

0

α(s)h(s)ds

)
Eα,β(t),

where Eα,β(t) is the stochastic process defined in equation (4.3).

Remark 4.1.9 (Remark 3.9 of [19]). In Theorem 4.1 of [14], the authors proved a similar

result for the particular case where h(t) ≡ 1 and ψ is a function on R having power series

expansion at t = 0 with infinite radius of convergence. In Theorem 4.1.8 and in [14], α(t)

is assumed to be deterministic.

Example 4.1.10 (Example 5.2 of [22]). Consider the stochastic differential equation




dX(t) = X(t)dB(t), t ∈ [0, 1],

X(0) =

∫ 1

0

B(s)ds.

We can use stochastic integration by parts and the results of Theorem 4.1.8 to obtain the

solution,

X(t) =

(∫ 1

0

B(s)ds− (t− 1

2
t2)

)
eB(t)− 1

2
t.

Thus we have solutions for a class of linear stochastic differential equations with

deterministic coefficients.

4.2. Anticipating Stochastic Differential Equations

In Theorem 4.1.8 , we had assumed that α(t) ∈ L2[0, 1] and β(t) ∈ L1[0, 1]. In the

following theorem, we generalize that condition to allow both α(t) and β(t) to be adapted

to the filtration generated by the Brownian motion.

Hypothesis 4.2.1. Assume that α(t), β(t) and h(t), where t ∈ [a, b], have the following

properties:
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1. α(t) is an adapted process with E
(∫ b

a
|α(t)|2 dt

)
<∞,

2. β(t) is an adapted process with E
(∫ b

a
|β(t)| dt

)
<∞,

3. h(t) ∈ L2[a, b] is a deterministic function.

Theorem 4.2.2 (Theorem 4.2 of [19]). Let α(t), β(t), and h(t) satisfy Hypothesis 4.2.1,

and ψ ∈ C2(R). Then the solution of the stochastic differential equation





dZ(t) = α(t)Z(t) dB(t) + β(t)Z(t) dt, t ∈ [a, b],

Z(0) = ψ
(∫ b

a

h(s) dB(s)
)
,

(4.8)

is given by

Z(t) = ψ
(∫ b

a

h(s) dB(s)−
∫ t

a

h(s)α(s) ds
)
Eα,β(t).

Proof. Suppose Z(t) = ψ
( ∫ b

a
h(s) dB(s) − Q(t)

)
Eα,β(t). We need to determine the Itô

process Q(t) with Q(a) = 0. In order to apply the general Itô formula, we write

Z(t) = ψ
(∫ t

a

h(s) dB(s)−Q(t) +

∫ b

t

h(s) dB(s)
)
Eα,β(t).

We define the instantly independent process Y (t) =
∫ b
t
h(s) dB(s) and the following

adapted processes

X
(1)
t = Eα,β(t), X

(2)
t =

∫ t

a

h(s) dB(s)−Q(t).
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From the definitions of X
(1)
t , X

(2)
t , and Y (t) above, we get the differentials

dX
(1)
t = α(t)X

(1)
t dB(t) + β(t)X

(1)
t dt,

dX
(2)
t = h(t) dB(t)− dQ(t),

(dX
(1)
t )2 = α(t)2(X

(1)
t )2 dt,

(dX
(2)
t )2 = h(t)2 dt− 2h(t) dB(t)dQ(t) + (dQ(t))2,

dX
(1)
t dX

(2)
t = h(t)α(t)X

(1)
t dt− α(t)X

(1)
t dB(t)dQ(t),

dY (t) = −h(t) dB(t),

(dY (t))2 = h(t)2 dt.

Now, define θ(x1, x2, y) = ψ(x2 + y)x1, so that Z(t) = θ
(
X

(1)
t , X

(2)
t , Y (t)

)
. From

this, we get the partial derivatives

θx1 = ψ, θx1x1 = 0,

θx2 = ψ′x1, θx2x2 = ψ′′x1,

θy = ψ′x1, θx1x2 = ψ′,

θyy = ψ′′x1.

Applying Theorem 4.0.1 and putting everything together, we can easily find the
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stochastic differential of Z(t):

dZ(t) = dθ(X
(1)
t , X

(2)
t , Y (t))

= θx1dX
(1)
t + θx2dX

(2)
t

+
1

2
θx1x1(dX

(1)
t )2 +

1

2
θx2x2(dX

(2)
t )2

+ θx1x2(dX
(1)
t )(dX

(2)
t )

+ θy dY
(t) − 1

2
θyy(dY

(t))2

= ψ ·
(
α(t)X

(1)
t dB(t) + β(t)X

(1)
t dt

)
+ ψ′ ·X(1)

t (
XXXXXXh(t) dB(t)− dQ(t))

+ 0 +
1

2
ψ′′ ·X(1)

t

(
���

�h(t)2 dt− 2h(t) dB(t)dQ(t) + (dQ(t))2
)

+ ψ′
(
h(t)α(t)X

(1)
t dt− α(t)X

(1)
t dB(t)dQ(t)

)

−
hhhhhhhhhhψ′ ·X(1)

t h(t) dB(t)−
���

���
���

�1

2
ψ′′ ·X(1)

t h(t)2 dt

= ψ ·
(
α(t)X

(1)
t dB(t) + β(t)X

(1)
t dt

)

+ ψ′ ·X(1)
t · (−dQ(t) + h(t)α(t) dt− α(t) dB(t)dQ(t))

+
1

2
ψ′′ ·X(1)

t ·
(
−2h(t) dB(t)dQ(t) + (dQ(t))2

)
.

Therefore, in order for Z(t) to be the solution of equation (4.8), we need to satisfy

the following conditions

dQ(t) = h(t)α(t) dt− α(t) dB(t)dQ(t) (4.9)

(dQ(t))2 = 2h(t) dB(t)dQ(t) (4.10)

From equation (4.9), we see that if dQ(t) contains only a dt term (no dB(t)

term), then dQ(t) dB(t) = 0. On the other hand, if dQ(t) contains a dB(t) term, then

dQ(t) dB(t) = γ(t) dt for some γ(t). Then we have dQ(t) = (h(t) − γ(t))α(t) dt, which
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again gives dQ(t) dB(t) = 0. Therefore, in either case, dQ(t) = h(t)α(t) dt. Note that this

also agrees with equation (4.10).

Imposing the initial condition Q(a) = 0, we get that Q(t) =
∫ t
a
h(t)α(t) dt. Putting

this in the assumed form of the solution, we get our result.

Now we look at a specific case of Theorem 4.2.2 where h(t) ≡ 1.

Corollary 4.2.3 (Corollary 4.3 of [19]). Under the same assumptions for α(t), β(t) and ψ

as in Theorem 4.2.2, the solution of the stochastic differential equation





dZ(t) = α(t)Z(t) dB(t) + β(t)Z(t) dt, t ∈ [a, b],

Z(0) = ψ
(
B(b)−B(a)

)
,

is given by

Z(t) = ψ
(
B(b)−B(a)−

∫ t

a

α(s) ds
)
Eα,β(t).

Remark 4.2.4 (Remark 4.4 of [19]). This corollary extends Theorem 4.1 of [14] to include

adapted coefficients for the anticipating stochastic differential equation.

These new results helps us obtain solutions for stochastic differential equations with

anticipating initial conditions and adapted coefficients. In the first example, the diffusion

and drift terms are adapted while the anticipation comes from X(0) = B(1). The second

example demonstrates a case where the initial condition is a Riemann integral of a Brown-

ian motion.

Example 4.2.5 (Example 4.5 of [19]). Consider the stochastic differential equation





dX(t) = B(t)X(t)dB(t) +X(t) dt, t ∈ [0, 1],

X(0) = B(1).
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Here α(t) = B(t), β(t) ≡ 1, h(t) ≡ 1, and ψ(x) = x. Thus, by Corollary 4.2.3, we have the

solution

X(t) =

(
B(1)−

∫ t

0

B(s) ds

)
exp

[
1

2

(
B2(t) + t−

∫ t

0

B2(s) ds

)]
.

Example 4.2.6 (Example 4.6 of [19]). Consider the stochastic differential equation




dX(t) = B(t)X(t) dB(t), t ∈ [0, 1],

X(0) =

∫ 1

0

B(s) ds.

As in Example 4.1.10, we use stochastic integration by parts to modify the initial condi-

tion. Namely,
∫ 1

0

B(s) ds =

∫ 1

0

(1− s) dB(s).

Hence with α(t) = B(t) , β(t) ≡ 0, h(t) = 1 − t, and ψ(x) = x in Theorem 4.2.2, we have

the solution

X(t) =

(∫ 1

0

B(s) ds−
∫ t

0

(1− s)B(s) ds

)
exp

[
1

2

(
B(t)2 − t−

∫ t

0

B(s)2 ds

)]
.

4.3. Conditional Expectation of Solutions of SDEs

Given a stochastic process Z(t), the conditional expectation of the solution is an

interesting property to study. By taking the conditional expectation with respect to the

natural Brownian filtation, we can project our anticipating stochastic differential equa-

tion into the realm of classical Itô theory. Keeping in mind the near-martingale property

in Definition 3.4.1, analysis of X(t) = E (Z(t)|Ft) provides an avenue to study the an-

ticipatory nature of the stochastic process. As such, we ask which stochastic differential

equation would X(t) satisfy? Are dX(t) and dZ(t) the same? or are they different? With

that motivation, we show the following result.

63



Theorem 4.3.1 (Theorem 5.1 of [19]). Let α(t), β(t), and h(t) satisfy Hypothesis 4.2.1,

and ψ an analytic function on the reals. Suppose that Z1(t) and Z2(t) are the solutions of

the linear stochastic differential equations





dZ1(t) = α(t)Z1(t) dB(t) + β(t)Z1(t) dt, t ∈ [a, b],

Z1(a) = ψ
(∫ b

a

h(s) dB(s)
)
,

and 



dZ2(t) = α(t)Z2(t) dB(t) + β(t)Z2(t) dt, t ∈ [a, b],

Z2(a) = ψ′
(∫ b

a

h(s) dB(s)
)
,

respectively. Let X1(t) = E (Z1(t)|Ft) and X2(t) = E (Z2(t)|Ft). Then X1(t) satisfies the

stochastic differential equation





dX1(t) = α(t)X1(t) dB(t) + β(t)X1(t) dt+ h(t)X2(t) dB(t), t ∈ [a, b],

X1(a) = E
[
ψ
(∫ b

a

h(s) dB(s)
)]
.

(4.11)

Remark 4.3.2 (Remark 5.2 of [19]). In Theorem 4.1 of [22], the authors proved a similar

result for the special case where α is deterministic, β is adapted, and h ≡ 1.

Proof. By the assumption and Theorem 4.2.2, the solution processes Z1(t) can be written

as

Z1(t) = Eα,β(t) · ψ
((∫ t

a

h(s) dB(s)−
∫ t

a

h(s)α(s) ds
)

+

∫ b

t

h(s) dB(s)

)

= Eα,β(t) ·
∞∑

k=0

1

k!
ψ(k)

(∫ t

a

h(s) dB(s)−
∫ t

a

h(s)α(s) ds
)(∫ b

t

h(s) dB(s)
)k
.

For brevity, we henceforth denote

ψk(t) = ψ(k)
(∫ t

a

h(s) dB(s)−
∫ t

a

h(s)α(s) ds
)

(4.12)
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In this notation, the expression for Z1(t) becomes

Z1(t) = Eα,β(t) ·
∞∑

k=0

1

k!
ψk(t)

(∫ b

t

h(s) dB(s)
)k
.

Note that Eα,β(t) and ψk(t) are adapted for all k. Moreover, since h(t) is determin-

istic,
∫ b
t
h(s) dB(s) is a Wiener integral, and therefore,

∫ b
t
h(s) dB(s) has the Gaussian dis-

tribution with mean 0 and variance

Y (t) =

∫ b

t

h(s)2 ds. (4.13)

Therefore, for any k, we have E
[( ∫ b

t
h(s) dB(s)

)2k+1
]

= 0 and

E
[(∫ b

t

h(s) dB(s)
)2k
]

= Y (t)k(2k − 1)!!,

where !! denotes the double factorial defined as

n!! =

dn2 e∏

k=0

(n− 2k)

for any natural number n.

Moreover,
∫ b
t
h(s) dB(s) is independent of Ft for every t. Using all of these informa-

tion, we get

X1(t) = Eα,β(t) ·
∞∑

k=0

1

(2k)!
ψ2k(t) E

[(∫ b

t

h(s) dB(s)
)2k
]

= Eα,β(t) ·
∞∑

k=0

1

(2k)!
ψ2k(t)Y (t)k(2k − 1)!!

= Eα,β(t) ·
∞∑

k=0

1

(2k)!!
ψ2k(t)Y (t)k, (4.14)

and similarly,

X2(t) = Eα,β(t) ·
∞∑

k=0

1

(2k)!!
ψ2k+1(t)Y (t)k, (4.15)
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Now we look at the differentials. From equations (4.12) and (4.13), we get

d
(
Y (t)k

)
= kY (t)k−1 (−h(t)2 dt),

and

dψ2k(t) = ψ2k+1(t)(h(t) dB(t)− h(t)α(t) dt) +
1

2
ψ2k+2(t)(h(t)2 dt)

= ψ2k+1(t)h(t) dB(t) +
(1

2
ψ2k+2(t)h(t)2 − ψ2k+1(t)h(t)α(t)

)
dt.

Using the expressions for d
(
Y (t)k

)
and dψ2k(t), and Remark 4.0.4, we get

d
(
Eα,β(t)ψ2k(t)Y (t)k

)

= ψ2k(t)Y (t)k dEα,β(t) + Eα,β(t)Y (t)k dψ2k(t) + Eα,β(t)ψ2k(t) dY (t)k

+ Eα,β(t) dψ2k(t) · dY (t)k + ψ2k(t) dEα,β(t) · dY (t)k + Y (t)k dEα,β(t) · dψ2k(t)

= ψ2k(t)Y (t)k
(
α(t)Eα,β(t) dB(t) + β(t)Eα,β(t) dt

)

+ Eα,β(t)Y (t)k
[
ψ2k+1(t)h(t) dB(t) +

(1

2
ψ2k+2(t)h(t)2 −((((((

(((ψ2k+1(t)h(t)α(t)
)
dt
]

+ Eα,β(t)ψ2k(t)
(
−kY (t)k−1h(t)2 dt

)

+ 0 + 0 + Y (t)k
(
((((

((((
((((Eα,β(t)ψ2k+1(t)α(t)h(t)

)
dt

= Eα,β(t)Y (t)k (ψ2k(t)α(t) + ψ2k+1(t)h(t)) dB(t)

+ Eα,β(t)Y (t)k−1
(
ψ2k(t)Y (t)β(t) +

1

2
ψ2k+2(t)Y (t)h(t)2 − kψ2k(t)h(t)2

)
dt.

At this point, we note that

∞∑

k=0

1

(2k)!!
kψ2k(t) =

∞∑

k=1

1

(2k)(2k − 2)!!
kψ2k(t)

=
1

2

∞∑

k−1=0

1

(2(k − 1))!!
ψ2(k−1)+2(t)

=
1

2

∞∑

k=0

1

(2k)!!
ψ2k+2(t). (4.16)
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Now, since X1(t) =
∑∞

k=0
1

(2k)!!
Eα,β(t)ψ2k(t)Y (t)k (see equation (4.14)), we get

dX1(t) =
∞∑

k=0

1

(2k)!!
d
(
Eα,β(t)ψ2k(t)Y (t)k

)

=
∞∑

k=0

1

(2k)!!
Eα,β(t)Y (t)kψ2k(t)α(t) dB(t)

+
∞∑

k=0

1

(2k)!!
Eα,β(t)Y (t)kψ2k+1(t)h(t) dB(t)

+
∞∑

k=0

1

(2k)!!
Eα,β(t)Y (t)kψ2k(t)β(t) dt

+
((((

((((
(((

((((
(((

((∞∑

k=0

1

(2k)!!

1

2
Eα,β(t)Y (t)kψ2k+2(t)h(t)2 dt

−
((((

(((
((((

(((
((((

((∞∑

k=0

1

(2k)!!
kEα,β(t)Y (t)k−1ψ2k(t)h(t)2 dt

= α(t)X1(t) dB(t) + h(t)X2(t) dB(t) + β(t)X1(t) dB(t),

where, in the second step, we used the result of equation (4.16). This completes the proof

of the theorem.

The extra term in the conditional stochastic differential equation in (4.11) presents

an interesting feature. We can see that the stochastic differential equation for X1(t) is

defined via X2(t). However, X2(t) is defined in equation (4.15) as an infinite series and a

closed form is not guaranteed. Similar to how X2(t) arose from taking the first derivative

of ψ as the initial condition, we can use the second derivative of ψ as the initial condition

to arrive at X3(t). We can then repeat the use of Theorem 4.3.1 to provide the link be-

tween dX2(t) to dX3(t). Suppose ψ was analytic then we could form an infinite chain of

relations by using the infinite derivatives of ψ as initial conditions. However, there is no

guarantee of a “nice” closed form. Despite this issue, we exploit the fact that the deriva-

tive of the exponential function is itself for the following example.
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Example 4.3.3 (Example 5.3 of [19]). Let α(t), β(t), and h(t) satisfy Hypothesis 4.2.1,

and let ψ(x) = ex. In this case, ψ ≡ ψ′, so Z1(t) ≡ Z2(t). Consequently, X1(t) = X2(t),

which we call X(t) for convenience. Then by Theorem 4.3.1,

X(t) = Eα,β(t) exp
(∫ t

a

h(s) dB(s)−
∫ t

a

h(s)α(s) ds
)
, t ∈ [a, b],

and X(t) satisfies the stochastic differential equation





dX(t) = (α(t) + h(t))X(t) dB(t) + β(t)X(t) dt,

X(a) = 1.

In general, the absence of a closed form is not uncommon and we look at alternate

ways to analyse these anticipating stochastic differential equations. Recall that the scaled

Hermite polynomials
{

1√
n!ρn

Hn(x; ρ)
}

form an orthonormal basis for the space L2(R, γ),

where γ is the Gaussian measure with mean 0 and variance ρ. Therefore, if we are able

to arrive at a closed form reformulation of Theorem 4.3.1 for Hermite polynomials, we

can use this to state the result for conditional expectation of the solution when the ini-

tial condition is any L2(R, γ)-function of a Wiener integral. However, before we delve into

the derivation, let us review some facts about Hermite polynomials.

The Hermite polynomial of degree n with parameter ρ defined by

Hn(x; ρ) = (−ρ)ne
x2

2ρDn
xe
−x

2

2ρ ,

where Dx is the differentiation operator with respect to the variable x. From page 334 of
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[17], we have the following identities:

DxHn(x; ρ) = nHn−1(x; ρ) (4.17)

DρHn(x; ρ) = −1

2
D2
xHn(x; ρ) (4.18)

Hn(x+ y; ρ) =
n∑

k=0

(
n

k

)
Hn−k(x; ρ)yk (4.19)

We use these facts to prove the following lemma.

Lemma 4.3.4 (Lemma 5.4 of [19]). The stochastic process X(t) = Hn

( ∫ t
a
h(s) dB(s);

∫ t
a
h(s)2 ds

)

with h(t) ∈ L2[a, b] is a martingale with respect to the filtration generated by the Brownian

motion B(t) and

dX(t) = nHn−1

(∫ t

a

h(s) dB(s);

∫ t

a

h(s)2 ds
)
h(t) dB(t) (4.20)

Proof. Here x =
∫ t
a
h(s) dB(s) and ρ =

∫ t
a
h(s)2 ds. So we have dx = h(t) dB(t) and

dρ = h(t)2 dt, and (dx)2 = dρ. Using Itô’s formula, we get

dX(t) = DxHn(x; ρ)dx+
��

���
���

��1

2
D2
xHn(x; ρ)(dx)2 +((((

((((DρHn(x; ρ)dρ

= nHn−1

(∫ t

a

h(s) dB(s);

∫ t

a

h(s)2 ds
)
h(t) dB(t),

where we used equation (4.18) for the cancellation and (4.17) to get the final term.

This leads to the following result.

Theorem 4.3.5 (Theorem 5.5 of [19]). Let α(t), β(t), and h(t) satisfy Hypothesis 4.2.1.

For a fixed n ≥ 1, suppose Z(t) is the solution of the linear stochastic differential equation





dZ(t) = α(t)Z(t) dB(t) + β(t)Z(t) dt, t ∈ [a, b],

Z(a) = Hn

(∫ b

a

h(s) dB(s);

∫ b

a

h(s)2 ds
)
.

(4.21)

69



Then X(t) = E (Z(t)|Ft) is given by

X(t) = Hn

(∫ t

a

h(s) dB(s)−
∫ t

a

h(s)α(s) ds;

∫ t

a

h(s)2 ds
)
Eα,β(t), t ∈ [a, b]. (4.22)

Moreover, X(t) satisfies the following stochastic differential equation





dX(t) = α(t)X(t) dB(t) + β(t)X(t) dt

+ nHn−1

(∫ t

a

h(s) dB(s)−
∫ t

a

h(s)α(s) ds;

∫ t

a

h(s)2 ds
)
Eα,β(t)h(t) dB(t)

X(a) = 0.

(4.23)

Remark 4.3.6 (Remark 5.6 of [19]). For any x and ρ, we have H0(x; ρ) = 1. Hence the

stochastic differential equation (4.21) is identically equation (4.4).

Proof. We first prove equation (4.22). Using Theorem 4.2.2 and equation (4.19), we can

write

Z(t) = Eα,β(t)Hn

(∫ b

a

h(s) dB(s)−
∫ t

a

h(s)α(s) ds;

∫ b

a

h(s)2 ds
)

= Eα,β(t)
n∑

k=0

(
n

k

)
Hn−k

(∫ b

a

h(s) dB(s);

∫ b

a

h(s)2 ds
)(
−
∫ t

a

h(s)α(s) ds
)k

= Eα,β(t)
n∑

k=0

(
n

k

)
Jn−k(b)

(
−
∫ t

a

h(s)α(s) ds
)k
,

where we used the notation

Jn(t) = Hn

(∫ t

a

h(s) dB(s);

∫ t

a

h(s)2 ds
)
.

Using Lemma 4.3.4, we get E (Jn−k(b)|Ft) = Jn−k(t). Taking the conditional expec-

tation with the knowledge that Eα,β(t) is adapted and that stochastic integrals of adapted
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processes are adapted,

X(t) = Eα,β(t)
n∑

k=0

(
n

k

)
E (Jn−k(b)|Ft)

(
−
∫ t

a

h(s)α(s) ds
)k

= Eα,β(t)
n∑

k=0

(
n

k

)
Jn−k(t)

(
−
∫ t

a

h(s)α(s) ds
)k

= Eα,β(t)Hn

(∫ t

a

h(s) dB(s)−
∫ t

a

h(s)α(s) ds;

∫ t

a

h(s)2 ds
)
,

which proves equation (4.22).

Since Hn(0; 0) = 0, we see that X(a) = 0. Using Itô’s formula and equation (4.20),

dHn = dHn

(∫ t

a

h(s) dB(s)−
∫ t

a

h(s)α(s) ds;

∫ t

a

h(s)2 ds
)

= DxHn · (h(t) dB(t)− h(t)α(t) dt)

+
��

���
���

��1

2
D2
xHn · (h(t)2 dt) +((((

((((
(

DρHn · (h(t)2 dt)

= nHn−1 · h(t)(dB(t)− α(t) dt).

Finally, using equation (4.22), we get

dX(t) = Hn Eα,β(t) + Eα,β(t) dHn + dEα,β(t) · dHn

= HnEα,β(t)(α(t) dB(t) + β(t) dt)

+ Eα,β(t)nHn−1 · h(t)(dB(t)−���α(t) dt) +
((((

((((
(((Eα,β(t)α(t)nHn−1h(t) dt.

= α(t)X(t) dB(t) + β(t)X(t) dt+ nHn−1h(t)Eα,β(t) dB(t),

which gives us equation (4.23).

In Equation (4.23), we specify an explicit form of the extra term in the stochastic

differential equation for the conditioned process X(t). We use this result in the following

examples.

71



Example 4.3.7 (Example 5.7 of [19]). Consider the stochastic differential equation





dZ(t) = B(t)Z(t)dB(t), t ∈ [0, 1],

Z(0) = B(1).

Here α(t) = B(t), β(t) ≡ 0, h ≡ 1, and B(1) = H1(B(1); 1). From Theorem 4.3.5,

X(t) = E (Z(t)|Ft) =

(
B(t)−

∫ t

0

B(s)ds

)
exp

[
1

2

(
B(t)2 − t−

∫ t

0

B(s)2 ds

)]

and X(t) satisfies the following stochastic differential equation





dX(t) =

{
B(t)X(t) + exp

[
1

2

(
B(t)2 − t−

∫ t

0

B(s)2 ds

)]}
dB(t), t ∈ [0, 1],

X(0) = 0.

Example 4.3.8 (Example 5.8 of [19]). Consider the stochastic differential equation





dZ(t) = B(t)Z(t)dB(t), t ∈ [0, 1],

Z(0) = B(1)2 − 1.

From Theorem 4.3.5,

X(t) =

[(
B(t)−

∫ t

0

B(s)ds

)2

− t
]

exp

[
1

2

(
B(t)2 − t−

∫ t

0

B(s)2 ds

)]
,

and for t ∈ [0, 1], X(t) satisfies the following stochastic differential equation.





dX(t) =

{
B(t)X(t) + 2 exp

[
1

2

(
B(t)2 − t−

∫ t

0

B(s)2 ds

)]}
dB(t),

X(0) = 0.
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Chapter 5. LDP Results for a Class of Anticipating Linear
Differential Equations

We turn our focus back into our main goal - large deviation results for a class of

anticipating linear stochastic differential equations. Consider the following stochastic dif-

ferential equation





dXt = σtXt dBt + f

(∫ 1

0

γsdBs

)
Xtdt, t ∈ [0, 1],

X0 = ξ,

(5.1)

where ξ is a random variable. Using the intuition gained in finding the solution of the

stochastic differential equations with anticipation in Chapter 4, we first “guess” the so-

lution given by equation (5.1) and then use the general Itô formula to show that our guess

was indeed the solution. However, is the solution obtained unique? We explore this ques-

tion via interpreting the stochastic differential equation briefly in the Hitsuda–Skorohod

sense. We briefly introduce the theory and present a Trotter inspired product formula to

construct the solution and show that the two solutions from both strategies coincide. In

the process, we also show the uniqueness of the solution as well. We mainly rely on the

Ayed–Kuo formalism, while the Hitsuda–Skorohod perspective is used minimally and out

of necessity. We use exploit the explicit form of the solution to find large deviation results

for the case when the initial condition is a constant. We use this result to extend to the

case when the initial condition is a random variable super-exponentially close to a con-

stant in expectation. Without loss of generality, let us first fix the interval to be [0, 1].

Sections 5.1 - 5.4 of this chapter previously appeared, substantially unchanged, in the open-access
arXiv article: Kuo, H.-H., Shrestha, P., Sinha, S., and Sundar, P., “On near-martingales and a class of
anticipating linear SDEs,” https://arxiv.org/abs/2204.01932.
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5.1. Existence in the Ayed–Kuo sense

We show a general result for existence with respect to the Ayed–Kuo stochastic

integral.

Theorem 5.1.1 (Theorem 4.2 of [21]). Let ξ be a square mean integrable random variable

independent of the Brownian motion B•. Consider the linear stochastic differential equa-

tion 



dXt = σtXt dBt + f

(∫ 1

0

γsdBs

)
Xtdt, t ∈ [0, 1],

X0 = ξ,

(5.2)

where σt, γt ∈ L2[0, 1], f ∈ C2(R) ∩ L1(R). Then the solution in the Ayed–Kuo sense is

given by

Xt = ξ exp

[∫ t

0

σsdBs −
1

2

∫ t

0

σ2
sds+

∫ t

0

f

(∫ 1

0

γvdBv −
∫ t

s

σvγvdv

)
ds

]
. (5.3)

Proof. Consider

K(t, x1, x2, y) = ξ exp

[
x1 −

1

2

∫ t

0

σ2
sds+

∫ t

0

f

(
x2 + y −

∫ t

s

σvγvdv

)
ds

]
.

Then, K(t,X1, X2, Y ) = Xt given

X1(t) =

∫ t

0

σsdBs, dX1 = σtdBt,

X2(t) =

∫ t

0

γsdBs, dX2 = γtdBt,

Y (t) =

∫ 1

t

γsdBs, dY = −γtdBt,

where we write the differential forms in the right-hand column. In order to use the

general Itô formula, we need the following derivatives of K.

1. Kx1 = Kx1x1 = K,
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2. Kx2 = K ·
(∫ t

0
F ′ds

)
,

3. Kx1x2 = Kx2 ,

4. Kx2x2 = K ·
(∫ t

0
F ′ds

)2

+K ·
(∫ t

0
F ′′ds

)
,

5. Ky = K ·
(∫ t

0
F ′ds

)
,

6. Kyy = K ·
(∫ t

0
F ′ds

)2

+K ·
(∫ t

0
F ′′ds

)
,

7. Kt = K ·
(
−σ2

t

2
+ f (x2 + y) + (−σtγt)

∫ t
0
F ′ds

)
,

where we write F = f
(∫ 1

0
γtdBt −

∫ t
s
σvγvdv

)
for brevity. From these calculations,

we find the following relationships,

1. Ky = Kx2 ,

2. Kyy = Kx2x2 .

Since ξ is independent of the Brownian motion, by the general Itô formula in Theo-

rem 4.0.1,

dK = Kx1dX1 +
1

2
Kx1x1(dX1)2 +Kx2dX1 +

1

2
Kx2x2(dX2)2 +KydY

− 1

2
Kyy(dY )2 +Kx1x2dX1dX2 +Ktdt.
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Using from our calculations above,

dK =KσtdBt +
1

2
K(σtdBt)

2 +Kx2γtdBt +
1

2
Kx2x2(γtdBt)

2

+Kx2(−γtdBt)−
1

2
Kx2x2(−γtdBt)

2 +Kx2(σtdBt)(γtdBt) +Ktdt

=KσtdBt +
1

2
Kσ2

t dt+Kx2(σtγt)dt+Ktdt

=KσtdBt +
1

2
Kσ2

t dt+K ·
(∫ t

0

F ′ds

)
(σtγt)dt

+

(
K ·

(
−σ

2
t

2
+ f (x2 + y) + (−σtγt)

∫ t

0

F ′ds

))
dt

=KσtdBt + f(x2 + y)Kdt.

Since Xt = K(t,X1, X2, Y ), we get

dXt = σtXtdBt + f

(∫ 1

0

γsdBs

)
Xtdt,

which is exactly (5.2).

The ease of use of the Ayed–Kuo general Itô formula makes it an good way to an-

alyze anticipating processes. We show an example by finding the stochastic differential

equation which X2
t itself is a solution of. We will use the results from this example in the

last section.

Theorem 5.1.2 (Theorem 4.3 of [21]). Given the stochastic differential equation given by

equation (5.2), we have shown that we can obtain an explicit solution. Taking the square of

both sides of equation (5.3), we get

X2
t = ξ2 × exp

[∫ t

0

2σsdBs −
∫ t

0

σ2
sds+

∫ t

0

2f

(∫ 1

0

γvdBv −
∫ t

s

σvγvdv

)
ds

]
.

Consider the function

ψ(t, x1, x2, y) = ξ2 exp

[
x1 −

∫ t

0

σ2
sds+

∫ t

0

2f

(
x2 + y −

∫ t

s

σvγvdv

)
ds

]
.
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Then, ψ(t,X1, X2, Y ) = X2
t where,

X1(t) =

∫ t

0

2σsdBs, dX1 = 2σtdBt,

X2(t) =

∫ t

0

γsdBs, dX2 = γtdBt,

Y (t) =

∫ 1

t

γsdBs, dY = −γtdBt.

For ease of calculation, we define L(s, t) = f ′(x2 + y −
∫ t
s
σvγvdv). Here, ψ is

continuous. Looking at the partials of ψ we have,

1. ψx1 = ψ = ψx1x1,

2. ψx2x2 = ψyy,

3. ψx2 = ψx1x2 = ψy =
[∫ t

0
2L(s, t) ds

]
ψ,

4. ψt =
(
−σ2

t + 2f(x2 + y)− 2
∫ t

0
L(s, t)σt γt ds

)
ψ.

We use the general Itô formula in Theorem 4.0.1 to obtain

dψ = ψx1dX1 +
1

2
ψx1x1(dX1)2 + ψx2dX2 +

1

2
ψx2x2(dX2)2 + ψydY

− 1

2
ψyy(dY )2 + ψx1x2dX1dX2 + ψtdt.

From our earlier calculations, we have some terms that cancel out,

dψ =2σtψdBt + 2ψσ2
t dt+

XXXXXψx2γtdBt +
�
��

�
��1

2
ψx2x2γ

2
t dt−XXXXXψx2γtdBt

−
��

��
��1

2
ψx2x2γ

2
t dt+ 2ψx2σtγtdt+ ψtdt.
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Plugging in the expressions for ψx2 and ψt, we get,

dψ =2σtψ dBt + 2ψσ2
t dt+ 2

[∫ t

0

2L(s, t) ds

]
ψσtγt dt

− σ2ψdt+ 2f(x2 + y)ψ dt− 2σtγtψ

∫ t

0

L(s, t) ds dt

=2σtψ dBt + σ2ψ dt+ 2f(x2 + y)ψ dt+ 2σtγtψ

∫ t

0

L(s, t) ds dt.

From this calculation, we have that X2
t is a solution of the anticipating linear

stochastic differential equation given by





dYt = 2σtYt dBt +

[
σ2
t + f

(∫ 1

0

γsdBs

)

+ 2σtγt

∫ t

0

f ′
(∫ 1

0

γvdBv −
∫ t

s

σvγvdv

)
ds

]
Ytdt,

X0 = ξ2,

for t ∈ [0, 1]. Note that we can observe an interesting feature when we look at the stochas-

tic differential equation we obtained. Namely, we obtain the derivative of the function f as

an extra term.

5.2. A Product Formula for Existence of Solutions

For this section, we temporarily leave the Ayed–Kuo formalism and introduce the

Gross–Malliavin theory of stochastic calculus via the Gross–Malliavin derivative and its

adjoint, the Hitsuda–Skorohod integral. Before we explore the product formula, let us set

up the mathematical framework for this section. We define the construction of the deriva-

tive similar to the derivative operators in Sobolev spaces. Namely, we define the opera-

tions on a dense space first and then extend to a bigger space. For more details, refer to

[26] or [27]. We use this theory in obtaining a existence and uniqueness result for the so-

lution of a simple stochastic differential equation with no drift and anticipation from the
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initial condition. We will then use this result in showing the existence and uniqueness of

the anticipating linear stochastic differential equation given by Equation (5.1). Here, we

fix the time interval t ∈ [0, 1] ⊂ R+.

5.2.1. Brief Introduction to the Gross–Malliavin Derivative and the Hitsuda–
Skorohod Integral

Let us first set up the spaces to operate on. We operate on the probability space

(Ω,F , P ) where F is the σ-field generated by the Brownian motion, Bt, t ∈ [0, 1]. Heuris-

tically, the Gross–Malliavin derivative operator makes precise the concept of differentiation

with respect to ω ∈ Ω. Let us consider the following random variable,

B 1
2

=

∫ 1

0

1[0, 1
2

](t) dBt.

We can view this random variable to be a function of the integrand. We generalize on this

concept. Let H = L2([0, 1]) be the space of square integrable functions defined on [0, 1].

For any h ∈ H, consider the Wiener integral,

B(h) =

∫ 1

0

h(t) dBt.

From here on, we will suppress the time dependency for h ∈ H unless otherwise

specified. This Hilbert space structure of H plays an important role in the definition of the

derivative. Let G be the class of smooth random variables such that G ∈ G has the form

G = g (B(h1), B(h2) . . . , B(hn)) , hi ∈ H ∀ i ∈ [1, n], (5.4)

where g is a real valued n-dimensional smooth function whose derivatives grow at most

polynomially.
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Definition 5.2.1 (Definition 2.1 of [27]). The Gross–Malliavin derivative of a smooth ran-

dom variable G ∈ G is the real valued random variable given by

DtG =
n∑

i=1

dig (B(h1), B(h2) . . . , B(hn))hi(t),

where di is the derivative with respect to the ith variable.

The definition above is well defined meaning that the derivative operator does not

depend on the representation given in Equation (5.4). The Gross–Malliavin derivative of

a random variable G is a random variable that takes values in H. Furthermore, when con-

sidering the time variable, (DtG), t ≥ 0 is a stochastic process on L2(Ω × [0, 1]). This

derivative operator allows us to generalize the notion of the Brownian derivative in terms

of ω.

Similarly, we define F as the class of smooth cylindrical stochastic process u =

(ut)t≥0 given by

ut =
n∑

i=1

Gihi(t), for Gi ∈ G, hi ∈ H. (5.5)

Definition 5.2.2 (Definition 2.2 of [27]). We define the divergence of an element of the

form given by Equation (5.5) as the random variable

δ(u) ,
n∑

i=1

GiB(hi)−
n∑

i=1

〈DGi, hi〉H .

We have that the divergence operator δ is the adjoint of the derivative operator D•

as shown in the following proposition.

Proposition 5.2.3 (Proposition 2.1 of [27] ). Let G ∈ G and u ∈ F. Then

E [Gδ(u)] = E [〈DG, u〉H]
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Using this adjointed-ness and the dense nature of G and F in L2 (Ω) and

L2 (Ω× [0, 1]) respectively, we have a closed extension of the derivative operator which we

also refer to as D. We define D1,2 as the closure of G with respect to the semi-norm ‖•‖1,2

given by,

‖G‖1,2 =
[
E
(
|G|2

)
+ E

[
‖DG‖2

H
]]

We define the divergence by extending the adjoint relationship with the derivative

operator as far as possible. We follow Nualart in denoting the divergence operater by δ.

Namely,

Definition 5.2.4 (Definition 1.3.1 of [26]). We denote by δ the adjoint of the operator D.

That is, δ is an unbounded operator on L2(Ω;H) with values in L2(Ω) such that:

1. The domain of δ, Dom(δ), is the set of H-valued square integrable random variables

u ∈ L2(Ω;H) such that for any F ∈ D1,2, where c is some constant depending on u.

E (〈DF, u〉H) ≤ c ‖F‖2 .

2. If u belongs to the domain of δ, then δ(u) is the element of L2(Ω) characterized by

E (Fδu) = E (〈DF, u〉H) .

for any F ∈ D1,2.

We call this divergence operator as a Hitsuda-Skorohod integral as it coincides with

the anticipating integrals introduced by Skorohod when considering the Brownian motion

case [29]. The divergence operator is considered an extension of the Itô integral as it coin-

cides with the Itô integral when the integrand is adapted. Namely,
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Theorem 5.2.5 (Proposition 1.3.18 of [26]). Let ut, t ∈ [0, 1] be a Ft adapted stochastic

process such that E
[∫ 1

0
u2
t dt
]
< ∞. Then u ∈ Dom(δ) and its Hitsuda–Skorohod integral

coincides with the Itô integral

∫ 1

0

ut δBt =

∫ 1

0

ut dBt.

It is natural to ask about the nature of the relationship between the Ayed–Kuo in-

tegral and the Hitsuda–Skorohod integrals. To that, we list the following result.

Theorem 5.2.6 (Theorem 2.3 of [28]). Assume [a, b] ⊂ [0,∞). Let f be an adapted L2-

continuous stochastic process and φ be an instantly independent L2-continuous stochastic

process such that the sequence

n∑

i=1

f(ti−1)φ(ti)
(
Bti −Bti−1

)
,

converges strongly in L2(Ω) as the mesh ‖∆n‖ tends to zero. Then the limit I(fψ) equals

the Hitsuda–Skorokhod integral δ(fψ) in Dom(δ).

In Remark 2.5 of [28] , the author shows that Φ(Bt, B1 − Bt) = e(Bt)2+(B1−Bt)2

for t ∈ [0, 1] is not a Hitsuda–Skorohod integrable process. Since the definition of the

Ayed–Kuo integral only needs continuity with respect to the arguments, we can obtain the

stochastic integral of Φ in the Ayed–Kuo sense. This is but one of many examples of how

the Ayed–Kuo stochastic integral is easier to work with when dealing with anticipation.

5.2.2. Existence and Uniqueness in the Hitsuda–Skorohod Sense

We apply the heavy machinery in the previous subsection to solve a simple stochas-

tic differential equation that we shall use in the next subsection. Consider the family of
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transformations At, Tt : Ω→ Ω, t ∈ [0, 1], given by

Tt(ω)s = ωs +

∫ t∧s

0

σu du,

At(ω)s = ωs −
∫ t∧s

0

σu du,

and define,

Et = e
∫ t
0 σs dBs−

1
2

∫ t
0 σ

2
s ds.

Theorem 5.2.7 (Lemma 4.8 of [21]). Consider the stochastic equation

Xt = X0 +

∫ t

0

σsXsdBs, (5.6)

for 0 ≤ t ≤ 1. Here, σ ∈ L2([0, 1]) and X0 ∈ Lp(Ω) for some p > 2. Then

Xt = X0(At)Et (5.7)

is the unique solution of equation (5.6).

Proof. It is clear that {X0(At)Et : 0 ≤ t ≤ 1} is Lr(Ω)-bounded for all r < p by the

Girsanov theorem and Hölder inequality.

Let G be any smooth random variable. Multiply both sides of (5.6) by G. With

the process X given by (5.7), we use the duality relationship given by Definition 5.2.4 to
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write

E
[
G

∫ t

0

σsXsdBs

]
= E

[∫ t

0

σsXsDsGds

]

= E
[
X0

∫ t

0

σs (DsG)(Ts)ds

]

= E
[
X0

∫ t

0

d

ds
G(Ts)ds

]

= E [X0(G(Tt)−G)]

= E [X0(At)EtG]− E [X0G]

= E [XtG]− E [X0G] ,

where the second and second to last equality are given by the Girsanov Theorem in The-

orem 1.5.2. Thus a solution of the stochastic equation (5.6) is explicitly given by (5.7).

Uniqueness follows since the solution of (5.6) started at X0 ≡ 0 is identically zero at all

times.

5.2.3. Existence via Product formula

Now we come back to tacking the large deviation principle problem statement for

anticipating stochastic differential equations. The procedure of finding the solution in the

previous section started with “guessing” the form of the solution and applying the for-

mula to it. In this section, we introduce an iterative “braiding” technique in the spirit of

Trotter’s product formula [30]. We will use existence and uniqueness of solutions to antic-

ipating linear stochastic differential equations without drift that was obtained in Theorem

5.2.7. For the ease of computation, we define,

1. Iγ =
∫ 1

0
γs dBs,

2. Avu(ω·) = ω• −
∫ (•∧v)∨u
u

σt dt,
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3. Ev
u = exp

{∫ v
u
σt dBt − 1

2

∫ v
u
σ2
t dt

}
,

4. gvu = ef(Iγ)(v−u).

Via the definition, we can also obtain the following properties for the functions. For u <

v < s,

1. Avu ◦ Asv(ω·) = Asu(ω·),

2. Ev
u · Es

v = Es
u,

3. gvu · gsv = gsu.

We list some relevant interactions between these functions for u < v < s.

1. Ev
u ◦ Asv = Ev

u.

2. gvu ◦ Asv = exp {f(Iγ ◦ Asv)(v − u)}.

The first interaction equality is a statement regarding the invariance of an adapted

process when considering shifts from a later time steps. We show the result via a simple

example which can easily be extended to the exponential case above. For u < v < t,

(Bu) ◦ Atv = Bu −
∫ (u∧v)∨t

v

σsds = Bu −
∫ v

v

σsds = Bu.

For convenience, we will suppress the dependence on ω for the random variables.

Theorem 5.2.8 (Theorem 4.10 of [21]). Consider the stochastic differential equation,




dXt = σtXt dBt + f(

∫ 1

0

γsdBs)Xtdt, t ∈ [0, 1],

X0 = ξ,

(5.8)

where σ, γ ∈ L2[0, 1], f ∈ C2(R) ∩ L1(R), and ξ ∈ Lp(Ω) for some p > 2. Then the unique

solution in the Hitsuda–Skorohod sense is given by

Xt = (ξ ◦ At0) exp

[∫ t

0

σsdBs −
1

2

∫ t

0

σ2
sds+

∫ t

0

f

(∫ 1

0

γvdBv −
∫ t

s

σvγvdv

)
ds

]
. (5.9)
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Proof. Let t ∈ [0, 1] and let ∆n be a partition of [0, t].

First time step. Let u ∈ [0, t1].

a) Define the following stochastic integral equation.





dY (1)
u = σuY

(1)
u dBu, u ∈ [0, t1],

Y
(1)

0 = ξ.

Then, via Theorem 5.2.7 we have the unique solution,

Y (1)
u = (ξ ◦ Au0)Eu

0

is the unique solution almost surely. Then

Y
(1)
t1 = (ξ ◦ At10 )Et1

0 .

b) For each ω ∈ Ω, define the ordinary differential equation,





dX(1)
u = f(Iγ)X

(1)
u du, u ∈ [0, t1],

X
(1)
0 = Y

(1)
t1 .

Then, there exists a solution

X(1)
u = Y

(1)
t1 · gu0 = (ξ ◦ At10 )Et1

0 · gu0 .

Thus,

X
(1)
t1 = (ξ ◦ At10 )Et1

0 · gt10 .

Define Ω1 = {ω |X(1)
t1 exists}. Since Y

(1)
t exists almost surely and X

(1)
t is a solution

of a ordinary differential equation for each ω, P(Ω1) = 1. Thus, X
(1)
t1 exists almost surely.

Second time step. Let u ∈ [t1, t2].
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a) Define the following stochastic integral equation.





dY (2)
u = σuY

(2)
u dBu, u ∈ [t1, t2],

Y
(2)
t1 = X

(1)
t1 .

Then, via Theorem 5.2.7 we again have the unique solution,

Y (2)
u = (X

(1)
t1 ◦ Aut1)Eu

t1
,

almost surely. Then

Y
(2)
t2 = (X

(1)
t1 ◦ At2t1)Et2

t1 .

b) For each ω ∈ Ω, define the ordinary differential equation,





dX(2)
u = f(Iγ)X

(2)
u du, u ∈ [t1, t2],

X
(2)
t1 = Y

(2)
t2 .

Then, there exists a solution

X(2)
u = Y

(2)
t2 · gu0 = (X

(1)
t1 ◦ At2t1)Et2

t1 · gut1 .

Thus,

X
(2)
t2 = (X

(1)
t1 ◦ At2t1)Et2

t1 · gt2t1

= (((ξ ◦ At10 )Et1
0 · gt10 ) ◦ At2t1)Et2

t1 · gt2t1

= (ξ ◦ At10 ◦ At2t1)Et1
0 · Et2

t1 (gt10 ◦ At2t1)gt2t1

= (ξ ◦ At20 )Et2
0

2∏

i=1

(gtiti−1
◦ At2ti ),

where the last equality is by rewriting gt2t1 = gt2t1 ◦ At2t2 and condensing into a product form.
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0 t1 t2 t3 tn−1tn 1

Y (1)

X(1)

Y (2)

X(2)

Figure 5.1. A t-dependence plot of the various constructed processes. Solid line represents
the constructed process. Dotted line represents the final value of one differential equation
within the time step being used as initial condition for the next one.

Define Ω2 = {ω |X(2)
t2 exists }. Since Y

(2)
t exists almost surely and X

(2)
t is a solution

of a ordinary differential equation for each ω, P(Ω2) = 1. As an intersection of two sets of

probability one, P(Ω1 ∩ Ω2) = 1. Thus, X
(2)
t2 exists almost surely on Ω1 ∩ Ω2.

Lemma 5.2.9 (Lemma 4.9 of [21]). Let Y
(1)

0 = ξ ∈ Lp(Ω) for some p > 2. Consider the

k-th sub-interval u ∈ [tk−1, tk] for any k ∈ [0, n], and define

1. the stochastic differential equation

{
dY (k)

u = σuY
(k)
u dBu, u ∈ [tk−1, tk],

Y
(k)
tk−1

= X
(k−1)
tk−1

, and

2. the ordinary differential equation

{
dX(k)

u = f(Iγ)X
(2)
u du, u ∈ [t1, t2],

X
(k)
tk−1

= Y
(k)
tk
.

Then there exists a set Ωk with P(Ωk) = 1 such that on Ωk, we have

X
(k)
tk

= (ξ ◦ Atk0 )Etk
0 ·

k∏

i=1

(gtiti−1
◦ Atkti ).

Proof. We prove this by induction.

Base case: This is true for k = 1, 2 as shown in the computation above.
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Induction step: Assume true for k = m − 1. This means that, for all ω in ∩m−1
l=1 Ωl

with P(∩m−1
l=1 Ωl) = 1,

X
(m−1)
tm−1

= (ξ ◦ Atm−1

0 )E
tm−1

0 ·
m−1∏

i=1

(gtiti−1
◦ Atm−1

ti ).

We define the next step stochastic differential equation and ordinary differential

equation as described in the statement of the lemma with k = m. As in the case k = 2, we

have that

X
(m)
tm = (X

(m−1)
tm−1

◦ Atmtm−1
)Etm

tm−1
· gtmtm−1

=

[(
(ξ ◦ Atm−1

0 )E
tm−1

0 ·
m−1∏

i=1

(gtiti−1
◦ Atm−1

ti )
)
◦ Atmtm−1

]
Etm
tm−1
· gtmtm−1

= (ξ ◦ Atm0 )Etm
0 ·

m−1∏

i=1

(
gtiti−1

◦ Atmtm−1
◦ Atm−1

ti

)
· gtmtm−1

= (ξ ◦ Atm0 )Etm
0 ·

m−1∏

i=1

(
gtiti−1

◦ Atmti
)
· gtmtm−1

= (ξ ◦ Atm0 )Etm
0 ·

m∏

i=1

(
gtiti−1

◦ Atmti
)
.

We can use the almost sure existence of the stochastic differential equation and every-

where existence of the ordinary differential equation to construct Ωm with P(Ωm) = 1.

Thus X
(m)
tm exists for all ω ∈ ∩ml=1Ωl with P(∩ml=1Ωl) = 1.

This allows us to obtain a closed form for the solution at time t using the partition

∆n. Namely,

X
(n)
t = (ξ ◦ At0)Et

0 ·
n∏

i=1

(
gtiti−1

◦ Atti
)
. (5.10)
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X(1)
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Y (n)

X(n)

· · ·

Figure 5.2. A t-dependence plot of the various constructed processes. Solid line represents
the constructed process. Dotted line represents the final value of one differential equation
within the time step being used as initial condition for the next one.

Let us compute these terms out. When ti < t < 1,

Iγ(A
t
ti−1

) =

∫ 1

0

γsdBs −
∫ t

ti−1

γsσsds.

We use the results above to evaluate the product term in equation (5.10).

n∏

i=1

(gtiti−1
◦ Atti) =

n∏

i=1

ef(Iγ◦Atti )(ti−ti−1)

= exp

{
n∑

i=1

f(

∫ 1

0

γvdBv −
∫ t

ti−1

γvσvdv)(ti − ti−1)

}

→ exp

{∫ t

0

f(

∫ 1

0

γvdBv −
∫ t

s

γvσvdv)ds

}
,

as n→∞. Thus,

Xt = lim
n→∞

X
(n)
t

= (ξ ◦ At0)Et
0 exp

{∫ t

0

f(

∫ 1

0

γsdBs −
∫ t

s

γvσvdv)ds

}

= (ξ ◦ At0) exp

[∫ t

0

σsdBs −
1

2

∫ t

0

σ2
sds+

∫ t

0

f

(∫ 1

0

γvdBv −
∫ t

s

σvγvdv

)
ds

]
.

Furthermore, Xt exists for all ω ∈ Ω̄ , ∩∞l=1Ωl. As a countable intersection of probability

one sets, P(Ω̄) = 1. Thus Xt is a solution of (5.8) almost surely.

The solution is unique. For if not, there are two solutions which disagree for the

first time in a particular interval, say the kth interval. Recall that the solutions obtained
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using Malliavin calculus and also for ordinary differential equations are unique for each

interval of time. Therefore, such a disagreement would violate this uniqueness.

5.3. Rate Function for the Solution

We pick up from where we left up at the end of Chapter 2. We are interested in

obtaining the large deviation results for the anticipating stochastic differential equation.

Now that we have defined the anticipating integral, proved pertinent theorems, established

uniqueness and existence of the solution, we proceed to finding the large deviation proper-

ties of the solution of the stochastic differential equation given below.

Given ε > 0, Consider the stochastic differential equation





dXε
t =
√
εσtX

ε
t dBt + f

(∫ 1

0

√
εγsdBs

)
Xε
tdt, t ∈ [0, 1],

X0 = c,

where f is a Lipschitz function in L2(R). Furthermore, assume σ, γ are bounded determin-

istic functions of bounded variation on [0, 1]. From our earlier discussion, Theorem 5.1.1

gives us our unique solution

Xε
t = c exp

[ ∫ t

0

√
εσtdBs −

ε

2

∫ t

0

σ2
sds

+

∫ t

0

f

(∫ 1

0

√
εγvdBv −

∫ t

s

εσvγvdv

)
ds

]
.

In view of the Contraction Principle in Theorem 2.2.3, if we show that the solutions are

continuous image something that already satisfies large deviation principle, then we are

done. As such, we want to show that Xε
t is a continuous functional of Brownian motion in

order transfer the results from Schilder’s Theorem to our case. We exploit the fact that we

have the explicit form of the solution. Namely, let Ck be the space of continuous functions
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starting from k ∈ R and consider the function h : C0 → Cc defined by

h(x•) = c exp

[ ∫ t

0

σsdxs −
ε

2

∫ t

0

σ2
sds

+

∫ t

0

f

(∫ 1

0

γvdxv −
∫ t

s

εσvγvdv

)
ds

]
. (5.11)

Then Xε
t = h(

√
εB•). Now we show the continuity of h.

Lemma 5.3.1 (Lemma 5.6 of [21]). The function h : C0 → Cc defined by Equation (5.11)

is continuous in the topology induced by the canonical supremum norm.

Proof. We can write

h(x) = c exp

[
φ(x)− ε

2

∫ t

0

σ2
sds+ ψ(x)

]
,

where φ, ψ : C0 → C0 is given by

φ(x) =

∫ t

0

σsdxs = σtxt −
∫ t

0

xsdσs, and

ψ(x) =

∫ t

0

f

(∫ 1

0

γudx(u)− ε
∫ t

s

γu σudu

)
ds.

Using integration by parts,

φ(x) = σtxt −
∫ t

0

xsdσs, and

ψ(x) =

∫ t

0

f

(
γ1x1 −

∫ 1

0

xsdγs − ε
∫ t

s

γu σudu

)
ds.

Since multiplication by c exp
(
− ε

2

∫ t
0
σ2
sds
)

and exp are continuous transformations, conti-

nuity of h is guaranteed if we prove continuity of φ and ψ. This is what we show below. In

what follows, ‖•‖ refers to the supremum norm.
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Let x, y ∈ C0. For φ, we have

‖φ(x)− φ(y)‖ =

∥∥∥∥
(
σtxt −

∫ t

0

xsdσs

)
−
(
σtyt −

∫ t

0

ysdσs

)∥∥∥∥

≤ ‖σt (xt − yt)‖+

∥∥∥∥
∫ t

0

(xs − ys)dσs
∥∥∥∥

≤ ‖σ‖ ‖x− y‖+ ‖x− y‖ ‖σt − σ0‖

≤ 3 ‖σ‖ ‖x− y‖ ,

so φ is continuous.

For ψ, if Lf is the Lipschitz constant for f , we get

‖ψ(x)− ψ(y)‖ ≤
∥∥∥∥∥

∫ t

0

Lf

[(
γ1x1 −

∫ 1

0

xsdγs −
�
��

�
��
�

ε

∫ t

s

γu σudu

)

−
(
γ1y1 −

∫ 1

0

ysdγs −
�
��

�
��
�

ε

∫ t

s

γu σudu

)]
ds

∥∥∥∥∥

≤Lf
∥∥∥∥
∫ t

0

(
γ1 (x1 − y1)−

∫ 1

0

(xs − ys) dγs
)
ds

∥∥∥∥

≤Lf (‖γ‖ ‖x− y‖+ 2 ‖γ‖ ‖x− y‖)

=3Lf ‖γ‖ ‖x− y‖ ,

which proves the continuity of ψ.

Thus we have that h is continuous and Xε
t = h(

√
εBt). From Theorem 2.2.3 along-

side Theorem 2.4.2, Xε
t follows LDP with the rate function

J(Y ) = inf

{
1

2

∫ 1

0

|v′(t)|2 dt
}
, (5.12)

where the infimum is over all v ∈ C0[0, 1] that solves the control differential equation




dVt = σtVt v
′(t)dt+ f

(∫ 1

0

γuv
′(d)du

)
Vtdt, t ∈ [0, 1],

V0 = c,

(5.13)
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with Vt = Xε
t as the solution. We state the above discussion as a theorem.

Theorem 5.3.2 (Theorem 5.7 of [21]). Given ε > 0, define the family of stochastic differ-

ential equations




dXε
t =
√
εσtX

ε
t dBt + f

(∫ 1

0

√
εγsdBs

)
Xε
tdt, t ∈ [0, 1],

X0 = c ∈ R,

where σ, γ are bounded deterministic functions of bounded variation on [0, 1]. Moreover,

consider f ∈ L2(R) is Lipschitz. Then the solutions {Xε
t } follows large deviation principle

with rate function J(•) given by equation (5.12).

5.4. Rate Function with Anticipating Initial Conditions

We have shown that the solution of the stochastic differential equation




dXε
t =
√
εσtX

ε
t dBt + f

(√
ε

∫ 1

0

γu dBu

)
Xε
t dt, t ∈ [0, 1],

Xε
0 = c, c ∈ R,

is given by

Xε
t = c exp

[ ∫ t

0

√
εσtdBs −

ε

2

∫ t

0

σ2
sds

+

∫ t

0

f

(∫ 1

0

√
εγvdBv −

∫ t

s

εσvγvdv

)
ds

]
.

using the definitions of both the Ayed–Kuo and the Hitsuda–Skorokhod integrals. For ε >

0, we also derived the large deviation principle for such a family of stochastic differential

equations.

Consider the family of stochastic differential equations




dY ε
t =
√
εσtY

ε
t dBt + f

(√
ε

∫ 1

0

γu dBu

)
Y ε
t dt, t ∈ [0, 1],

Y ε
0 = ξε,

(5.14)
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where the initial conditions ξε are random variables independent of the Brownian motion

and super-exponentially close in expectation to a constant c. Can we derive a large devia-

tion principle for this family? With that motivation, we state the following result.

Theorem 5.4.1 (Theorem 5.8 of [21]). Given ε > 0, let {Xε
t } be a solutions for a family

of anticipating stochastic differential equations given by Equation (5.14), where σ, γ, and

their first derivatives σ′ and γ′ are bounded. Moreover, consider f ∈ L2 (R) is Lipschitz.

Furthermore, let c ∈ R and ξε be a family of random variables that are independent of the

Brownian motion B• such that

lim
ε→ 0

ε logE
[
|ξε − c|2

]
= −∞. (5.15)

Then the solutions {Xε
t } follows large deviation principle with rate function J(•) given by

Equation (5.12).

Proof. We show this via super exponential approximation. Let Zε
t = Y ε

t − Xε
t . Then Zε

t

satisfies the equation





dZε
t =
√
εσtZ

ε
t dBt + f

(√
ε

∫ 1

0

γu dBu

)
Zε
t dt, t ∈ [0, 1],

Zε
0 = ξε − c.

From our earlier results, the solution is,

Zε
t = (ξε − c) exp

[ ∫ t

0

√
εσtdBs −

ε

2

∫ t

0

σ2
sds

+

∫ t

0

f

(∫ 1

0

√
εγvdBv −

∫ t

s

εσvγvdv

)
ds

]
.

Let φ(z) = |z|2 and let U ε
t = φ(Zε

t ). From Theorem 5.1.2, we have that U ε
t satisfies
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the stochastic integral equation

U ε
t = (ξε − c)2 + 2

∫ t

0

√
εσs U

ε
s dBs

+

∫ t

0

εσ2
s U

ε
s ds+ 2

∫ t

0

f

(∫ 1

0

√
εγu dBu

)
U ε
s ds

+ 2

∫ t

0

εσs γs U
ε
s

∫ s

0

f ′
(∫ 1

0

√
εγv dBv −

∫ s

u

εσvγv dv

)
du ds. (5.16)

Fix δ > 0 and let τ be a stopping time defined by τ = inf {t : |Zε
t | ≥ δ} ∧ 1. Con-

sider the stopped process U ε
t∧τ . Using the stochastic equation given by equation (5.16) and

taking expectations, we have

E (U ε
t∧τ ) = E (U ε

0) + 2E
[∫ t∧τ

0

√
εσs U

ε
s dBs

]
+ E

[∫ t∧τ

0

εσ2
s U

ε
s∧τ ds

]

+ 2E
[∫ t∧τ

0

f

(∫ 1

0

√
εγu dBu

)
U ε
s∧τ ds

]

+ 2E
[∫ t

0

εσs γs U
ε
s

∫ s

0

f ′
(∫ 1

0

√
εγv dBv −

∫ s

u

εσvγv dv

)
du ds

]
.

By Theorem 3.4.2, the second integral gives us a near-martingale. We use our as-

sumption that f, f ′, σ, γ are bounded by M ≥ 1. Using the version of near-martingale

optional stopping theorem in corollary 3.4.13 and the non-negativity of U ε
t we get

E (U ε
t∧τ ) ≤ E (U ε

0) + 2 · 0

+

∫ t∧τ

0

εM2E [U ε
s∧τ ] ds+ 2

∫ t∧τ

0

ME [U ε
s∧τ ] ds

+ 2

∫ t∧τ

0

εM ·M · E [U ε
s∧τ ] ·M · 1 ds

≤ E (U ε
0) + (2M + εM2 + 2εM3)

∫ t∧τ

0

E [U ε
s∧τ ] ds.

We define Kε = 2M + εM2 + 2εM3. Using Grönwall’s inequality, we get

E (U ε
τ ) = E (U ε

1∧τ ) ≤ E (U ε
0) eKε .
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Since φ(z) is positive and monotone increasing in |z|, we use Markov’s inequality to

get

P {|Zε
τ | ≥ δ} = P {φ (|Zε

τ |) ≥ φ(δ)} ≤ E (φ (|Zε
τ |))

φ(δ)
=

E (U ε
τ )

δ2
≤ E (U ε

0)

δ2
eKε .

We take log of both sides and multiply by ε to get,

ε logP {|Zε
τ | ≥ δ} ≤ ε log

(
1

δ2
eKε
)

+ ε logE |ξε − c|2 .

Taking the limit superior as ε goes to zero, we have that the first term on the right goes to

zero while we use our assumption from Equation (5.15) to get

lim sup
ε→0

ε logP {|Zε
t∧τ | > δ} = −∞.

This result allows us to say that Xε
t and Y ε

t are super-exponentially close. Thus by

the super-exponential approximation theorem in Theorem 2.2.4, we have that Y ε
t follows

large deviation principle with the same rate function given by Equation (5.12). Namely,

J(Y ) = inf
v

{
1

2

∫ 1

0

|v′(t)|2 dt
}
,

with the infimum over v ∈ C0[0, 1] as described in (5.13).
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Appendix. Copyright Information

Copyright information for Chapter 3

ANTICIPATING LINEAR STOCHASTIC DIFFERENTIAL

EQUATIONS WITH ADAPTED COEFFICIENTS

HUI-HSIUNG KUO, PUJAN SHRESTHA*, AND SUDIP SINHA

Abstract. Stochastic differential equations with adapted integrands and ini-
tial conditions are well studied within Itô’s theory. However, such a general

theory is not known for corresponding equations with anticipation. We use
examples to illustrate essential ideas of the Ayed–Kuo integral and techniques
for dealing with anticipating stochastic differential equations. We prove the

general form of the solution for a class of linear stochastic differential equa-
tions with adapted coefficients and anticipating initial condition, which in
this case is an analytic function of a Wiener integral. We show that for such
equations, the conditional expectation of the solution is not the same as the

solution of the corresponding stochastic differential equation with the initial
condition as the expectation of the original initial condition. In particular,
we show that there is an extra term in the stochastic differential equation,
and give the exact form of this term.

1. Introduction

Let B(t), where t ∈ [a, b], be a Brownian motion starting at 0 and let {Ft}
be the filtration generated by B(t), that is, Ft = σ{B(s); a ≤ s ≤ t}. In the
framework of Itô’s calculus, a stochastic differential equation

{
dX(t) = α(t, X(t)) dB(t) + β(t, X(t)) dt, t ∈ [a, b],

X(a) = ξ,

with the initial condition ξ being Fa-measurable, is a symbolical representation of
the stochastic integral equation

X(t) = ξ +

∫ t

a

b(s, X(s)) ds +

∫ t

a

σ(s, X(s)) dB(s), t ∈ [a, b],

where
∫ t

a
σ(s, X(s)) dB(s) is defined as an Itô integral. In Itô’s framework, we

require both the coefficients b(t, x,ω) and σ(t, x,ω) to be adapted apart from
usual integrability constraints, and and the initial condition ξ to be measurable
with respect to the initial σ-algebra Fa. The question of how the stochastic integral
can be defined when any of these quantities are not adapted (called anticipating)
has been an open question in the field of stochastic analysis for past decades.
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Copyright information for Chapter 4

AN INTRINSIC PROOF OF AN EXTENSION OF ITÔ’S

ISOMETRY FOR ANTICIPATING STOCHASTIC INTEGRALS

HUI-HSIUNG KUO, PUJAN SHRESTHA, AND SUDIP SINHA*

Abstract. Itô’s isometry forms the cornerstone of the definition of Itô’s

integral and consequently the theory of stochastic calculus. Therefore, for
any theory which extends Itô’s theory, it is important to know if the isometry

holds. In this paper, we use probabilistic arguments to demonstrate that the

extension of the isometry formula contains an extra term for the anticipating
stochastic integral defined by Ayed and Kuo. We give examples to illustrate

the usage of this formula and to show that the extra term can be positive or

negative.

1. Introduction

Let Bt, t ≥ 0, be a Brownian motion and [a, b] a fixed interval with a ≥ 0.
Suppose f and ϕ are continuous functions on R. In [1] the following anticipating
stochastic integral is defined as

∫ b

a

f(Bt)ϕ(Bb −Bt) dBt = lim
∥∆n∥→0

n∑

i=1

f(Bti−1
)ϕ(Bb −Bti)∆Bi (1.1)

provided that the limit exists in probability. Here ∆n = {a = t0, t1, t2, . . . , tn = b}
is a partition of [a, b] and ∆Bi = Bti −Bti−1 . Note that when ϕ ≡ 1 this stochastic
integral is an Itô integral (see Theorem 5.3.3 in [6].) It is proved in Theorem 3.1
[8] that when f and ϕ are C1-functions we have the equality:

E



(∫ b

a

f(Bt)ϕ(Bb −Bt) dBt

)2

 =

∫ b

a

E
[
f(Bt)

2ϕ(Bb −Bt)
2
]
dt

+ 2

∫ b

a

∫ t

a

E
[
f(Bs)ϕ

′(Bb −Bs)f
′(Bt)ϕ(Bb −Bt)

]
ds dt, (1.2)

provided that the integrals in the right-hand side exist. In particular, when ϕ ≡ 1,
the equality in equation (1.2) is the well-known Itô isometry.

We need to point out that the proof of equation (1.2) in [8] is too lengthy and
involves rather tedious computations by using the binomial expansion. Moreover,
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ON NEAR-MARTINGALES AND A CLASS OF ANTICIPATING LINEAR
SDES

HUI-HSIUNG KUO, PUJAN SHRESTHA*, SUDIP SINHA, AND PADMANABHAN SUNDAR

Abstract. The primary goal of this paper is to prove a near-martingale optional stop-
ping theorem and establish solvability and large deviations for a class of anticipating linear
stochastic differential equations. We prove the existence and uniqueness of solutions us-
ing two approaches: (1) Ayed–Kuo differential formula using an ansatz, and (2) a novel
braiding technique by interpreting the integral in the Skorokhod sense. We establish a
Freidlin–Wentzell type large deviations result for solution of such equations.

1. Introduction

Anticipating stochastic calculus has been an active and important research area for several
years, and lies at the intersection of probability theory and infinite-dimensional analysis.
Enlargement of filtration, Malliavin calculus, and white noise theory provide three distinct
methodologies to incorporate anticipation (of future) into classical Itô theory of stochastic
integration and differential equations.

It is to the credit of Itô who constructed an anticipating stochastic integral in 1976[6],
and laid the foundation for the idea of enlargement of the underlying filtration. Ever since,
the method was embraced by several researchers that led to many important works (see
articles in [7]). The advent of an integral invented by Skorokhod resulted in an impressive
edifice built by Malliavin on stochastic calculus of variations in order to prove Hörmander’s
hypoellipticity result by stochastic analysis. Malliavin calculus provided a natural basis
for the development and study of anticipative stochastic analysis and differential equations.
Around the same time, a systematic study of Hida distributions gave rise to white noise
theory and a general framework for stochastic calculus.

Malliavin calculus and white noise theory have vast applicability to the theory of stochastic
differential equations with anticipation. However, the results obtained by these theories are
primarily abstract though general. A more tractable theory was envisaged by Kuo based on
a concrete stochastic integral known as the Ayed–Kuo integral[1]. Under less generality, the
latter allows one to obtain results under easily understood, verifiable hypotheses.

In this article, we prove some results about stopped near-martingales, which are general-
izations of martingales. We then study existence, uniqueness and large deviation principle for
linear stochastic differential equations with anticipating initial conditions and drifts. While
we rely mostly on the Ayed–Kuo formalism, other theories are minimally used either out of
necessity, or to compare and contrast the conclusions of certain results.
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[6] Albert Einstein. Über die von der molekularkinetischen theorie der wärme geforderte
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